15.11.2012 Views

RESEARCH REPORT 2003 I 2004 - FMP Berlin

RESEARCH REPORT 2003 I 2004 - FMP Berlin

RESEARCH REPORT 2003 I 2004 - FMP Berlin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FORSCHUNGSINSTITUT<br />

FÜR MOLEKULARE PHARMAKOLOGIE<br />

IM FORSCHUNGSVERBUND BERLIN E.V.<br />

<strong>RESEARCH</strong> <strong>REPORT</strong><br />

<strong>2003</strong> I <strong>2004</strong>


FORSCHUNGSINSTITUT FÜR<br />

MOLEKULARE PHARMAKOLOGIE<br />

Campus <strong>Berlin</strong>-Buch<br />

Robert-Rössle-Str. 10<br />

D-13125 <strong>Berlin</strong><br />

fon: +49-(0)30-94793-100<br />

fax: +49-(0)30-94793-109<br />

e-mail: maul@fmp-berlin.de<br />

Outstation:<br />

Department of Molecular Genetics<br />

FEM Steglitz<br />

Krahmerstr. 6-10<br />

D-12207 <strong>Berlin</strong><br />

fon: +49-(0)30-8437-1910<br />

fax: +49-(0)30-8437-1922<br />

The Forschungsinstitut für Molekulare<br />

Pharmakologie (<strong>FMP</strong>) evolved out of the<br />

Institut für Wirkstoffforschung (IWF) of the<br />

Academy of Sciences of the GDR. Together<br />

with seven other research institutions, the<br />

institute is administratively organized<br />

within the Forschungsverbund <strong>Berlin</strong> e.V.<br />

The <strong>FMP</strong> is a member of the Leibniz<br />

Association.<br />

Das Forschungsinstitut für Molekulare<br />

Pharmakologie ist aus dem Institut für<br />

Wirkstoffforschung (IWF) der Akademie<br />

der Wissenschaften der DDR hervorgegangen.<br />

Es ist mit sieben weiteren<br />

Forschungsinstituten im Forschungsverbund<br />

<strong>Berlin</strong> e.V. zusammengeschlossen.<br />

Das <strong>FMP</strong> ist ein Mitglied der<br />

Leibniz-Gemeinschaft.<br />

<strong>RESEARCH</strong> <strong>REPORT</strong> <strong>2003</strong> / <strong>2004</strong><br />

Editorial Board:<br />

Walter Rosenthal, Michael Bienert,<br />

Ivan Horak, Hartmut Oschkinat<br />

Compilation & Editing:<br />

Björn Maul<br />

Cover Design and Layout:<br />

Hoch3 GmbH, <strong>Berlin</strong><br />

Photos:<br />

Bernhard Schurian, Thomas Oberländer,<br />

Björn Maul, Dana Hausbeck<br />

<strong>FMP</strong><br />

Print:<br />

Druckhaus <strong>Berlin</strong>-Mitte<br />

This Research Report is also available at<br />

www.fmp-berlin.de<br />

Cover: The G-Protein coupled receptor<br />

GPR 109: binding site with ligand<br />

(nicotinic acid)<br />

FORSCHUNGSINSTITUT<br />

FÜR MOLEKULARE PHARMAKOLOGIE<br />

IM FORSCHUNGSVERBUND BERLIN E.V.


SCIENTIFIC ADVISORY BOARD<br />

WISSENSCHAFTLICHER BEIRAT<br />

Professor Dr. Rudolf Balling<br />

GBF - Gesellschaft für Biotechnologische Forschung mbH<br />

Mascheroder Weg 1<br />

38124 Braunschweig<br />

Professor Dr. Annette G. Beck-Sickinger<br />

Institut für Biochemie der Universität Leipzig<br />

Brüderstr. 34<br />

04103 Leipzig<br />

Professor Dr. Matthias Bräutigam<br />

Schering AG<br />

Müllerstr. 170-178<br />

13342 <strong>Berlin</strong><br />

Professor Dr. Christian Griesinger<br />

Max-Planck-Institut für Biophysikalische Chemie<br />

Am Faßberg 11<br />

37077 Göttingen<br />

Professor Dr. Reinhard Jahn (Vorsitz)<br />

Max-Planck-Institut für Biophysikalische Chemie<br />

Am Faßberg 11<br />

37077 Göttingen<br />

Professor Dr. Hans-Georg Joost<br />

Deutsches Institut für Ernährungsforschung<br />

Arthur-Scheunert-Allee 114<br />

14558 Potsdam-Rehbrücke<br />

Professor Dr. Frauke Melchior<br />

Universitätsklinikum der Georg-August-Universität<br />

Göttingen<br />

Zentrum für Biochemie und Molekulare Zellbiologie<br />

Humboldt-Allee 23<br />

37073 Göttingen<br />

Professor Dr. Herbert Waldmann<br />

Max-Planck-Institut für Molekulare Physiologie<br />

Otto-Hahn Str. 11<br />

44202 Dortmund<br />

The Scientific Advisory Board of the <strong>FMP</strong> formally constituted<br />

itself at its meeting on November 6, 1992. At the<br />

board meeting on November 16, 2000 Professor Reinhard<br />

Jahn was elected chairman.<br />

Der Wissenschaftliche Beirat des <strong>FMP</strong> konstituierte sich<br />

anläßlich seiner Sitzung am 6. November 1992. Auf der Sitzung<br />

am 16. November 2000 wurde Professor Dr. Reinhard<br />

Jahn zum Vorsitzenden gewählt.


The <strong>FMP</strong> undertakes research in the field of molecular<br />

pharmacology. In accordance with this objective, the <strong>FMP</strong><br />

strives to make contributions of fundamental significance.<br />

In this context, it is engaged in elucidating the structure,<br />

functions and interactions of proteins and in developing<br />

new concepts relating to their pharmacological impact.<br />

Thus, the research activity of the <strong>FMP</strong> is at the forefront of<br />

drug development. The <strong>FMP</strong> pursues an interdisciplinary<br />

research approach, which has brought together cellular<br />

signal transduction/molecular genetics, structural biology<br />

and chemical biology. Characteristic for the scientific<br />

work at the <strong>FMP</strong> is the close interrelationship of chemistry<br />

and biology.<br />

MILESTONES <strong>2003</strong>/<strong>2004</strong><br />

The years <strong>2003</strong>/4 were characterized by the expansion of<br />

the chemistry department. With the appointment of Jörg<br />

Rademann as Professor for Medicinal Chemistry (joint<br />

appointment by the <strong>FMP</strong> and the Free University <strong>Berlin</strong>), a<br />

new important area of competence, combinatorial chemi-<br />

FOREWORD<br />

Das <strong>FMP</strong> betreibt Forschung auf dem Gebiet der Molekularen<br />

Pharmakologie. Dabei ist es bestrebt, Beiträge von<br />

grundsätzlicher Bedeutung zu erbringen. In diesem Rahmen<br />

versucht es, die Struktur, Funktionen und Interaktionen<br />

von Eiweißen (Proteinen) aufzuklären und neue Konzepte<br />

zu ihrer pharmakologischen Beeinflussung zu<br />

entwickeln. Damit ist die Forschungstätigkeit des <strong>FMP</strong> im<br />

Vorfeld der Entwicklung von Arzneimitteln angesiedelt.<br />

Das <strong>FMP</strong> verfolgt einen interdisziplinären Forschungsansatz,<br />

der zur Zusammenführung von Zellulärer Signaltransduktion/Molekularer<br />

Genetik, Strukturbiologie und Chemischer<br />

Biologie geführt hat. Kennzeichnend für die<br />

wissenschaftliche Arbeit am <strong>FMP</strong> ist die enge Verknüpfung<br />

von Chemie und Biologie.<br />

MEILENSTEINE <strong>2003</strong>/<strong>2004</strong><br />

Die Jahre <strong>2003</strong>/<strong>2004</strong> waren durch den Ausbau der Chemie<br />

geprägt. Durch die Berufung von Jörg Rademann auf eine<br />

Professur für Medizinische Chemie (gemeinsame Berufung<br />

von <strong>FMP</strong> und Freier Universität <strong>Berlin</strong>) wurde neben<br />

der Peptidchemie ein neuer Schwerpunkt „Kombinatorische<br />

Chemie“ geschaffen. Gleichzeitig wurde eine<br />

stry, was established alongside peptide chemistry. At the<br />

same time a Screening Unit was built up, making substance<br />

libraries and screening technology available. Jens<br />

Peter von Kries could be recruited to direct it. The <strong>FMP</strong> is<br />

thus the first academic institution in Germany which, using<br />

high throughput methods, can identify small molecules<br />

that bind to specific proteins and develop a biological<br />

effect (pages 92-95). These small molecules represent<br />

important tools for research. At the same time they can<br />

also be regarded as prototypes of novel pharmaceuticals.<br />

<strong>FMP</strong> scientists are centrally involved in building up a new<br />

national network (ChemBioNet; www.chembionet.de),<br />

through which academic groups can obtain access to substance<br />

libraries and screening technology.<br />

With the establishment of the research group Solid State<br />

NMR and the appointment of group leader Bernd Reif as<br />

Professor for Drug Design (joint appointment of the <strong>FMP</strong><br />

and the Charité – University Medicine <strong>Berlin</strong>), the staff of<br />

the NMR Center of the <strong>FMP</strong> was greatly expanded. An outstanding<br />

event was also the first-time operation of the 900<br />

MHz spectrometer, which represents the current state-of-<br />

Screening Unit aufgebaut, die über Substanzbibliotheken<br />

und Screening-Technologie verfügt. Als Leiter konnte<br />

Jens Peter von Kries gewonnen werden. Damit ist das<br />

<strong>FMP</strong> die erste akademische Einrichtung in Deutschland,<br />

die kleine Moleküle, die an bestimmte Proteine binden und<br />

eine biologische Wirkung entfalten, im Hochdurchsatzverfahren<br />

identifizieren kann. Diese kleinen Moleküle stellen<br />

wichtige Werkzeuge für die Forschung dar. Zugleich sind<br />

sie aber auch als Prototypen neuartiger Pharmaka zu<br />

betrachten. Wissenschaftler des <strong>FMP</strong> sind auch in zentraler<br />

Weise am Aufbau eines nationalen Netzwerks (Chem-<br />

BioNet; www.chembionet.de) beteiligt, durch das akademische<br />

Gruppen Zugang zu Substanzbibliotheken und<br />

Screening-Technologie erhalten sollen.<br />

Mit der Einrichtung der Arbeitsgruppe Festkörper-NMR<br />

und der Berufung eines Leiters, Bernd Reif, auf eine Professur<br />

für Drug Design (gemeinsame Berufung von <strong>FMP</strong><br />

und Charité – Universitätsmedizin <strong>Berlin</strong>) wurde das NMR-<br />

Zentrum des <strong>FMP</strong> personell stark erweitert. Ein herausragendes<br />

Ereignis war auch die Inbetriebnahme eines<br />

900 MHz-Spektrometers, das den aktuellen Stand der Entwicklung<br />

repräsentiert. Weltweit sind erst wenige Geräte<br />

dieses Typs verfügbar. Die erforderlichen Mittel (insge-<br />

3 Foreword


the-art development. Worldwide only a few devices of this<br />

type are in existence. The necessary funding (totaling 4.9<br />

million €) was provided by the BMBF (Federal Ministry of<br />

Education and Research) in the framework of a project<br />

grant and the <strong>Berlin</strong> Senate Department for Science,<br />

Research and Culture (EFRE funds). Thus an outstandingly<br />

well-equipped and well-staffed center for structural biology<br />

oriented NMR spectroscopy has been created that<br />

has an international reputation.<br />

In June <strong>2003</strong> at a ceremony which included the governing<br />

mayor of <strong>Berlin</strong>, the cornerstone was laid for the new<br />

Medicinal Genomics Building. It is a joint initiative of the<br />

<strong>FMP</strong> and the Max Delbrück Center for Molecular Medicine<br />

(MDC). The striking building, designed by the Staab architectural<br />

bureau, provides lab and office space for a staff of<br />

120. The move into the new building will take place in<br />

autumn 2005. Of the 230 employees on the staff of the <strong>FMP</strong>,<br />

about 40 will work in the new building.<br />

FOREWORD<br />

samt 4,9 Mio €) wurden vom BMBF im Rahmen der Projektförderung<br />

und der <strong>Berlin</strong>er Senatsverwaltung für Wissenschaft,<br />

Forschung und Kultur (EFRE-Mittel) zur Verfügung<br />

gestellt. Damit ist ein gerätemäßig und personell<br />

hervorragend ausgestattetes, international ausstrahlendes<br />

Zentrum für die strukturbiologisch orientierte NMR-<br />

Spektroskopie etabliert.<br />

Im Juni <strong>2003</strong> wurde gemeinsam mit dem Max-Delbrück-<br />

Centrum für Molekulare Medizin (MDC) im Beisein des<br />

Regierenden Bürgermeisters von <strong>Berlin</strong> der Grundstein für<br />

den Neubau „Medizinische Genomik“ gelegt. Das markante,<br />

von dem Architektenbüro Staab entworfene Gebäude<br />

bietet 120 Mitarbeitern Labor- und Büroarbeitsplätze.<br />

Der Bezug des neuen Gebäudes wird im Herbst 2005 erfolgen.<br />

Von den 230 Mitarbeitern des <strong>FMP</strong> werden ca. 40 im<br />

neuen Gebäude tätig sein.<br />

PERSPEKTIVEN<br />

Arzneimittel entfalten ihre Wirkung durch Interaktion ihrer<br />

Inhaltsstoffe (Wirkstoffe) mit körpereigenen Strukturen.<br />

Bei diesen Andockstellen im Organismus (Zielstrukturen,<br />

„targets“) handelt es sich fast ausnahmslos um Proteine<br />

(> 99%). Bisher ist erst ein sehr kleiner Teil der Eiweiße des<br />

menschlichen Körpers als Zielstruktur für einen Wirkstoff<br />

erschlossen (ca. 500). Sicher kommen nicht alle 100.000<br />

Eiweiße des Organismus als „targets“ für Wirkstoffe in<br />

Frage. Man geht aber davon aus, dass zumindest einige<br />

tausend geeignet sind. Damit stellt sich die Aufgabe, die<br />

derzeit schmale Basis der Arzneimitteltherapie durch<br />

Identifizierung neuer Zielstrukturen zu erweitern und so<br />

bestehende Therapiekonzepte zu verbessern und neue zu<br />

etablieren. Hier sieht das <strong>FMP</strong> ein zentrales Tätigkeitsfeld.<br />

Zu den Proteingruppen, die gegenwärtig am <strong>FMP</strong> bearbeitet<br />

werden, gehören als klassische „targets“ Membranproteine<br />

wie Rezeptoren und Kanalproteine, aber auch<br />

Proteine, die bisher kaum als „targets“ in Betracht gezogen<br />

wurden. Zu dieser Gruppe gehören Transkriptionsfaktoren,<br />

die Gene regulieren, Interaktionsdomänen von<br />

Proteinen und sogenannte Ankerproteine, die Proteine in


PERSPECTIVES<br />

Drugs achieve their effect through interaction of their contents<br />

(substances) with the body’s own structures. At<br />

these docking sites in the organism (targets), this almost<br />

without exception involves proteins (> 99%). Until now,<br />

drugs have been developed for only a small number of the<br />

proteins of the human body (approx. 500).<br />

To be sure, not all 100,000 proteins of the organism are<br />

appropriate as a target for substances. However, it is<br />

assumed that at least several thousand are suitable. Therefore,<br />

the task is to expand the present narrow base of<br />

drug therapy by identifying new target structures and thus<br />

to improve existing therapy concepts and establish new<br />

ones. Here the <strong>FMP</strong> sees a central field of activity. The protein<br />

groups that are currently being processed at the <strong>FMP</strong><br />

include as classical targets membrane proteins such as<br />

receptors and channel proteins, but also proteins that up<br />

till now have hardly been considered targets. To this group<br />

belong transcription factors, which regulate genes, interaction<br />

domains of proteins and so-called anchor proteins,<br />

der Zelle zu größeren funktionellen Komplexen zusammenfügen,<br />

sowie extrazelluläre Fibrillen. (die z. B. bei der Alzheimerschen<br />

Erkrankung vermehrt auftreten).<br />

Pharmazeutische Firmen ziehen sich immer mehr aus der<br />

Forschung im Vorfeld eines „proof of principle“, d. h. aus<br />

der „high-risk“ Forschung, die der Arzneimittelentwicklung<br />

vorausgeht, zurück. Außerdem ist seit langem eine<br />

Verlagerung der Forschungsabteilungen pharmazeutischer<br />

Firmen ins Ausland zu beobachten. Durch die Stärkung<br />

der chemischen Forschung und besonders durch die<br />

Einrichtung der Screening Unit hat das <strong>FMP</strong> seine Kompetenz<br />

innerhalb der Wertschöpfungskette, die zu neuen<br />

Arzneimitteln führt, erheblich in Richtung Anwendung<br />

erweitert, ohne allerdings seine feste Verankerung in der<br />

Grundlagenforschung aufzugeben. Es ist kann nun Vorschläge<br />

zu neuen „targets“ mit Vorschlägen zu Wirkstoffkandidaten<br />

verbinden und evtl. auch eine erste pharmakologische<br />

Charakterisierung potentieller „targets“<br />

präsentieren. Wir hoffen, dass die Erweiterung der Plattform<br />

dazu beiträgt, die Lücke zwischen pharmakologischer<br />

Grundlagenforschung in den Forschungseinrichtungen<br />

und der Arzneimittelentwicklung in der<br />

pharmazeutischen Industrie zu schließen und damit das<br />

which assemble the proteins in the cell to larger functional<br />

complexes, as well as extracellular fibrils (which e.g.<br />

are increasingly observed with Alzheimer’s disease).<br />

Pharmaceutical companies are withdrawing more and<br />

more out of research preparatory to a “proof of principle“,<br />

i.e. from “high-risk” research which precedes drug development.<br />

Moreover, for a long time it has been observed<br />

that the research departments of pharmaceutical companies<br />

have been relocating abroad. Due to the strengthening<br />

of chemical research and particularly due to the establishment<br />

of the Screening Unit, the <strong>FMP</strong> has considerably<br />

expanded its competence within the value creation chain<br />

that leads to new drugs with regard to application, yet<br />

without relinquishing its firm anchoring in basic research.<br />

Now it can combine suggestions for new “targets” with<br />

suggestions for substance candidates and possibly present<br />

a first pharmacological characterization of potential<br />

“targets”. We hope that the extension of the platform will<br />

help close the gap between pharmacological basic<br />

research in the research institutes and drug development<br />

in the pharmaceutical industry, and thus that the environ-<br />

Umfeld für Unternehmen des Pharma-Branche attraktiver<br />

zu gestalten. Diesem Ziel sollen auch die verschiedenen<br />

Netzwerkinitiativen dienen, an denen das <strong>FMP</strong> maßgeblich<br />

beteiligt ist. Beispiele sind die Etablierung eines Netzwerks<br />

„Arzneimittelentwicklung in <strong>Berlin</strong> und Brandenburg“<br />

und die bereits erwähnte nationale Initiative<br />

„ChemBioNet“.<br />

Wie in den vergangenen Jahren stehen Beiträge der<br />

Arbeitsgruppen über ihre wissenschaftliche Arbeit im Zentrum<br />

dieses Berichtes <strong>2003</strong>/<strong>2004</strong>. Er enthält aber auch die<br />

Leistungsbilanz für den Berichtszeitraum. So wird die<br />

Publikationstätigkeit, die Einwerbung von Drittmitteln und<br />

die Beteiligung des <strong>FMP</strong> an der Ausbildung von Studierenden<br />

verschiedener Disziplinen dargestellt.<br />

Der Erfolg der letzten Jahre ist den Mitarbeiterinnen und<br />

Mitarbeiter des <strong>FMP</strong> zuzuschreiben, bei denen ich mich<br />

herzlich für ihr Engagement bedanken möchte. Mein Dank<br />

richtet sich auch an den wissenschaftlichen Beirat, der<br />

das <strong>FMP</strong> konstruktiv-kritisch begleitet hat.<br />

5 Foreword


ment for companies in the pharma sector will become<br />

more attractive. Various network initiatives in which the<br />

<strong>FMP</strong> plays a major role shall also serve this goal. Examples<br />

are the establishment of a network “Drug Development<br />

in <strong>Berlin</strong> und Brandenburg” and the already mentioned<br />

national initiative “ChemBioNet”.<br />

As in past years, the contributions of the various research<br />

groups about their scientific work stand in the center of<br />

this research report <strong>2003</strong>/<strong>2004</strong>. However, it also contains<br />

a performance account for the period of the report. Thus,<br />

publication activity, solicitation of third-party funds and the<br />

participation of the <strong>FMP</strong> in the education and training of<br />

students of the various disciplines are also presented.<br />

The success of the last years is due to the colleagues of<br />

the <strong>FMP</strong>, whom I would like to thank very much for their<br />

dedication. My thanks also go to the Scientific Advisory<br />

Board for its constructive and critical support of the <strong>FMP</strong>.<br />

FOREWORD<br />

I would like to invite readers to take an informative and<br />

interesting tour through the pages of this report to see how<br />

the <strong>FMP</strong> has developed since its founding 12 years ago.<br />

Walter Rosenthal, Director<br />

Ich wünsche den Lesern einen aufschlussreichen und<br />

interessanten Streifzug durch das <strong>FMP</strong>, wie es sich<br />

12 Jahre nach seiner Neugründung darstellt.<br />

Walter Rosenthal, Direktor<br />

April 2005


CONTENTS / INHALT<br />

Scientific Advisory Board / Wissenschaftlicher Beirat ......................................................................................................... 2<br />

Foreword / Vorwort ..................................................................................................................................................................... 3<br />

Section Structural Biology / Bereich Strukturbiologie<br />

Introduction ......................................................................................................................................................................... 10<br />

Protein Structure ................................................................................................................................................................ 12<br />

Solution NMR....................................................................................................................................................................... 16<br />

Structural Bioinformatics .................................................................................................................................................. 20<br />

Molecular Modelling .......................................................................................................................................................... 24<br />

Solid State NMR ................................................................................................................................................................. 28<br />

Protein Engineering ............................................................................................................................................................ 31<br />

Section Cellular Signalling / Molecular Genetics /<br />

Bereich Signaltransduktion/ Molekulare Genetik<br />

Introduction ......................................................................................................................................................................... 36<br />

Protein Trafficking .............................................................................................................................................................. 39<br />

Anchored Signalling ........................................................................................................................................................... 42<br />

Cellular Imaging .................................................................................................................................................................. 46<br />

Molecular Cell Physiology ................................................................................................................................................ 49<br />

Biochemical Neurobiology ................................................................................................................................................ 52<br />

Biophysics ........................................................................................................................................................................... 56<br />

Cytokine Signaling .............................................................................................................................................................. 59<br />

Molecular Myelopoiesis .................................................................................................................................................... 62<br />

Mouse Models..................................................................................................................................................................... 64<br />

Cellular Signal Processing ................................................................................................................................................ 65<br />

Section Chemical Biology / Bereich Chemische Biologie<br />

Introduction ......................................................................................................................................................................... 70<br />

Peptide Synthesis ............................................................................................................................................................... 72<br />

Peptide Lipid Interaction/Peptide Transport .................................................................................................................. 75<br />

Peptide Biochemistry ......................................................................................................................................................... 80<br />

Mass Spectrometry ............................................................................................................................................................ 83<br />

Synthetic Organic Biochemistry ...................................................................................................................................... 86<br />

Medicinal Chemistry .......................................................................................................................................................... 89<br />

Screening Unit .................................................................................................................................................................... 92<br />

Scientific and technical services / Wissenschaftlicher und technischer Service<br />

Microdialysis ....................................................................................................................................................................... 98<br />

DNA Sequencing .............................................................................................................................................................. 101<br />

Public Relations and the Media / Presse- und Öffentlichkeitsarbeit ........................................................................ 102<br />

Administration / Verwaltung ........................................................................................................................................... 106<br />

Computer Services / Computer-Service ........................................................................................................................ 108<br />

Contents<br />

7


Flip-book<br />

Daumenkino<br />

Appendix / Anhang<br />

Peer reviewed Articles <strong>2003</strong> / Originalarbeiten ............................................................................................................ 110<br />

Peer reviewed Articles <strong>2004</strong> / Originalarbeiten ............................................................................................................ 114<br />

Reviews <strong>2003</strong>/<strong>2004</strong> / Übersichtsarbeiten ...................................................................................................................... 121<br />

Contributions in Monographs <strong>2003</strong>/<strong>2004</strong> / Beiträge zu Sammelwerken ....................................................................121<br />

Monographs <strong>2003</strong>/<strong>2004</strong> / Monographien ...................................................................................................................... 122<br />

Memberships in Editorial Boards <strong>2003</strong>/<strong>2004</strong> / Mitgliedschaften in Editorial Boards ..............................................123<br />

Invited Talks <strong>2003</strong>/<strong>2004</strong> / Eingeladene Vorträge .......................................................................................................... 123<br />

External funding <strong>2003</strong>/<strong>2004</strong> / Drittmittel.......................................................................................................................... 128<br />

Participation in Research Networks <strong>2003</strong>/<strong>2004</strong> / Beteiligung an Netzwerken und Verbundprojekten ................ 130<br />

Cooperations with contract <strong>2003</strong>/<strong>2004</strong> / Vertragliche Kooperationen....................................................................... 132<br />

Meetings, Workshops, Symposia <strong>2003</strong>/<strong>2004</strong> / Wissenschaftliche Veranstaltungen ............................................... 134<br />

Work in Panels <strong>2003</strong>/<strong>2004</strong> / Gremienarbeit.................................................................................................................... 135<br />

Review Activities <strong>2003</strong>/<strong>2004</strong> / Gutachtertätigkeit ......................................................................................................... 135<br />

Academic Teaching <strong>2003</strong> / <strong>2004</strong> / Lehre.......................................................................................................................... 138<br />

Calls for Appointments <strong>2003</strong>/<strong>2004</strong> / Rufe........................................................................................................................ 141<br />

Post-Doctoral Lecture Qualifications <strong>2003</strong>/<strong>2004</strong> / Habilitationen .............................................................................. 141<br />

Graduations <strong>2003</strong>/<strong>2004</strong> / Promotionen ........................................................................................................................... 142<br />

Diploma theses <strong>2003</strong>/<strong>2004</strong> / Diplomarbeiten ................................................................................................................. 143<br />

Internships <strong>2003</strong>/<strong>2004</strong> / Praktikanten ............................................................................................................................. 144<br />

Guest Scientists <strong>2003</strong>/<strong>2004</strong> / Gastwissenschaftler ...................................................................................................... 148<br />

Lectures at the <strong>FMP</strong> <strong>2003</strong> / Kolloquien und Seminare am <strong>FMP</strong> .................................................................................. 149<br />

Lectures at the <strong>FMP</strong> <strong>2004</strong> / Kolloquien und Seminare am <strong>FMP</strong> ................................................................................. 153<br />

Technology Transfer <strong>2003</strong>/<strong>2004</strong> / Technologietransfer ................................................................................................ 156<br />

Structure of the Forschungsinstitut für Molekulare Pharmakologie (<strong>FMP</strong>) / Organigramm .................................. 158<br />

Index / Namensregister ................................................................................................................................................... 160<br />

Maps / Lagepläne ............................................................................................................................................................. 164


STRUCTURAL BIOLOGY


SECTION STRUCTURAL BIOLOGY<br />

Prof. Hartmut Oschkinat<br />

Department Head: NMR-supported Structural Biology<br />

(Secretary: Andrea Steuer)<br />

The research themes of the section cover structural and<br />

functional studies of receptors and proteins involved in<br />

intracellular signalling, and projects on the biophysical<br />

description of protein aggregate formation. Strong emphasis<br />

is thereby put on a structural characterization of membrane-integrated<br />

receptors, channels and fibril-forming<br />

systems, in combination with exploring the potential of<br />

solid-state magic angle spinning NMR for studying such<br />

systems. As a special theme with regard to intracellular<br />

signalling, non-catalytical protein domains that mediate<br />

interactions with linear peptide segments in target proteins<br />

are analyzed with respect to specificity and affinitydetermining<br />

sequence features. A growing part of the<br />

research is the systematic derivation of small organic<br />

INTRODUCTION<br />

BEREICH STRUKTURBIOLOGIE<br />

Prof. Hartmut Oschkinat<br />

Abteilungsleiter: NMR-unterstützte Strukturforschung<br />

(Sekretariat: Andrea Steuer)<br />

Der Bereich Strukturbiologie erforscht Struktur und Funktion<br />

von Rezeptoren und Proteinen, die an der intrazellulären<br />

Signalübertragung beteiligt sind, sowie die Entstehung<br />

von Proteinaggregaten. Im Mittelpunkt des<br />

Interesses steht die strukturelle Charakterisierung von<br />

Rezeptoren, Kanälen und fibrillenbildenen Systemen in<br />

Kombination mit der Erforschung des Potentials der<br />

„magic-angle-spinning“ Festphasen-NMR für das Studium<br />

solcher Systeme. Im Hinblick auf die intrazelluläre Signalübertragung<br />

wird besonderes Augenmerk auf die spezifitäts-<br />

und affinitätsbestimmenden Eigenschaften nichtkatalytischer<br />

Proteindomänen gelegt. Diese vermitteln die<br />

Interaktionen mit linearen Peptidsegmenten in Zielproteinen.<br />

Zunehmend rückt die systematische Derivatisierung<br />

kleiner organischer Moleküle als Modulatoren von Protein-Protein-Interaktionen<br />

und der Amyloid-Bildung in den<br />

Mittelpunkt des Interesses. Wichtige inhaltliche Brücken<br />

compounds as modulators of protein-protein interactions<br />

and amyloid formation. There are strong links to the<br />

screening facility of the <strong>FMP</strong> through the molecular<br />

modellling and NMR aspects of small-molecule inhibitor<br />

development.<br />

The department hosts expertise in the areas of structural<br />

bioinformatics, molecular biology, solution and solid-state<br />

NMR spectroscopy, and molecular modelling. NMR<br />

spectroscopy is used as the major tool for determining<br />

structures of biological macromolecules in solution, and<br />

of quasi-solid preparations which are difficult to crystallize,<br />

like amyloid fibrils and membrane proteins in nativelike<br />

lipids. It is particularly well suited for studying the<br />

dynamics of protein structures and interactions with very<br />

weakly binding ligands. The various skills are contained in<br />

currently six research groups, Protein Engineering<br />

(Christian Freund), Molecular Modelling (Ronald Kühne),<br />

Structural Bioinformatics (Gerd Krause), Protein Structure<br />

(Hartmut Oschkinat), Solid State NMR (Bernd Reif) and<br />

zum Screening-Labor des <strong>FMP</strong> sind die Molekülmodellierung<br />

und NMR-Aspekte der Entwicklung niedermolekularer<br />

Hemmstoffe.<br />

Der Bereich kann Expertise auf den Gebieten strukturelle<br />

Bioinformatik, Molekularbiologie, Flüssigkeits- und Festkörper-NMR-Spektroskopie<br />

sowie Molekülmodellierung<br />

vorweisen. Hauptsächlich mittels NMR-Spektroskopie<br />

werden Strukturen biologischer Makromoleküle in Lösung<br />

und in Präparationen an der Festkörperphase bestimmt<br />

(Amyloidfibrillen und Membranproteine in natürlichen<br />

Lipiden). NMR-Spektroskopie ist besonders geeignet für<br />

Studien zur Dynamik von Proteinen und Interaktionen mit<br />

sehr schwach bindenden Liganden. Gegenwärtig sechs<br />

Arbeitsgruppen bieten wissenschaftliche Kompetenz in<br />

Protein Engineering (Christian Freund), Molekülmodellierung<br />

(Ronald Kühne), Struktureller Bioinformatik (Gerd<br />

Krause), Proteinstruktur (Hartmut Oschkinat), Festkörper-<br />

NMR (Bernd Reif) und Lösungs-NMR (Peter Schmieder).<br />

Der Bereich ist mit einer Vielzahl von Lösungs- und Festkörper-NMR-Spektrometern<br />

(400 bis 900 MHz) sowie Geräten<br />

zur analytischen Ultrazentrifugation und isothermischen<br />

Kalorimetrie ausgestattet. In den zurückliegenden


Solution NMR (Peter Schmieder). The instrumentation<br />

includes a variety of solution and solid-state NMR spectrometers<br />

ranging from 400 to 900 MHz, and equipment for<br />

analytical ultracentrifugation and isothermal calorimetry.<br />

In the past two years, the direction of research has been<br />

shifted stronger towards solid-state NMR and its applications,<br />

resulting in the installation of a new group focused<br />

on solid-state NMR and amyloid-forming systems. Furthermore,<br />

a 700 MHz wide bore NMR spectrometer was purchased.<br />

zwei Jahren hat sich der Fokus der Forschung stärker in<br />

Richtung Festkörper-NMR und deren Anwendungen verschoben.<br />

Dies führte zur Ansiedlung einer neuen Arbeitsgruppe,<br />

die sich mit Festkörper-NMR und Amyloid-bildenden<br />

Systemen befasst. Außerdem wurde ein 700<br />

MHz-„wide bore“-NMR-Spektrometer in Betrieb genommen.<br />

11 Structural Biology


PROTEIN STRUCTURE<br />

Group Leader: Prof. Hartmut Oschkinat<br />

STRUCTURAL CHARACTERIZATION OF<br />

PROTEIN-PROTEIN-INTERACTIONS<br />

The main focus of our group is the structural characterization<br />

of protein-protein interactions responsible for the<br />

reception and transduction of signals in biological<br />

systems. This research concerns protein domains which<br />

recognise specific peptides and on the long run investigations<br />

on membrane integrated receptors and receptorligand<br />

complexes. It is embedded into efforts towards<br />

structural genomics of soluble and membrane proteins<br />

and supported by NMR-technical developments. The<br />

technical developments aim at higher throughput and<br />

towards concepts for structure determination of membrane<br />

proteins by solid-state NMR.<br />

Structure and function of non-catalytic protein<br />

domains<br />

Non-catalytic protein domains mediate protein-protein<br />

interactions through the recognition of peptide segments<br />

in a highly specific manner. Such interactions govern the<br />

reversible assembly of macromolecular signalling complexes<br />

which finally form a logical network of interacting proteins,<br />

thereby transmitting information. Our investigations<br />

on non-catalytic protein domains typically involve a combination<br />

of structural and functional studies, e.g. by using<br />

peptide libraries, NMR spectroscopy and a variety of other<br />

biophysical techniques, aiming at an understanding of<br />

molecular recognition and drug design.<br />

We have determined the structures of a number of WW<br />

domain-peptide complexes, and the structure of an SH3<br />

domain in complex with a canonical and a non-canonical<br />

peptide revealing two different binding sites. Intense studies<br />

with PDZ and WW domains involving NMR and peptide<br />

library screens where set out to derive structure-activity-relationships<br />

and to provide data for a theoretical<br />

analysis of domain specificity. We quantitatively determined<br />

the specificity profiles of three representative PDZ<br />

domains from the AF6, ERBIN and SNA1 proteins, with<br />

respect to the complete ligand sequence space of C-terminal<br />

peptides. This quantification was achieved by combining<br />

efficiently dissociation constant measurements and<br />

statistical analysis of synthetic peptide libraries, using an<br />

Analysis of Variance (ANOVA) approach. Predicted in vitro<br />

affinities were validated by designing super-binding peptides<br />

which indeed revealed the lowest Kd values and the<br />

highest PDZ domain specificity. The coverage of the com-<br />

plete ligand sequence space for the three PDZ domains<br />

made it feasible to compare their ligand selectivity and the<br />

overlap of their recognized ligand sequence subspaces.<br />

NMR structure determination in a structural<br />

genomics context<br />

As a part of the protein structure factory project, a number<br />

of protein structures were generated, including those<br />

of the subunit B8 of complex I, of the p47 SEP domain, and<br />

of a BRCT domain.<br />

The solution structure of the subunit B8 from ubiquinone<br />

oxidoreductase (Complex I) (CI-B8) shows a thioredoxin<br />

fold (Fig. 1) with remarkable similarities to thioredoxin-like<br />

Fe2S2-ferredoxins. A detailed comparison to these proteins<br />

show remarkably high similarities of surface properties<br />

and possibly catalytically active residues. The redoxpotential<br />

of the disulfide-bond is comparable to that of the<br />

catalytically active disulfides in thioredoxin-like proteins.<br />

This led to the hypothesis that this subunit may be involved<br />

in the regulation of complex I.<br />

The BRCT domain occurs in a number of different signal<br />

transduction proteins involved in transcriptional regulation,<br />

DNA repair, cell cycle progression and cancer suppression.<br />

The C-terminal region of the breast cancer associated<br />

tumor suppressor protein BRCA1 consists of two<br />

successive BRCT domains, separated by a short linker. We<br />

have, in collaboration with the group of Udo Heinemann at<br />

the MDC, <strong>Berlin</strong>-Buch, solved the solution structure of<br />

BRCT-c, the C-terminal BRCT domain of BRCA1. Analysis<br />

of the structure and comparison with other members of the<br />

BRCT superfamily has revealed that only a small number of<br />

conserved residues are necessary for the formation and<br />

stabilization of the BRCT motif.<br />

The structure of the SEP domain of the protein p47 was<br />

determined and a hypothesis as to its function derived and<br />

verified. A particular feature of this fold is the conservation<br />

of residues in two loops, and of aromatic residues very<br />

close to it (Fig. 2). These loops are remarkably rigid, and<br />

the upper part of the structure in Fig. 2 resembles cysteine<br />

protease inhibitors like cystatins and stefins. An assay<br />

showed a weak inhibition of cathepsin L by the p47 SEP<br />

domain.<br />

Toward structure determination of membrane<br />

proteins by NMR<br />

Major forces were concentrated on the further development<br />

of a structure determination concept for proteins<br />

using magic-angle spinning solid-state NMR. Such a<br />

method would be very welcome for systems which are


FIGURE 1<br />

Ribbon diagram of subunit B8 (left) from ubiquinone oxidoreductase (Complex I, right)<br />

difficult to crystallize and out of range for solution NMR,<br />

like membrane proteins, amyloids, and structure forming<br />

proteins like actin filaments, for example. Along with<br />

various membrane proteins, a microcrystalline sample of<br />

the α-spectrin SH3 domain is studied as a model system<br />

which yields suitable NMR spectra for structure determination.<br />

At the beginning of the study resonance<br />

assignments for all 13C and 15N resonances were achieved,<br />

followed by an assignment of non-exchangeable, and<br />

later also of most exchangeable protons. Based on the<br />

achieved assignments a first structure of a protein was<br />

determined. A key aspect of this study was the generation<br />

of biosynthetically site directed labelled samples by using<br />

either 1,3- 13C-glycerol or 2- 13C-glycerol as carbon sources.<br />

The respective proton driven spin diffusion spectra received<br />

from those samples showed a dramatically increased<br />

number of long-range restrains that were used for structure<br />

calculations. We have now refined the original structure<br />

of the α-spectrin SH3 domain using 889 interresidue<br />

carbon-carbon and 6 15N- 15N restraints, all obtained by<br />

solid-state MAS NMR. The derived procedure should be<br />

widely applicable to small membrane proteins and amyloid<br />

systems if the proteins can be expressed in bacteria.<br />

First steps towards membrane proteins were taken using<br />

the snake toxin neurotoxin II bound to the nicotinic acetyl<br />

choline receptor as a test system. The spectra show<br />

remarkably sharp lines, and an evaluation of the spectra<br />

is under way.<br />

Group members<br />

Dr. Linda Ball<br />

Dr. Anne Diehl<br />

Dr. Katja Fälber<br />

Dr. Jeremy Flinders<br />

Dr. Ludwig Krabben<br />

Dr. Dirk Labudde<br />

Dr. Dietmar Leitner<br />

Dr. Ricardo Pires<br />

Dr. Barth van Rossum<br />

Prisca Boisguerin (Doctoral student)<br />

Christoph Brockmann (Doctoral student)<br />

Federica Castellani (Doctoral student)<br />

Michele Fossi (Doctoral student)<br />

Matthias Hiller (Doctoral student)<br />

Henrik Holtmann (Doctoral student)<br />

Mangesh Joshi (Doctoral student)<br />

Christian Köhler (Doctoral student)<br />

Structural Biology<br />

13


B<br />

Thien-Thi Mac (Doctoral student)<br />

Vivien Lange (Doctoral student)<br />

Doreen Pahlke (Doctoral student)<br />

Ilja Poliakov (Doctoral student)<br />

Nikolaj Schröder (Doctoral student)<br />

Michael Soukenik (Doctoral student)<br />

Carolyn Vargas (Doctoral student)<br />

Urs Wiedemann (Doctoral student)<br />

Stefan Jehle (Student)<br />

Heide Evers (Technical assistance)<br />

Lilo Handel (Technical assistance)<br />

Martina Leidert (Technical assistance)<br />

Kristina Rehbein (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Struktur und Mechanismus der 3,4-Dihydroxy-2-butanon-<br />

4-phosphat-Synthase“ (OS 106/ 4-2)<br />

Hartmut Oschkinat<br />

Deutsche Forschungsgemeinschaft<br />

„Analyse von essentiellen WW-Domänen in ß-sheet-<br />

Strukturen am Beispiel der WW-Domäne mittes Einbaus<br />

nicht natürlicher Aminosäuren“ (OS 106/5-1,5-2)<br />

Hartmut Oschkinat<br />

N<br />

C<br />

FIGURE 2<br />

Structural ensemble of the p47 SEP domain. The residues with side chains displayed in black and green are highly conserved.<br />

N<br />

Deutsche Forschungsgemeinschaft<br />

„Schlüsselreaktionen der biologischen Wasserstoffaktivierung<br />

am Beispiel der [NiFe]-Hydrogenasen“ (Teilprojekt<br />

C1 im Sonderforschungsbereich 498 “Protein-Kofaktor-<br />

Wechselwirkungen in biologischen Prozessen“)<br />

Hartmut Oschkinat, Bärbel Friedrich (Humboldt-Universität<br />

zu <strong>Berlin</strong>)<br />

Deutsche Forschungsgemeinschaft<br />

„Bestimmung der Raumstrukturen von Rezeptor-gebundenen<br />

Agonisten und Antagonisten mittels Festkörper-NMR-<br />

Spektroskopie“ (Teilprojekt B1 im Sonderforschungsbereich<br />

449 „Struktur und Funktion membranständiger<br />

Rezeptoren“)<br />

Hartmut Oschkinat<br />

Deutsche Forschungsgemeinschaft<br />

„Theoriegestützte NMR-spektroskopische Analyse von<br />

Protein-Ligand-Wechselwirkungen unter Verwendung von<br />

Peptidbibliotheken“ (Teilprojekt in der Forschergruppe 299<br />

„Optimierte molekulare Bibliotheken zum Studium biologischer<br />

Erkennungsprozesse“)<br />

Hartmut Oschkinat, Michael Bienert<br />

C


Deutsche Forschungsgemeinschaft<br />

„Analyse von essentiellen Wechselwirkungen in ß-sheet-<br />

Strukturen am Beispiel der WW-Domäne mittels Einbau<br />

nicht natürlicher Aminosäuren“ (Teilprojekt in der Forschergruppe<br />

475 “Bildung und Stabilität von β-Faltblättern)<br />

Hartmut Oschkinat<br />

Bundesministerium für Bildung und Forschung<br />

„Strukturanalyse mit hohem Durchsatz für medizinisch<br />

relevante Proteine“ (01GG 9812, BMBF-Leitprojekt Proteinstrukturfabrik)<br />

Hartmut Oschkinat<br />

Bundesministerium für Bildung und Forschung<br />

„Aufbau einer Technologieplattform NMR-Messtechnik<br />

für die Proteomforschung“ (0312832)<br />

Hartmut Oschkinat<br />

Bundesministerium für Bildung und Forschung<br />

“Festkörper-NMR-Spektroskopie“ (0312890G, Teilprojekt<br />

im Verbund „Proteomweite Analyse membrangebundener<br />

Proteine – ProAMP“)<br />

Hartmut Oschkinat<br />

Bundesministerium für Bildung und Forschung<br />

„Screening von Substanzbibliotheken und Struktur-basierten<br />

Wirkstoffdesign“ (0312992J, Teilprojekt im Verbundvorhaben<br />

„Strukturproteomik“ – Konsortium Hamburg:<br />

„Hochdurchsatz-Strukturanalyse von Mycobacteriumtuberculosis-Zielproteinen<br />

und ihrer Ligandenkomplexe<br />

zur Suche nach Wirkstoffen“<br />

Hartmut Oschkinat, Jens Peter von Kries<br />

European Community<br />

“Exploiting synthetics SH2-scaffolded repertoire libraries<br />

to profile cancer cells and to interfere with cancer-related<br />

phenotypes” (QLK3-2000-00924)<br />

Hartmut Oschkinat<br />

European Community<br />

„Interactions between growth factors and glycosaminoglycans<br />

in arterial disease” (BMH4-98-3289)<br />

Hartmut Oschkinat<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Otte L, Wiedemann U, Schlegel B, Pires JR, Beyermann<br />

M, Schmieder P, Krause G, Volkmer-Engert R, Schneider-<br />

Mergener J, Oschkinat H (<strong>2003</strong>) WW domain sequence<br />

activity relationships identified using ligand recognition<br />

propensities of 42 WW domains. Prot Sci 12, 491-500<br />

Kahmann JD, Wecking DA, Putter V, Lowenhaupt K, Kim<br />

YG, Schmieder P, Oschkinat H, Rich A, Schade M (<strong>2004</strong>)<br />

The solution structure of the N-terminal domain of E3L<br />

shows a tyrosine conformation that may explain its redu-<br />

ced affinity to Z-DNA in vitro. Proc Natl Acad Sci USA 101,<br />

2712-2717<br />

Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder<br />

P, Korn B, Kühne R, Oschkinat H (<strong>2004</strong>) The oxidized subunit<br />

B8 from human complex I adopts a thioredoxin fold.<br />

Structure 12, 1645-1654<br />

Gaiser OJ, Ball LJ, Schmieder P, Leitner D, Strauss H,<br />

Wahl M, Kühne R, Oschkinat H, Heinemann U (<strong>2004</strong>) Solution<br />

Structure, Backbone Dynamics, and Association<br />

Behavior of the C-Terminal BRCT Domain from the Breast<br />

Cancer-Associated Protein BRCA1. Biochemistry 43,<br />

15983-15995<br />

Collaborations<br />

Adelbert Bacher, Garching<br />

Alan Fersht, FRS, Cambridge, UK<br />

Paul Gooley, Melbourne<br />

Robert G. Griffin, Cambridge, USA<br />

Udo Heinemann, <strong>Berlin</strong><br />

Klaus-Peter Hofmann, <strong>Berlin</strong><br />

Dieter Oesterhelt, Martinsried<br />

Michael Nilges, Paris<br />

Jens Schneider Mergener, <strong>Berlin</strong><br />

Rudolf Volkmer-Engert, <strong>Berlin</strong><br />

Structural Biology<br />

15


SOLUTION NMR<br />

Group Leader: Dr. Peter Schmieder<br />

APPLICATIONS OF SOLUTION STATE NMR<br />

TO ADDRESS BIOLOGICALLY IMPORTANT<br />

QUESTIONS<br />

Peter Schmieder, Holger Strauss, Christian Appelt, Janina<br />

Hahn, Brigitte Schlegel<br />

NMR spectroscopy is an important technique to address<br />

numerous questions regarding the structure of various<br />

kinds of molecules, including their three-dimensional<br />

structure. Solution-state NMR is well established as a tool<br />

to obtain the three-dimensional structure at atomic resolution<br />

for soluble biomolecules. Solid-state NMR is<br />

currently emerging as a technique to obtain structural<br />

information, where solution-state NMR is becoming<br />

exceedingly difficult, namely in the case of membrane proteins.<br />

NMR spectroscopy, preferably in solution, can also provide<br />

valuable information on the interaction of proteins and<br />

ligands, either in the case of a particular ligand of interest<br />

or in the case of large libraries used in screening protocols.<br />

Last but not least, NMR is extremely important for the<br />

determination of the constitution of smaller molecules.<br />

In our group we use the full repertoire of solution-state<br />

NMR techniques in conjunction with a variety of labeling<br />

patterns to address questions of biological and pharmacological<br />

importance. These range from the development<br />

of new techniques for solution-state NMR to the elucidation<br />

of the constitution of biologically active peptides and<br />

the determination of the three-dimensional structure of<br />

peptides and proteins. In addition, NMR spectroscopy is<br />

offered as a tool to researchers and companies throughout<br />

the <strong>Berlin</strong> area.<br />

Structure of the chromophore-binding pocket of<br />

the cyanobacterial phytochrome Cph1<br />

Phytochrome photoreceptors control numerous developmental<br />

processes in all plants. Light is absorbed by a covalently<br />

bound tetrapyrrole chromophore, phytochromobilin<br />

(PΦB), which is incorporated autocatalytically into a chromophore-binding<br />

domain in the N-terminal sensory module<br />

of the protein. The physiological function of phytochrome<br />

is associated with the photochemical production of the<br />

thermodynamically stable P fr signaling state following light<br />

absorption by the P r- ground state (λ max ~660 nm). The P fr<br />

form itself is photoactive (λ max ~730 nm), quantum absorption<br />

leading to the production of P r . In daylight the photocycle<br />

establishes a dynamic equilibrium with a constant<br />

level of P fr . The difference between the P r and P fr is attributed<br />

to the Z-E-isomerization of a double bond within the<br />

chromophore, as suggested from NMR data from isolated<br />

chromopeptides.<br />

With the discovery of Cph1 in the cyanobacterium Synechocystis<br />

sp. PCC 6803 it was realized that phytochromes<br />

are also present in prokaryotes. The native chromophore<br />

of Cph1 in Synechocystis as well as in many other cyanobacterial<br />

phytochromes is phycocyanobilin. Subsequently,<br />

phytochromes have also been detected in other cyanobacteria<br />

and even non-photosynthetic bacteria, where the<br />

chromophore frequently is biliverdine. Heterologous expression<br />

of phytochromes in E. coli yields apoproteins that<br />

are usually capable of self-assembling with the chromophore<br />

to become red/farred photochromic holoproteins. A<br />

deeper understanding of the photochromic mechanism of<br />

phytochrome proteins requires detailed knowledge of the<br />

structure of the chromophore pocket. No structural information<br />

at atomic resolution, however, is available to date.<br />

We want to use solution state NMR spectroscopy to obtain<br />

structural information on the chromophore binding pocke<br />

in the two parent states (P r and P fr). To separate the signals<br />

of the chromophore from those of the protein, deuteration<br />

of the protein is one approach. Since the chromophore is<br />

relatively small compared to the protein, labeling of PCB<br />

with nitrogen and carbon is also necessary. While the production<br />

of proteins in isotopically-labeled form is a wellestablished<br />

procedure and while the same is also possible<br />

with DNA and RNA, the production of other types of<br />

molecules enriched with 13 C and/or 15 N is usually prohibitively<br />

expensive. In the case of the PCB chromophore<br />

necessary for the present investigation, the problem is<br />

somewhat ameliorated by the fact that PCB is the chromophore<br />

in the light-harvesting antenna of photosynthetic<br />

bacteria and that the phycobilisome which contains the<br />

chromophore molecules represents a major fraction of the<br />

soluble proteins in cyanobacteria. We therefore decided<br />

to produce isotopically-labeled PCB using Synechocystis<br />

sp. PCC 6803 itself (Figure 1).<br />

Using the different labeling pattern, it was possible to<br />

obtain NMR spectra of sufficient quality to extract structural<br />

information. By recording one-dimensional 15 N-spectra,<br />

we could solve the much-discussed question whether the<br />

chromophore is protonated in the two parent states, which<br />

has strong implications on the reactions taking place in the<br />

phytochrome photocycle. The nitrogen chemical shifts<br />

obtained indicate that both the P r and the P fr form are in<br />

fact protonated. Using carbon-labeled PCB, three-dimensional<br />

edited NOESY spectra could be obtained that will<br />

yield an assignment of the chromophore resonances and<br />

will allow the selection of a most likely structure from


FIGURE 1<br />

Preparation of 15N and 13C, 15N-labeled Phycocyanobilin (PCB) from Synechocystis sp. PCC 6803: The cyanobacteria are grown on the appropriately<br />

labeled medium (a). After harvesting the cells, the phycobilisome is separated by a sucrose density centrifugation (b). Finally, PCB is extracted<br />

using methanol (c).<br />

several structural models. An analysis of those spectra is<br />

still in progress, a next step towards a structure of the<br />

chromophore-binding pocket is the introduction of protonated<br />

amino acids into a deuterated background to detect<br />

interactions between the chromophore and amino acids<br />

residues lining the binding pocket.<br />

Structure of antimicrobial peptides in a membrane-mimicking<br />

environment<br />

Antimicrobial peptides are part of the natural immune<br />

system of many living organisms. A broad range of microorganisms<br />

that involves gram-positive, gram-negative<br />

bacteria and fungi is affected by these peptides, which are<br />

evolutionary ancient weapons. Usually a cocktail of multiple<br />

peptides is present, supplementing the pathogen-specific<br />

immune response, which occurs relatively slowly.<br />

Since bacterial resistance to existing antibiotics is constantly<br />

increasing, these peptides have gained in interest<br />

since they have the potential to form an entirely new drug<br />

generation.<br />

Despite a growing interest in this type of peptides, their<br />

mechanism of action is largely unknown. Since a replacement<br />

of L-amino acids with their D-enantiomers does not<br />

usually alter the antimicrobial activity of the peptides<br />

unless the overall structure is disrupted, a mechanism via<br />

a specific protein receptor is unlikely. It is rather the bacterial<br />

membrane that is the most likely target of the antimicrobial<br />

assault. The outer membrane leaflets of grampositive<br />

as well as gram-negative bacteria are negatively<br />

charged, consisting mainly of phosphatidylglycerol or lipopolysaccharide,<br />

respectively. In contrast, the outer leaflet<br />

of mammalian cell membranes contains mostly phosphatidylcholine<br />

and is thus charge neutral at physiological pH.<br />

It is assumed that the negative charge is responsible for<br />

the selectivity.<br />

In order to gain insight into the mechanism of action of<br />

antimicrobial peptides at the atomic level, we have determined<br />

the structure of the cyclic, cationic antimicrobial<br />

peptide cyc-(RRWWRF) free in aqueous solution and<br />

bound to detergent micelles using NMR spectroscopy. The<br />

peptide shows a rather flexible but nevertheless ordered<br />

structure in water, but a distinct structure is formed when<br />

the peptide is bound to a detergent micelle. The structures<br />

in the neutral and negatively charged micelles are<br />

nearly identical, resembling two β-turns. The orientation<br />

of the amino acid side chains creates an amphipathic<br />

molecule with the peptide backbone forming the hydrophilic<br />

part. The orientation of the peptide in the micelle was<br />

Structural Biology<br />

17


determined using NOEs and the accessibility of the peptide<br />

from outside the micelle as probed using paramagnetic<br />

agents. The peptide is oriented mainly parallel to the<br />

micelle surface in both detergents. Substitution of the arginine<br />

and tryptophan residues is known to influence the<br />

antimicrobial activity. Therefore, the structure of the micelle-bound<br />

analogs cyclo(RRYYRF), cyclo(KKWWKF) and<br />

cyclo(RRNalNalRF) were determined, having remarkable<br />

similarities in backbone conformation and side-chain orientation.<br />

Based on these structures, molecular dynamics<br />

simulations of the peptide in an explicit membrane at<br />

various peptide-to-lipid ratio were performed. We observe<br />

that the NMR structure of the peptide is stable also after<br />

100 ns simulation. At a peptide-to-lipid ratio of 2/128, the<br />

membrane is only little affected compared to a pure DPPC<br />

lipid membrane, but at a ratio of 12/128, the water-lipid<br />

interface becomes more fuzzy, the water molecules can<br />

reach deeper into the hydrophobic core, and the water<br />

penetration free energy barrier changes. Moreover, we<br />

observe that the area per lipid decreases and the deuterium<br />

order parameters increase in the presence of the<br />

peptide. We suggest that the changes in the hydrophobic<br />

core together with the changes in the head groups result<br />

in an imbalance of the membrane-stabilizing forces that<br />

will lead to the disruption of the membrane.<br />

FIGURE 2<br />

Structure of the cyclic peptide cyc-(RRWWRF) bound to DPC micelles. The molecule<br />

exhibits an amphipatic structure with the peptide backbone as the hydrophilic<br />

part (blue) and the aromatic side chains as the lipophilic part (brown). The<br />

orientation of the peptide has been determined to be parallel to the micelle surface<br />

with the longest axis, with the lipophilic side chains penetrating into the<br />

micelle.<br />

Group members<br />

Holger Strauss (Doctoral student)<br />

Christian Appelt (Doctoral student)<br />

Janina Hahn (Doctoral student)*<br />

Brigitte Schlegel (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„NMR-spectroscopic investigation of light-induced structural<br />

changes in protein-chromophore complexes” (Teilprojekt<br />

B6 im Sonderforschungsbereich 498 „Protein-<br />

Kofaktor-Wechselwirkungen in biologischen Prozessen“<br />

Peter Schmieder<br />

Fonds der Chemischen Industrie<br />

„NMR-spektroskopische Strukturuntersuchung von photoschaltbaren<br />

Peptidliganden für die Numb-PTB-Domäne<br />

sowie von PTB/Ligandkomplexen“<br />

Kekulé-Stipendium<br />

Christian Appelt (Promotionsstipendium)<br />

* part of period reported


Selected publications (<strong>FMP</strong> authors in bold)<br />

Otte L, Wiedemann U, Schlegel B, Pires JR, Beyermann<br />

M, Schmieder P, Krause G, Volkmer-Engert R, Schneider-<br />

Mergener J, Oschkinat H (<strong>2003</strong>) WW domain sequence<br />

activity relationships identified using ligand recognition<br />

propensities of 42 WW domains. Prot Sci 12, 491-500<br />

Strauss H (<strong>2003</strong>) A device for facilitating the use of the<br />

French Press. Anal Biochem 321, 276-277<br />

Hupfer M, Rübe B, Schmieder P (<strong>2004</strong>) Origin and diagenesis<br />

of polyphosphate in lake sediments: A 31 P-NMR<br />

study. Limnol Oceanogr 49, 1-10<br />

Kahmann JD, Wecking DA, Putter V, Lowenhaupt K, Kim<br />

YG, Schmieder P, Oschkinat H, Rich A, Schade M (<strong>2004</strong>)<br />

The solution structure of the N-terminal domain of E3L<br />

shows a tyrosine conformation that may explain its reduced<br />

affinity to Z-DNA in vitro. Proc Natl Acad Sci USA 101,<br />

2712-2717<br />

Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder<br />

P, Korn B, Kühne R, Oschkinat H (<strong>2004</strong>) The oxidized subunit<br />

B8 from human complex I adopts a thioredoxin fold.<br />

Structure 12, 1645-1654<br />

Gaiser OJ, Ball LJ, Schmieder P, Leitner D, Strauss H,<br />

Wahl M, Kühne R, Oschkinat H, Heinemann U (<strong>2004</strong>) Solution<br />

Structure, Backbone Dynamics, and Association<br />

Behavior of the C-Terminal BRCT Domain from the Breast<br />

Cancer-Associated Protein BRCA1. Biochemistry 43,<br />

15983-15995<br />

Strauss H, Hughes J, Schmieder P (2005) Heteronuclear<br />

solution state NMR-studies of the chromophore in cyanobacterial<br />

phytochrome Cph1. Biochemistry, 44, 8244-8250<br />

Collaborations<br />

K. Rueck-Braun, TU <strong>Berlin</strong><br />

P. Hildebrandt, TU <strong>Berlin</strong><br />

H. von Döhren, TU <strong>Berlin</strong><br />

T. Lamparter, FU <strong>Berlin</strong><br />

J. Hughes, Justus Liebig University Giessen<br />

Structural Biology<br />

19


STRUCTURAL BIOINFORMATICS<br />

Group Leader: Dr. Gerd Krause<br />

STRUCTURAL BIOINFORMATICS TO UNRAVEL<br />

MOLECULAR SIGNALING MECHANISMS<br />

The group is focused on genome and protein sequence<br />

analysis by structural bioinformatics combined with comparative<br />

modeling of protein-protein interaction to study<br />

sequence- and structure- function relationships. The main<br />

aim is rational discovery of molecular mechanisms for protein-protein<br />

interactions and protein-ligand interaction to<br />

deduce ideas for pharmacological intervention. All group<br />

projects are characterized by close cooperation with<br />

experimental partners to ensure a closed loop between<br />

the theoretically derived model and experimental proof as<br />

an important prerequisite for a successful application of<br />

biocomputing methods. The group is concerned with two<br />

topics to elucidate structure - function relationships of<br />

protein-protein interactions and of G-protein coupled<br />

receptors.<br />

Protein-protein interactions<br />

S. Müller, U. Wiedemann, G. Krause<br />

Protein interaction networks are mediated very often by<br />

non-catalytic protein domains like PDZ- and WW-domains.<br />

Narrowing down potential interacting proteins from the<br />

protein interaction network, elucidation of selective protein-protein<br />

interaction patterns and subsequent identification<br />

of complementary interaction sites at the levels of<br />

epitopes, residues and atoms are the main aims.<br />

• Interaction sites of junctional proteins<br />

Junctional proteins connect and seal the contact sites in<br />

between endothelial cells. The exact sites, structures and<br />

molecular mechanisms of interaction between junction<br />

organizing zona occludence protein 1 (ZO-1) and the tight<br />

junction protein occludin or the adherens junction protein<br />

α-catenin were unknown. Binding studies by surface plasmon<br />

resonance spectroscopy and peptide mapping combined<br />

with comparative modeling utilizing crystal structures<br />

led for the first time to a molecular model revealing the<br />

binding of both occludin and α-catenin to the same binding<br />

site in ZO-1. Our data support a concept that ZO-1 successively<br />

associates with α-catenin at the adherens<br />

junction and occludin at the tight junction.<br />

Strong spatial evidence indicates that the identified occludin<br />

C-terminal coiled-coil domain dimerizes and interacts<br />

as a helix bundle with the identified structural motifs in<br />

ZO-1 (Müller et al. 2005). The selectivity of both protein-<br />

protein interactions is defined by complementary shapes<br />

and charges between the participating epitopes. In conclusion,<br />

a common molecular mechanism of forming an<br />

intermolecular helical bundle between the hinge region/<br />

GuK domain of ZO-1 and α-catenin and occludin is identified<br />

as a general molecular principle organizing the association<br />

of ZO-1 at adherens and tight junctions (Schmidt et<br />

al. <strong>2004</strong>). The promising results of this joint project in collaboration<br />

with the cell physiology group of I. Blasig, <strong>FMP</strong>,<br />

were primarily due to the fact that the bioinformatic/<br />

modeling- and the experimental studies as well have been<br />

carried out by the same person (S.L. Müller). We are<br />

currently extending the structure-function studies also to<br />

other junctional proteins by combining structural information<br />

(bioinformatics/comparative modeling) and biochemical-,<br />

molecular biological studies.<br />

• Prediction of protein – protein interaction network<br />

partners<br />

To better understand and to predict the interactions, predictive<br />

interaction models (e.g. COMFA and profile hidden<br />

Markov model recognition activities of WW domains)<br />

were derived by U. Wiedemann from experimental screening<br />

data. Taking the sequence (Otte et al. <strong>2003</strong>) or the<br />

structure (Schleinkofer et al. <strong>2004</strong>) of experimentally undescribed<br />

domains or ligands, these models allowed the<br />

prediction of potential binding partners. Suggested optimal<br />

peptide sequence for binding a subfamily of WWdomains<br />

was successfully verified (Schleinkofer et al.<br />

<strong>2004</strong>). Additionally, some models predicted the strength<br />

(affinity) of the interaction (www.fmp-berlin.de/nmr/pdz).<br />

Using this approach, ligands with higher affinity were<br />

designed for representative domains of both families. In<br />

particular, for the hAF6-PDZ, the hERBIN-PDZ and the<br />

mSNA1-PDZ so-called “super-binding” peptides were<br />

designed which indeed exhibited the highest affinity<br />

achievable by combination of natural amino acids (Wiedemann<br />

et al. <strong>2004</strong>).<br />

Molecular signal transduction mechanisms of<br />

GPCR<br />

G. Kleinau, J. Lättig, G. Krause<br />

• Selective interaction patterns for G-protein subtypes<br />

The molecular interactions at the interface between<br />

G-protein-coupled receptors and the G-proteins is of high<br />

functional importance, since there the decision takes<br />

place about the different specific signaling pathways (via<br />

the G-protein subtypes G αi, G αs, and G αq) into the cell. For<br />

the thyroid stimulating hormone receptor (cooperation<br />

with the University of Leipzig and NIH Bethesda, MD,<br />

USA), we were able to delineate residues of the second<br />

intracellular loop as selective recognition patterns for


C-terminal<br />

tail<br />

LRRX<br />

binding site<br />

Phe-Spine<br />

G-protein subtypes by using molecular interaction models.<br />

Site-directed mutagenesis confirmed M527 as a residue<br />

selectively interacting with G αq (Neumann et al. 2005).<br />

Our previous studies on peptides and other small molecules<br />

(lipoamines) which directly interact with G-proteins<br />

revealed potential interaction sites based on charge patterns.<br />

Positive charges at ligands interact with negatively<br />

charged residues at the G-protein site. Transferring these<br />

complementary cognition patterns to the Endothelin receptors<br />

led to identification of amino acids that might be<br />

responsible for different signaling pathways of the receptor<br />

subtypes. To provide support to this hypothesis, suggested<br />

site-directed mutagenesis (J Lättig) is currently under<br />

investigation by the group of Alexander Oksche (FU <strong>Berlin</strong>).<br />

• Structural determinants of TSH- receptor activation at<br />

the TSHR ectodomain:<br />

Thyroid-stimulating hormone (TSH, thyrotropin) and the<br />

TSH-Receptor (TSHR) are key proteins in the control of<br />

thyroid function. TSH plays a critical role in ontogeny. As<br />

a consequence, different mutations of TSHR and TSH<br />

result in pathogenic diseases, for example thyroid toxic<br />

adenomas, non-autoimmune and neonatal hyperthyroidism,<br />

and hypothyroidism. Constitutively active TSH receptor<br />

mutants (CAMs) are the molecular etiology of > 50% of<br />

N-terminal<br />

tail<br />

N-terminal<br />

Cysteine Box<br />

LRRO<br />

N-terminal<br />

Cysteine Box-1<br />

FIGURE 1<br />

a: LRR structure of the Nogo-receptor ectodomain (pdb<br />

entry 1OZN). A ‘Phe-spine’ (green aromatic rings) inside the<br />

LRR is stabilizing the fold instead of the missing helices at<br />

the concave outer face.<br />

b: LRR domain: comparison of the previous model for TSHR<br />

(pdb entry 1XUM, grey) based on ribonuclease inhibitor template<br />

(pdb entry 2BNH) and the new generated homologous<br />

LRR model for the TSHR (colored) based on the X-ray structure<br />

of the hNogo-66-receptor ectodomain. The new template<br />

provides the N-terminal flanking Cys-box1 as an integral<br />

structural part of the LRR by contributing with an<br />

additional parallel β-stand (LRR0 in red) to the convex<br />

β-sheets of the proposed hormone-binding site.<br />

hyperthyroidism in Germany. CAMs are thought to mimic<br />

to some extent the active conformation of the wild type<br />

(wt) receptor and to spontaneously adopt a structure able<br />

to activate G-proteins. A concept for structure-function<br />

relationships in processes of ligand-dependent and -independent<br />

(constitutive) activity for TSHR would profoundly<br />

modify the understanding of pathophysiology.<br />

TSH belongs to the family of glycoprotein hormones. The<br />

main differences of TSHR and the other glycoprotein hormone<br />

receptors (GPHR) such as choriogonadotrophic/<br />

luteinizing hormone receptor (CG/LHR) and follicle-stimulating<br />

hormone receptor (FSHR) to other seven transmembrane-spanning<br />

G-protein-coupling receptors (GPCRs) is<br />

an even more complex activation mechanism, which<br />

requires the binding of a large hormone towards a large<br />

N-terminal ectodomain. The intramolecular mechanism of<br />

the signal transduction to the serpentine domain upon hormone<br />

binding at the ectodomain is not understood. The<br />

elucidation of the intramolecular mechanisms of TSH<br />

receptor signaling in the large TSHR ectodomain are a prerequisite<br />

for establishing new perspectives for the treatment<br />

of hyperthyroidism by inverse agonists or for the<br />

treatment of thyroid cancer by small TSH receptor ligands.<br />

Structural Biology<br />

21


Cysteinebox-2<br />

Cysteinebox-3<br />

F405<br />

D403<br />

F 286<br />

E404<br />

N406<br />

C284<br />

C408<br />

C283<br />

S281<br />

turn/loop<br />

To identify determinants at the GPHR ectodomain that may<br />

be involved in signal transduction, G. Kleinau first addressed<br />

this issue by searching for homologous structural features<br />

at the ectodomain based on high sequence similarity.<br />

For the LRR motif within the large ectodomain, a new augmented<br />

structural model based on the Nogo-66-receptor<br />

ectodomain with 9+2 repeats was generated (Fig. 1a) that<br />

resulted in a strongly enlarged radius at the hormone binding<br />

site at the inner convex surface of the LRR-arch. The<br />

structure is stabilized by an interior Phe-spine instead of<br />

helices at the concave outer face based on previous templates<br />

(Fig. 1b). Moreover, the sequence similarity of the<br />

new template indicated that the N-terminal flanked<br />

Cysteinbox-1 is also an integral structural part of the LRRarch<br />

by contributing with an additional parallel (LRR0<br />

(TSHR37-41)) anti-parallel ‚-strand to the convex ‚-sheet of<br />

the hormone-binding region.<br />

Furthermore, this model provides for the first time a structural<br />

rationale for the previously observed participation of<br />

residues from Cys-box1 in hormone binding, i.e. for three<br />

residues at the additional repeat LRR0 of the FSHR 29-31 and<br />

of TSHR 37-41. This LRR model of BHR was later on confirmed<br />

by the X-ray structure of the LRR domain for FSHR<br />

(Fan & Hendrichson, Nature 2005).<br />

TM1<br />

FIGURE 2<br />

TSHR ectodomain: detail of Cys-box2 (red) and Cys-box-3<br />

(yellow) interaction model adopted from IL8 and IL8RA complex<br />

structure. Aromatic interaction of F 286 (C-b2) and F 405<br />

(C-b3); Disulfide bridge between C 408 (C-b3) and C 283 (C-b2)<br />

based on biochemical data (blue); S281-loop/turn conformation<br />

adopted from Malonyl Coenzyme (cyan); The subsequently<br />

predicted residues D 403, E 404, N 406 to be involved<br />

in signal transduction at the interface between ectodomain<br />

and serpentine domain indeed showed constitutive activities<br />

upon mutations.<br />

The subsequent structural extracellular component Cysbox2<br />

is attached back-to-back to the 11th ‚-strand of the<br />

LRR, very likely via a short turn/loop containing S 281. Extensive<br />

systematic sequence similarity searches of fragmented<br />

sequence portions of the ectodomain resulted in a<br />

homologous model based on IL8-IL8RA fragment complex<br />

(pdb entry 1ILQ (27) which links Cys-box 2 and Cys-box-3<br />

together (Fig. 2).<br />

Subsequently, the residues D 403EFNPC 408 of the C-b3 are<br />

located particularly at prominent interface positions of the<br />

ectodomain, most closely to the transmembrane domain.<br />

The hydrophilic residues D 403, E 404 and N 406 are therefore<br />

hypothesized to participate very likely in the intramolecular<br />

signal transduction from the ectodomain towards the<br />

serpentine domain (Kleinau et al, <strong>2004</strong>).<br />

Using our approach, we identified three new mutations<br />

(D 403A, E 404K and N 406A) in the ectodomain of the TSHR that<br />

are causing constitutive cAMP activity, and we suggest<br />

that this motif is indeed important for the transduction of<br />

the signal from the ectodomain to the transmembrane<br />

domain. According to the high sequence conservation, the<br />

results are of general relevance for the signal transduction<br />

mechanism of other glycoprotein hormone receptors.


Group members<br />

Sebastian L. Müller (Doctoral student)<br />

Jens Lättig (Doctoral student)<br />

Urs Wiedemann (Doctoral student)<br />

Gunnar Kleinau (Doctoral student)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Wechselwirkungen von Blut-Hirnschranken-Proteinen“<br />

(Bl 208/6.2)<br />

Ingolf Blasig, Gerd Krause<br />

Deutsche Forschungsgemeinschaft<br />

„Identifizierung eines rezeptorinternen stillen Transmitters<br />

im TSH-Rezeptor“ (KR 1273)<br />

Gerd Krause<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Müller SL, Portwich M, Schmidt A, Utepbergenov DI,<br />

Huber O, Blasig IE, Krause G (2005) The tight junction protein<br />

occludin and the adherens junction protein α-catenin<br />

share a common interaction mechanism with ZO-1. J Biol<br />

Chem 280, 3747-3756<br />

Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M,<br />

Schneider-Mergener J, Krause G, Blasig IE (<strong>2004</strong>) Occludin<br />

binds to the SH3-hinge-GuK unit of zonula occludens<br />

protein 1: potential mechanism of tight junction regulation.<br />

Cell Mol Life Sci 61, 1354-1365<br />

Otte L, Wiedemann U, Schlegel B, Pires JR, Beyermann<br />

M, Schmieder P, Krause G, Volkmer-Engert R, Schneider-<br />

Mergener J, Oschkinat H (<strong>2003</strong>) WW domain sequence<br />

activity relationships identified using ligand recognition<br />

propensities of 42 WW domains. Prot Sci 12, 491-500<br />

Schleinkofer K, Wiedemann U, Otte L, Wang T, Krause G,<br />

Oschkinat H, Wade RC (<strong>2004</strong>) Comparative Structural and<br />

Energetic Analysis of WW Domain-peptide Interactions. J<br />

Mol Biol 344, 865-881<br />

Wiedemann U, Boisguerin P, Leben R, Leitner D, Krause<br />

G, Mölling K, Volkmer-Engert R, Oschkinat H (<strong>2004</strong>) Quantification<br />

of PDZ Domain Specificity, Prediction of Ligand<br />

Affinity and Rational Design of Super-Binding Peptides. J<br />

Mol Biol 343, 703-718<br />

Neumann S, Krause G, Claus M, Paschke R (2005) Structural<br />

Determinants in the Second Intracellular Loop for<br />

G-Protein Selectivity of the Thyrotropin Receptor. Endocrinology<br />

146, 477-485<br />

Kleinau G, Jäschke H, Neumann S, Lättig J, Paschke R,<br />

Krause G (<strong>2004</strong>) Identification of a novel epitope in the TSH<br />

receptor ectodomain acting as intramolecular signalling<br />

interface. J Biol Chem 279, 51590-51600<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G,<br />

Hermosilla R, Schaefer M, Schülein R, Rosenthal W,<br />

Oksche A (<strong>2004</strong>) Pharmacochaperones post-translationally<br />

enhance cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V 2<br />

receptors. J Biol Chem 279, 47254-47263<br />

Collaborations<br />

R. Paschke, TSH receptor,<br />

University of Leipzig activation mechanism<br />

S. Rothemund, IZKF Leipzig Peptide mapping<br />

A. Oksche, FU <strong>Berlin</strong> V2 receptor<br />

O. Huber, Charite <strong>Berlin</strong> CBF Interaction of junction<br />

proteins<br />

S. Offermanns, GPR109a receptor/<br />

University of Heidelberg ligand interaction<br />

S. Neumann, NIH, NIDDK TSH receptor<br />

Bethesda, MD, USA<br />

M. Gershengorn, NIH, NIDDK TSH receptor<br />

Bethesda, MD, USA.<br />

Structural Biology<br />

23


MOLECULAR MODELLING<br />

Group Leader: Dr. Ronald Kühne<br />

COMPUTATIONAL TECHNIQUES FOR<br />

LIGAND DESIGN AND PROTEIN MODELLING<br />

The research of the Molecular Modelling/Ligand Design<br />

Group is mainly focused on protein modeling, virtual<br />

screening, and lead optimization in close collaboration<br />

with experimental partners within academia as well as<br />

industry. The special expertise of the group includes a<br />

wide range of molecular modeling technologies, bioinformatics<br />

tools, and computational chemistry methods.<br />

On top of that, these methods are applied to support the<br />

Screening Unit and the medicinal chemistry group within<br />

the national ChemBioNet initiative. The focus in this field<br />

is to analyze, design, and purchase a compound database<br />

available for academic screening projects within the<br />

framework of ChemBioNet. In addition to the already<br />

ongoing modeling projects, the group has also started<br />

research in several new fields during the last two years:<br />

structure and function of antimicrobial peptides, high<br />

throughput screening evaluation and virtual screening of<br />

antigen-exchange-inducing agents targeting the major<br />

histocompatibility complex (MHC) and inhibition of protein-protein<br />

interaction in the IL6/IL-6R/gp130 complex. All<br />

of these projects benefit from close collaborations with<br />

groups within the <strong>FMP</strong> and the MDC as well as with industrial<br />

partners.<br />

Targeting G-protein-coupled receptors<br />

G-protein-coupled receptor (GPCR) modeling and agonist<br />

and antagonist design is one of the key competences of<br />

the group. The applied computational tools range from<br />

quantum chemically supported ligand design to high<br />

throughput virtual screening of millions of compounds. The<br />

GPCR's are modeled using the bovine rhodopsin x-ray<br />

structure and refined using simulated annealing and molecular<br />

dynamics in implicit as well as explicit lipid environment.<br />

These models are exploited in virtual screening and<br />

lead optimization using simulated annealing and pharmacophore<br />

mapping.<br />

The follicle-stimulating hormone receptor<br />

(A. Schrey, R. Kühne)<br />

We have constructed a model of the human follicle stimulating<br />

hormone receptor (FSHR) in a water-vacuum-water<br />

environment. The model is consistent with published mutational<br />

data. A central feature of the model is a sodium ion<br />

located between Asp408 transmembrane helix 2 (TM2),<br />

Asp581 (TM6), and Asn618 and Asn622 (TM7). Activation<br />

of the receptor seems to be associated with the translocation<br />

of this ion and subsequent movements of TM 3, 6,<br />

and 7. Further, we recognized a small molecule binding site<br />

within the FSHR. Docking simulations supported by screening<br />

results served as a basis for lead optimization processes.<br />

Refined models of the human and rat FSHR derived<br />

from molecular dynamics simulations in explicit lipid environment<br />

have given closer insight into the interactions of<br />

the residue Histidine615 (TM7), which is specific for the<br />

human FSH receptor. We found that this residue located<br />

towards TM6 is establishing a hydrogen bond to a backbone<br />

carbonyl. In contrast to human FSHR, all known FSHR<br />

of other species contain in this position a tyrosine residue.<br />

In our simulations the tyrosine establishes hydrogen bonds<br />

to residues in TM3. These results are able to explain the<br />

known mutational data and other experimental facts. The<br />

studies were sponsored by Schering AG.<br />

Gonadotropin-Releasing Hormone Receptor<br />

(A. Söderhäll, R. Kühne)<br />

In cooperation with Zentaris AG (Frankfurt am Main), several<br />

models of the human gonadotropin-releasing hormone<br />

receptor (GnRH-R) have been derived. The models form a<br />

series of successively improved generations of the receptor,<br />

where each generation is based on the latest experimental<br />

data. The data is based on site-directed mutagenesis,<br />

activity modulation based on mutagenesis of the<br />

native ligand as well as modulation of peptidomimetic<br />

ligands. The latest generation of the receptor-ligand complex<br />

was used to derive a pharmacophore pattern, which<br />

was successfully used in the lead finding and optimization.<br />

As a result of this successful cooperation with Zentaris,<br />

two patents on new non-peptidic GnRH antagonists are<br />

currently in process. One of them could be economically<br />

utilized by the Forschungsverbund <strong>Berlin</strong> e.V.<br />

Structure and function of antimicrobial peptides<br />

(A. Söderhäll, F. Eisenmenger)<br />

Antimicrobial peptides have recently emerged as a promising<br />

new generation of antibiotics. This class of peptides<br />

is generally believed to target the bacterial membrane<br />

and destroy the chemical gradients over these, either<br />

by building transmembrane pores or by destabilizing the<br />

bilayer structure of the membranes. This mechanism of<br />

action is believed to make the peptides more stable<br />

against the evolutionary pressure from bacteria developing<br />

antibiotics resistance. By exploiting the in-house<br />

competence on peptide chemistry in Michael Bienert’s<br />

group, the antimicrobial peptide cyclo-(RRWWRF) was<br />

selected for NMR structure determination by Christian<br />

Appelt in the group of Peter Schmieder. Using the NMR


–10<br />

–5<br />

0<br />

5<br />

10<br />

structure we have simulated realistic membranes at various<br />

peptide-to-lipid ratios. From these molecular dynamics<br />

simulations we have concluded that the peptide disturbs<br />

the membrane so that its function as a hydrophobic barrier<br />

becomes less effective, and may increase the permeability<br />

of ions as well as water. Interestingly, the perturbation<br />

of the hydrophobic barrier takes place without the<br />

formation of explicit pores, as was often suggested for this<br />

kind of substances. We have elucidated in detail how this<br />

compound interacts with the membrane lipids and what<br />

impact this has on the membrane structure /see Fig.1/.<br />

High throughput and virtual screening targeting<br />

the major histocompatibility complex<br />

(A. Söderhäll, R. Kühne)<br />

The group of Olaf Rötzschke at MDC has screened the<br />

<strong>FMP</strong> database for antigen-exchange inducing agents targeting<br />

the MHC. The data from the high throughput screen<br />

of the 20,000 compounds has been structured and analyzed<br />

in detail. The analysis was then used in the construction<br />

of a prediction model based on the quantitative structure-activity<br />

relationships (QSAR) of a hit subfamily from<br />

the high throughput screening campaign. Based on this<br />

derived model, an extended virtual screening of three<br />

10<br />

5<br />

0<br />

–5<br />

–10<br />

FIGURE 1<br />

The structure of the antimicrobial peptide cyclo-(RRWWRF)<br />

was determined by NMR and exploited in a series of molecular<br />

dynamics simulations in the presence of explicit lipids.<br />

The figure shows the average structure of cyclo-(RRWWRF)<br />

from the simulation and a surface representation of the<br />

membrane. The amphipatic character of the peptide creates<br />

a void in the membrane surface that contributes to the<br />

increased permeability of water and most likely also ions<br />

through the membrane.<br />

external databases containing a total of more than one million<br />

compounds was carried out. This massive data set<br />

was narrowed down to a list of 5589 ranked compounds.<br />

A dozen of these were hand-picked and experimentally<br />

tested. Five out of these twelve were found to be active,<br />

proving that the hit enrichment of the focused library was<br />

of major help in the second, refined screening round by O.<br />

Rötzschkes group. Within the framework of this project,<br />

dockings of the lead compounds were carried out in order<br />

to explain the mechanisms behind the antigen exchange.<br />

The docking approach was supported by site-directed<br />

mutagenesis. Using these dockings together with experimental<br />

data, we are able to propose a possible mechanism<br />

of action of antigen exchange.<br />

NMR structure calculations<br />

(C. Brockmann, R. Kühne)<br />

An important part of the scientific activities is related to<br />

structure elucidation of protein domains by NMR. The<br />

main focus in this field is on NMR structure calculations<br />

and methods to refine NMR derived protein structures.<br />

NADH ubiquinone oxidoreductase (complex I) is the last<br />

major complex of the respiratory chain for which there is<br />

no detailed atomic structure. Since most proteins of this<br />

Structural Biology<br />

25


A B<br />

R [cm]<br />

highly modular complex are rather small, its components<br />

make suitable targets for structural studies by NMR. In this<br />

project the structure of subunit B8 (CI-B8) was investigated<br />

by NMR. The solution structure of the oxidized subunit<br />

shows a thioredoxin fold with remarkable similarities to<br />

thioredoxin-like Fe2S2-ferredoxins (Fig. 2A). A structural<br />

comparison shows high similarities of surface properties<br />

and possibly active residues. Since CI-B8 shows some<br />

similarities to thioredoxins, and since the mammalian<br />

homologues may form a disulfide bridge in a similar position,<br />

we determined the redox potential of oxidized CI-B8<br />

to see if it fits into the range covered by active site disulfides<br />

in thioredoxin-related proteins (Fig. 2B). The redoxpotential<br />

of the disulfide bond of CI-B8 compares well to<br />

that of the catalytically active disulfides in other thioredoxin-like<br />

proteins. This, in addition to the fact that CI-B8<br />

stems from a complex that is involved in a redox-dependent<br />

reaction, leads to the idea that CI-B8 could assist in<br />

redox-associated processes or electron transfer. This<br />

example of CI-B8 shows that structural studies of the individual<br />

components of complexes can spark hypotheses<br />

about the function of the component within the complex.<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

1E-4 1E-3 0,01 0,1 1 10 100 1000<br />

[GSH] 2 / [GSSG]<br />

FIGURE 2<br />

Structure and redox-potential determination of CI-B8. A: ribbon-representation of the structure of human CI-B8. Alpha-helices are depicted in<br />

green, the beta-sheet in blue. The position of the disulfide-bond is indicated in yellow. B: Determination of the redox potential. The change in<br />

Trp-fluorescence upon reduction is plotted against the relative concentrations of the redox-buffer system. From a Keq of 0.486 a redox potential<br />

of –250 mV was calculated.<br />

Group members<br />

Dr. Anna Schrey<br />

Dr. Arvid Söderhäll<br />

Dr. Jörg Wichard*<br />

Dr. Frank Eisenmenger (Unix system administration)<br />

Christoph Brockmann (Doctoral student)<br />

Stefan Hübel (Unix system administration support, database<br />

management)<br />

External funding<br />

Schering AG<br />

Transmembranrezeptoren (Kooperationsvertrag)<br />

Zentaris AG<br />

(Kooperationsvertrag)<br />

Conaris AG<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder<br />

P, Korn B, Kühne R, Oschkinat H (<strong>2004</strong>) The oxidized subunit<br />

B8 from human complex I adopts a thioredoxin fold.<br />

Structure (Cam) 12, 1645-1654<br />

* part of period reported


Gaiser O, Ball LJ, Schmieder P, Leitner D, Strauss H, Wahl<br />

M, Kühne R, Oschkinat H, Heinemann U (<strong>2004</strong>) Solution<br />

structure, backbone dynamics, and association behavior<br />

of the C-terminal BRCT domain from the breast cancer<br />

associated protein BRCA1. Biochemistry 43, 15983-15995<br />

Pope BJ, Zierler-Gould KM, Kühne R, Weeds AG, Ball LJ<br />

(<strong>2004</strong>) Solution structure of human cofilin: actin binding,<br />

pH sensitivity, and relationship to actin-depolymerizing<br />

factor. J Biol Chem 279, 4840-4848<br />

Brockmann C, Leitner D, Labudde D, Diehl A, Sievert V,<br />

Bussow K, Kühne R, Oschkinat H (<strong>2004</strong>) The solution structure<br />

of the SODD BAG domain reveals additional electrostatic<br />

interactions in the HSP70 complexes of SODD subfamily<br />

BAG domains. FEBS Lett 558, 101-106<br />

Freund C, Kühne R, Park S, Thiemke K, Reinherz EL, Wagner<br />

G (<strong>2003</strong>) Structural investigations of a GYF domain<br />

covalently linked to a proline-rich peptide. J Biomol NMR<br />

27, 143-149<br />

Zimmermann J, Kühne R, Volkmer-Engert R, Jarchau T,<br />

Walter U, Oschkinat H, Ball LJ (<strong>2003</strong>) Design of N-substituted<br />

peptomer ligands for EVH1 domains. J Biol Chem<br />

278, 36810-36818<br />

Karges B, Karges W, Mine M, Ludwig L, Kühne R, Milgrom<br />

E, de Roux N (<strong>2003</strong>) Mutation Ala(171)Thr stabilizes the<br />

gonadotropin-releasing hormone receptor in its inactive<br />

conformation, causing familial hypogonadotropic hypogonadism.<br />

J Clin Endocrinol Metab 88, 1873-1879<br />

Collaborations<br />

Dr. W. Karges, University of Ulm<br />

Prof. Schmalz, University of Cologne<br />

Dr. O. Roetzschke, MDC<br />

Structural Biology<br />

27


SOLID STATE NMR<br />

Group Leader: Prof. Bernd Reif<br />

SOLID-STATE NMR SPECTROSCOPY:<br />

PROTEIN AGGREGATION AND MEMBRANE<br />

PROTEINS<br />

We use Nuclear Magnetic Resonance (NMR) in order to<br />

characterize biomolecular systems which are situated at<br />

the interface between solution and solid. In this area,<br />

membrane proteins and amyloidogenic peptides and proteins<br />

are the most interesting “target molecules”. By<br />

nature, structural information of these systems is difficult<br />

to obtain by means of X-ray crystallography or standard<br />

solution-state NMR methods. We want to address these<br />

systems by application of a combination of modern solution<br />

state and solid state NMR methods. This requires<br />

development of especially adapted NMR techniques. So<br />

far, about 20 proteins are known for which a correlation<br />

between aggregation and disease is established. The<br />

most prominent examples are Alzheimer's disease, the<br />

prion diseases (BSE, CfJ), and Huntington disease. However,<br />

little is known about the mechanism which leads to<br />

aggregation, as well as on the structure of the amyloid<br />

fibrils. We would like to gain more insight into the structure<br />

of oligomeric intermediate states which are associated<br />

with protofibril formation. In addition, we are interested in<br />

characterizing dynamic chemical exchange processes<br />

between the soluble and aggregated state of the respective<br />

proteins.<br />

Yeast Prions: Sup35 and Hsp104<br />

Characterization of interactions between the molecular<br />

chaperone Hsp104 and the prion protein Sup35 in yeast by<br />

NMR spectroscopy Sup35 is a subdomain of the translation-termination<br />

complex in S. cerevisiae. Under specific<br />

conditions, Sup35 can form protein aggregates that can<br />

induce a conformational change in other Sup35 proteins<br />

and are inherited after cell division. Hsp104 is one of the<br />

most important proteins for the thermostability in yeast and<br />

is, together with two other proteins, Hsp70/Ssa1 and<br />

Hsp40/Ydj1, involved in a chaperon complex that can dissolve<br />

protein aggregates that are produced as a heat<br />

response. Solution-state NMR methods are employed to<br />

characterize the interactions between the aggregate and<br />

the chaperone. We found that Hsp104 is able to disaggregate<br />

Sup35-derived peptides in vitro, and that especially<br />

low oligomeric complexes of Sup35 interact with Hsp104<br />

(Narayanan et al., <strong>2003</strong>). In this study, we were able to analyze<br />

conformational changes of Sup35 induced by Hsp104<br />

by NMR in real time.<br />

Structural characterization of ligands targeted<br />

against beta-amyloid fibrils (Aß)<br />

Alzheimer's disease (AD) is the most common form of agerelated<br />

neurodegenerative disorder, and is related to<br />

deposition of Aβ peptides in the brains of AD patients. Aβ<br />

is formed by processing of APP, the Amyloid Precursor<br />

Protein, a membrane protein of yet unknown function. We<br />

use the fact that amyloid fibrils orient spontaneously in the<br />

magnetic field to determine the structure of peptide inhibitors<br />

that bind to Aβ aggregates (Chen & Reif, <strong>2004</strong>). The<br />

alignment is based on the magnetic anisotropy of the peptide<br />

bond. A net alignment of amyloid fibrils is induced due<br />

to the arrangement of hydrogen bonds in parallel to the<br />

fibril axis. We expect that this approach is useful for the<br />

design of diagnostic or therapeutic ligands.<br />

Structural characterization of acid denatured<br />

PI3K fibrils<br />

Chris Dobson and co-workers demonstrated that not only<br />

proteins which are related to a disease can form highly<br />

structured aggregates, but almost any other soluble protein<br />

under certain solution conditions. One example is the<br />

SH3 domain of the phosphatidyl-inositol-3-kinase (PI3K)<br />

which forms fibrils under acidic pH. Solid-state NMR experiments<br />

revealed that His25 of PI3K-SH3 is involved in tertiary<br />

contacts which stabilize the fibril structure (Ventura<br />

et al., <strong>2004</strong>). Mutational studies (H25K) confirmed this<br />

hypothesis. Most importantly, it could be shown that artificial<br />

neurotoxicity is abolished in the mutated protein<br />

using a MTT reduction assay. We use PI3K-SH3 as a paradigm<br />

to study intermediate states as well as the aggregated<br />

state and try to obtain a better understanding of the<br />

mechanism of protein aggregation.<br />

Development of MAS solid-state NMR techniques<br />

Solid-state techniques have found great attention in the<br />

last few years since it has turned out to be possible to<br />

determine the structure of uniformly labeled (crystalline)<br />

peptides and proteins (Rienstra et al. 2002). However,<br />

solid-state NMR experiments are intrinsically insensitive<br />

due to detection of the heteronucleus (carbon or nitrogen).<br />

We address the question of sensitivity by employing proton<br />

detection in combination with deuteration, which chemically<br />

eliminates the strong proton-proton dipolar couplings.<br />

This approach allows to detect proteins with high<br />

sensitivity (Chevelkov et al. <strong>2003</strong>). In addition, long range<br />

proton-proton interactions are accessible, which are<br />

important to determine the three-dimensional fold of a protein<br />

in the solid state (Reif et al. <strong>2003</strong>). Furthermore, we<br />

explore deuterium as a source for dynamic information in<br />

the solid state.


Sup35<br />

Hsp104 +<br />

Sup35<br />

Monomeric<br />

Sup35<br />

Group members<br />

Dr. Alex Chernogolov<br />

Dr. Maggy Hologne<br />

Zhongjing Chen (Doctoral student)<br />

Veniamin Chevelkov (Doctoral student)<br />

Muralidhar Dasari (Doctoral student)<br />

Saravanakumar Narayanan (Doctoral student)<br />

Uwe Fink (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Entwicklung NMR spektroskopischer Methoden zwischen<br />

Flüssigkeit und Festkörper. Strukturuntersuchungen<br />

an orientierten Biomakromolekülen“ (Re1435/2)<br />

Bernd Reif<br />

Deutsche Forschungsgemeinschaft<br />

„Strukturelle Charakterisierung des Multidrug-Transporters<br />

EmrE mittels MAS Festkörper-NMR-Spektroskopie“<br />

(Re1435/3)<br />

Bernd Reif<br />

Higher<br />

Oligomeric<br />

States of<br />

Sup35<br />

Intermediate 1<br />

Intermediate 2<br />

FIGURE 1<br />

Hsp104 interacts preferably with low oligomeric Sup35.<br />

Interactions between Sup35 and Hsp104 are characterized<br />

by STD NMR experiments. Sup35 oligomeric states are<br />

determined using DOSY experiments.<br />

Deutsche Forschungsgemeinschaft<br />

„Biochemische und Strukturuntersuchungen an Sup35p<br />

im Komplex mit Hsp104, Hsp40 und Hsp70“ Teilprojekt A3<br />

im Sonderforschungsbereich 594 „Molekulare Maschinen“<br />

Bernd Reif<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Chen Z, Reif B (<strong>2004</strong>) Measurement of residual dipolar<br />

couplings in peptidic inhibitors weakly aligned by transient<br />

binding to peptide amyloid fibrils. J Biomol NMR 29, 525-<br />

530<br />

Chevelkov V, Rossum BJv, Castellani F, Rehbein K, Diehl<br />

A, Hohwy M, Steuernagel S, Engelke F, Oschkinat H, Reif<br />

B (<strong>2003</strong>) 1H detection in MAS solid state NMR spectroscopy<br />

employing pulsed field gradients for residual solvent<br />

suppression. J Am Chem Soc 125, 7788-7789<br />

Narayanan S, Bösl B, Walter S, Reif B (<strong>2003</strong>) Importance of<br />

low oligomeric weight species for prion propagation in the<br />

yeast prion system Sup35/Hsp104. Proc Natl Acad Sci USA<br />

100, 9286-9291<br />

Structural Biology<br />

29


Reif B, van Rossum BJ, Castellani F, Rehbein K, Diehl A,<br />

Oschkinat H (<strong>2003</strong>) Determination of 1H 1H distances in a<br />

uniformly 2H,15N labeled SH3 domain by MAS solid state<br />

NMR spectroscopy. J Am Chem Soc 125, 1488-1489<br />

Rienstra CM, Tucker-Kellogg L, Jaroniec CP, Hohwy M,<br />

Reif B, McMahon MT, Tidor B, Lozano-Pérez T, Griffin RG<br />

(2002) De Novo Determination of Peptide Structure with<br />

Solid-State MAS NMR Spectroscopy. Proc Natl Acad Sci<br />

USA 99, 10260-10265<br />

Ventura S, Zurdo J, Narayanan S, Parreño M, Mangues R,<br />

Reif B, Chiti F, Giannoni E, Dobson CM, Aviles FX, Serrano<br />

L (<strong>2004</strong>) Short amino acid stretches can mediate amyloid<br />

formation in globular proteins: Thr Src homology 3 (SH3)<br />

case. Proc Natl Acad Sci USA 101, 7258-7263<br />

Collaborations<br />

Fibril Axis<br />

Magnetic Field<br />

Dr. W. Boelens, University of Nijmegen, The Netherlands<br />

Prof. J. Buchner, TU Munich<br />

Dr. G. Gast, University of Potsdam<br />

Prof. Dr. U. Heinemann, MDC <strong>Berlin</strong><br />

Prof. Dr. W. W. de Jong, University of Nijmegen, The<br />

Netherlands<br />

Prof. G. Multhaup, Free University <strong>Berlin</strong><br />

FIGURE 2<br />

Structure of a peptide inhibitor bound to an Aß fibril using<br />

restrained docking. The spontaneous alignment of fibrils in<br />

the magnetic field induces an ordering of the ligand peptide.<br />

Measurement of transfer residual dipolar couplings<br />

(trRDCs) yield the relative orientation of the peptide with<br />

respect to the fibril axis.<br />

Dr. M. Sattler, EMBL Heidelberg<br />

Prof. Dr. S. Schuldiner, Hebrew University Jerusalem,<br />

Israel<br />

Dr. L. Serrano, EMBL Heidelberg<br />

Dr. S. Ventura, Universitat Autonoma de Barcelona,<br />

Spanien.<br />

Dr. S. Walter, TU Munich


PROTEIN ENGINEERING<br />

Group Leader: PD Dr. Christian Freund<br />

PROTEIN ADAPTER DOMAINS INVOLVED IN<br />

T CELL SIGNALING<br />

Our group is interested in the molecular interactions that<br />

govern the assembly of protein complexes. The focus is<br />

on adapter domains that mediate protein-protein interactions<br />

in immune cells, especially T cells. The intracellular<br />

response in T cells has to cope with the highly adaptive T<br />

cell receptor engagement process. Subtle changes in the<br />

kinetics and affinity of the TCR-MHC-peptide interaction<br />

are able to evoke dramatically different immune responses.<br />

The fine-tuning of the intracellular processes is<br />

dependent on the membrane organization, the molecular<br />

patterning at the inner membrane and cytoskeletal rearrangements<br />

that take place upon stimulation. Cytoplasmic<br />

adapter domains that guide the spatial distribution of<br />

proteins are present in many lymphoid-specific as well as<br />

general signaling molecules. They typically recognize peptide<br />

sequences that are present in the cytoplasmic<br />

domains of transmembrane receptors or within solvent<br />

exposed regions of intracellular proteins. Deciphering this<br />

sequence recognition code and determining the regulatory<br />

mechanisms of such adapter domain mediated interactions<br />

is the major topic in our group. Therefore we employ<br />

NMR spectroscopy, protein biochemistry, fluorescence<br />

microscopy and screening of biomolecular libraries as<br />

research tools. Protein Engineering approaches in our<br />

laboratory implement random and structure-based mutagenesis<br />

as strategies to derive biologically relevant information.<br />

Based on the determination of the three-dimensional<br />

structure of protein domains, we want to understand<br />

recognition at a molecular level, while biochemical studies<br />

are aimed at putting this knowledge in the context of<br />

cellular signaling.<br />

CD2BP2<br />

Michael Kofler, Matthias Heinze, Katharina Thiemke, and<br />

Christian Freund<br />

In addition to its binding capacity for the CD2 cytoplasmic<br />

domain, we have identified novel in vitro binding partners<br />

for the CD2BP2 protein by means of peptide spot analysis<br />

and subsequent NMR analysis (Kofler et al. <strong>2004</strong>, J. Biol.<br />

Chem. 279, 28292-28297). Several spliceosomal proteins<br />

contain recognition sequences that match the requirements<br />

for binding to the GYF domain of CD2BP2. Especially<br />

the core splicing protein SmB/B’ contains several<br />

binding motifs for CD2BP2-GYF, and we have determined<br />

the epitope for the interaction. Pulldown experiments<br />

confirm a specific interaction between the CD2BP2 and<br />

SmB/B’ proteins, and fluorescence microscopy of live<br />

cells shows the colocalization of the two proteins in the<br />

nucleus of Jurkat and HeLa cells (Fig. 1). Based on our in<br />

vitro results we are now testing additional proteins for<br />

their potential to recognize the CD2BP2 protein in vivo.<br />

GYF domains<br />

Michael Kofler, Katrin Motzny, and Christian Freund<br />

The NMR structure of this domain defines a new fold that<br />

is proposed to be present in many eukaryotic proteins. A<br />

conserved set of hydrophobic and aromatic amino acids<br />

defines the binding site for the proline-rich ligand. The<br />

structure of the GYF domain in complex with the<br />

SHRPPPPGHRV peptide derived from CD2 reveals that the<br />

prolines of the ligand form a polyproline type II helix that<br />

contact the hydrophobic hot spot of the domain (Freund et<br />

al. 2002, EMBO J 21, 5985-5995). The glycine residue<br />

promotes a kink in the peptide backbone conformation,<br />

thereby allowing the proline helix to be optimally placed<br />

within the GYF domain binding pocket. Peptide substitution<br />

analysis shows the importance of the proline-prolineglycine<br />

motif for recognition by the GYF domain of CD2BP2.<br />

We are currently investigating several other GYF domains<br />

from various eukaryotic species by phage display. This<br />

will allow us to compare the ligand sequence space of<br />

these GYF domains, and structural studies are underway<br />

that complement the peptide binding results. Mapping the<br />

sequence space of GYF domains is anticipated to create a<br />

valuable tool for the identification of in vivo interaction<br />

partners. It will also allow us to better understand the<br />

sequence requirements for individual subclasses of GYF<br />

domains and set the stage for the comparison of sequence<br />

recognition between GYF, SH3-, WW-domains.<br />

Cyclophilin<br />

Kirill Piotukh and Christian Freund<br />

Cyclophilins contain an intrinsic peptidyl-prolyl-cis-trans<br />

isomerase activity (Fischer et al. 1989, Nature 337, 476-<br />

478), but have also been characterized as binding modules<br />

within protein complexes (for a review see Ivery 2000, Med<br />

Res Rev 20, 452-484). We are currently investigating the<br />

potential of cyclophilin to act on and bind to proline-rich<br />

sequences that are also ligands for proline-rich sequence<br />

recognition domains. Conceptually it is believed that<br />

cyclophilins recognize peptide conformation rather than<br />

being highly sequence-specific. We will use in vitro<br />

methods for the identification of peptide sequences that<br />

can be recognized by cyclophilins. These peptides are<br />

further investigated by NMR spectroscopy and other biophysical<br />

methods to gain an understanding of the confor-<br />

Structural Biology<br />

31


A<br />

C<br />

B<br />

ADAP hSH3 FYN SH3<br />

mational restraints imposed on the peptides upon complex<br />

formation.<br />

ADAP<br />

Katja Heuer, Marc Sylvester, Jürgen Zimmermann,<br />

Katharina Thiemke, and Christian Freund<br />

ADAP (adhesion- and degranulation- promoting adapter<br />

protein) was identified as an adapter protein that upon<br />

association with the TCR complex becomes tyrosine phosphorylated<br />

and thereby creates binding sites for the SH2<br />

domains of the Fyn kinase and of the SLP-76 protein (da<br />

Silva et al. 1997, Proc Natl Acad Sci 94, 7493-7498; Musci<br />

et al. 1997, J Biol Chem 272, 11674-11677). ADAP has also<br />

been shown to colocalize with F actin and cytoskeletal<br />

proteins such as VASP and WASP in activated Jurkat T<br />

cells. A similar complex has been found enriched in the<br />

phagocytic cups of activated macrophages (Coppolino et<br />

al. 2001, J Cell Sci 114, 4307-4318; Krause et al. 2000, J Cell<br />

Biol 149, 181-194). Furthermore, ADAP-deficient mice show<br />

a decrease in LFA-1 dependent adhesion of stimulated<br />

peripheral T cells (Griffiths et al. 2001, Science 293, 2260-<br />

2263; Peterson et al., 2001, Science 293, 2263-2265) and<br />

therefore ADAP was concluded to be an important regulator<br />

for inside-out signaling in T cells and other hemato-<br />

D<br />

FIGURE 1<br />

Comparison of the structure<br />

of the ADAP hSH3 domain<br />

with a “classical” SH3 domain.<br />

The a-helix of ADAP<br />

hSH3 contacts the SH3 fold<br />

and several residues that are<br />

important for binding the proline-rich<br />

ligand are mutated in<br />

ADAP hSH3 (compare A and<br />

B, in B the peptide ligand is<br />

shown in green). These features<br />

lead to an altered surface<br />

topology and the inability of<br />

ADAP hSH3 to bind to prolinerich<br />

sequences (compare C<br />

and D).<br />

poietic cells. From a molecular perspective, ADAP represents<br />

a new member of the increasingly large family of<br />

non-enzymatic, hematopoietic scaffolding proteins. In<br />

addition to tyrosine-phosphorylation sites, ADAP contains<br />

a number of N-terminal proline-rich motifs that mediate<br />

the interaction with the SH3 domain of SKAP55 (Liu et al.<br />

1998, Proc Natl Acad Sci 95, 8779-8784; Marie-Cardine et<br />

al. 1998, J Biol Chem 273, 25789-25795). ADAP itself contains<br />

two regions of homology to SH3 domains and we<br />

have recently solved the structure of the ADAP C-terminal<br />

domain by NMR spectroscopy (Heuer et al. <strong>2004</strong>, Structure<br />

12, 603-610). The structure reveals an extended SH3<br />

domain fold, where an N-terminal α-helix contacts the SH3<br />

scaffold, thereby creating a composite surface that cannot<br />

bind to proline-rich sequences (Figure 2). We are currently<br />

investigating the binding properties of this domain,<br />

since we believe this will contribute to elucidation of<br />

ADAP’s function within immune cell signaling.


Group members<br />

Dr. Katja Heuer<br />

Dr. Kirill Piotukh<br />

Dr. Jürgen Zimmermann*<br />

Michael Kofler (Doctoral student)<br />

Matthias Heinze (Doctoral student)<br />

Marc Sylvester (Doctoral student)*<br />

Katharina Thiemke (Technical assistance)*<br />

Ulrike Schneeweiß (Technical assistance)*<br />

Uta Ben-Slimane (Technical assistance)** *<br />

Katrin Motzny (Technical assistance)**<br />

External funding<br />

Bundesministerium für Bildung und Forschung<br />

„Struktur-Funktionsbeziehung wichtiger T-Zell-Proteine<br />

und Design von Agonisten und Antagonisten der T-Zell<br />

vermittelten Immunantwort“ (Bio-Future 0311879)<br />

Sieger im Nachwuchsgruppenwettbewerb Bio-Future<br />

C. Freund<br />

* part of period reported<br />

** part-time<br />

FIGURE 2<br />

Binding site of the CD2BP2-GYF domain in complex with a<br />

CD2 peptide. Binding site residues of the GYF domain are<br />

shown in magenta while the peptide is displayed in yellow.<br />

The surface of the domain is rendered transparent.<br />

Volkswagen Foundation<br />

“Biological Function of Adaptor Domains Controlled by The<br />

Activity of Peptidyl-Prolyl cis/trans Isomerases” (I/77 955)<br />

C. Freund<br />

Deutsche Forschungsgemeinschaft<br />

„Struktur-Funktionsbeziehung der GYF-Domäne“ (FR<br />

1325/2-1)<br />

C. Freund<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Heuer K, Arbuzova A, Strauss H, Kofler M, Freund C (2005)<br />

The helically extended SH3 domain of the T cell adaptor<br />

protein ADAP is a novel lipid interaction domain. J Mol<br />

Biol, in press<br />

Heuer K, Kofler M, Langdon M, Thiemke K, Freund C (<strong>2004</strong>)<br />

Structure of a helically extended SH3 domain of the T cell<br />

adapter protein ADAP. Structure 12, 603-610<br />

Kofler M, Heuer K, Zech T, Thiemke K, Freund C (<strong>2004</strong>)<br />

Recognition sequences for the GYF domain reveal a possible<br />

spliceosomal function of CD2BP2. J Biol Chem 279,<br />

28292-28297<br />

Structural Biology<br />

33


Kofler M, Motzny K, Freund C (2005) GYF domain proteomics<br />

reveals interaction sites in known and novel target<br />

proteins. Mol Cell Proteomics (in press)<br />

Freund C (<strong>2004</strong>) The GYF domain. In: Modular Protein<br />

Domains, Wiley-VCH GmbH, Germany<br />

Freund C, Kühne R, Park S, Thiemke K, Reinherz EL, Wagner<br />

G (<strong>2003</strong>) Structural investigations of a GYF domain<br />

covalently linked to a proline-rich peptide. J Biomol NMR<br />

27, 143-149<br />

Freund C, Kühne R, Yang H, Park S, Reinherz EL, Wagner G<br />

(2002) Dynamic interaction of CD2 with the GYF and the<br />

SH3 domain of compartmentalized effector molecules.<br />

EMBO J 21, 5985-5995<br />

Collaborations<br />

Ellis Reinherz (Dana-Farber Cancer Institute, Boston, MA,<br />

USA)<br />

Volkhard Helms (University of Saarland, Saarbrücken)<br />

Ingo Schmitz (University of Düsseldorf)<br />

Richard Kroczek (Robert Koch Institute, <strong>Berlin</strong>)


CELLULAR SIGNALLING/MOLECULAR GENETICS


SECTION CELLULAR SIGNALLING/<br />

MOLECULAR GENETICS<br />

Prof. Ivan Horak<br />

Department Head: Molecular Genetics<br />

(Secretary: Alexandra Kiesling)<br />

Prof. Walter Rosenthal<br />

Department Head: Cellular Signalling<br />

(Secretary: Heidemarie Petschick)<br />

Research in the <strong>FMP</strong> section “Cellular Signalling / Molecular<br />

Genetics” covers some of the major aspects of eucaryotic<br />

signal transduction. Increasingly, the development<br />

of pharmacological strategies to interfere with cellular<br />

signal transduction pathways under study has become a<br />

major point of emphasis.<br />

The Protein Trafficking group is interested in the early stages<br />

of the intracellular trafficking of G-protein-coupled<br />

receptors (GPCRs). The intracellular transport of membrane<br />

proteins starts with their insertion into the membrane<br />

of the endoplasmic reticulum (ER). During ER insertion, the<br />

INTRODUCTION<br />

BEREICH SIGNALTRANSDUKTION/<br />

MOLEKULARE GENETIK<br />

Prof. Ivan Horak<br />

Abteilungsleiter: Molekulare Genetik<br />

(Sekretariat: Alexandra Kiesling)<br />

Prof. Walter Rosenthal<br />

Abteilungsleiter: Signaltransduktion<br />

(Sekretariat: Heidemarie Petschick)<br />

Die Forschung im <strong>FMP</strong>-Bereich „Signaltransduktion/<br />

Molekulare Genetik“ befasst sich mit wichtigen Aspekten<br />

der eukaryotischen Signaltransduktion. Zunehmend liegt<br />

das Augenmerk auf der Entwicklung pharmakologischer<br />

Strategien zur Interferenz mit den untersuchten Signaltransduktionswegen.<br />

Die Arbeitsgruppe Protein Trafficking interessiert sich für<br />

die frühen Stadien des intrazellulären Transports G-Protein-gekoppelter<br />

Rezeptoren (GPCRs). Der intrazelluläre<br />

Transport von Membranproteinen beginnt mit ihrer Insertion<br />

in die Membranen des endoplasmatischen Retikulums<br />

(ER). Unter der Insertion werden die Proteine gefaltet.<br />

Dabei wird die korrekte Faltung durch ein Qualitätskontrollsystem<br />

überwacht. Nur korrekt gefaltete Proteine tre-<br />

proteins are folded, and correct folding is monitored by a<br />

quality control system (QCS). Only correctly folded proteins<br />

are allowed to enter the vesicular transport via the<br />

ER/Golgi intermediate compartment (ERGIC) and the Golgi<br />

apparatus to the plasma membrane. The study of the early<br />

stages of the intracellular transport of GPCRs is also of<br />

clinical significance. Naturally occuring receptor mutations<br />

frequently lead to misfolded proteins unable to pass<br />

the QCS and consequently to inherited diseases.<br />

The aim of the Anchored Signalling group is to identify further<br />

proteins involved in the redistribution of the protein<br />

AQP2 that belongs to the family of water channels. It is critically<br />

involved in the Arginine-vasopressin mediated<br />

water reabsorption in the kidney. Arginine-vasopressin<br />

binds to the vasopressin V2 receptor located on the surface<br />

of renal principal cells thereby triggering the redistribution<br />

of AQP2 from intracellular vesicles into the urinefacing<br />

plasma membrane. The insertion of AQP2 into the<br />

plasma membrane introduces water-selective pores and<br />

facilitates water entry into the cells. The studies in this<br />

group may lead to a detailed understanding of the under-<br />

ten in den vesikulären Transport über das „ER-cis-Golgi<br />

intermediate Compartment“ (ERGIC) und den Golgi-Apparat<br />

zur Plasmamembran ein. Das Studium der frühen Stadien<br />

des intrazellulären Transports von GPCRs ist auch von<br />

klinischer Bedeutung. Natürlich auftretende Rezeptormutationen<br />

führen häufig zu fehlgefalteten Proteinen, die<br />

das Qualitätskontrollsystem nicht passieren können. Auf<br />

diese Weise manifestieren sich Erbkrankheiten.<br />

Das Ziel der Arbeitsgruppe Anchored Signalling ist es, Proteine<br />

zu identifzieren, die an der Umverteilung des Proteins<br />

AQP2 mitwirken. AQP2 gehört zur Familie der Wasserkanäle<br />

und ist an der durch Arginin-Vasopressin-vermittelten<br />

Wasserreabsorption in der Niere beteiligt. Arginin-<br />

Vasopressin bindet an den Vasopressinrezeptor V2, der<br />

sich auf der Oberfläche der Prinzipalzellen der Niere befindet.<br />

Auf diese Weise wird die Umverteilung AQP2 aus<br />

intrazellulären Vesikeln in die harnseitige Plasmamembran<br />

ausgelöst. Durch das Eintreten von AQP2 in die Plasmamembran<br />

wird diese mit wasserselektiven Poren ausgestattet,<br />

so dass Wasser in die Zellen aufgenommen werden<br />

kann. Die Untersuchungen in der Arbeitsgruppe sollen<br />

zu einem detaillierten Verständnis des molekularen<br />

Mechanismus der Wasserreabsorption führen und letztlich<br />

eine Behandlung bestimmter Fälle des Diabetes insi-


lying mechanism, and eventually to a treatment of certain<br />

cases of diabetes insipidus. Recently, interference of protein-protein<br />

interactions by the means of chemical compounds<br />

has become a major aspect.<br />

The main field of the Biophysics Group is research in membrane<br />

transport. Basic research projects aim to explore the<br />

molecular mechanisms of water and proton movement.<br />

The activities in applied biophysics are devoted to the control<br />

of membrane permeability by (bio)polymers and to photodynamic<br />

reactions of membrane components. Peter Pohl<br />

has been appointed full professor at the University of Linz<br />

in Austria and left the <strong>FMP</strong> at the end of <strong>2004</strong>.<br />

The research activity of the Department of Molecular<br />

Genetics concerns the molecular mechanisms which control<br />

development and function of cells in the blood and<br />

immune system. Elucidation of these processes is an ultimate<br />

requirement not only for understanding their pathological<br />

alterations but also for the development of rational<br />

diagnostic and therapeutic procedures. We have been<br />

using targeted mutagenesis to analyze genes thought to<br />

have important regulatory functions in the blood and<br />

pidus möglich machen. Aktuell hat sich insbesondere die<br />

mittels chemischer Verbindungen auslösbare Interferenz<br />

mit den Protein-Protein-Interaktionen zu einem wesentlichen<br />

Aspekt der Forschungstätigkeit entwickelt.<br />

Der Hauptforschungsgegenstand der Arbeitsgruppe Biophysik<br />

ist der Transport an Membranen. Forschungsprojekte<br />

zielten auf die molekularen Mechanismen der Wasser-<br />

und Protonenbewegung. Die Aktivitäten auf dem<br />

Gebiet der angewandten Biophysik sind darauf gerichtet,<br />

die Durchlässigkeit der Membran für (Bio-)Polymere und<br />

die photodynamischen Reaktionen von Membrankomponenten<br />

zu erforschen. Der Leiter der Gruppe, Peter Pohl,<br />

folgte Ende <strong>2004</strong> einem Ruf auf einen Lehrstuhl an der Universität<br />

Linz in Österreich.<br />

Die Abteilung Molekulare Genetik befasst sich mit den<br />

molekularen Mechanismen, die die Entwicklung und die<br />

Funktion von Zellen des Blutes und des Immunsystems<br />

kontrollieren. Die Erforschung dieser Prozesse ist eine<br />

unabdingbare Voraussetzung nicht nur für das Verständnis<br />

ihrer pathologischen Veränderungen sondern auch für die<br />

Entwicklung rationaler diagnostischer und therapeutischer<br />

Verfahren. Die Wissenschaftler nutzen zielgerichtete<br />

Mutagenese, um Gene zu analysieren, von denen anzunehmen<br />

ist, dass sie wichtige regulatorische Funktionen<br />

immune system. This technology is used to generate<br />

mouse mutants (“knock-out mice“) that carry an experimentally<br />

designed gene defect. Thus it is possible to analyze<br />

the consequences of a specific gene defect in the<br />

context of the whole organism. The main interest is focused<br />

on cytokine receptor signaling, in particular interferons.<br />

These cytokines are used for treatment of human<br />

diseases, despite their unknown functional mechanisms.<br />

The highly pleiotropic effects of these cytokines are often<br />

therapeutically disadvantageous. Therefore, an exact<br />

knowledge of signaling pathways and interacting molecules<br />

which are regulated by these cytokines could lead to<br />

the development of more precisely targeted therapeutic<br />

interventions.<br />

Cytokine receptor signaling involves STATs (Signal transducers<br />

and activators of transcription). Frequently, abnormal<br />

activity of certain STAT family members, particularly<br />

Stat3 and Stat5, is associated with a wide variety of human<br />

malignancies, including haematological, head and neck,<br />

breast and prostate cancers. The EMBO research group<br />

of Uwe Vinkemeier is investigating the relationship bet-<br />

im Blut und Immunsystem haben. Mit Hilfe dieser Methode<br />

werden experimentell Mäuse mit einem Gendefekt<br />

erzeugt (Knockout-Mäuse). Auf diese Weise ist es möglich,<br />

die Auswirkungen eines spezifischen Gendefekts im<br />

Kontext des Gesamtorganismus zu analysieren. Das<br />

Hauptinteresse der Abteilung gilt dem Zytokinrezeptor-<br />

Signaling, insbesondere aber den Interferonen. Diese<br />

Zytokine werden zur Behandlung von Erkrankungen des<br />

Menschen eingesetzt, man kennt jedoch ihre Wirkmechanismen<br />

nicht genau. Der stark pleiotrope Effekt der Interferone<br />

ist meist von Nachteil für die Therapie. Deshalb<br />

können eine genaue Kenntnis der Signaltransduktionswege<br />

und der Molekülinteraktionen, die durch die Zytokine<br />

reguliert werden, zur Entwicklung präziserer therapeutischer<br />

Interventionen führen.<br />

Das Zytokinrezeptor-Signaling verläuft über STATs (Signal<br />

transducers and activators of transcription). Eine abnormale<br />

Aktivität bestimmter Mitglieder der STAT-Familie, insbesondere<br />

von Stat3 und Stat5, steht im Zusammenhang<br />

mit einer Vielzahl bösartiger Krebserkrankungen. Die<br />

EMBO-Forschungsgruppe von Uwe Vinkemeier untersucht<br />

die subzelluläre Lokalisation der STATs und die damit<br />

zusammenhängenden Konsequenzen für die Gen Induktion.<br />

Eine der Herausforderungen ist es, herauszufinden,<br />

37 Cellular Signalling/ Molecular Genetics


ween the subcellular localization of STATs and the resulting<br />

consequences on gene induction. One of the challenges<br />

is to determine how target gene access is regulated<br />

and how this might influence the execution of transcriptional<br />

programs. The goal is a complete description of the<br />

mechanisms underlying STAT subcellular trafficking by<br />

focusing on the biochemical basis of nuclear accumulation<br />

as well as phosphorylation-independent nucleocytoplasmic<br />

shuttling. The group will also investigate how<br />

these activities modulate the transcriptional functions of<br />

the STATs and influence complex phenotypes such as<br />

growth or antiviral protection.<br />

The Microscopic Technology Group offers a range of conventional<br />

and advanced light and electron microscopic<br />

methods as well as electrophysiology and microinjection<br />

to all interested research groups in the institute. The group<br />

is available for all types of collaboration and the processing<br />

of common research projects. So, e.g. in terms of characterizing<br />

cyclic nucleotide-gated cation channels, it has<br />

long standing collaborations with the Synthetic Organic<br />

Biochemistry Group. This group has continued the development<br />

of photolabile inactive compounds (caged com-<br />

wie der Zugriff auf die jeweiligen Zielgene reguliert ist und<br />

wie dies die Tanskriptionsprogramme beeinflusst. Das Ziel<br />

der Gruppe ist die umfassende Beschreibung der Mechanismen,<br />

nach denen der subzelluläre Transport der STATs<br />

abläuft. Dabei legt sie besonderes Augenmerk auf die biochemischen<br />

Grundlagen der Kernakkumulation und des<br />

phosphorylierungsabhängigen nukleozytoplasmatischen<br />

Transports. Zusätzlich wird untersucht, wie diese Aktivitäten<br />

die Transkriptionsfunktionen der STATs modulieren und<br />

komplexe Phänotypen, wie zum Beispiel Wachstum oder<br />

antiviralen Schutz, beeinflussen.<br />

Die Arbeitsgruppe Mikroskopische Techniken bietet allen<br />

interessierten <strong>FMP</strong>-Gruppen ein breites Spektrum konventioneller<br />

und spezialisierter licht- und elektronenmikroskopischer<br />

Methoden sowie Elektrophysiologie und Mikroinjektion<br />

an. Die Gruppe ist offen für Kooperationen und<br />

gemeinsame Forschungsprojekte. Sie charakterisiert zum<br />

Beispiel seit einigen Jahren zusammen mit der Arbeitsgruppe<br />

Synthetische Organische Biochemie erfolgreich<br />

durch zyklische Nukleotide getriebene Kationenkanäle.<br />

Dabei kommen in dieser Arbeitsgruppe entwickelte, photolabile<br />

chemische Verbindungen (caged compounds) zum<br />

Einsatz, aus denen auf Anregung mit ultraviolettem Licht<br />

hin aktive Biomoleküle freigesetzt werden. Diese Verbin-<br />

pounds) from which the active biomolecules are liberated<br />

by UV light. These compounds (caged cAMP, caged<br />

cGMP) have proved extremely useful in elucidating intracellular<br />

signal transduction chains.<br />

The Cellular Physiology Group is concentrating on signal<br />

transduction in the blood brain barrier (BBB), using co-cultures<br />

of endothelial and glial cells as model systems. Current<br />

emphasis is on the structure and function of tight<br />

junction proteins sealing the interendothelial cleft. The<br />

group is also investigating the role of protein kinases in the<br />

regulation of the permeability of the BBB. The long-term<br />

goal is to elucidate the molecular basis of such permeability<br />

changes under physiological and pathological conditions.<br />

The Biochemical Neurobiology Group is studying biochemical<br />

and molecular interactions of peptide degrading<br />

enzymes and their neuropeptide substrates under pathological<br />

conditions. The research is e.g. focused on the<br />

function of angiotensin-converting enzyme (ACE) with<br />

alcohol reward in the CNS. This process involves angiotensin<br />

receptors and their signal transduction pathways.<br />

dungen (caged cAMP, caged cGMP) haben sich als außerordentlich<br />

nützlich für die Untersuchung intrazellulärer<br />

Signalketten erwiesen.<br />

Die Arbeitsgruppe Zellphysiologie fokussiert ihre Forschung<br />

auf die Signaltransduktion in der Blut-Hirn-Schranke<br />

(BHS). Dabei verwendet sie gemeinsam kultivierte<br />

Endothel- und Gliazellen als Modellsystem. Gegenwärtig<br />

stehen insbesondere Struktur und Funktion von Tightjunction-Proteinen,<br />

die den interendothelialen Spalt abdichten,<br />

im Vordergrund des Interesses. Die Gruppe<br />

erforscht auch die Rolle von Proteinkinasen bei der Regulation<br />

der Durchlässigkeit der BHS. Ziel ist es, die molekulare<br />

Basis der Veränderungen zu erforschen, denen die<br />

Durchlässigkeit der BHS unter verschiedenen physiologischen<br />

und pathologischen Bedingungen unterliegt.<br />

Die Arbeitsgruppe Biochemische Neurobiologie untersucht<br />

die biochemischen und molekularen Interaktionen<br />

peptidabbauender Enzyme und ihrer Neuropeptidsubstrate<br />

unter pathologischen Bedingungen. Die Forschung zielt<br />

unter anderem auf die Rolle des Angiotensin-konvertierenden<br />

Enzyms (ACE) und seiner Substrate beim Alkohol-<br />

Reward im Belohnungssystem des ZNS. Dieser Prozess<br />

verläuft unter Einbeziehung von Angiotensinrezeptoren<br />

und deren nachgeschalteten Signalketten.


PROTEIN TRAFFICKING<br />

Group Leader: PD Dr. Ralf Schülein<br />

QUALITY CONTROL AND ER INSERTION OF<br />

G-PROTEIN-COUPLED RECEPTORS<br />

The group is interested in the early stages of the intracellular<br />

trafficking of G-protein-coupled receptors (GPCRs).<br />

The intracellular transport of membrane proteins starts<br />

with their insertion into the membrane of the endoplasmic<br />

reticulum (ER). During ER insertion, the proteins are folded,<br />

and correct folding is monitored by a quality control<br />

system (QCS). Only correctly folded proteins are allowed<br />

to enter the vesicular transport via the ER/Golgi intermediate<br />

compartment (ERGIC) and the Golgi apparatus to the<br />

plasma membrane.<br />

The study of the early stages of the intracellular transport<br />

of GPCRs is of clinical significance. Naturally occuring<br />

receptor mutations frequently lead to misfolded proteins<br />

unable to pass the QCS and consequently to inherited<br />

diseases. An example is X-linked nephrogenic diabetes<br />

insipidus (NDI), which is caused by mutations in the gene<br />

of the vasopressin V2 receptor (V 2R). It is noteworthy that<br />

the QCS may work faultily. Sometimes, non-functional<br />

mutant receptors are transported to the plasma membrane,<br />

whereas in other cases, still functional proteins are<br />

retained.<br />

We use NDI-causing V 2R mutants to characterize the<br />

mechanisms of GPCR quality control in the early secretory<br />

pathway and to identify the proteins involved. Our aim is<br />

to identify new drug targets for the treatment of diseases<br />

caused by transport-deficient membrane proteins. In<br />

addition, we study the function of cleavable signal peptides<br />

of GPCRs.<br />

1. Significance of cleavable signal peptides of<br />

GPCRs<br />

ER insertion of GPCRs is mediated by two different types of<br />

signal sequences: one group contains signal anchor<br />

sequences that are part of the mature receptors. A second<br />

group possesses additional signal peptides that are cleaved<br />

off during the insertion process by the signal peptidases<br />

of the ER. The reason why this second subset requires<br />

additional signal peptides was not clear for GPCRs and<br />

other membrane proteins.<br />

We studied the functional significance of the signal peptide<br />

of the human endothelin B receptor and showed that<br />

it does not influence receptor expression, but rather is<br />

necessary for the translocation of the receptor’s N tail<br />

across the ER membrane. We have now studied the signal<br />

peptides of the rat corticotropin-releasing factor receptors<br />

type 1 (CRF 1R) and type 2 α (CRF 2αR). The signal peptide<br />

of the CRF 1R is not necessary for N tail translocation<br />

but strongly promotes receptor expression. The signal<br />

peptide of the CRF 2αR also promotes receptor expression.<br />

However, it is not cleaved after ER insertion and remains at<br />

the N tail of mature receptor. The CRF 2αR thus represents<br />

the first GPCR containing eight hydrophobic helices: seven<br />

transmembrane helices and an eighth helix with extracellular<br />

location. The solubility of the latter helix seems to be<br />

ensured by N-glycosylation.<br />

2. Analysis of quality control mechanisms of<br />

the V 2R<br />

2.1. Quality control in the ERGIC<br />

It was unknown whether quality control of membrane proteins<br />

is restricted to the ER or whether the ERGIC or the<br />

Golgi apparatus are also involved. We have addressed this<br />

question using misfolded NDI-causing V2R mutants. Our<br />

results show that these mutants fall into two classes. Class<br />

A mutants (e.g. L62P, DL62-R64, S167L; Fig. 1) are retained<br />

exclusively in the ER and never leave this compartment.<br />

Class B mutants (e.g. R143P, Y205C, R337X, V226E, InsQ292;<br />

Fig. 1), in contrast, reach the ERGIC. These mutants are<br />

recognized in this compartment and are most likely rerouted<br />

to the ER via the retrograde transport system. Moreover,<br />

we could show that the ability of a mutant to reach<br />

the ERGIC is not determined by its expression level but by<br />

its folding state. The ERGIC may represent a second safety<br />

net within the QCS recognizing those proteins that are only<br />

inefficiently detected at the ER level.<br />

2.2. Compartment-specific rescue of NDI-causing V 2R<br />

mutants<br />

Pharmacological strategies to rescue transport-deficient<br />

mutant membrane proteins are of clinical significance.<br />

Two strategies are being pursued at the moment. The first<br />

involves the development of ligands that favor correct folding<br />

of the mutant proteins and consequently allow them<br />

to pass the QCS (“pharmacological chaperones”). The<br />

second strategy is based on the fact that the QCS is sometimes<br />

overprotective and retains mutant proteins that are<br />

still functional. Here, substances that do not influence folding<br />

but prevent the interaction with quality control components<br />

may allow transport and lead to a functional rescue.<br />

V 2R antagonists mediating the rescue of some NDI-causing<br />

V 2R mutants as pharmacological chaperones have<br />

been described. We have now found novel inhibitors of the<br />

QCS acting in a compartment-specific way. By using the<br />

L62P mutant (ER-retained; class A) and the Y205C mutant<br />

(ERGIC-reaching; class B) of the V 2R as a model, we show<br />

that the cell-penetrating peptide penetratin rescues the<br />

Cellular Signalling/ Molecular Genetics<br />

39


L62P<br />

ΔL62-R64<br />

transport of the Y205C mutant but not that of the L62P<br />

mutant. We have also shown that the peptides exert their<br />

function by displacing the BiP chaperone from the mutant<br />

receptor in the ERGIC.<br />

Group members<br />

R143P<br />

FIGURE 1<br />

Two-dimensional model of the V2R. The positions of class A mutants (L62P, DL62-R64, S167L) are indicated by open rectangles, the positions of<br />

class B mutants (R143P, Y205C, R337X, V226E, InsQ292) are indicated by black rectangles. The following posttranslational modifications of the V2R<br />

are depicted: N-glycosylation at position N22, palmitoylation at positions C341 and C342 and a disulfide bond formed between residues C112 and<br />

C192.<br />

Dr. Ute Donalies<br />

Dr. Claudia Rutz**<br />

AnjaThielen (Doctoral student)*<br />

Martina Alken (Doctoral student)*<br />

Morad Oueslati (Doctoral student)<br />

Dagmar Michl (Technical assistance)**<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

“Struktur und Funktion von Transportsignalen des Vasopressin<br />

V2-Rezeptors” (Teilprojekt A3 im Sonderforschungsbereich<br />

449 “Struktur und Funktion membranständiger<br />

Rezeptoren”)<br />

Ralf Schülein, Walter Rosenthal<br />

* part of period reported<br />

** part-time<br />

S167L<br />

Y205C<br />

InsQ292<br />

V226E<br />

R337X<br />

Deutsche Forschungsgemeinschaft<br />

“ER-Insertion und Qualitätskontrolle von G-Protein-gekoppelten<br />

Rezeptoren” (Teilprojekt A11 im Sonderforschungsbereich<br />

366 “Zelluläre Signalerkennung und Umsetzung”)<br />

Ralf Schülein, Walter Rosenthal<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Oueslati M, Hermosilla R, Oorschot V, Donalies U,<br />

Schönenberger E, Beyermann M, Oehlke J, Wiesner B,<br />

Oksche A, Klumperman J, Rosenthal W, Schülein R (2005)<br />

Compartment-specific rescue of nephrogenic diabetes<br />

insipidus-causing vasopressin V2 receptor mutants by<br />

cell-penetrating peptides. J Cell Biol, in revision<br />

Thielen A, Oueslati M, Hermosilla R, Krause G, Oksche A,<br />

Rosenthal W, Schülein R (2005) The hydrophobic amino<br />

acid residues in the membrane-proximal C tail of the G protein-coupled<br />

vasopressin V2 receptor are necessary for<br />

transport-competent receptor folding. FEBS Lett, in press<br />

Alken M, Rutz C, Köchl R, Donalies U, Oueslati M, Furkert<br />

J, Wietfeld D, Hermosilla R, Scholz A, Beyermann M,<br />

Rosenthal W, Schülein R (2005) The signal peptide of the<br />

rat corticotropin-releasing factor receptor 1 promotes


L62P<br />

Y205C<br />

PE<br />

PE<br />

receptor expression but is not essential for establishing a<br />

functional receptor. Biochem J 390, 455-64<br />

Hermosilla R, Oueslati M, Donalies U, Schönenberger E,<br />

Krause E, Oksche A, Rosenthal W, Schülein R (<strong>2004</strong>)<br />

Disease-causing V2 vasopressin receptors are retained in<br />

different compartments of the early secretory pathway.<br />

Traffic 5, 993-1005<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G, Hermosilla<br />

R, Schaefer M, Schülein R, Rosenthal W, Oksche<br />

A (<strong>2004</strong>) Pharmacochaperones post-translationally enhance<br />

cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V2 receptors.<br />

J Biol Chem 279, 47254-47263<br />

Neuschäfer-Rube F, Rehwald M, Hermosilla R, Schülein R,<br />

Rönnstrand L, Püschel G (<strong>2004</strong>) Requirement of different<br />

Ser/Thr residues in the C-terminal domain of the human<br />

EP4 receptor for agonist-induced phosphorylation‚ arrestin<br />

interaction and sequestration. Biochem J 379, 573-585<br />

Engelsberg A, Hermosilla R, Karsten U, Schülein R, Dörken<br />

B, Rehm A (<strong>2003</strong>) The Golgi protein RCAS1 controls cell<br />

surface expression of tumor-associated O-linked glycan<br />

antigens. J Biol Chem 278, 22998-3007<br />

2<br />

M/I<br />

0<br />

2<br />

M/I<br />

0<br />

PE<br />

PE<br />

Collaborations<br />

FIGURE 2<br />

Influence of penetratin treatment on the subcellular<br />

distribution of the GFP-tagged V 2R mutants<br />

L62P (class A) and Y205C (class B) in transiently<br />

transfected HEK 293 cells. (A) Laser scanning<br />

microscopy. Cells were treated with penetratin<br />

(Pe, 1 µM) or with vehicle (-). The GFP fluorescence<br />

signals of the receptors were recorded (green,<br />

left panels), plasma membranes were stained with<br />

Trypan blue (red, central panels) and overlay of the<br />

signals was computed (right panels; co-localization<br />

is indicated by yellow). Scale bars, 5 µm. (B)<br />

Quantitative analysis of the peptide effect. The<br />

ratio of cell membrane and intracellular fluorescence<br />

signals (M/I) was determined. Ratios < 1<br />

indicate a predominantly intracellular localization<br />

of the receptors and ratios > 1 a predominant localization<br />

at the cell membrane. Columns show mean<br />

values ± SD (n = 30 cells). Note that in (A) and (B)<br />

only the transport of the Y205C mutant is rescued<br />

by penetratin treatment.<br />

R.S. Hedge, NIH Bethesda, MD, USA<br />

A. Oksche, Charité – University Medicine <strong>Berlin</strong><br />

R. Hermosilla, Charité – University Medicine <strong>Berlin</strong><br />

A. Rehm, Max Delbrück Center for Molecular Medicine<br />

<strong>Berlin</strong><br />

G. Püschel, University of Potsdam<br />

Cellular Signalling/ Molecular Genetics<br />

41


ANCHORED SIGNALLING<br />

Group Leader: PD Dr. Enno Klussmann<br />

WATER REABSORPTION IN THE KIDNEY<br />

A major function of the kidney is the production of urine. A<br />

human kidney generates 180 l of primary urine per day,<br />

most of which is water. It is obvious that excretion of such<br />

vast amounts of fluid would cause dehydration and death.<br />

Therefore, mechanisms have evolved which carefully<br />

control body water balance by regulating water reabsorption<br />

from primary urine. Most of the water (90%) is reabsorbed<br />

by passive diffusion along an osmotic gradient<br />

established between the primary urine and the surrounding<br />

tissue. Reabsorption of the remaining 10% of water is<br />

regulated by antidiuretic hormone (Arginine-vasopressin,<br />

AVP) in particular cells of the kidney, the principal cells.<br />

Principal cells line the collecting duct, the terminal part of<br />

the tubular system transporting urine to the bladder. Loss<br />

of responsiveness to the hormone results in a disease<br />

known as diabetes insipidus (DI). DI is characterized by<br />

a massive loss of water (up to 20 l per day if untreated).<br />

The molecular mechanism underlying AVP-mediated<br />

water reabsorption in the kidney involves several key proteins<br />

including the vasopressin V2 receptor, and aquaporin-2<br />

(AQP2). The latter belongs to the family of water<br />

channels whose discovery yielded Peter Agre the Nobel<br />

Prize in Chemistry in <strong>2003</strong>. AVP binds to the vasopressin<br />

V2 receptor located on the surface of renal principal cells<br />

thereby triggering the redistribution of AQP2 from intracellular<br />

vesicles into the apical (urine-facing) plasma<br />

membrane. This process is also known as the AQP2<br />

shuttle.<br />

The insertion of AQP2 into the plasma membrane introduces<br />

water-selective pores and facilitates water entry into<br />

the cells. Water exits the cells through aquaporins-3 and<br />

-4 constitutively located in the basolateral (tissue-facing)<br />

plasma membrane. The driving force is again the osmotic<br />

gradient established between primary urine and the tissue.<br />

On the molecular level, AVP stimulates the elevation<br />

of the second messenger cAMP followed by activation of<br />

protein kinase A (PKA). PKA, in turn, transfers a phosphate<br />

group to AQP2. This phosphorylation is a prerequisite<br />

for the redistribution of AQP2. The mechanism is depicted<br />

in Figure 1.<br />

The aim of our group is to identify further proteins involved<br />

in the redistribution of AQP2. This will lead to a detailed<br />

understanding of the underlying mechanism, and may<br />

eventually lead to a treatment of certain cases of DI. The<br />

translocation of AQP2 from intracellular vesicles to the<br />

plasma membrane constitutes an exocytosis-like process.<br />

A better understanding of this mechanism will also yield a<br />

better understanding of other cAMP-dependent exocytic<br />

processes such as renin secretion from juxtaglomerular<br />

cells, insulin secretion from pancreatic βcells or proton<br />

secretion from gastric parietal cells. Dysregulations of<br />

these processes cause various diseases including hypertension,<br />

diabetes mellitus and gastric ulcers.<br />

AKAP18δ anchors PKA to AQP2-bearing vesicles<br />

The above mentioned phosphorylation of AQP2 is not the<br />

sole prerequisite for its redistribution. We have shown that<br />

the tethering of PKA to subcellular compartments by so<br />

called A-kinase anchoring proteins (AKAPs) is also essential<br />

for the AQP2 shuttle to occur. During the search for<br />

AKAP(s) involved in the shuttle, a new splice variant of<br />

AKAP18, AKAP18δ, was identified. Biochemical and cell<br />

biological approaches revealed that AKAP18δ functions<br />

as an AKAP in vitro and in vivo. Immunofluorescence<br />

microscopy showed that in the kidney, AKAP18δ is mainly<br />

expressed in principal cells of the terminal section of the<br />

collecting duct, closely resembling the distribution of<br />

AQP2. AKAP18δ was identified on the same intracellular<br />

vesicles as AQP2 and PKA. AVP not only recruited AQP2,<br />

but also AKAP18δ to the plasma membrane (Fig. 2). AVP<br />

caused the dissociation of AKAP18δ and PKA. The data<br />

suggest that AKAP18δ is involved in the AQP2 shuttle by<br />

anchoring PKA in close proximity to AQP2 (Henn et al.<br />

<strong>2004</strong>).<br />

The small GTPase RhoA mediates the diuretic<br />

effects of prostaglandin E2<br />

The small GTPases of the Rho family (Rho, Rac, Cdc42)<br />

participate in the regulation of the F-actin cytoskeleton. In<br />

previously published papers we have demonstrated that<br />

the small GTPase RhoA, a particular member of the Rho<br />

family, in its active state (GTP-bound) induces the formation<br />

of F-actin-containing stress fibers in primary cultured<br />

principal cells,and prevents the AQP2 shuttle. We observed<br />

that AVP causes a decrease of F-actin-containing<br />

stress fibers, and inhibition of RhoA.<br />

Prostaglandin E 2 (PGE 2) antagonizes AVP-induced water<br />

reabsorption. Using primary cultured rat inner medullary<br />

collecting duct principal (IMCD) cells, we have shown that<br />

stimulation of prostaglandin EP 3 receptors induced RhoA<br />

activation and formation of F-actin-containing stress fibers<br />

in resting IMCD cells, but did not modify the intracellular<br />

localization of AQP2. However, the AVP-induced AQP2<br />

translocation was strongly inhibited. In addition, stimulation<br />

of EP 3 receptors inhibited the AVP-induced RhoA in-


A B<br />

FIGURE 1<br />

Schematic representation of the vasopressin-mediated water reabsorption. In resting principal cells (A) aquaporin-2 (AQP2) is located in intracellular<br />

vesicles. B. The binding of arginine-vasopressin (AVP) to the vasopressin V2 receptor (V 2R) activates a cAMP-dependent signalling cascade<br />

which causes the phosphorylation of AQP2 (phosphorylated AQP2, p-AQP2) and its translocation from intracellular vesicles into the plasma<br />

membrane facing the lumen of the renal collecting duct. Water from the primary urine enters the cells through AQP2 along an osmotic gradient<br />

and exits the cells through aquaporin-3 and aquaporin-4 (AQP3 und AQP4) constitutively present in the basolateral plasma membrane. AC, adenylyl<br />

cyclase; G s, stimulatory G-Protein; C and R, catalytic and regulatory subunits of protein kinase A (PKA), respectively.<br />

activation and the AVP-induced depolymerization of<br />

F-actin-containing stress fibers. The inhibitory effect of EP 3<br />

receptor stimulation was independent of increases in<br />

cAMP and cytosolic Ca 2+ and is most likely mediated by<br />

the G-proteins G12/13. Further experiments showed that<br />

elevation of cAMP results in the phosphorylation of RhoA<br />

by PKA, which is known to inhibit this GTPase. Taken<br />

together, the data suggest that the signaling pathway<br />

underlying the diuretic effects of PGE 2 (and probably those<br />

of other diuretic agents) include cAMP- and Ca 2+-independent<br />

RhoA activation and F-actin formation (Tamma et al.<br />

<strong>2003</strong>a, <strong>2003</strong>b).<br />

Group members<br />

Dr. Dorothea Lorenz**<br />

Dr. Theresa McSorley<br />

Dr. Volker Henn<br />

Dr. Pavel Nedvetsky<br />

Katja Santamaria (Doctoral student)<br />

Viola Weber (Doctoral student)<br />

Eduard Stefan (Doctoral student)<br />

Christopher Blum (Doctoral student)<br />

Christian Hundsrucker (Doctoral student)<br />

** part-time<br />

Andrea Geelhaar (Technical assistance)<br />

Michael Gomoll (Trainee)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Die Rolle des Zytoskeletts bei der Vasopressin-induzierten<br />

Translokation von Aquaporin-2 in die Plasmamembran<br />

renaler Hauptzellen“ (Kl1415/1-1)<br />

E. Klussmann, W. Rosenthal<br />

Deutsche Forschungsgemeinschaft<br />

„Charakterisierung der Proteinkinase A-Ankerproteine<br />

Ht31 und Rt31 und Untersuchungen zu ihrer biologischen<br />

Funktion“ (Ro597/9-1)<br />

W. Rosenthal, E. Klussmann<br />

European Community, 5th Frame work programme<br />

“Anchored cAMP signalling - implications for treatment of<br />

human disease” (QLK3-CT-2002-02149)<br />

E. Klussmann, W. Rosenthal<br />

Cellular Signalling/ Molecular Genetics<br />

43


-AVP<br />

+AVP<br />

AQP2 AKAP18δ overlay<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F,<br />

Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause<br />

E, Herberg FW, Valenti G, Bachmann S, Rosenthal W,<br />

Klussmann E (<strong>2004</strong>) Identification of a novel A-kinase<br />

anchoring protein 18 isoform and evidence for its role in<br />

the vasopressin-induced aquaporin-2 shuttle in renal principal<br />

cells. J Biol Chem 279, 26654-26665<br />

Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W,<br />

Pohl P, Maric K (<strong>2003</strong>) Cyclic AMP is sufficient for triggering<br />

the exocytic recruitment of aquaporin-2 in renal epithelial<br />

cells. EMBO Rep 4, 88-93<br />

Tsunoda SP, Wiesner B, Lorenz D, Rosenthal W, Pohl P<br />

(<strong>2004</strong>) Aquaporin-1, nothing but a water channel. J Biol<br />

Chem 279, 11364-11367<br />

Tamma G, Wiesner B, Furkert J, Oksche A, Schaefer M,<br />

Valenti G, Rosenthal W, Klussmann E (<strong>2003</strong>) The prostaglandin<br />

E2 analogue sulprostone antagonizes vasopressin-induced<br />

antidiuresis through activation of Rho. J Cell<br />

Sci 116, 3285-3294<br />

Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal<br />

W, Valenti G (<strong>2003</strong>) cAMP-induced AQP2 translocation is<br />

associated with RhoA inhibition through RhoA phosphorylation<br />

and interaction with RhoGDI. J Cell Sci 116, 1519-<br />

1525<br />

Storm R, Klussmann E, Geelhaar A, Rosenthal W, Maric K<br />

(<strong>2003</strong>) Osmolality and solute composition are strong regulators<br />

of AQP2 expression in renal principal cells. Am J<br />

Physiol 284 (Renal Section), F189-198<br />

Collaborations<br />

FIGURE 2<br />

The effect of AVP on the subcellular distribution of<br />

AQP2 and AKAP18δ in primary cultured rat inner<br />

medullary collecting duct principal (IMCD) cells. IMCD<br />

cells were left untreated (-AVP) or incubated with AVP<br />

(100 nM, 15 min), fixed and permeabilized. AQP2 was<br />

detected by incubation with goat anti-AQP2 and<br />

secondary Cy3-conjugated antibodies, AKAP18δ with<br />

affinity-purified rabbit anti-AKAP18δ A18δ4 and<br />

secondary Cy5-conjugated antibodies. Immunofluorescence<br />

signals were detected by laser scanning<br />

microscopy. The overlay of Cy3 and Cy5 fluorescence<br />

signals is shown in the right panel. Scale bars, 20 µm.<br />

Prof. K. Tasken, University of Oslo, Norway<br />

AKAPs in cardiac myocytes<br />

Dr. M. Zaccolo, University of Padova, Italy<br />

Modulation of Ca2 + fluxes in cardiac myocytes<br />

Professor J. D. Scott, Howard Hughes Medical Institute,<br />

Vollum Institute, Oregon Health & Sciences University,<br />

Portland, Oregon, USA<br />

Peptide disruptors of AKAP-PKA interactions


Prof. M. Houslay, University of Glasgow, Scotland, UK<br />

Role of phosphodiesterases in renal principal cells<br />

Prof. G. Valenti, University of Bari, Italy<br />

Rho-dependent signalling in the AVP-mediated water<br />

reabsorption<br />

Professor F. W. Herberg, University of Kassel<br />

Analyses of AKAP-PKA interactions<br />

Cellular Signalling/ Molecular Genetics<br />

45


CELLULAR IMAGING<br />

Group Leader: Dr. Burkhard Wiesner<br />

ENHANCEMENT OF THE CELL SURFACE<br />

EXPRESSION BY INCREASING CONFOR-<br />

MATIONAL STABILITY OF VASOPRESSIN<br />

V2 RECEPTORS<br />

This facility offers a range of conventional and advanced<br />

light and electron microscopic methods as well as electrophysiology<br />

to all interested research groups in the institute.<br />

The group is available for all types of collaboration<br />

including advice in preparation techniques, and the processing<br />

of common research projects.<br />

About 50% of nephrogenic diabetes insipidus (NDI)-causing<br />

mutations in the vasopressin V 2 receptor (V 2R) gene<br />

code for single amino acid replacements (missense mutations).<br />

In most cases the encoded mutant V 2Rs are misfolded<br />

and retained in the ER. Improvement of this situation<br />

is to be achieved by the application of specific substances<br />

(e.g. pharmacochaperones). Such cell permeable antagonists<br />

should restore cell surface expression. So we<br />

studied the effects of SR121463B and SR49059 (V 2R and<br />

V 1R-specific antagonists) on ER-retained V 2Rs transiently<br />

expressed in HEK293 cells. Such investigations can be<br />

accomplished generally by receptor binding studies<br />

(radioactive proof of the number of receptors of the cell<br />

surface). If, however, the assigned substance (pharmacochaperone)<br />

blocks the binding domain for the ligand, this<br />

method is not applicable. In this situation, the employment<br />

of confocal microscopy is very helpful. So the receptor<br />

can be located with the help of green fluorescent protein<br />

(GFP) microscopically. Optical staining of the cell membrane<br />

by further coloring (trypan blue) makes a simple allocation<br />

possible between intracellular and membrane localization<br />

of the receptor (see Fig. 1).<br />

In the case of the wild-type murine V 2R (mV 2R), which is<br />

mainly localized in the ER in untreated controls, both antagonists<br />

promoted a time- and dose- dependent restoration<br />

of the cell surface expression. SR49059-mediated<br />

restoration of cell surface expression of the mV 2R was<br />

accompanied by a dramatic increase in [ 3H]AVP binding<br />

sites.<br />

Figure 2 shows, that with the microscopic investigation the<br />

rearrangement (from the ER to the cell membrane) is fast<br />

run off. This phenomenon is justified by the optical resolution<br />

of light microscopy. The binding studies show the<br />

functional receptor in the plasma membrane of the cell.<br />

Light-microscopy cannot differentiate whether the receptor<br />

is located at the intracellular side of the membrane or<br />

in the plasma membrane of the cell.<br />

For human NDI-causing mutants (hL62P, hΔLAR 62-64,<br />

hH80R, hW164R, hS167T, hS167L, hC319Y, hP322S) and<br />

several in vitro mutants (hD136A, hD368K/S371X, hF328A)<br />

transiently expressed in HEK cells, also predominant ER<br />

retention was observed. Interestingly, cell surface expression<br />

of hΔLAR 62-64, hD136A, hS167T, hP322S, and hF328A<br />

was only restored by SR121463B. In the case of the<br />

mutants hL62P, hH80R, hW164R, hS167L, and hD368K/<br />

S371X none of the two antagonists restored cell surface<br />

expression. Only for the mutant hC319Y, both antagonists<br />

promoted cell surface expression as found for the mV 2R.<br />

The data show that ER-retained mutant V 2Rs differ in their<br />

sensitivity to antagonist-promoted cell surface expression.<br />

It is likely that these differences can be attributed to the<br />

extent of the folding defect and/or an alteration of the binding<br />

pocket. Further studies are required to analyze the<br />

general applicability of antagonists in the treatment of NDI.<br />

Further projects involved:<br />

A-kinase anchoring proteins and the exocytotic recruitment<br />

of aquaporin-2 (D. Lorenz, B. Wiesner, M. Ringling, B.<br />

Oczko in cooperation with Enno Klussmann, Anchored<br />

Signalling)<br />

Application of novel caged compounds (B. Wiesner, J.<br />

Eichhorst, B. Oczko in cooperation with Volker Hagen, Synthetic<br />

Organic Biochemistry)<br />

Water flux through water channels (D. Lorenz, B. Wiesner,<br />

B. Oczko in cooperation with Peter Pohl, Biophysics)<br />

Cellular uptake of peptides (B. Wiesner, B. Oczko in cooperation<br />

with J. Oehlke, Peptide Lipid Interaction/Peptide<br />

Transport; and M. Beyermann, Peptide Synthesis)<br />

Constitutive internalization of the human V2 Vasopressin<br />

receptor (A. Schmidt, B. Wiesner in cooperation with R.<br />

Hermosilla, Charité group)<br />

DNA binding controls inactivation and nuclear accumulation<br />

of the transcription factor Stat1 (B. Wiesner, B. Oczko<br />

in cooperation with U. Vinkemeier, Cellular Signal Processing)<br />

Enhancement of the cell surface expression by increasing<br />

conformational stability of G protein coupled receptors<br />

(B. Wiesner, J. Eichhorst, B. Oczko in cooperation with<br />

A. Oksche, Charité group; and S. Wüller, RWTH Aachen<br />

Medical School).


Trypan blue mV2R.GFP<br />

A C C<br />

FIGURE 1<br />

HEK293 cells transiently expressing the mV 2R.GFP were treated with the vasopressin receptor antagonist SR49059 for up to 13 h (A: oh; B: 7 h;<br />

c: 13 h). Top panel: mV 2R.GFP fusion protein. Bottom panel: Plasma membrane stained with trypan blue.<br />

FIGURE 2<br />

Antagonist-mediated restoration of cell surface expression analyzed by quantitative laser scanning microscopy and binding analysis. Cells transiently<br />

expressing the mV 2R.GFP were treated for up to 16 h with the specific vasopressin receptor antagonist. The fitted curve representing the<br />

increase in the normalized fluorescence intensities is shown in black. In parallel, membrane preparations were analyzed for specific binding of<br />

[ 3H]AVP. The curve representing the increase in specifically bound [ 3H]AVP is shown in gray.<br />

Cellular Signalling/ Molecular Genetics<br />

47


Group members<br />

Dr. Dorothea Lorenz**<br />

Antje Schmidt (Student)*<br />

Brunhilde Oczko (Technical assistance)<br />

Jenny Eichhorst (Technical assistance)*<br />

Martina Ringling (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Degradations-Mechanismen des humanen Vasopressin-<br />

V2-Rezeptors und einiger von Patienten mit X chromosomaler<br />

nephrogener Diabetis insipidus isolierten V2-<br />

Rezeptormutanten“ (He 4486/1-1 und 1-2)<br />

Ricardo Hermosilla (Charité - University Medicine <strong>Berlin</strong>),<br />

Burkhard Wiesner<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Geissler D, Kresse W, Wiesner B, Bendig J, Kettenmann<br />

H, Hagen V (<strong>2003</strong>) DMACM-Caged Adenosine Nucleotides:<br />

Ultrafast Phototriggers for ATP, ADP, and AMP Activated<br />

by Long-Wavelength Irradiation. ChemBioChem 4, 162-170<br />

Hagen V, Frings S, Wiesner B, Helm S, Kaupp UB, Bendig<br />

J (<strong>2003</strong>) [7 (Dialkylamino)-coumarin 4 yl]methyl-caged<br />

compounds as ultrafast and effective long-wavelength<br />

phototriggers of 8 Bromo-substituted cyclic nucleotides.<br />

ChemBioChem 4, 434-442<br />

Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U<br />

(<strong>2003</strong>) DNA binding controls inactivation and nuclear<br />

accumulation of the transcription factor Stat1. Genes Dev<br />

17, 1992-2005<br />

Tamma G, Wiesner B, Furkert J, Hahm D, Oksche A,<br />

Schaefer M, Valenti G, Rosenthal W, Klussmann E (<strong>2003</strong>)<br />

The prostaglandin E2 analogue sulprostone antagonizes<br />

vasopressin-induced antidiuresis through activation of<br />

Rho. J Cell Sci 116, 3285-3294<br />

Tsunoda S, Wiesner B, Lorenz D, Rosenthal W, Pohl P<br />

(<strong>2004</strong>) Aquaporin 1, nothing but a water channel. J Biol<br />

Chem 279, 11364-11367<br />

Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F,<br />

Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause<br />

E, Herberg FW, Valenti G, Bachmann S, Rosenthal W,<br />

Klussmann E (<strong>2004</strong>) Identification of a novel A-kinase<br />

anchoring protein 18 isoform and evidence for its role in<br />

the vasopressin-induced aquaporin 2 shuttle in renal principal<br />

cells. J Biol Chem 279, 26654-26665<br />

* part of period reported<br />

** part-time<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G, Hermosilla<br />

R, Schaefer M, Schülein R, Rosenthal W, Oksche<br />

A (<strong>2004</strong>) Pharmacochaperones post-translationally enhance<br />

cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V2 receptors.<br />

J Biol Chem 279, 47254-47263<br />

Collaborations<br />

Prof. Ricardo Hermosilla<br />

Pathology of signal transduction<br />

Charité-Universitätsmedizin <strong>Berlin</strong><br />

PD Dr. Alexander Oksche<br />

G protein-coupled receptors: Signal transduction and<br />

regulation of cell surface expression<br />

Charité-Universitätsmedizin <strong>Berlin</strong>


MOLECULAR CELL PHYSIOLOGY<br />

Group Leader: Dr. Ingolf Blasig<br />

STRUCTURE, FUNCTION, AND REGULATION<br />

OF CELL-CELL CONTACT PROTEINS<br />

This group investigates signal transduction pathways<br />

including cell-cell and protein-protein interactions under<br />

normal and pathological conditions, such as oxidative<br />

stress in the brain. The aim of these studies is to explore<br />

molecular aspects of structure, function and regulation of<br />

blood-brain barrier (BBB) proteins for the development of<br />

new pharmacological approaches to improve treatment<br />

of cerebral diseases, such as stroke, inflammation,<br />

epilepsy etc. Another aspect is to develop approaches to<br />

open the BBB for pharmacokinetic application, e. g. improved<br />

administration of such antitumor or antiepileptic drugs<br />

which are non-permeable through the BBB.<br />

A main focus was the self-association mechanism of<br />

transmembrane and membrane associated proteins forming<br />

the tight junctions (TJ). The regulatory and transmembrane<br />

TJ protein occludin was found colocalizing within<br />

cell membrane contacts of the same cell and could be<br />

coprecipitated with itself (intracellular association).<br />

Differently tagged TJ strand-forming claudin-5 also colocalized<br />

in the cell membrane of the same cell and showed<br />

fluorescence resonance energy transfer (intracellular<br />

association). This demonstrates self-association both of<br />

occludin and of claudin-5 in one cell membrane. For occludin,<br />

dimerization of the cytosolic C-terminal coiled coildomain<br />

was identified. In claudin-5, we detected that the<br />

second extracellular loop is a dimer. Thus, occludin may<br />

self-associate via its coiled coil-domain and claudin-5 via<br />

its second extracellular loop. Since the transmembrane<br />

junctional adhesion molecule JAM is known to dimerize in<br />

TJ, we hypothesize that homodimerization is a structural<br />

feature of transmembrane TJ proteins. This potential is<br />

corroborated by our finding that the recruiting protein of<br />

the transmembrane TJ proteins, the membrane-associated<br />

ZO-1 also forms a dimer. A general dimerization principle<br />

of transmembrane TJ proteins via the ZO-1 has been<br />

worked out. This principle may serve as a common feature<br />

of TJ assembly (Figure). This work was supported by<br />

groups of the <strong>FMP</strong> (G. Krause, Structural Bioinformatics;<br />

E. Krause, Mass Spectrometry) and MDC (K. Gast; M.<br />

Kolbe).<br />

The occludin-ZO-1 interaction was studied in more detail.<br />

Binding studies by SPR and peptide mapping combined<br />

with CD studies and molecular modelling indicated that<br />

occludin’s coiled-coil domain interacts as a three-helix<br />

bundle with three helices on the SH3-hinge-GuK unit of<br />

ZO-1. A similar association was found between ZO-1 and<br />

the adherens junction protein α-catenin. Ion bindings between<br />

the basic helices of ZO-1 and the acidic ones in<br />

occludin were also identified. In conclusion, a common<br />

molecular mechanism of forming intermolecular helical<br />

bundles between ZO-1 and α-catenin and occludin was<br />

identified as a general molecular principle organizing the<br />

association of ZO-1 at adherens and tight junctions. Collaboration<br />

within the <strong>FMP</strong> (G. Krause, Structural Bioinformatics;<br />

M. Beyermann, Peptide Chemistry), and with the<br />

Free University (O. Huber) and the Humboldt University<br />

(J. Schneider-Mergener) <strong>Berlin</strong>.<br />

Further studies were accomplished on the effects of hypoxia<br />

on cultures of brain capillary endothelial cells (BCEC).<br />

In addition to identifying proteins that are up- or downregulated<br />

after hypoxia, activity data were acquired for<br />

selected proteins. Novel proteomic techniques have been<br />

introduced which allow the elucidation of signalling pathways<br />

by analyzing post-translational modifications (e. g.,<br />

protein phosphorylation). Moreover, investigations were<br />

aimed at improving the conditions for targeting low abundant<br />

proteins using the Rotofor © technology (collaboration<br />

E. Krause, Dept. Peptide Chemistry; D. Stanimirovic/Ottawa,<br />

Canada) as well as for membrane proteins. Earlier<br />

results suggested that cytokines are involved in the<br />

response to oxidative stress. Continuative investigations<br />

showed that exposure to interleukin-1ß results in proliferation<br />

of the cells, nerve growth factor (NGF) release and<br />

expression of NGF receptors. This is a new pathway in<br />

BCEC which, hence, can modulate BBB functions (collaboration<br />

C. Humpel, Innsbruck/Austria).<br />

Clinical studies were continued to support our experimental<br />

findings that oxidative stress may injure the BBB and<br />

that these disturbances can be treated. Thus, mood disorders<br />

with depression were studied and indications were<br />

found for opening of the BBB. BBB disturbances and schizophrenic<br />

events were reduced by pharmacological<br />

approaches targeted, among others, to astrocytes maintaining<br />

BBB properties in the barrier forming brain endothelium<br />

(collaboration M. Schroeter, Max Planck Institute,<br />

Leipzig).<br />

Group members<br />

Dr. Reiner F. Haseloff<br />

Dr. Jörg Piontek<br />

Dr. Christine Rückert*<br />

Dr. Darkhan Utepbergenov*<br />

Anna Y. Andreeva (Doctoral student)*<br />

* part of period reported<br />

Cellular Signalling/ Molecular Genetics<br />

49


Claudin-5 dimer JAM dimer Occludin dimer<br />

FIGURE 1<br />

Scheme of the dimerization concept showing that transmembrane TJ proteins, as well as ZO-1 may dimerize. Claudin-5 dimerizes via its second<br />

extracellular loop (2.ECL; solid double arrow) and occludin via its coiled coil-domain (CC; interacting cylinders). JAMs are known to dimerize via<br />

its extracellular domain (asterisk). ZO-1 dimerizes via its SH3-GuK unit. The positively charged (+) helices of ZO-1 (H1, H2 in GuK; CC1 between<br />

SH3 and GuK) bind to negatively charged (-) CC-domain of occludin (two dotted arrows). PDZ-domain 3 of ZO-1 can associate to JAMs, PDZ-1<br />

to claudins. N, N-terminus; yellow circles, disulfide bridge in claudin-5 first and occludin last loop.<br />

Manjot Singh Bal (Doctoral student)<br />

Dörte Lorberg (Doctoral student)*<br />

Kerstin Mikoteit (Doctoral student)*<br />

Sebastian L. Müller (Doctoral student)<br />

Juliane Walter (Doctoral student)*<br />

Lars Winkler (Doctoral student)<br />

Inga Roswadowski* (Student)<br />

Jenny Kirsch (Student)*<br />

Markus Heine (Student)*<br />

Birgit Lassowski (Student)*<br />

Christian Niehage (Trainee)*<br />

Katrin Schulz (Student)*<br />

Ariane Schuster (Student)*<br />

Constanze Wolf (Student)*<br />

Nikolaj Zuleger (Student)*<br />

Barbara Eilemann (Technical assistance)<br />

Gislinde Hartmann (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Extrazelluläre Loops von Blut-Hirnschranken-Proteinen“<br />

(BL 308/7-1)<br />

Ingolf Blasig<br />

* part of period reported<br />

PDZ domains<br />

SH3 domain<br />

ZO-1 dimer<br />

cell membrane<br />

GuK domain<br />

extra cellular<br />

Deutsche Forschungsgemeinschaft<br />

„Wechselwirkungen von Blut-Hirnschranken-Proteinen“<br />

(BL 308/6-1, 6-2, 6-3)<br />

Ingolf Blasig, Gerd Krause<br />

Deutsche Forschungsgemeinschaft<br />

„Lokalisation und Phophorylierungsmuster von Occludin“<br />

(GK 238/3, Teilprojekt im Graduiertenkolleg „Schadenmechanismus<br />

im Nervensystem – Einsatz von bildgebenden<br />

Verfahren“<br />

Ingolf Blasig<br />

Bundesministerium für Bildung und Forschung<br />

„Molecular Fingerprinting of the Blood-Brain Barrier in<br />

Hypoxia – Targeting Brain Vessels to Treat Stroke“, NRC<br />

Reiner Haseloff<br />

Deutscher Akademischer Austauschdienst<br />

„Molecular pharmacology of the HISS-resistin system”<br />

(PPP-Ungarn 324/ssch)<br />

Ingolf Blasig<br />

Deutscher Akademischer Austauschdienst<br />

„Natural polyphenols in the cardiovascular system”<br />

(323/bis Slowakei)<br />

Ingolf Blasig


European Community<br />

Marie Curie Grant (HPMT-CT-2001-00399)<br />

G. Schreibelt<br />

Schering-Stiftung<br />

„Phosphorylierung von Occludin” (Stipendium)<br />

Anna Andreeva<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Müller SL, Portwich M, Schmidt A, Utepbergenov DI,<br />

Huber O, Blasig IE, Krause G (2005) The tight junction protein<br />

occludin and the adherens junction protein β-catenin<br />

share a common interaction mechanism with ZO-1. J Biol<br />

Chem, in press<br />

Zassler B, Blasig IE, Humpel C (2005) Protein delivery of<br />

caspase-3 induces cell death in malignant C6 glioma and<br />

brain capillary endothelial cells. J Neuro-Oncology, in<br />

press<br />

Haseloff RF, Blasig IE, Bauer H-C, Bauer H (2005). In<br />

search of the astrocytic factor(s) modulating blood-brain<br />

barrier functions in brain capillary endothelial cells in vitro.<br />

Mol Cell Neurobiol 25, 25-39<br />

Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M,<br />

Schneider-Mergener J, Krause G, Blasig IE (<strong>2004</strong>) Occludin<br />

binds to the SH3-hinge-GuK unit of zonula occludens<br />

protein 1 - potential mechanism of tight junction regulation.<br />

Cell Mol Life Sci 61, 1354-1365<br />

Moser KV, Reindl M, Blasig IE, Humpel C (<strong>2004</strong>) Brain<br />

capillary endothelial cells proliferate in response to NGF,<br />

express NGF receptors and secrete NGF after inflammation.<br />

Brain Res 1017, 53-60<br />

Schroeter ML, Abdul-Khaliq H, Frühauf S, Höhne R, Schick<br />

G, Diefenbacher A, Blasig IE (<strong>2003</strong>) Serum S100B is increased<br />

during early treatment with antipsychotics and in deficit<br />

schizophrenia. Schizophrenia Res 62, 231-236<br />

Collaborations<br />

Hartwig Wolburg, Universität Tübingen<br />

Wolf-Hagen Schunck, Max-Delbrück-Center für Molekulare<br />

Medizin <strong>Berlin</strong>-Buch, Germany<br />

Marina Bigl, Universität Leipzig, Germany<br />

Hannelore Haase, Max-Delbrück-Center für Molekulare<br />

Medizin <strong>Berlin</strong>-Buch, Germany<br />

Danica Stanimirovic, Institute of Biological Sciences, NRC,<br />

Ottawa, Canada<br />

Hans-Christian Bauer, Universität Salzburg, Austria<br />

Maria Balda, University College London, UK<br />

Christian Humpel, Universität Innsbruck, Austria<br />

Stephan Christen, Universität Bern, Switzerland<br />

Cellular Signalling/ Molecular Genetics<br />

51


BIOCHEMICAL NEUROBIOLOGY<br />

Group Leader: Dr. Wolf-Eberhard Siems<br />

UNEXPECTED FUNCTIONS OF PEPTIDOLY-<br />

TIC ENZYMES<br />

The Biochemical Neurobiology Group deals with the biochemical,<br />

pharmaceutical and molecular aspects of peptidases.<br />

The current research is focused on angiotensinconverting<br />

enzyme (ACE), neutral endopeptidases (NEP)<br />

and some related enzymes. We evaluate their biochemical<br />

and functional relations to various disorders in<br />

humans, like alcohol addiction, obesity, neuronal disorders,<br />

problems in male fertility and heart diseases.<br />

Peptidases play a frequently underestimated role in maintaining<br />

and controlling essential functions in the body.<br />

Anthony Turner, one of the Nestors of research on NEP,<br />

wrote: “Peptidases and peptidolysis play vital roles in cellular<br />

processes from fertilization – to death”. A look at the<br />

ACE confirms this sentence: This enzyme plays a key role<br />

not only for regulation of blood pressure, but also at the<br />

beginning and at the end of life: it is essential for mammalian<br />

fertilization (male ACE-knock out mice are infertile in<br />

spite of normal sperm and libido) as well as for apoptosis,<br />

in which angiotensin II (Ang II, the main product of ACE) is<br />

essentially involved.<br />

In recent years, the use of molecular techniques and of<br />

genetically modified animals in peptidase research resulted<br />

in tremendous progress and innovative perspectives.<br />

In <strong>2003</strong> A. Turner commented the newly found functions of<br />

ACE and NEP as follows: “... (they) provide new avenues<br />

for the treatment of some of the major human diseases of<br />

the aging population of the Western world: cardiovascular<br />

disease, cancer and dementia”.<br />

ACE, NEP and related enzymes are transmembranal<br />

metallopeptidases, which are prevalent in many tissues<br />

and cleave a broad spectrum of endogenous substrates.<br />

They consist of a short cytoplasmatic domain, a single<br />

transmembranal part and a very big extracellular part,<br />

which includes the catalytic domain(s), each of them containing<br />

one zinc ion.<br />

ACE and NEP play an important role in circulation, and<br />

inhibitors of the two enzymes, especially ACE inhibitors,<br />

are widely used for treatment of hypertension and for<br />

cardioprotection. Because of their broad spectrum of<br />

other substrates, these enzymes are also significantly<br />

involved in many other pathophysiological processes.<br />

In recent years, a lot of novel, in part surprising results<br />

were published on ACE and NEP. One example concerns<br />

ACE2, an enzyme closely related to ACE: in addition, to its<br />

peptidolytic activity, ACE2 was identified as the essential<br />

receptor of the SARS virus, and represents the entry portal<br />

of the body for the virus.<br />

Kohlstedt et al. (2002) described receptor-like functions<br />

also for ACE. They proved e.g. that the reaction of ACE with<br />

some, but not all substrates or inhibitors resulted in specific<br />

phosphorylation at its own cytoplasmatic site.<br />

Another unexpected finding: the two enzymes, especially<br />

the NEP, play an important role in degrading the Alzheimer’s<br />

disease (AD) peptide ß-amyloid (Aß). This knowledge<br />

is expected to lead to new basic approaches for<br />

understanding and treatment of this disease.<br />

In the Biochemical Neurobiology Group additional functions<br />

of these peptidases have been discovered during the<br />

last years.<br />

ACE and voluntary alcohol consumption<br />

Our experiments of the last years had demonstrated that<br />

Ang II, the main product of ACE, directly influences voluntary<br />

consumption of alcohol. Open questions concern the<br />

role of central and peripheral Ang II, the involved receptor(s)<br />

and the downstream signaling.<br />

We characterized the role of central Ang II in alcohol intake<br />

by using transgenic rats [TGR(ASrAOGEN)680], which<br />

express an antisense RNA against angiotensinogen and<br />

consequently have sharply reduced Ang II levels exclusively<br />

in the central nervous system. These rats consumed<br />

markedly less alcohol in comparison to their wild-type<br />

controls. Moreover, Spirapril, an ACE inhibitor, which passes<br />

the blood-brain barrier, did not alter voluntary alcohol<br />

consumption in the TGR(ASrAOGEN)680, but it significantly<br />

reduced alcohol intake in wild-type rats. Studies in different<br />

types of knockout mice have proved that the effect of<br />

Ang II on alcohol consumption is mediated by the angiotensin<br />

receptor AT1, whereas the AT2 receptor and the<br />

bradykinin B2 receptor are not involved. With reference to<br />

signal transduction we found that the TGR(ASrAOGEN)680<br />

with the very low central Ang II showed a markedly reduced<br />

dopamine concentration in their ventral tegmental<br />

area (VTA), confirming a role of dopaminergic transmission<br />

in Ang II-controlled alcohol preference. Our results indicate<br />

that a distinct drug-mediated control of the central<br />

renin-angiotensin system (RAS) could be a new principle<br />

for therapy of alcohol disease.<br />

NEP-deficient mice – a model of human obesity<br />

In long-lasting experiments on the functions of NEP, we<br />

observed that elderly NEP-deficient mice (NEP-/-) had a<br />

considerably higher body weight than wild-types. In con-


Recovery of ANP (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Mouse ANP<br />

10 20 30 40 50 60<br />

Incubation time (min)<br />

NEP<br />

FIGURE 1<br />

Catabolism of murine ANP and BNP by lung membranes of wild-type and NEP-knockout mice: NEP is involved in the cleavage of ANP only.<br />

A large percentage of the ANP-degradation and the total BNP-degrading activity (green arrows) cannot be ascribed to NEP (black arrow). An<br />

interesting result is the upregulation of the non-NEP activity (yellow arrows) in NEP-deficient membranes, so that the degradation is faster than<br />

in wild-type membranes.<br />

trast to other animal models of obesity, but in accordance<br />

with typical human obesity, the differences in body weight<br />

became most apparent in the second half of life. NMR-studies<br />

showed that the higher body weight in NEP-/- mice is<br />

exclusively due to an accumulation of fat. The molecular<br />

basis of NEP-related obesity in mice and the pathophysiological<br />

consequences are presently being investigated.<br />

NEP is known to hydrolyze a great number of hormones,<br />

among them orexigenes (peptides stimulating food intake),<br />

like NPY, MCH and some of the opioids. Furthermore, several<br />

other peptides with effects on food ingestion also contain<br />

amino acid sequences that should be hydrolyzed by<br />

NEP (e.g. galanin, ghrelin, orexin). The catabolic effect of<br />

NEP on these peptides and a more detailed biochemical<br />

analysis of old NEP-/- mice with regard to a new obesity<br />

model are still being investigated at present.<br />

In contrast to other genetically modified animals expressing<br />

obese phenotypes, the alterations in NEP-/- mice concern<br />

a relatively great number of substrates and receptor<br />

systems. Therefore, these mice may be a better animal<br />

model of the typical, polyfactorial human obesity. These<br />

results and derived diagnostic and therapeutic applications<br />

are summarized in a joint patent application of <strong>FMP</strong>,<br />

Charité und Free University of <strong>Berlin</strong>.<br />

10 20 30 40 50 60<br />

Incubation time (min)<br />

� wild-type � wild-type + Candoxatrilat � NEP -/- � NEP -/- + Candoxatrilat � heat-inactivated wild-type<br />

Recovery of BNP (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Mouse BNP<br />

NEP deficiency in mice: learning experiments<br />

NEP belongs to the enzymes which are able to catabolize<br />

the amyloid ß-peptide (Aß). This important function of NEP<br />

was recently confirmed by several in vitro as well as in<br />

vivo studies and is now being intensively discussed as to<br />

its impact in the pathogenesis and therapy of AD.<br />

But in even very old NEP-/- animals immunostaining experiments<br />

with brain slices and monoclonal antibodies<br />

against murine Aß-peptide (cooperation with Multhaup,<br />

Heidelberg/<strong>Berlin</strong>) did not reveal any Aß depositions.<br />

Therefore, further experiments focused on differences in<br />

the NEP-induced degradation of human and murine Aß or<br />

Aß-partial sequences by using purified enzyme as well as<br />

membrane preparations of NEP-/- and NEP+/+ mice. Aß<br />

peptides of humans and rodents had indeed different<br />

degradation rates (mAß>hAß). However, the differences<br />

in Aß degradation by NEP cannot be the only reason for<br />

the general lack of AD-like processes in rodent brains. Our<br />

degradation studies indicated that further membrane<br />

enzymes are involved in Aß catabolism. Surprisingly, also<br />

ACE degraded Aß by means of an endopeptidolytic attack.<br />

However, we found in behavioral experiments that the very<br />

old homozygous NEP-knockout mice (>2 years) displayed<br />

Cellular Signalling/ Molecular Genetics<br />

53


A<br />

B<br />

cavity<br />

catalytic site<br />

an even better performance in learning tests, e.g. in a Morris<br />

water maze, compared to their wild-type littermates.<br />

This result was confirmed in long-term potentiation (LTP)<br />

experiments in two brain regions (hippocampus and amygdala).<br />

In contrast, there were no differences between the<br />

two genotypes in younger animals (~9 months). The molecular<br />

background of this effect is still unclear. These<br />

experiments demonstrate the Janus head-like action of<br />

NEP in brain function: it improves the brain function by<br />

degradation of the plaque-forming Aß-peptides, and it<br />

apparently degrades other peptides which improve learning<br />

processes. Involved peptides are still unknown. Glucagon-like<br />

Peptide-1 (GLP-1) could play a role. This peptide<br />

strengthens cognitive functions, and we found a greater<br />

stability of this peptide in membrane preparations of<br />

NEP-/-- mice.<br />

Domain-selective forms of ACE<br />

To analyze the newly discovered ACE-functions and the<br />

unexpected interactions with substrates and inhibitors in<br />

more detail, we transfected CHO cells with the following<br />

murine constructs: a) wild-type ACE (both domains are<br />

intact), b) C-terminal ACE, c) N-terminal ACE, d) inactivated<br />

ACE (no intact domain). The specificity of these ACE-<br />

two large tails:<br />

spatial clashes<br />

FIGURE 2<br />

A: Three-dimensional structure of the catalytic centre of<br />

NEP.<br />

B: Hypothesis of the NEP – NP interaction.<br />

• NP moves into the cavity of NEP<br />

• Complementary recognition sites are supporting the orientation<br />

of NP within the cavity<br />

• Large N - and C - terminal tails (simultaneously) hinder<br />

the orientation towards the catalytic site<br />

forms was characterized by Western blots and enzymatic<br />

studies with domain selective substrates (Hip-His-Leu,<br />

Z-Phe-His-Leu, Ac-SDKP), and the clones each with the<br />

highest enzyme activities were selected.<br />

These different domain-selective ACE forms are now used<br />

to investigate<br />

(i) the receptor-like function of cell-bound ACE,<br />

(ii) the unusual endopeptidolytic activity of ACE on Aß and<br />

Aß partial sequences,<br />

(iii) the role of angiotensin (1-7) as substrate and inhibitor.<br />

Peptidolytic degradation of natriuretic peptides<br />

Natriuretic peptides (NP), like atrial- (ANP), B-type- (BNP)<br />

and C-type natriuretic peptide (CNP), are cyclic peptide<br />

hormones with relevance to cardiovascular, endocrine<br />

and renal homeostasis. All three peptides contain an intact<br />

17 amino acid disulfide-linked loop which is essential for<br />

their biological activity. Two different mechanisms are discussed<br />

as being responsible for the inactivation of the NP:<br />

(i) binding to specific receptors (C-type-receptor) with<br />

subsequent internalization and degradation,<br />

(ii) degradation by extracellular peptidases.


The NEP is generally accepted to be the main enzyme<br />

which initially catabolizes NP by cleavage within the loop<br />

at the Cys-Phe bond.<br />

In HPLC-monitored degradation studies we analyzed the<br />

catabolism of mouse ANP and BNP by membranes of different<br />

organs from NEP-deficient and wild-type mice. We<br />

observed an unexpected result: Both NP peptides were<br />

rapidly degraded by mouse lung and kidney membranes,<br />

but in contrast to the generally published opinion, NEP was<br />

only involved in the cleavage of ANP. A large percentage<br />

of the ANP-degrading and the total BNP-degrading cannot<br />

be ascribed to NEP. An interesting side result was the<br />

up-regulation of the catabolic activity in NEP-deficient<br />

membranes resulting in an unequivocally faster degradation<br />

than in wild-type membranes. (Figure 1)<br />

The next aim of the project will be the characterization of<br />

this/these still unknown NP-degrading enzyme(s) and its<br />

mode of action. A specific inhibition of these peptidases<br />

would protect the NP. This would potentiate the cardioprotective<br />

action of NPs and possibly enable new therapeutic<br />

treatments.<br />

In a second part of this project we want to find out the<br />

molecular basis of the different degradation of NP by NEP.<br />

In a first step, we proved the influence of the chemical<br />

structure of NP on their catabolism by comparing NP of<br />

different species with various structure modifications.<br />

These degradation studies were performed with recombinant<br />

NEP. The observed degradation rate was dependent<br />

on the size of the N- and C-terminal tails of the NP. Only<br />

human BNP was totally resistant in our test. These results<br />

enabled a first model for the molecular interactions between<br />

the catalytic center of NEP and NP (Figure 2).<br />

To prove this model, we plan studies with NEP and NP<br />

derivates from human BNP with (a) shorter terminal tails or<br />

(b) replaced amino acids in the highly conserved innerloop<br />

regions. This should help to detect why human BNP<br />

is not a substrate for NEP. Moreover, modified peptidaseresistant<br />

NP-analogues are interesting for potential therapeutic<br />

use.<br />

Group members<br />

Dr. Winfried Krause**<br />

Matthias Becker (Doctoral student)*<br />

Xiaoou Sun (Doctoral student)<br />

Kristin Pankow (Doctoral student)*<br />

Bettina Kahlich (Technical assistance)<br />

* part of period reported<br />

** part-time<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Neuropeptidasen und Alkoholkonsum – Untersuchungen<br />

an transgenen und knockout-Tieren“ (SI 483/3-1/2)<br />

Wolf-Eberhard Siems<br />

ASTA Medica<br />

Wolf-Eberhard Siems<br />

Strathmann AG<br />

Wolf-Eberhard Siems<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M,<br />

Reibitz F, Schultheiss H-P, Siems WE, Walther T (2005)<br />

Organ specific distribution of ACE2 mRNA and correlating<br />

peptidase activity in rodents. Peptides 26, 1270-1277<br />

Heringer-Walther S, Moreira MC, Wessel N, Saliba JL,<br />

Silvia-Barra J, Pena JL, Becker M, Siems WE, Schultheiss<br />

HP, Walther T (2005) Brain natriuretic peptide predicts survival<br />

in Chagas disease more effectively than atrial natriuretic<br />

peptide. Heart 91, 385-387<br />

Maul B, Walther T, Krause W, Pankow K, Becker M,<br />

Gembardt F, Alenina N, Bader M, Siems WE (2005) Central<br />

Angiotensin II Controls Alcohol Consumption via its AT1<br />

Receptor. FASEB J 19:1474-1481<br />

Walther T, Stepan H, Pankow K, Becker M, Schultheiss HP,<br />

Siems WE (<strong>2004</strong>) Biochemical analysis of neutral endopeptidase<br />

activity reveals independent catabolism of atrial<br />

and brain natriuretic peptide. Biol Chem 385, 179-184<br />

Walther T, Stepan H, Pankow K, Gembardt F, Faber R,<br />

Schultheiss HP, Siems WE (<strong>2004</strong>) Relation of ANP and BNP<br />

to their N-terminal fragments in fetal circulation: evidence<br />

for enhanced neutral endopeptidase activity and resistance<br />

of BNP to neutral endopeptidase in the fetus. BJOG<br />

111, 452-455<br />

Siems WE, Maul B, Wiesner B, Becker M, Walther T,<br />

Rothe L, Winkler A (<strong>2003</strong>) Effects of kinins on mammalian<br />

spermatozoa and the impact of peptidolytic enzymes.<br />

Andrologia 35, 44-54<br />

Collaborations<br />

Thomas Walther, EMC Rotterdam, The Netherlands<br />

Michael Bader, MDC <strong>Berlin</strong><br />

Doris Albrecht, Humboldt-Universität zu <strong>Berlin</strong><br />

Gisela Grecksch, University of Magdeburg<br />

Sergej Danilov, University of Chicago, USA<br />

Cellular Signalling/ Molecular Genetics<br />

55


BIOPHYSICS<br />

Group Leader: PD Dr. Peter Pohl<br />

COMBINED TRANSPORT OF WATER AND<br />

IONS THROUGH MEMBRANE CHANNELS<br />

Life in all its diversity became possible due to the separation<br />

of living entities from the lifeless and hostile environment<br />

by means of membranes. It requires preservation of<br />

selective transmembrane material and information<br />

exchange. During evolution cells developed, the function<br />

of which depends on the well-controlled interplay and<br />

material exchange between different compartments. The<br />

different transport functions are performed by a sophisticated<br />

apparatus of membrane proteins, each of them is<br />

fulfilling a very distinct function. Investigation of the latter<br />

comprises the main interest of the biophysics group. We<br />

aim to explore the molecular mechanisms of water, proton<br />

and oxygen movement. Additional activities in the area<br />

of applied biophysics are devoted to selected modifiers of<br />

membrane permeability (e.g. ribosome inactivating proteins<br />

and block copolymers). In this short report, we will<br />

focus on water transport. The investigations are carried<br />

out on different levels of organization: starting from proteins<br />

reconstituted into planar and vesicular membranes,<br />

followed by proteins overexpressed in different cell lines<br />

and completed by proteins identified in primarily cultured<br />

cell monolayers.<br />

Water transport by aquaporins<br />

Water transport is essential to all forms of life. Nevertheless,<br />

the pathways taken by water across a membrane<br />

barrier and the mechanism of solute-solvent coupling are<br />

still not entirely resolved. Commonly, it is considered that<br />

water may pass the lipid bilayer by diffusion. The extent to<br />

which the lipid part of membranes contributes to water<br />

transport varies considerably between different cells. Epithelial<br />

cells, for example, have to maintain large chemical<br />

and osmotic gradients. Consequently, the membrane<br />

matrix has to be effectively impermeable to ions and most<br />

other small molecules. Tightening of the lipid barrier requires<br />

proteinaceous transport routes of water. Proteins specialized<br />

on water transport are called aquaporins. We<br />

have investigated the selectivity of several members of the<br />

aquaporin family both in artificial model membranes and<br />

in their cellular environment.<br />

For example, in cooperation with the department “Molecular<br />

Medicine” (Burkhard Wiesner, Dorothea Lorenz,<br />

Walter Rosenthal) Dr. Tsunoda investigated the transport<br />

mediated by aquaporin-1 (AQP1). It is a membrane channel<br />

which allows rapid water movement driven by a trans-<br />

membrane osmotic gradient. The protein was claimed to<br />

have a secondary function as a cyclic-nucleotide gated<br />

ion channel. However, upon reconstitution into planar<br />

bilayers, the ion channel exhibited a tenfold lower single<br />

channel conductance than in Xenopus oocytes and a hundredfold<br />

lower open probability (


filter. These oscillations, where the chain of molecules<br />

imbedded in the channel (the “liquid”) cooperatively exits<br />

the channel leaving behind a near vacuum (the “vapor”),<br />

so far have only been discovered in hydrophobic nanopores<br />

by molecular dynamics simulations (Hummer, G.,<br />

Rasaiah, J.C. & Noworyta, J.P. (2001) Nature 414, 188-190;<br />

Beckstein, O. & Sansom, M.S.P. (<strong>2003</strong>) Proc. Natl. Acad.<br />

Sci. USA. 100, 7063-7068).<br />

Our results clearly show that in single file transport, water<br />

molecules are more than just spacer molecules between<br />

the ions. They are not only required for electrostatic reasons<br />

but add important features to the overall transport<br />

process. Whether the fast transport mode occurs in Na +,<br />

Ca 2+, other K + channels or even in members of the aquaporin<br />

family, which all realize single file transport, remains to<br />

be elucidated, as well as the physiological importance of<br />

this phenomenon. With respect to the high density of K +<br />

channels in the nodes of Ranvier, for example, a contribution<br />

to water homeostasis in neurons is likely.<br />

Confinement of water into a very narrow geometry led to<br />

profound changes of its physico-chemical properties. As a<br />

result the mobility of water molecules inside the channel<br />

and in the bulk differed by more than an order of magnitude.<br />

Further investigation of the ultrafast diffusion will be<br />

FIGURE 1<br />

Fast osmotic water flow through the bacterial potassium<br />

channel (KcsA) occurs only when all ions are rinsed out of<br />

the filter. This situation is illustrated in the figure where all<br />

binding sites are occupied by water molecules (red). The<br />

potassium ion (yellow) has been placed into the cavity<br />

which in contrast to the selectivity filter is wide enough to<br />

allow different molecules to pass each other (Fig.3 from Biol.<br />

Chem. <strong>2004</strong>, 385: 921–926).<br />

conducted in the frame of the priority program of the Deutsche<br />

Forschungsgemeinschaft “Micro- and Nanofluidics”.<br />

Group members<br />

Dr. Sapar M. Saparov<br />

Dr. Satoshi Tsunoda<br />

Dr. Oxana O. Krylova<br />

Dr. Valentina Margania**<br />

Steffen Serowy (Doctoral student )*<br />

Rustam Mollajew<br />

Matthias Prigge (Student)*<br />

Prof. Dr. Yuri Antonenko (Guest scientist)*<br />

Dr. Valerij Sokolov (Guest scientist)*<br />

Dr. Artem Ayuyan (Guest scientist)*<br />

Christina de Souza (Guest scientist)*<br />

Alexander Lentz (Guest scientist)*<br />

Elena Sokolenko (Guest scientist)*<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

Heisenbergstipendium (Po533/7-1)<br />

Peter Pohl<br />

* part of period reported<br />

** part-time<br />

Cellular Signalling/ Molecular Genetics<br />

57


Deutsche Forschungsgemeinschaft<br />

“Single file water transport across peptidic nanopores”<br />

(Po533/11-1)<br />

Peter Pohl<br />

Deutsche Forschungsgemeinschaft<br />

„Molekulare Mechanismen des Wassertransports durch<br />

Epithelzellmonoschichten“ (Po533/8-1, 8-2)<br />

Peter Pohl<br />

Deutsche Forschungsgemeinschaft<br />

„Wechselwirkung zwischen ebener Bilipidmembran und<br />

Photosensibilisator“ (Po533/4-3)<br />

Peter Pohl<br />

Deutsche Forschungsgemeinschaft<br />

„Migration von Protonen an der Oberfläche ebener Bilipidmembranen“<br />

(Po533/5-2, 5-3)<br />

Peter Pohl<br />

Deutsche Forschungsgemeinschaft<br />

Kooperation mit der Lomonossov-Universität Moskau (436<br />

RUS113/551)<br />

Peter Pohl<br />

Deutsche Forschungsgemeinschaft<br />

Kooperation mit dem Frumkin-Institut für Elektrochemie<br />

Moskau (436 RUS113/634)<br />

Peter Pohl<br />

Volkswagenstiftung<br />

”Control of membrane permeability with novel types of<br />

amphiphilic macromolecules” (I/77743)<br />

Peter Pohl<br />

Volkswagenstiftung<br />

”Control of membrane permeability with novel types of<br />

amphiphilic macromolecules” (I/80074)<br />

Peter Pohl<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Pohl P (<strong>2004</strong>) Combined transport of water and ions<br />

through membrane channels. Biol Chem 385, 921-926<br />

Saparov SM, Pohl P (<strong>2004</strong>) Beyond the diffusion limit:<br />

Water flow through the empty bacterial potassium channel.<br />

Proc Natl Acad Sci U. S. A 101, 4805-4809<br />

Krylova OO, Pohl P (<strong>2004</strong>) Ionophoric activity of pluronic<br />

block copolymers. Biochemistry 43, 3696-3703<br />

Sun J, Pohl EE, Krylova OO, Krause E, Agapov II, Tonevitsky<br />

AG, Pohl P (<strong>2004</strong>) Membrane destabilization by ricin.<br />

Eur Biophys J 33, 572-579<br />

Tsunoda SP, Wiesner B, Lorenz D, Rosenthal W, Pohl P<br />

(<strong>2004</strong>) Aquaporin-1, Nothing but a Water Channel. J Biol<br />

Chem 279, 11364-11367<br />

Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl<br />

P, Maric K (<strong>2003</strong>) Cyclic AMP is sufficient for triggering the<br />

exocytic recruitment of aquaporin-2 in renal epithelial<br />

cells. EMBO Rep 4, 88-93<br />

Serowy S, Saparov SM, Antonenko YN, Kozlovsky W,<br />

Hagen V, Pohl P (<strong>2003</strong>) Structural Proton Diffusion along<br />

Lipid Bilayers. Biophys J 84, 1031-1037<br />

Collaborations<br />

- Proton migration (DFG Po 533/5-1, 2, 3; 436 RUS113/551):<br />

Prof. Yuri N. Antonenko, Lomonossov University Moscow,<br />

Belozersky Laboratory<br />

- Photosensibilisator (DFG Po 533/4-3; 436 RUS113/634):<br />

Dr. Valerij Sokolov, Russian Academy of Science, Frumkin<br />

Institute of Electrochemistry<br />

- Blockcopolymers and multidrug resistance (VW): Prof.<br />

J. Kressler, Martin-Luther-Universität Halle; Prof. Dr.<br />

Frey, University of Mainz


CYTOKINE SIGNALING<br />

Group Leader: Dr. Klaus-Peter Knobeloch<br />

FUNCTIONAL ANALYSIS OF POSTTRANSLA-<br />

TIONAL PROTEIN MODIFICATION BY UBI-<br />

QUITIN AND UBIQUITIN LIKE MOLECULES<br />

USING GENE TARGETING IN THE MOUSE<br />

Covalent attachment of Ubiquitin and Ubiquitin like (UBL)<br />

molecules serves as an important regulatory mechanism<br />

controlling a pleiotropy of biological processes including<br />

embryogenesis, cell cycle, growth control, and immune<br />

response. Beside serving as a marker that targets proteins<br />

for proteasomal degradation Ubiquitin conjugation has<br />

been demonstrated to be involved in the regulation of a<br />

wide range of molecular mechanisms like protein localization,<br />

receptor degradation, transcriptional control and<br />

interaction of proteins.<br />

Thus distinct components of the Ub and UBL conjugation<br />

and deconjugation pathway might serve as novel targets<br />

for drug intervention.<br />

In our group targeted mutagenesis in the mouse is used<br />

to address the biological relevance and function directly<br />

in the context of the whole organism. Current research is<br />

focused on ISG15, an interferon stimulated ubiquitin like<br />

molecule and UBPy, a deubiquitinating enzyme.<br />

ISG15 is one of the most strongly induced genes upon<br />

interferon treatment and like SUMO or NEDD8 belongs to<br />

the family of ubiquitin-like modifiers. ISG15 can be conjugated<br />

to distinct proteins and has been implicated in a<br />

variety of biological activities which encompass antiviral<br />

defence, immune responses, and pregnancy. Mice lackin<br />

UBP43 (USP18), the ISG15 deconjugating enzyme which<br />

belongs to the family of deubiquitinating enzymes, develop<br />

a severe phenotype with brain injuries and lethal<br />

hypersensitivity to Poly(I:C). It was reported that an augmented<br />

conjugation of ISG15 in the absence of UBP43<br />

induces prolonged STAT1 phosphorylation and that the<br />

ISG15 conjugation plays an important role in the regulation<br />

of JAK/STAT and interferon signaling (Malakhova OA et<br />

al. <strong>2003</strong>, Genes & Development 17, 455-460). It was also<br />

published that UBP43-/-mice are more resistant against<br />

infection with lymphocytic choriomeningitis virus (LCMV)<br />

and vesicular stomatitis virus (VSV).<br />

To directly assess the functional role of ISG15, we generated<br />

mice lacking ISG15 via gene targeting in embryonic<br />

stem cells. ISG15-/- mice display no obvious abnormalities,<br />

and lack of ISG15 did not affect the development and composition<br />

of the main cellular compartments of the immune<br />

system. In contrast to UBP43-/- mice, the interferon-induced<br />

antiviral state and immune responses directed against<br />

VSV and LCMV were not significantly altered in the absence<br />

of ISG15. Furthermore, interferon or endotoxin induced<br />

STAT1 tyrosine-phosphorylation, as well as expression of<br />

typical STAT1 target genes remained unaffected by the<br />

lack of ISG15. Thus the role of ISG15 in the pathology of the<br />

phenotype of UBP43-/- and the specificity of UBP43 needs<br />

to be reassessed. Therefore, we generated mice deficient<br />

for both molecules in an attempt to rescue phenotypic<br />

alterations of UBP43-/- mice, providing they are caused by<br />

an enhanced ISG15 conjugation. This approach is also<br />

suitable to test whether UBP43 possesses additional<br />

functions beside acting as an ISG15 deconjugating enzyme.<br />

These double knockout mice are currently under analysis.<br />

We were also able to clone a new mouse gene, which we<br />

named UBL14, that encodes a protein with 95% amino acid<br />

homology to ISG15. To elucidate the role of this molecule<br />

in vivo, we also used a loss of function approach and<br />

generated mice deficient for UBL14, as well as for both,<br />

ISG15 and UBL14.<br />

Conditional inactivation of the ubiquitin-specific<br />

protease UBPy/USP8<br />

Ubiquitination of proteins is now recognized to target proteins<br />

for degradation by the proteasome and for internalization<br />

into the lysosomal system, as well as to modify<br />

functions of some target proteins. Although much progress<br />

has been made in characterizing enzymes that link ubiquitin<br />

to proteins, the understanding of deubiquitinating enzymes<br />

is just beginning to evolve. The importance of deubiquitinating<br />

enzymes has been demonstrated by the<br />

observation that cellular key molecules like p53 or NFkappa<br />

B are controlled by ubiquitin isopeptidases (Li et al<br />

2002, Trompouki et al <strong>2003</strong>). However, so far there are no<br />

reports challenging the function of deubiquitinating proteins<br />

in the context of the whole organism.<br />

UBPy (USP8) is an ubiquitin isopeptidase that is upregulated<br />

upon serum induction and was shown to bind to SH3<br />

domains of certain target proteins via an unusual recognition<br />

motif. From patients with a myeloproliferative disorder<br />

a fusion product of the p85beta subunit of phosphatidylinositol-3-kinase<br />

and UBPy could be isolated. In an initial<br />

approach we have generated mice lacking UBPy. As these<br />

mice die early in embryogenesis we generated mice that<br />

allow conditional inactivation of the gene using the creloxP<br />

system. By mating the mice to Mx-cre we have inactivated<br />

the gene in adult mice and are analyzing the<br />

phenotypic alterations, and molecular mechanisms that<br />

are affected by the lack of UBPy. In parallel, we genera-<br />

Cellular Signalling/ Molecular Genetics<br />

59


FIGURE 1<br />

ISG 15 conjugation cycle<br />

ted mice lacking UBPy in specific hematopoietic cell lineages<br />

like T-cells and granulocytes/macrophages in order to<br />

determine the functional role of UBPy in these cell lineages.<br />

Group members<br />

Sandra Niendorf (Doctoral student)<br />

Agnes Kisser (Doctoral student)<br />

Markus Wietstruck (Technical assistance)<br />

Anna Osiak (Doctoral student)*<br />

Liane Boldt (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Herstellung und Haltung genetisch veränderter Mäuse“<br />

(TP Z3 im Sonderforschungsbereich 366 „Zelluläre Signalerkennung<br />

und Umsetzung“)<br />

Ivan Horak<br />

Deutsche Forschungsgemeinschaft<br />

„Untersuchungen zur Funktion des Interferon-stimulierten<br />

Genes 15 (ISG15).“ (KN 590/1-1)<br />

Klaus-Peter Knobeloch<br />

* part of period reported<br />

FIGURE 2<br />

Editing functions of deubiquitinating enzymes. Deubiquitinating enzymes<br />

may negatively regulate proteolysis or other signaling functions<br />

of ubiquitination such as internalization or altered protein function by<br />

removing the ubiquitin chain from the target proteins.<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP.<br />

(2005) ISG15, an interferon-stimulated ubiquitin-like protein,<br />

is not essential for STAT1 signaling and responses<br />

against vesicular stomatitis and lymphocytic choriomeningitis<br />

virus.<br />

Mol Cell Biol., 6338-6345<br />

Van Spriel AB, Puls KL, Sofi M, Pouniotis D, Hochrein H,<br />

Orinska Z, Knobeloch K-P, Plebanski M, Wright MD (<strong>2004</strong>)<br />

A regulatory role for CD37 in T-Cell Proliferation. J Immunol<br />

172, 2953-2961<br />

Rosenbauer F, Wagner K, Zhang P, Knobeloch KP, Iwama<br />

A, Tenen DG (<strong>2004</strong>) pDP4, a novel glycoprotein secreted by<br />

mature granulocytes, is regulated by transcription factor<br />

PU.1. Blood 103, 4294-4301<br />

Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann<br />

J, Williams JC, Armesilla AL, Emerson M, Oceandy<br />

D, Knobeloch KP, Neyses L (<strong>2004</strong>) Plasma membrane Ca2+<br />

ATPase 4 is required for sperm motility and male fertility. J<br />

Biol Chem 279, 28220-28226


Huebner A, Kaindl AM, Knobeloch KP, Petzold H, Mann P,<br />

Koehler K (<strong>2004</strong>) The triple A syndrome is due to mutations<br />

in ALADIN, a novel member of the nuclear pore complex.<br />

Endorcr Res 30, 891-899<br />

Collaborations<br />

International<br />

Herbert W. Virgin IV, Department of Pathology<br />

Washington University School of Medicine<br />

Prof. Dr. Robert Krug, Institute for Cellular and Molecular<br />

Biology<br />

University of Texas at Austin<br />

National<br />

Prof. Dr. med. Oliver Liesenfeld, Institut für Mikrobiologie<br />

und Hygiene<br />

Charité – Universitätsmedizin <strong>Berlin</strong><br />

PD Dr. Marco Prinz, Abt. Neuropathologie<br />

Georg-August-Universität Göttingen<br />

Dr. Olaf Utermöhlen, Institut für Medizin. Mikrobiologie,<br />

Immunologie und Hygiene<br />

Universität zu Köln<br />

Cellular Signalling/ Molecular Genetics<br />

61


MOLECULAR MYELOPOIESIS<br />

Group Leader: Dr. Dirk Carstanjen<br />

ICSBP – A CRITICAL TRANSCRIPTION<br />

FACTOR FOR MYELOPOIESIS<br />

The research aim of our group is to elucidate the role of<br />

the transcription factor ICSBP (interferon consensus<br />

sequence binding protein) within hematopoietic cell development.<br />

This hematopoietic specific transcription factor<br />

is a major element regulating transcriptional control of<br />

myelopoiesis. Mice deficient in this transcription factor<br />

develop a proliferative syndrome characterized by the<br />

expansion and accumulation of immature myeloid progenitor<br />

cells within the bone marrow and spleen. Furthermore,<br />

it has been shown by our group that ICSBP influences<br />

lineage choice of granulocyte-monocyte progenitor<br />

cells (GMP) leading to an imbalance in development and<br />

maturation of progenitor cells in favor of granulocytes.<br />

Genetic profile of myeloid development<br />

This asymmetric lineage choice is at least partially due to<br />

a reduced response to a macrophage specific cytokine<br />

(macrophage colony stimulating factor: M-CSF). Our group<br />

has recently shown that M-CSF signal transduction in<br />

macrophages is altered due to altered protease expression<br />

in these cells and enhanced proteasomal degradation<br />

leading to shortened signaling. In contrast, the reason for<br />

accumulation of immature progenitor cells and preferential<br />

production of granulocytes is further obscure. In an<br />

approach to decipher the function of ICSBP in immature<br />

progenitor cells as well as to define the expression profile<br />

of granulocyte versus erthrocyte precursors, we sorted<br />

GMP and erythrocyte progenitor (EP) cells by flow cytometry<br />

in collaboration with H.R. Rodewald, Ulm. Global<br />

gene expression profiling was performed in these highly<br />

purified cells and analyzed using Affymetrix technology.<br />

The data sets of this analysis have been published via the<br />

GEO database. These data now allow for the first time to<br />

study systematically the transcriptional profile of these<br />

functional distinct cell populations. As a first approach, we<br />

identified the global pattern of transcription factors specifically<br />

expressed in either lineage. While this analysis confirmed<br />

the exclusive or highly preferential expression of<br />

several transcription factors with pivotal importance for<br />

erythroid development (e.g. erythroid Krüppel-like factor,<br />

GATA-1, Friend of GATA-1 (FOG1)), we also identified several<br />

transcription factors specifically expressed in myeloid<br />

progenitors. Several of those are known: Cebpα, Cebpβ,<br />

Gfi1, Fli1, PU.1, and Meis1 to name but a few, others have<br />

not yet been implicated in myeloid development, e.g.<br />

Mef2c, KLF4, and SAT1b. Importantly, ICSBP has been<br />

shown to be specifically expressed by GMP, and the RNA<br />

expression level was within the group of the five transcription<br />

factors the most prominently expressed transcription<br />

factors in these cells, in concert with prominent proteins<br />

as PU.1, and Cebpα. These important findings further confirms<br />

the pivotal role of ICSBP for myeloid development<br />

and will now allow to study systematically the analysis of<br />

transcription factors regulating myeloid and erythroid cell<br />

development using genetic approaches e.g., mouse deletion-mutants,<br />

RNA interference or retroviral overexpression.<br />

These studies are currently being undertaken.<br />

Dissecting the transcriptional network orchestrated<br />

by ICSBP<br />

We further analyzed the global gene expression profile in<br />

the GMP of the ICSBP mouse deletion mutant. This analysis<br />

revealed insight into the developmental program induced<br />

by the loss of ICSBP within myeloid progenitor cells.<br />

We found several major myeloid transcription factors<br />

downregulated in the GMP of ICSBP-deleted mice. We are<br />

currently studying the contribution of these transcription<br />

factors to the myeloproliferative syndrome of these mice<br />

using mouse deletion mutants and retroviral overexpression<br />

in bone marrow derived stem and progenitor cells.<br />

Furthermore, we are studying potential direct transcriptional<br />

regulation of ICSBP on genomic target sequences. We<br />

therefore cloned several murine genomic sequences with<br />

known or potential regulatory functions for the genes we<br />

found differentially expressed in GMPs of ICSBP-deleted<br />

mice. Luciferase promoter studies are currently being<br />

undertaken to identify the impact on ICSBP in direct or<br />

combinatorial gene expression regulation with other prominent<br />

myeloid transcription factors. Furthermore, many<br />

of the genes overexpressed in ICSBP-deleted mice are<br />

genes preferentially expressed in mature granulocytic and<br />

monocytic cells. Interestingly, at the GMP stage, there was<br />

no clear preferential expression pattern of granulocytic<br />

genes implicating that branching between monocytic and<br />

granulocytic development occurs beyond the GMP stage<br />

and additional extrinsic factors, e.g. cytokine signaling, are<br />

responsible for the preferential generation of granulocytes<br />

versus macrophages in the ICSBP deleted mouse, a<br />

hypothesis consistent with our previous findings showing<br />

abnormal M-CSF signaling in macrophages derived from<br />

the ICSBP deleted mouse.


c-Kit<br />

IL-3Rα<br />

Group members<br />

Maja Djurica (Doctoral student)*<br />

Jessica Königsmann (Doctoral student)*<br />

Axel Kallies (Doctoral student)*<br />

Joanna Selfe (Doctoral student)*<br />

Melanie Benedict (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Myeloproliferatives Syndrom bei ICSBP-defizienten Mäusen:<br />

Identifizierung neuer potentieller onkotherapeutischer<br />

Targetstrukturen“ (TP G1 im Sonderforschungsbereich<br />

506 „Onkotherapeutische Nukleinsäuren“)<br />

I. Horak<br />

Deutsche Forschungsgemeinschaft<br />

„Gene in Entwicklung und Funktion von myeloiden Zellen“<br />

HO 493/12-1 und 12-2<br />

Ivan Horak<br />

* part of period reported<br />

GMP<br />

GMP<br />

FIGURE 1<br />

Bone marrow cells from ICSBP wt (upper) and deleted<br />

(lower part) were depleted of mature cells expressing marker<br />

for granulocytes, monocytes, T-, B-cells and erythrocytes.<br />

Those so-called lineage negative cells were further<br />

stained with antibodies against c-kit (stem cell factor receptor)<br />

as well as interleukin-3 receptor. c-kit high, Il-3 receptor<br />

positive cells contain so called granulocyte-monocyte<br />

progenitor cells (GMP), megakaryocyte progenitor cells<br />

(MP), and common myeloid progenitor cells (CMP). Those<br />

populations can be identified through the use of antibodies<br />

against FcγR I and CD41. The GMP population contains only<br />

cells that give rise to monocytes/macrophages and granulocytes.<br />

This population was sorted to purity, RNA isolated,<br />

and global gene expression profiling was performed using<br />

Affymetrix technology.<br />

Deutsche Forschungsgemeinschaft<br />

„Die Rolle des Adaptorproteins Disabled-2 bei Zytokinsignalvermittlung<br />

in hämatopoetischen Zellen“ (CA 306/1-1)<br />

Dirk Carstanjen<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Zatóvicova M, Tarabkova K, Svastova E, Gibadulinova A,<br />

Mucha V, Jakubickova L, Biesova Z, Rafajova M, Ortova Gut<br />

M, Parkkila S, Parkkila AK, Waheed A, Sly WS, Horak I,<br />

Pastorek J, Pastorekova S (<strong>2003</strong>) Monoclonal antibodies<br />

generated in carbonic anhydrase IX-deficient mice recognize<br />

different domains of tumour associated hypoxia-induced<br />

carbonic anhydrase IX. J Immunol Methods 282, 117-134<br />

Barmeyer C, Harren M, Schmitz H, Heinzel-Pleines U,<br />

Mankertz J, Seidler U, Horak I, Wiedenmann B, Fromm M,<br />

Schulzke JD (<strong>2004</strong>) Mechanisms of diarrhea in the interleukin-2-deficient<br />

mouse model of colonic inflammation.<br />

Am J Physiol Gastrointest Liver Physiol 286, G244-G252<br />

Terszowski G, Waskow C, Conradt P, Lenze D, Koenigsmann<br />

J, Carstanjen D, Horak I, Rodewald HR (<strong>2004</strong>) Prospective<br />

isolation and global gene expression analysis of<br />

the colony-forming unit-erythrocyte (CFU-E). Blood 105,<br />

1937-1945<br />

Cellular Signalling/ Molecular Genetics<br />

63


MOUSE MODELS<br />

Group Leader: Dr. Rüdiger Pankow<br />

BCL-2 ASSOCIATED TRANSCRIPTION<br />

FACTOR AND FMS INTERACTING PROTEIN<br />

Btf (Bcl-2 associated transcription factor) and FMIP (fms<br />

interacting protein) are two genes which have been implicated<br />

in cellular regulatory processes. Both are intracellular<br />

proteins with subcellular distributions in the cytoplasm<br />

and the nucleus. We have raised antibodies against<br />

Btf and found its expression in a broad spectrum of tissues<br />

and organs including those of the hematopoietic<br />

system. Its highest expression, however, is found in brain<br />

regions of young developing mice. This expression declines<br />

with age, with Btf being detectable in only a few<br />

neural cells in adulthood.<br />

Due to its association with Bcl-2, Btf was thought to be a<br />

transcriptional repressor, with an apoptotic function. Since<br />

no rigorous evidence for a role of Btf in apoptosis was<br />

found, its biological function remains unknown. To generate<br />

mice deficient for Btf we inserted a marker cassette<br />

containing the β-galactosidase gene into the btf gene. The<br />

inserted β-galactosidase gene is under the control of the<br />

endogenous btf promoter which allows the detection of<br />

btf gene expression. Mice, homozygous for this mutation,<br />

lack all wild type btf transcripts and are deficient in<br />

Btf protein. These mice display a severe phenotype resulting<br />

in premature death. Molecular mechanisms behind<br />

the phenotypic changes are being analyzed. To assess the<br />

role of Btf in the hematopoietic system we reconstituted<br />

lethally irradiated wild type mice with fetal liver or bone<br />

marrow cells from Btf deficient mice. These mice reconstituted<br />

a Btf -/- hematopoietic system including all resulting<br />

cell lineages but do not develop any of the phenotypic<br />

signs characteristic of Btf deficient mice. We could therefore<br />

rule out the influences of the hematopoietic system<br />

and conclude that other factors provide the major cause<br />

for the phenotype.<br />

For FMIP, an interacting partner of the activated M-CSF<br />

receptor, a possible role in myeloid differentiation was<br />

suggested. By means of targeted gene disruption, we<br />

generated a mouse model with a null mutation of the fmip<br />

gene. Our studies revealed, however, that embryos lacking<br />

Fmip die early during embryogenesis. Thus, to allow studies<br />

of Fmip in physiological processes in the mouse, we<br />

have generated FMIP conditional knockout mice using the<br />

cre/loxP system. By intercrossing these mice with Credeleter<br />

mouse strains we have obtained Fmip floxed mice<br />

that allow organ or cell lineage specific deletion of Fmip<br />

and have used these models to study the function of FMIP<br />

and in particular, its relevance in myeloid development.<br />

Group members<br />

Dr. Rosel Blasig<br />

Kerstin Bohne (Technical assistance)<br />

Janet Klemm (Technical assistance)<br />

Mina Thakur (Technical assistance)*<br />

* part of period reported


CELLULAR SIGNAL PROCESSING<br />

Group Leader: Dr. Uwe Vinkemeier<br />

KINETIC CONTROL OF GENE TRANSCRIPTION<br />

We are studying the effects on gene transcription of a<br />

group of extracellular signaling molecules termed cytokines,<br />

more than a hundred of which are presently known.<br />

Cytokines are secreted small proteins that fulfill crucial<br />

roles in cell differentiation and innate immunity. Best<br />

known are the interleukins and erythropoietine (Epo) for<br />

their role in immune cell differentiation, inflammation and<br />

lactation. Other cytokines such as LIF and Oncostatin M<br />

control stem cell development and cell growth, while the<br />

interferons are known to cause growth arrest and protect<br />

cells against viral and microbial attack. Not surprisingly,<br />

cytokines are highly relevant for clinical applications.<br />

Several cell-activating cytokines are being tested in clinical<br />

trials, and interleukin-2 was the first drug approved for<br />

the treatment of tumors. Today, treatment with interferons<br />

is the standard therapy for several severe viral infections<br />

(e.g. hepatitis) as well as for some tumors (e.g. skin cancer).<br />

However, overexpression of cytokines may also<br />

cause diseases such as rheumatoid athritis. In those<br />

situations, inhibition of cytokine action is a therapeutic<br />

goal. As the alteration of gene transcription is the basis of<br />

cytokine action, we need to explore the intracellular<br />

events that are triggered by cytokines in order to understand<br />

their effects in the normal and diseased state.<br />

The Janus kinase (JAK) / signal transducer and activator<br />

of transcription (STAT) pathways, first identified in the<br />

interferon systems, are responsive to a wide range of cytokines<br />

and growth factors. The STAT proteins receive cytokine<br />

signals at intracellular receptor chains in the cytoplasm<br />

and carry them into the nucleus, where they then<br />

act as transcription factors. Thus, these proteins need to<br />

cross the nuclear envelope to functionally link the cell<br />

membrane with the promoters of cytokine-responsive<br />

genes. Movement of STATs in either compartment is diffusion<br />

controlled and not directed along permanent structures.<br />

However, passage through the nuclear gateways,<br />

named nuclear pore complexes (NPC), provides a formidable<br />

diffusion barrier to proteins the size of STATs (> 85<br />

kD for the monomer), as only ions and small molecules not<br />

exceeding 40 kD can freely enter the cell nucleus. The<br />

analysis of their nucleocytoplasmic translocation has to<br />

consider that the STAT proteins exist in two different states<br />

in terms of signaling: before the stimulation of cells with<br />

cytokines the STAT molecule exists in a non-tyrosine phosphorylated<br />

state. Stimulation with cytokines increases the<br />

activity of receptor-associated JAK kinases, leading to the<br />

formation of tyrosine-phosphorylated STATs, which<br />

instantly assemble into homo- or heterodimers via canonical<br />

phosphotyrosine-SH2 domain interactions. Tyrosine<br />

phosphorylation is often described as STAT activation<br />

since only the dimer is a high-affinity DNA-binding protein<br />

required for the induction of cytokine-responsive genes.<br />

This is achieved by directly targeting cognate recognition<br />

elements named gamma activated sites (GAS).<br />

Carrier-dependent as well as carrier-independent modes<br />

of translocation are known to exist for the passage of proteins<br />

through the nuclear pore. The nuclear pore complex<br />

is a multi-protein structure that creates an aqueous channel<br />

spanning the double membrane of the nuclear envelope.<br />

This structure with an estimated molecular mass of<br />

125 MDa in mammalian cells is composed of several<br />

copies of about 30 different proteins collectively called<br />

nucleoporins (Nups), many of which contain multiple phenylalanine-glycine<br />

(FG) repeats that are interspersed with<br />

polar residues of varying number. Although the molecular<br />

details that allow passage through the pore remain to be<br />

elucidated, it is widely accepted that permeating molecules<br />

need to overcome the hydrophobic repulsion that is<br />

exerted by the FG repeat-rich interior of the nuclear pore.<br />

Biochemically carrier-free and carrier-dependent nucleocytoplasmic<br />

translocation are related. Docking to the<br />

nuclear pore is diffusion controlled for the two pathways,<br />

and in both cases the actual translocation process appears<br />

to occur independent of metabolic energy via identical<br />

interactions with channel components. Proteins that<br />

contain regions that enable them to directly engage in productive<br />

interactions with the nucleoporins are capable of<br />

carrier-independent nucleocytoplasmic transport, whereas<br />

the remaining proteins (also called cargo proteins)<br />

need to associate with transport factors, which act as<br />

chaperones during passage through the pore. The vast<br />

majority of transport factors belongs to the karyopherin<br />

superfamily of proteins, which mediate either import or<br />

export from the nucleus. Recognition of cargo proteins by<br />

the transport factors requires the presence of loosely conserved<br />

stretches of amino acids on the cargo surface, termed<br />

nuclear localization -NLS- or nuclear export -NESsignals,<br />

respectively. The stability of cargo/karyopherin<br />

complexes is determined by the small GTPase Ran, as<br />

RanGTP disrupts importin/cargo complexes but stabilizes<br />

the formation of exportin/cargo-complexes. Thus, the<br />

RanGDP/RanGTP gradient that forms through the asymmetric<br />

distribution of nucleotide exchange factors across the<br />

nuclear membrane discriminates cytosol from nucleoplasm<br />

and hence confers directionality to the transport<br />

process.<br />

Cellular Signalling/ Molecular Genetics<br />

65


Our lab discovered that the STATs make use of both of<br />

these translocation mechanisms. Due to their constant<br />

carrier-independent and -dependent nucleocytoplasmic<br />

cycling the STATs are distributed throughout the cell, all<br />

the time. Deviations from an even pancellular distribution<br />

result from modulated nuclear export. This is caused either<br />

by enhancing the translocation rate or by nuclear<br />

retention due to a co-factor-independent mechanism. The<br />

recognition that the dephosphorylation reaction is under<br />

kinetic control of DNA binding provided a strikingly simple<br />

example of a self-controlling mechanism that integrates<br />

central elements of cytokine-dependent gene regulation,<br />

namely receptor monitoring, promoter occupancy, and<br />

transcription factor activity. It is important to point out that<br />

nuclear accumulation is not a mechanism sui generis, but<br />

merely reflects the formation of a conformation that is resistant<br />

to dephosphorylation. For this reason nuclear accumulation<br />

is not suited as a diagnostic marker of transcriptional<br />

activity. In contrast, the translocation rate of STAT<br />

transcription factors critically determines the outcome of<br />

cytokine signaling and hence constitutes a potential specificity<br />

determinant. The molecular mechanisms that give<br />

rise to flux modulation, either physiologically or in pathological<br />

situations such as microbial infections, and how<br />

this affects both duration and strength of cytokine signals,<br />

as well as the overall sensitivity and latency of the system<br />

will be the task of future research. A further important area<br />

of our research is post-translational modifications, with<br />

focus on arginine methylation and sumoylation.<br />

In the last years our lab has made a number of exciting and<br />

unexpected discoveries, which revealed that the STATs<br />

are an intriguing model system for studying the intracellular<br />

dynamics of a signal transducer. In addition, it is increasingly<br />

being appreciated that STAT nucleocytoplasmic<br />

cycling also constitutes an important area for microbial<br />

intervention. Currently, we are generating mice that<br />

express STAT mutants. This will allow us to study the<br />

effects of defective nucleocytoplasmic shuttling on development<br />

and disease. These approaches are complemented<br />

by chemical and structural biology to explore the<br />

possibilities of rational intervention.<br />

Group members<br />

Prof. Dr. mult. Thomas Meyer<br />

Dr. Andreas Begitt<br />

Dr. Regis Cartier<br />

Dr. Ying Shan**<br />

Dr. Andreas Marg*<br />

Torsten Meissner (Doctoral student)*<br />

Inga Lödige (Doctoral student)<br />

Nicola Venta (Doctoral student)*<br />

* part of period reported<br />

** part-time<br />

Mandy Kummerow (Technical assistance)<br />

Stephanie Meyer (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Konstitutiver nucleocytoplanmatischer Transport von<br />

STAT1“ (VI 218/2)<br />

Uwe Vinkemeier Deutsche Forschungsgemeinschaft<br />

Deutsche Forschungsgemeinschaft<br />

„Einfluss der Tyrosin-Dephosphorylierung auf die Zielgenfindung<br />

von STAT1“ (VI 218/3)<br />

Uwe Vinkemeier<br />

Deutsche Forschungsgemeinschaft<br />

„Analyse einer konservativen Protein-Interaktionsdomäne“<br />

(VI 218/4)<br />

Uwe Vinkemeier<br />

Bundesministerium für Bildung und Forschung<br />

„Molekulare Grundlagen der zellulären Signalverarbeitung“<br />

(Sieger im Nachwuchsgruppenwettbewerb „Bio-<br />

Future“)<br />

Uwe Vinkemeier<br />

European Molecular Biology Organization<br />

“Regulation of Transcription” (EMBO-Young-Investigator<br />

Award 2002)<br />

Uwe Vinkemeier<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Chen X, Bhandari R, Vinkemeier U, Van Den Akker F, Darnell<br />

JE Jr, Kuriyan J (<strong>2003</strong>) A reinterpretation of the dimerization<br />

interface of the N-terminal domains of STATs. Protein<br />

Sci 142, 361-365<br />

Meyer T, Vinkemeier U, Meyer U (<strong>2003</strong>) Medizinische<br />

Implikationen pharmakogenomischer Behandlungsstrategien.<br />

Ethik in der Medizin 12, 207-209<br />

Meyer T, Vinkemeier U, Meyer U (<strong>2003</strong>) Evidence-based<br />

medicine – Was geht verloren? Ethik in der Medizin 14,<br />

3-10<br />

Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U<br />

(<strong>2003</strong>) DNA binding controls inactivation and nuclear<br />

accumulation of the transcription factor Stat1. Genes Dev<br />

17, 1992-2005


Marg A, Shan Y, Meyer T, Meissner T, Brandenburg M,<br />

Vinkemeier U (<strong>2004</strong>) Nucleocytoplasmic shuttling by<br />

nucleoporins Nup153 and Nup214 and CRM1-dependent<br />

nuclear export control the subcellular distribution of latent<br />

Stat1. J Cell Biol 165, 823-833<br />

Meissner T, Krause E, Vinkemeier U (<strong>2004</strong>) Ratjadone and<br />

leptomycin B block CRM1-dependent nuclear export by<br />

identical mechanisms. FEBS Lett 576, 27-30<br />

Meissner T, Krause E, Lödige I, Vinkemeier U (<strong>2004</strong>)<br />

Arginine Methylation of STAT1: A Reassessment. Cell 119,<br />

587-589<br />

Meyer T, Hendry L, Begitt A, John S, Vinkemeier U (<strong>2004</strong>)<br />

A single residue modulates tyrosine dephosphorylation,<br />

oligomerization, and nuclear accumulation of stat transcription<br />

factors. J Biol Chem 279, 18998-19007<br />

Meyer T, Vinkemeier U (<strong>2004</strong>) Nucleocytoplasmic shuttling<br />

of STAT transcription factors. Eur J Biochem 271, 4606-<br />

4612<br />

Vinkemeier U (<strong>2004</strong>) Getting the message across STAT!<br />

Design principles of a molecular signaling circuit. J Cell<br />

Biol 167, 197-201<br />

Collaborations<br />

Susan John, Kings’s Kollege London, Department of Immunobiology<br />

Ilian Jelesarov and H. R. Bosshard, Universität Zürich,<br />

Institut für Biochemie<br />

Gino Cingolani, Stony Brook University, USA<br />

Ulrich Kubischeck, Friedrich-Wilhelm-Universität Bonn,<br />

Institut für Physikalische und Theoretische Chemie<br />

Markus Czub, Canadian Science Center for Human and<br />

Animal Health, Winnipeg, Canada<br />

Thomas Höfer and Reinhard Heinrich, Institut für Theoretische<br />

Biophysik, Humboldt-Universität zu <strong>Berlin</strong><br />

Cellular Signalling/ Molecular Genetics<br />

67


CHEMICAL BIOLOGY


SECTION CHEMICAL BIOLOGY<br />

Prof. Dr. Michael Bienert<br />

Department Head: Peptide Chemistry<br />

(Secretary: Marianne Dreissigacker)<br />

Hartmut Berger<br />

Michael Beyermann<br />

Margitta Dathe<br />

Volker Hagen<br />

Eberhard Krause<br />

Jens-Peter von Kries<br />

Johannes Oehlke<br />

Jörg Rademann<br />

Although in the last decade our knowledge about genome<br />

sequences (genomics) and the occurrence of cellular proteins<br />

(proteomics) has increased dramatically, this progress<br />

is often not sufficient to understand the function and<br />

the significance of biomacromolecules in cellular systems<br />

or in organs of different organisms. All proteins evoke their<br />

function by specific interactions with other proteins or<br />

constituents of membranes and the cytoskeleton, and dee-<br />

INTRODUCTION<br />

BEREICH CHEMISCHE BIOLOGIE<br />

Prof. Dr. Michael Bienert<br />

Abteilungsleiter: Peptidchemie<br />

(Sekretariat: Marianne Dreissigacker)<br />

Hartmut Berger<br />

Michael Beyermann<br />

Margitta Dathe<br />

Volker Hagen<br />

Eberhard Krause<br />

Jens-Peter von Kries<br />

Johannes Oehlke<br />

Jörg Rademann<br />

Obwohl unser Wissen über Gensequenzen (Genomics)<br />

und über das Auftreten zellulärer Proteine (Proteomics)<br />

dramatisch angewachsen ist, reicht der Fortschritt oft<br />

noch nicht aus, um die Funktion und Bedeutung von biologischen<br />

Makromolekülen in zellulären Systemen oder in<br />

den Organen der verschiedenen Organismen zu verstehen.<br />

Alle Proteine funktionieren, indem sie spezifische<br />

Interaktionen mit anderen Proteinen oder mit Bestandteilen<br />

der Membranen und des Zytoskeletts eingehen, und<br />

tiefergehende Einsichten auf molekularer und atomarer<br />

per insights at a molecular and atomic level are required<br />

in order to unravel the subtle modes of protein-protein<br />

communication. The analysis of interactions between chemical<br />

moieties of proteins, and the identification of protein<br />

substructures, affected by drug-like compounds, as well<br />

as the design and the synthesis of compounds with modified<br />

recognition characteristics, demand chemical thinking<br />

and chemical methodologies. This makes clear that<br />

chemistry has become a more central science in our<br />

efforts to understand the molecular basis of life. This dramatic<br />

trend has led to the creation of the term “Chemical<br />

Biology”, defining all kinds of chemical research focused<br />

on the unravelling of biological phenomena. Naturally,<br />

there is an overlap with other areas of chemistry, such as<br />

“Medicinal Chemistry” and “Bioorganic Chemistry”. The<br />

interaction with a powerful Structural Biology and the<br />

involvement of biochemical, biophysical and analytical<br />

methodologies are necessities for the further successful<br />

development of the novel science “Chemical Biology”.<br />

In the context of Chemical Biology, chemical and biological<br />

research in the <strong>FMP</strong> are traditionally excellently interconnected.<br />

Research efforts of the Department of Peptide<br />

Ebene sind nötig, um die Feinstruktur der Protein-Protein-<br />

Kommunikation zu erfassen. Sowohl die Analyse der<br />

Wechselwirkungen zwischen chemischen Resten an Proteinen<br />

und Identifizierung von Proteinsubstrukturen, die<br />

durch Wirkstoffe beeinflussbar sind, als auch das Design<br />

und die Synthese von Verbindungen mit veränderter<br />

Erkennungscharakteristik erfordern chemisches Denken<br />

und chemische Methodologie. Dies macht klar, dass die<br />

Chemie für unseren Bemühungen, die molekulare Basis<br />

des Lebens zu verstehen, zu einer zentralen Wissenschaft<br />

geworden ist. Dieser dramatische Trend hat zur Entstehung<br />

des Begriffs „Chemische Biologie“ geführt, der<br />

alle Arten chemischer Forschung beschreibt, die auf die<br />

Untersuchung biologischer Phänomene gerichtet sind.<br />

Natürlich gibt es Überlappungen mit anderen Gebieten der<br />

Chemie, wie zum Beispiel der Medizinischen und der Bioorganischen<br />

Chemie. Datenaustausch mit einer starken<br />

Strukturbiologie und die Einbeziehung biochemischer, biophysikalischer<br />

und analytischer Methoden sind eine Notwendigkeit<br />

für eine weitere erfolgreiche Entwicklung der<br />

jungen Wissenschaft Chemische Biologie.<br />

Im Kontext der Chemischen Biologie ist die chemische und<br />

biologische Forschung am <strong>FMP</strong> traditionell exzellent vernetzt.<br />

Forschungsarbeiten der Abteilung Peptidchemie


Chemistry and Biochemistry are focused on the molecular<br />

mechanisms of peptide-protein (Peptide Synthesis Group,<br />

Peptide Biochemistry Group) and peptide-lipid interactions<br />

(Peptide-Lipid Interaction Group), leading to a better<br />

understanding of the action of biologically active peptides<br />

on their respective targets. The study of protein-protein<br />

interactions in the cell requires the improvement of the<br />

cellular uptake of peptides and other low-molecular compounds<br />

(Peptide-Lipid Interaction Group). The function of<br />

proteins is often regulated by distinct chemical, posttranslational<br />

modification, which can be analyzed by<br />

newly developed mass spectrometric procedures (Mass<br />

Spectrometric Group). In addition, the department is involved<br />

in methodological studies in order to improve the<br />

chemical synthesis of small-sized proteins, as well as to<br />

synthesize fluorescently labeled peptide analogues for<br />

localization and interaction studies.<br />

Very useful tools for the study of intracellular biological<br />

processes, “caged compounds”, are synthesized and<br />

characterized in the Synthetic Organic Biochemistry<br />

Group. Caged compounds are photolabile, inactive derivatives<br />

of biologically active substances, from which the<br />

und Biochemie zielen auf die molekularen Mechanismen<br />

von Peptide-Protein- (Arbeitsgruppe Peptidsynthese;<br />

Peptidbiochemie) und Peptid-Lipid-Interaktionen (Arbeitsgruppe<br />

Peptid-Lipid Interaktion) und verhelfen zu einem<br />

besseren Verständnis der Wirkung biologisch aktiver Peptide<br />

auf ihre jeweiligen Zielstrukturen. Die Untersuchung<br />

von Protein-Protein Interaktionen in der Zelle erfordert<br />

eine verbesserte Aufnahme der Peptide und anderer kleiner<br />

Moleküle (Arbeitsgruppe Peptid-Lipid Interaktion). Die<br />

Funktion von Proteinen ist oftmals durch bestimmte chemische<br />

posttranslationale Modifikationen reguliert, die<br />

mittels neuartiger massenspektrometrischer Verfahren<br />

analysiert werden können (Arbeitsgruppe Massenspektrometrie).<br />

Darüber hinaus ist die Abteilung an methodologischen<br />

Studien beteiligt, die die chemische Synthese<br />

kleiner Proteinmoleküle verbessern und fluoreszenzmarkierter<br />

Peptidanaloga für Lokalisierungs- und Interaktionsstudien<br />

gewährleisten sollen.<br />

Äußerst nützliche Werkzeuge für die Untersuchung intrazellulärer<br />

biologischer Prozesse, „caged compounds”,<br />

werden in der Arbeitsgruppe Synthetische Organische<br />

Biochemie synthetisiert und charakterisiert. Caged compounds<br />

sind photolabile, inaktive Derivate biologisch<br />

aktiver Substanzen, die aktive Biomoleküle, z. B. einen<br />

active biomolecule, e. g. a transmitter, is rapidly liberated<br />

by UV light, thus allowing the analysis of fast biological<br />

processes in cells.<br />

In <strong>2004</strong>, Chemical Biology at the <strong>FMP</strong> was considerably<br />

strengthened by the installation of the Medicinal<br />

Chemistry Group. A central aim of this group consists in<br />

the creation and development of synthetic methods for the<br />

combinatorial organic chemistry and solid phase organic<br />

synthesis. Focused libraries of potential ligands are generated<br />

in order to find small organic molecules which bind<br />

specifically to selected target proteins, thus assisting in<br />

the analysis of functions and interactions of the proteins.<br />

Naturally, such small molecules could also serve as lead<br />

structures for the design of drug candidates. For analyzing<br />

the biological activity of small-molecule libraries, a<br />

Screening Unit is now established, developing concepts<br />

for the handling of libraries and providing the technical<br />

equipment for testing hundreds and thousands of chemical<br />

compounds.<br />

Transmitter, auf Einwirkung von ultraviolettem Licht hin<br />

freisetzen und so die Analyse schneller biologischer Prozesse<br />

in Zellen ermöglichen.<br />

Im Jahr <strong>2004</strong> wurde die Chemische Biologie am <strong>FMP</strong> durch<br />

die Einrichtung der Arbeitsgruppe Medizinische Chemie<br />

beträchtlich gestärkt. Ein zentrales Ziel der Gruppe ist die<br />

Entwicklung und Etablierung von Methoden für die kombinatorische<br />

organische Chemie und Festphasensynthese.<br />

Fokussierte Bibliotheken potentieller Liganden werden<br />

aufgestellt, um kleine organische Moleküle zu suchen, die<br />

spezifisch an ausgewählte Zielproteine binden. So wird die<br />

Analyse der Funktionen und Interaktionen von Proteinen<br />

unterstützt. Natürlicherweise können solche kleinen Moleküle<br />

auch als Leitstrukturen für das Design von Wirkstoffen<br />

dienen. Um die biologische Aktivität von Bibliotheken<br />

kleiner Moleküle untersuchen zu können, hat das <strong>FMP</strong><br />

eine Screening Unit etabliert, die Konzepte für das Handling<br />

von Substanzbibliotheken erarbeitet und technische<br />

Voraussetzungen für die Testung Hunderter und Tausender<br />

chemischer Verbindungen schafft.<br />

71 Chemical Biology


PEPTIDE SYNTHESIS<br />

Group Leader: Dr. Michael Beyermann<br />

DEVELOPMENT OF A MODEL FOR LIGAND-<br />

RECEPTOR INTERACTION<br />

Insights into the molecular basis of interaction between<br />

peptide ligands and their membrane-embedded receptors,<br />

in particular G-protein-coupled receptors class B, will<br />

open a way for development of new drugs for treatment<br />

of a number of diseases, since those receptors are very<br />

important targets of peptides regulating many essential<br />

biological functions. Those receptors are functional only<br />

when embedded in the membrane, which is why it is difficult<br />

to obtain direct structural information by spectroscopic<br />

methods such as X-ray crystallography or NMR<br />

methods. Indirect methods, such as structure-activity<br />

relationship studies, modifying the ligand or/and receptor<br />

structure, e.g. by point substitutions, and looking at corresponding<br />

effects on ligand-receptor binding/activation,<br />

may give information about interaction modes between<br />

ligand and receptor. The incorporation of light-directed<br />

crosslinkers into ligands gives the possibility to crosslink<br />

the ligand bound to receptors. By this approach, contact<br />

points between ligand and receptor can be determined.<br />

Furthermore, many evidence points to a crucial contribution<br />

of extracellular receptor domains to ligand binding.<br />

Therefore, we are investigating ligand binding to extracellular<br />

receptor domains. From all these studies, which also<br />

require development of efficient chemical and biotechnological<br />

methods for preparation of receptor domains and<br />

constructs as artificial receptors for appropriate structure<br />

analysis in complex with ligands, we will stepwise<br />

deduce an appropriate interaction model, also taking into<br />

consideration whether receptors interact with ligands as<br />

mono- or oligomers.<br />

CRF receptor antagonists showing different<br />

efficiency (1)<br />

Corticotropin-releasing factor (CRF), urocortin I (Ucn I),<br />

sauvagine (Svg), and urotensin (Uts) are non-selective,<br />

endogenous agonists of the G-protein-coupled receptors<br />

CRF1 and CRF2. Determinants of subtype receptor selectivity,<br />

particularly for such long-chain (~40 aa) peptides, are<br />

widely unknown. First subtype (CRF2) selective agonists<br />

have only been discovered on basis of genomic DNA information<br />

and subsequent cDNA cloning. A strikingly different<br />

amino acid motif (VPIG) at the N-terminus of the<br />

selective agonist Ucn II led to CRF2 selective agonists,<br />

when incorporated into non-selective Ucn I and Svg but<br />

not Utn. Receptor antagonists generated by N-terminal<br />

truncation of CRF2 selective VPIG-Ucn I and Ucn II exhibi-<br />

ted significant CRF2/CRF1 selectivity in terms of affinity<br />

(19 and 260 fold, respectively). Replacing the apparent<br />

selectivity motif VPIG in truncated Ucn II by TFH, residues<br />

at corresponding positions of non-selective Ucn I gave the<br />

most selective antagonist for CRF2, exhibiting an about<br />

1500-fold higher affinity for CRF2 compared to CRF1. Most<br />

remarkably, the CRF2/CRF1 selectivity in terms of antagonistic<br />

potencies and receptor affinity of those antagonists<br />

strongly diverge, although no significant intrinsic activity<br />

was found. The quotient of the relative selectivity in terms<br />

of affinity and potency of a certain antagonist may provide<br />

a basis to evaluate its antagonistic efficiency. The antagonistic<br />

efficiency varied between 2.35 and 33.2 for the<br />

peptides investigated, showing that looking at receptor<br />

affinity only in screenings for antagonists as a global measure<br />

may be insufficient to reflect their inhibitory potency.<br />

Dimerization of corticotropin-releasing factor<br />

receptor type 1 is not coupled to ligand binding<br />

(2)<br />

As reported, receptor dimerization of G-Protein-coupled<br />

receptors may influence signaling, trafficking and regulation<br />

in vivo. Up to now, most studies aiming at the possible<br />

role of receptor dimerization in receptor activation and<br />

signal transduction are focused on class 1 GPCRs. We<br />

have investigated dimerization behavior of CRF1 receptors<br />

tagged with fluorescence labels (CFP/YFP) transiently<br />

expressed in HEK293 cells. We measured Fluorescence<br />

Resonance Energy Transfer and found that CRF1 receptors<br />

form mainly dimers. Upon addition of CRF-related agonists<br />

or antagonists, no significant change of the FRET signal<br />

was observed, indicating no change in the dimer-monomer<br />

ratio by ligand binding.<br />

Photoaffinity cross-linking of the corticotropin-releasing<br />

factor receptor type 1 using photoreactive<br />

urocortin analogues (3)<br />

Interaction of peptide ligands to G-protein-coupled receptors<br />

of class B, such as glucagon, secretin and corticotropin-releasing<br />

factor (CRF), is characterized by a common<br />

orientation of two binding domains, in that ligand C-terminus<br />

binds to extracellular receptor N-terminus (high affinity<br />

binding) and receptor juxta-membrane domain binds<br />

ligand N-terminus. N-terminal truncation, particularly of<br />

residues 6-8 in the case of CRF, leads to antagonists, suggesting<br />

that those residues constitute the receptor activating<br />

sequence. Here, we identified by photoaffinity<br />

cross-linking using Bpa-analogues (Bpa: p-benzoyl-L-phenylalanine)<br />

of urocortin (Ucn) interaction domains of the<br />

receptor (CRF1) with individual amino acids. Specific<br />

digestion patterns of ligand-receptor complexes, obtained<br />

using different cleavage methods and SDS-PAGE for frag-


% Intensity<br />

% Intensity<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(a)<br />

Spec #1=>BC=>NFO.7=>SM11[BP=666.5, 13430]<br />

941,36<br />

1240,47<br />

1040,41<br />

1339,52<br />

939,39 1141,44<br />

1139,47<br />

1440,53 1640,58<br />

1739,64<br />

1539,60<br />

0<br />

900,0 1162,8 1425,6 1688,4<br />

Mass (m/z)<br />

1951,2 2214,0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

(b)<br />

ment separation, have shown that 125I-Y-1-Bpa0-Ucn and<br />

125I-Y0-Bpa12-Ucn bind to the second, whilst 125I-Y0-Bpa17- Ucn and 125I-Y0-Bpa22-Ucn bind at the first extracellular<br />

receptor loop. These results show that the suggested activating<br />

sequence, which might penetrate into the transmembrane<br />

segment, is fixed to juxta-membrane domain by<br />

specific interaction of amino acid residues 12, 17 and 22.<br />

Our findings are in conflict with recently published models<br />

in that peptide antagonists bind to receptor N-terminus<br />

enclosing those residues.<br />

Hexa-histidine tag position influences disulfide<br />

pattern (4)<br />

The oxidative folding, particularly the arrangement of disulfide<br />

bonds of recombinant extracellular N-terminal<br />

domains of the corticotropin-releasing factor receptor<br />

type 2a bearing 5 cysteines (C2 to C6) was investigated.<br />

Depending on the position of a His-tag, two types of disulfide<br />

patterns were found. In the case of a N-terminal Histag,<br />

the disulfide bonds C2-C3 and C4-C6 were found, leaving<br />

C5 free, whereas the C-terminal position of the His-tag<br />

led to the disulfide pattern C2-C5 and C4-C6, and leaving<br />

C3 free. The latter pattern is consistent with the disulfide<br />

arrangement of the extracellular N-terminal domain of the<br />

1840,67<br />

Voyager Spec #1=>BC=>NFO.7=>SM35[BP=2042.2, 264]<br />

2042,69<br />

2020,60<br />

1942,18<br />

<strong>2003</strong>,66<br />

2058,56<br />

1939,71 2040,73<br />

0<br />

800 1300 1800 Mass (m/z) 2300 2800 300<br />

2670,7<br />

264,1<br />

FIGURE 1<br />

MALDI-MS spectra of H-(Val-Thr) 10-NH 2<br />

(crude products) synthesized using standard<br />

Fmoc-chemistry (a) and as the alldepsi<br />

isomer (b) (M[H] + calc: 2019.18)<br />

CRF receptor type 1, which has six cysteines (C1 to C6) and<br />

in which C1 is paired with C3. However, binding data of the<br />

two differently disulfide-bridged domains show no significant<br />

differences in binding affinities to selected ligands,<br />

indicating the importance of the C-terminal portion of the<br />

N-terminal receptor domains, particularly the disulfide<br />

bond C4-C6 for ligand binding.<br />

An unexpected side reaction gets a beneficial<br />

tool: N↔O-acyl shifts (5)<br />

N-to-O acyl migrations at serine or threonine residues in<br />

peptides or proteins have previously been observed upon<br />

treatment with strong acids. We observed such shifts, surprisingly,<br />

for the moderately strong acid trifluoroacetic<br />

acid (TFA) used in Fmoc chemistry for the final removal of<br />

all protecting groups. N,O-acyl shifts have not been recognized<br />

as leading to serious side reactions in Fmoc-based<br />

peptide synthesis and, thus, are not even mentioned in<br />

recent textbooks. The extent of undesired N→O shifts<br />

depends on the peptide sequence and even in the case of<br />

TFA may give rise to large amounts of depsipeptide by-products.<br />

Moreover, we found that syntheses of sequences<br />

in which the ester unit appears at appropriate positions<br />

were far more efficient than the syntheses of those with-<br />

Chemical Biology<br />

73


out the ester unit. A final ammonium hydroxide-induced<br />

O→N-shift yielded the authentic peptides in much better<br />

yields. This new method opens a way for efficient synthesis<br />

of difficult sequences, thus facilitating investigations<br />

on the role of individual amino acid residues on structural<br />

stability of the WW domain FBP-28. Compared with other<br />

methods, such as pseudoproline methodology, an important<br />

advantage of the depsipeptide method results from<br />

the fact that the conformation-disrupting modification<br />

introduced by the depsipeptide unit is still present during<br />

chromatographic purification of the deblocked peptide.<br />

The suppression of conformation-induced association<br />

leads to an increased solubility and narrower peaks for<br />

depsi isomers, thus allowing a much more efficient purification.<br />

Group members<br />

Dr. Jana Klose (4)<br />

DC Angelika Ehrlich (SPOT library synthesis)*<br />

Doreen Wietfeld (Doctoral student) (1)*<br />

Sandra Tremmel (Doctoral student) (5)<br />

Oliver Krätke (Doctoral student) (2,3)<br />

Stephan Pritz (Doctoral student)*<br />

Irene Coin (Doctoral student) (5)*<br />

Annerose Klose (Technical assistance peptide chemistry)<br />

Dagmar Krause (Technical assistance peptide purification,<br />

analysis)<br />

Barbara Pisarz (Technical assistance Biacore)**<br />

Bernhard Schmikale (Technical assistance peptide synthesis)**<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

Projekt im Schwerpunktprogramm „Molekulare Sinnesphysiologie“<br />

(SPP 1025)<br />

Michael Beyermann<br />

Deutsche Forschungsgemeinschaft<br />

„Untersuchungen von CRF- und CRF-Rezeptor-Mutanten<br />

zur Entwicklung eines Modells für die Ligandenerkennung<br />

von G-Protein-gekoppelten Rezeptoren der Familie 2“ (TP<br />

A6 im Sonderforschungsbereich 449 „Struktur und Funktion<br />

membranständiger Rezeptoren“)<br />

Michael Bienert, Michael Beyermann, Walter Rosenthal<br />

Deutsche Forschungsgemeinschaft<br />

„Organisation und Funktion eines Transduktionskomplexes<br />

in Sehstäbchen“ (BE 1434/3-3)<br />

Michael Beyermann<br />

* part of period reported<br />

** part-time<br />

Deutsche Forschungsgemeinschaft<br />

„Struktur, Stabilität und Spezifikationen von nichtkatalytischen<br />

Proteindomänen und deren Verwendung als<br />

Werkzeuge für das Design einer stabilen minimalen ß-Faltblattstruktur<br />

und das Verständnis von pathologischen Prozessen“<br />

(TP 2/2-1 in der Forschergruppe 299 „Optimierte<br />

molekulare Bibliotheken zum Studium biologischer Erkennungsprozesse“)<br />

Hartmut Oschkinat, Michael Bienert<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Klose J, Fechner K, Beyermann M, Krause E, Wendt N,<br />

Bienert M, Rudolph R, Rothemund S (2005) Impact of<br />

N-terminal domains for corticotropin-releasing factor<br />

(CRF) receptor-ligand interactions. Biochem, in press<br />

Klose J, Wendt N, Kubald S, Krause E, Fechner K, Beyermann<br />

M, Bienert M, Rudolph R, Rothemund S (<strong>2004</strong>) Hexahistidin<br />

tag position influences disulfide structure but not<br />

binding behavior of in vitro folded N-terminal domain of rat<br />

corticotropin-releasing factor receptor type 2a. Protein Sci<br />

13, 2470-2475<br />

Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian<br />

H, Bienert M, Beyermann M (<strong>2004</strong>) Synthesis of ”Difficult”<br />

Peptide Sequences: Application of a Depsipeptide Technique<br />

to the Jung-Redemann 10- and 26-mers and the<br />

Amyloid Peptide A‚(1-42). Tetrahedron Lett 45, 7519-7523<br />

Eggelkraut-Gottanka R, Klose A, Beck-Sickinger AG, Beyermann<br />

M (<strong>2003</strong>) Peptide (alpha)thioester formation using<br />

standard Fmoc-chemistry. Tetrahedron Lett 44, 3551-3554<br />

Kaupp UB, Solzin J, Hildebrand E, Brown JE, Helbig A,<br />

Hagen V, Beyermann M, Pampaloni F, Weyand I (<strong>2003</strong>) The<br />

signal flow and motor response controlling chemotaxis of<br />

sea urchin sperm. Nature Cell Biol 5, 109-117<br />

Wietfeld D, Fechner K, Heinrich N, Seifert R, Bienert M,<br />

Beyermann M (<strong>2003</strong>) Development of CRF receptor-2<br />

selective peptide ligands. Biopolymers 71, 376<br />

Collaborations<br />

In a number of projects we have collaborated either with<br />

groups within and/or outside the <strong>FMP</strong>, particularly with<br />

L.A. Carpino (University of Massachusetts/USA) on development<br />

of a new method for synthesis of difficult peptides,<br />

with A.G. Beck-Sickinger (University of Leipzig) on preparation<br />

and use of peptide thiol esters for peptide and protein<br />

synthesis, and with U.B. Kaupp (FZ Jülich)/V. Hagen<br />

(<strong>FMP</strong>) on studies of chemotaxis using appropriately caged<br />

peptides. Of particular impact is the joint work with the<br />

Peptide Biochemistry Group.


PEPTIDE LIPID INTERACTION/PEPTIDE<br />

TRANSPORT<br />

Group Leaders: Dr. Margitta Dathe and PD Dr. Johannes<br />

Oehlke<br />

PROPERTIES OF CELLULAR<br />

UPTAKE-MEDIATING PEPTIDES<br />

The application of many potential, biotechnologically available<br />

drugs of e.g. proteinaceous or nucleic acid origin is<br />

limited by their inefficient cellular uptake caused by the<br />

low permeability of the cell membrane. Commonly used<br />

uptake-promoting carrier systems based on cationic lipids<br />

or virus components are hampered by low efficiency, poor<br />

specificity, poor bioavailability, toxicity and immunological<br />

risks. Thus, promising new drugs will not be introduced<br />

in diagnostics and therapy if we are not able to develop<br />

safe, efficient application forms. As an alternative,<br />

during the last decade small peptide carriers designated<br />

as cell-penetrating peptides (CPP) or protein transduction<br />

domains (PTDs) have been introduced as uptake-facilitating<br />

compounds. Covalent linkage or complexation of<br />

such peptides with bioactive polymers up to the size of<br />

proteins and nucleic acids led to highly efficient delivery<br />

into and across a variety of cells, thereby avoiding the<br />

drawbacks of the common delivery systems. Peptide<br />

coupling to potential drug containers such as liposomes<br />

which can be loaded with hydrophobic as well as hydrophilic<br />

compounds provide the additional advantage of<br />

transport of large amounts of drug molecules with unfavorable<br />

properties such as poor solubility and low stability.<br />

Since many of the peptides promote membrane-reorientation<br />

processes involving temporary membrane destabilization<br />

and energy-independent uptake, it has been suggested<br />

that the lipid bilayer of cell membranes is targeted.<br />

Peptides which contain recognition motifs suitable for<br />

addressing well-defined receptor structures at the cell<br />

membrane provide an opportunity for site-specific delivery.<br />

The main goal of our group is the elucidation of the structural<br />

requirements for peptides to deliver covalently or<br />

complex-bound drugs across cell membranes by nonendocytotic<br />

as well as endocytotic mechanisms. The<br />

research efforts in this context are focused on studying<br />

interactions of CPPs with lipid membranes to get mechanistic<br />

insights into transmembrane transport routes and on<br />

the development of peptide-liposome complexes for drug<br />

delivery to the brain (M. Dathe). As a further topic, the<br />

structural requirements for the delivery ability of CPPs are<br />

being studied, using covalently bound peptide nucleic<br />

acids (PNAs) as cargo molecules by pursuing the uptake<br />

into different cell types in comparison with the biological<br />

effects of the PNAs in various systems (J. Oehlke). Additionally,<br />

we are interested in elucidating the structural principles<br />

and the mechanism of action of peptides which<br />

selectively kill bacteria by destroying their cell membrane.<br />

These studies aim at contributing to the development of a<br />

new class of peptidic antibiotics (M. Dathe).<br />

Cellular uptake of PNA after conjugation with<br />

positively and negatively charged ∝-helical<br />

amphipathic, β-sheet forming and unstructured<br />

peptides<br />

Yvonne Wolf, Angelika Ehrlich, Burkhard Wiesner, Michael<br />

Bienert, and Johannes Oehlke<br />

In order to contribute to an elucidation of the structural<br />

requirements for the shuttling ability of cell-penetrating<br />

peptides, we investigated the cellular uptake of a 12-mer<br />

PNA directed against the mRNA of the nociceptin/orphanin<br />

FQ receptor after disulfide bridging with various peptides<br />

showing different structure forming properties, charge<br />

and size (Table). As the lead we used an amide-bound<br />

conjugate of the PNA with the cell-penetrating α-helical<br />

amphipathic model peptide KLALK LALKA LKAAL KLA-NH 2<br />

(KLA). We have shown previously that KLA exhibits up to<br />

tenfold higher cellular uptake and biological activity than<br />

the naked PNA. The cellular uptake was studied by means<br />

of capillary electrophoresis combined with laser-induced<br />

fluorescence detection (CE-LIF). Using this approach a<br />

separate quantification of the conjugate and the naked<br />

PNA generated by cleavage of the disulfide bond in the<br />

reducing environment of the cell interior was possible,<br />

thus avoiding bias of the results by surface adsorption.<br />

Assessment of the cellular uptake into CHO cells and<br />

cardiomyocytes by CE-LIF revealed enrichments within the<br />

cell interior of about two and tenfold for the naked PNA<br />

and its amide bound KLA conjugate, respectively (related<br />

to the external concentration and an experimentally determined<br />

ratio of about 10 µl cell volume/mg protein). Confocal<br />

laser scanning microscopy (CLSM) and fluorescence<br />

activated cell sorting (FACS) supported these results. An<br />

extensive cellular uptake was found also for the analogous<br />

disulfide bridged KLA-PNA-conjugate. But, for reasons<br />

which still remain unclear, the intracellular PNA concentration<br />

in this case only approached that provided externally.<br />

Even strong structural alterations in the peptide part<br />

of the disulfide bridged conjugate did not seriously influence<br />

the extent of uptake into HEK- and CHO cells (Fig. 1),<br />

contradicting speculations about specific structural requirements<br />

for the shuttling ability of peptides. Surprisingly,<br />

after energy depletion an enhanced uptake into CHO cells<br />

as well as into HEK cells was found for conjugates bearing<br />

Chemical Biology<br />

75


Compound Sequence Structural properties<br />

Peptide nucleic acid Fluos-GGA GCA GGA AAG-Cys<br />

KLA Dansyl-G-C-KLALK LALKA LKAAL KLA-NH2 α-helical, amphipathic<br />

KGL Dansyl-G-C-KGLKL KGGLG LLGKL KLG- NH 2 unstructured<br />

ELA Dansyl-G-C-ELALE LALEA LEAAL ELA-NH 2 α-helical, amphipathic<br />

RLA Dansyl-G-C-RLALR LALRA LRAAL RLA-NH 2 α-helical, amphipathic<br />

Penetratin Dansyl-G-C-RQIKI WFQNR RMKWK K-NH 2 poor α-helical amphipathic<br />

VT5 Dansyl-G-C-DPKGDPKGVTVTVTVTVTGKGDPKPG- NH 2 β-sheet, amphipathic<br />

TABLE 1<br />

Components of disulfide-bridged PNA-peptide conjugates.<br />

an acidic helical amphipathic and a ß-sheet forming peptide,<br />

respectively (Fig. 1). It can be inferred from the latter<br />

findings that the uptake under normal conditions can be<br />

counteracted differently by active transport systems in<br />

dependence on both the peptide and the cell type, thus<br />

providing a potential basis for achieving cell selective<br />

cargo delivery.<br />

Peptide transport across lipid bilayers<br />

S. Keller, E. Bárány-Wallje 1, S. Serovy 2, M. Bienert, M.<br />

Dathe<br />

Conflicting reports on the translocation ability of the cellpenetrating<br />

peptides through pure lipid bilayers have<br />

stimulated biophysical studies on the interaction of penetratin,<br />

a peptide capable of transporting large hydrophilic<br />

cargos into the cell with model lipid membranes to compare<br />

its bilayer behavior with the ability to enter cells. The<br />

results, which provided no evidence for peptide translocation<br />

through pure lipid bilayers, support suggestions<br />

that the highly cationic peptide enters living cells by an<br />

endocytotic pathway rather then by disturbing the integ-<br />

1) Dept. of Biochemistry and Biophysics, Stockholm University<br />

2) Junior Research Group Biophysics<br />

rity of the lipid matrix and formation of transient and local<br />

lipid structures.<br />

Brain targeting by apolipoprotein E-peptideliposome<br />

complexes<br />

I. Sauer, O. Liesenfeld 3, H. Scharnagel 4 , K. Weisgraber 5,<br />

M. Bienert, M. Dathe<br />

The treatment of central nervous system diseases is a particular<br />

challenge. Different from blood vessels of other<br />

organs which are equipped with small pores, the tightly<br />

connected brain capillary endothelial cells forming the<br />

blood-brain barrier (BBB) prevent paracellular transport.<br />

Furthermore, most potential drugs and modern molecular<br />

tools are neither able to diffuse across the cell layer nor<br />

are accessible to the specialized receptor-mediated transport<br />

systems. An approach to overcome unfavorable properties<br />

provides for drug incorporation into carriers. Liposomes<br />

have emerged as a very potential drug container.<br />

3) Institute for Infectious Medicine, Charité Campus Benjamin Franklin,<br />

<strong>Berlin</strong><br />

4) Dept. of Clinical Chemistry, University Hospital Freiburg im Breisgau<br />

5) Gladstone Institute of Cardiovascular Disease, San Francisco<br />

6) NMR-Spectroscopy Group, <strong>FMP</strong>


FIGURE 1<br />

Quantities of PNA-Cys in the extracts of HEK- and CHO-cells exposed before to 0.2 µM PNA alone or disulfide bridged<br />

with various peptides (table) for 60 min at 37 °C without (normal) and with energy depletion (after 60 min preincubation<br />

with 2 deoxy-glucose/Na-azide 25/10 mM). Each bar represents the mean of three samples + SEM.<br />

The solvent-containing interior of the nanoscopic particles<br />

self-assembled from lipids can be loaded with polar drugs<br />

and the hydrophobic shell with non-polar compounds.<br />

Equipped with an appropriate transport-mediating compound<br />

that recognizes membrane constituents of brain<br />

capillary endothelial cells, thousands of incorporated drug<br />

molecules could be transported.<br />

It was our objective (M. Dathe and coworkers) to develop<br />

peptidic vectors which recognize the low density lipoprotein<br />

receptor (LDL receptor) on brain capillary endothelial<br />

cells, and to develop strategies of their efficient coupling<br />

to liposomal carriers. The receptor was found to be highly<br />

expressed on capillary endothelial cells of different species.<br />

A peptide encompassing the highly cationic tandem<br />

dimer peptide (141-150)2 derived from the LDL receptorbinding<br />

domain of apolipoprotein E (apoE) was used as<br />

vector sequence. A cost-effective approach to coat liposomes<br />

with an apoE peptide and to induce the structure<br />

that enables binding to the LDL receptor relies on the<br />

adsorption to the liposomal surface. Amphipathic and<br />

transmembrane helices and fatty acid chains served as<br />

anchoring domains. Since coating vesicle surfaces with<br />

peptides could promote the destabilization of liposomal<br />

preparations rendering vesicles leaky and peptides<br />

released in circulation could cause perturbation of cell<br />

membranes, their stable anchorage at the liposomal surface,<br />

the potential to assume a receptor-recognizing helical<br />

conformation, their ability to conserve the integrity of<br />

the vesicles, and their toxic effect were evaluated.<br />

Complexes of liposomes with a dipalmitoyl-modified apoE<br />

peptide proved to be the most promising to combine the<br />

purposes of a stable drug container and targeting to brain<br />

capillary endothelial cells. Furthermore, covalent coupling<br />

of the cationic apoE peptide onto sterically stabilized liposomes<br />

provide stable complexes.<br />

The peptide-coated liposomes were efficiently internalized<br />

into endothelial cells of brain microvessels by an energydependent<br />

endocytotic process (Figure 1). Low peptide<br />

affinity to the LDL receptor and internalization into cells<br />

with up- and down-regulated receptor level pointed to the<br />

dominating role of an LDL receptor-independent transport<br />

route. Studies to influence unspecific charge interaction<br />

of the cationized liposomes with anionic membrane constituents<br />

suggested that the ubiquitously expressed cell<br />

matrix component heparan sulfate proteoglycan (HSPG)<br />

played a decisive role in the uptake process.<br />

Chemical Biology<br />

77


The efficient uptake via HSPG-involving endocytosis may<br />

provide a promising strategy for facilitated drug delivery<br />

across the blood brain barrier. Furthermore, the observed<br />

internalization emphasized the potential of cationic peptides<br />

to ferry complex drug carriers into cells, and the<br />

adsorptive coupling strategy offers great adaptability to a<br />

broad spectrum of ligands destined to diverse biological<br />

targets.<br />

Group members<br />

Ines Sauer (Doctoral student)<br />

Sandro Keller (Doctoral student)*<br />

Yvonne Wolf (Doctoral student)*<br />

Axel Wessolowki (Doctoral student)*<br />

Heike Nikolenko (Technical assistance)<br />

Gabriela Vogelreiter (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

“Linear and cyclic hexapeptides: interaction with membranes<br />

and modulation of selective cell-lytic processes” (DA<br />

324/4-1, 4-2)<br />

Margitta Dathe<br />

* part of period reported<br />

FIGURE 2<br />

Confocal laser scanning microscopic picture of mouse<br />

brain capillary endothelial cells exposed to fluorescence-labeled<br />

and apoE peptide-covered liposomes at<br />

T = 37 °C for t = 30 min. Uptake is documented by the<br />

spotted fluorescence within the cytoplasm.<br />

Deutsche Forschungsgemeinschaft<br />

“Passage of the blood-brain barrier using surface-modified<br />

nanosuspensions and apolipoprotein-E peptidecovered<br />

carrier systems” (DA 324/5-1)<br />

Margitta Dathe<br />

Deutsche Forschungsgemeinschaft<br />

“Hirntargeting mittels oberflächenmodifizierter Nanosuspensionen<br />

und Apolipoprotein E-Peptid beladener<br />

Trägersysteme“ (Teilprojekt 7B der Forschergruppe 463<br />

“Innovative Arzneistoffe und Trägersysteme – Integrative<br />

Optimierung zur Behandlung entzündlicher und hyperproliferativer<br />

Erkrankungen“)<br />

Margitta Dathe<br />

European Community<br />

“Investigation of structural prerequisites for cell-selective<br />

drug uptake mediated by peptide vectors” (Subproject of<br />

QLK3-CT-2002-01989 “Target specific delivery systems for<br />

gene therapy based on cell penetrating peptides”)<br />

Johannes Oehlke, M. Bienert<br />

European Community<br />

“Interaction of cell-penetrating with artificial lipid membranes<br />

and peptide translocation through lipid layers”<br />

(Subproject of QLK3-CT-2002-01989 “Target specific deli-


very systems for gene therapy based on cell penetrating<br />

peptides”)<br />

Margitta Dathe, Michael Bienert<br />

Deutscher Akademischer Austauschdienst<br />

“Untersuchungen zu strukturellen Voraussetzungen für<br />

einen zellselektiven Wirkstofftransport durch Peptidvektoren“<br />

(DAAD-Stipendium – 3-monatiger Studienaufenthalt an<br />

der Universität Montpellier, Frankreich)<br />

Yvonne Wolf<br />

Deutscher Akademischer Austauschdienst<br />

“Interaction of amphipathic ApoE-peptides with membranes:<br />

modulation of a receptor-mediated drug transport into<br />

the brain”<br />

(DAAD-Stipendium: 4-monatiger Studienaufenthalt am<br />

J. David Gladstone Institute, San Francisco, USA<br />

Ines Sauer<br />

Deutscher Akademischer Austauschdienst<br />

“Lineare und cyclische Hexapeptide: Interaktion mit Membranen<br />

und Modulation selektiver zelllytischer Prozesse“<br />

(DAAD-Stipendium: 2-monatiger Studienaufenthalt am<br />

Karolinska Institut, Stockholm, Schweden)<br />

Axel Wessolowski<br />

Organizing committee of the Congress “Cellular Transport<br />

Strategies for Targeting of Epitopes, Drugs and Reporter<br />

Molecules“, (Budapest <strong>2003</strong>), Conference grant<br />

Ines Sauer<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Dathe M, Nikolenko H, Klose J, Bienert M (<strong>2004</strong>) Cyclization<br />

increases the antimicrobial activity and selectivity of<br />

arginine- and tryptophan-containing hexapeptides. Biochemistry<br />

43, 9140-9150<br />

Wessolowski A, Bienert M, Dathe M (<strong>2004</strong>) Antimicrobial<br />

activity of arginine- and tryptophan-rich hexapeptides: the<br />

effect of aromatic clusters, D-amino acid substitution and<br />

cyclization. J Pept Res 64, 159-169<br />

Oehlke J, Wallukat G, Wolf Y, Ehrlich A, Wiesner B, Berger<br />

H, Bienert M (<strong>2004</strong>)<br />

Enhancement of intracellular concentration and biological<br />

activity of PNA after conjugation with a cell-penetrating<br />

synthetic model peptide. Eur J Biochem 271, 3043-3049<br />

Hällbrink M, Oehlke J, Papsdorf G, Bienert M (<strong>2004</strong>)<br />

Uptake of cell-penetrating peptides is dependent on the<br />

peptide-to-cell-ratio rather than on peptide concentration.<br />

Biochim Biophys Acta 1667, 222-228<br />

Sauer I, Dunay IR, Weisgraber K, Bienert M, Dathe M<br />

(2005) An apolipoprotein E-derived peptide mediates<br />

uptake of sterically stabilized liposomes into brain capillary<br />

endothelial cells. Biochemistry 44, 2021-2029<br />

Collaborations<br />

Prof. Oliver Liesenfeld, Dept. of Medical Microbiology and<br />

Immunology of Infection, Charité Campus Benhamin<br />

Franklin, <strong>Berlin</strong><br />

Dr. Hubert Scharnagel, Dept. of Clinical Chemistry, University<br />

Hospital Freiburg im Breisgau<br />

Prof. Karl Weisgraber, Gladstone Institute of Cardiovascular<br />

Disease, San Francisco<br />

Chemical Biology<br />

79


PEPTIDE BIOCHEMISTRY<br />

Group Leader: Dr. Hartmut Berger<br />

CORTICOTROPIN-RELEASING FACTOR<br />

RECEPTOR TYPE 1 (CRFR1): REGULATION<br />

OF THE COUPLING TO DIFFERENT G-PRO-<br />

TEINS AND THE TWO-DOMAIN RECEPTOR<br />

MODEL<br />

Corticotropin-releasing factor (CRF) receptor type 1<br />

(CRFR1) is a G-protein-coupled receptor (GPCR) of the<br />

class B, secretin receptor family, which is activated by<br />

several peptide ligands and which is thought to be the<br />

principal physiological mediator of stress responses. For<br />

the activation of the receptor by peptide ligands, a twodomain<br />

model has been established by several authors:<br />

the N-terminal domain of the receptor (N-domain) is required<br />

for ligand binding, whereas the juxtamembrane<br />

region, consisting of transmembrane regions and intervening<br />

loops (J-domain), is involved in the activation of the<br />

signaling steps by the ligand, bitethered between N and J.<br />

Furthermore, whereas peptide antagonists bind predominantly<br />

to the N-domain with high affinities, non-peptide<br />

antagonists bind only to the J-domain. We have provided<br />

evidence that the CRFR1 expressed in HEK (HEK-CRFR1)<br />

cells couples to G s- and G i-proteins with different characteristics.<br />

The two-domain binding model and our model on<br />

G-protein coupling regard different aspects of the activation<br />

of the CRFR1. Therefore, it is important to investigate<br />

whether they can be fitted into one combined model.<br />

For this reason, we studied the regulation of G-protein<br />

coupling of the CRFR1 in HEK-CRFR1 cell membranes and<br />

the influence of peptide and non-peptide antagonists on<br />

the coupling of the receptor, using the GTPγ 35S binding<br />

assay (Hartmut Berger, Nadja Heinrich, Monika Georgi,<br />

Doreen Wietfeld*, Jens Furkert**). Corresponding to<br />

biphasic binding of the ligand to the CRFR1, G s- and G i-protein<br />

coupling of the receptor were seen in the biphasic<br />

ligand-evoked stimulation of GTPγ 35S binding to HEK-<br />

CRFR1 membranes (Fig. 1). G s-activation could be separated<br />

by inactivation of G i with pertussis toxin, G i activation<br />

by pre-stimulation of the cells with a ligand, which only<br />

desensitized Gs activation (Fig. 1). The specificity of G s and<br />

G i activation was confirmed by immunoprecipitation of<br />

GTPγ 35S-bound G α subunits. By this means and a substantial<br />

accumulation of inositol phosphates (IP3) in cells, it<br />

was found that the receptor also activates G q-proteins.<br />

* Peptide Synthesis Group,<br />

**Cellular Biology/Molecular Medicine Group<br />

Studying the characteristics of the coupling of CRFR1 to<br />

G s, G i, and G q in more detail, we developed the following<br />

model for the activation of the signaling by CRFR1 in HEK<br />

cells. A peptide agonist ligand binds to a high-affinity, lowcapacity<br />

receptor binding site activating G s-protein and<br />

adenylate cyclase with high ligand potency. At higher concentration<br />

the ligand additionally binds to one or more lowaffinity,<br />

high-capacity sites of which the main part remains<br />

non-coupled, however a small number couples to G i-proteins,<br />

attenuating the ligand-stimulated production of<br />

cAMP. The activation of the G-proteins is accomplished by<br />

increasing the affinity of the nucleotide-binding site in the<br />

G α chain for GTP, the affinity of GTPγS to G i being stronger<br />

increased as compared to G s. Very high ligand concentrations<br />

also stimulate IP3 accumulation through activation<br />

of G q and, in addition, through a pertussis toxin-dependent<br />

way, obviously by activation of phospholipase C by the G βγ<br />

chain released from G i when G i is activated. Stimulation of<br />

the receptor by ligands desensitizes G s and G q activation,<br />

but not G i, so that the inositol phosphate pathway is about<br />

half-desensitized.<br />

From our findings it seems clear that the CRFR1 can be<br />

added to the growing list of GPCRs that simultaneously<br />

couple to unrelated G-proteins, possibly through different<br />

active receptor states and/or different affinities of the<br />

G-proteins to one or more such states. To get more insight<br />

into these possibilities, we studied the influence of peptide<br />

and non-peptide antagonist on the G-protein coupling,<br />

on the basis of the two-domain model for CRFR1. The peptide<br />

antagonist α-helical CRF(9-41), assumed to bind predominantly<br />

to the N-domain, antagonized G s as well as G i<br />

coupling competitively with equal potencies, suggesting<br />

that similar ligand binding to N is responsible for G s as well<br />

as G i activation. However, the non-peptide antalarmin,<br />

assumed to bind exclusively to the J-domain, antagonized<br />

Gs activation competitively but the G i response non-competitively<br />

(Fig. 2). This should mean that nonpeptide antagonists<br />

antagonize G s and G i coupling of CRFR1 by competitive<br />

and allosteric mechanisms, respectively, and that<br />

different conformation ensembles of two possibly overlapping<br />

J domains of the receptor are responsible for the<br />

coupling to G s and G i.<br />

Taken together, it is concluded that CRFR1 signals through<br />

G s-, G i-, and G q-proteins. The concentrations of the stimulating<br />

ligand and GTP and, furthermore, selective desensitization<br />

may be part of a regulatory mechanism determining<br />

the actual ratio of the coupling of CRFR1 to different<br />

G-proteins. G s and G i coupling of the receptor can be described<br />

within the framework of the two-domain receptor


FIGURE 1<br />

G s- and G i-protein coupling of CRF<br />

receptor type 1 as measured by sauvagine-stimulated<br />

binding of GTPγ 35S to<br />

membranes obtained from HEK cells<br />

expressing the receptor.<br />

FIGURE 2<br />

Competitive and noncompetitive antagonism<br />

by the non-peptide antalarmin of,<br />

respectively, G s and G i coupling of the<br />

CRF receptor type 1 expressed in HEK<br />

cells. G-protein coupling was measured<br />

as sauvagine-stimulated binding of<br />

GTPγ 35S to membranes obtained from<br />

the cells after inactivation of G i by pertussis<br />

toxin (Gs activity left, A) or desensitization<br />

of Gs coupling by sauvagine<br />

(G i activity left, B).<br />

Chemical Biology<br />

81


model in that they are accomplished by different active<br />

conformations of the J-domain.<br />

Our group was also engaged in receptor assays for studying<br />

structure-activity relationships of CRF peptides (Klaus<br />

Fechner, Gabriela Vogelreiter, results are given by the Peptide<br />

Synthesis Group).<br />

Group members<br />

Dr. Nadja Heinrich**<br />

Dr. Klaus Fechner*<br />

Monika Georgi (Technical assistance)<br />

Gabriela Vogelreiter (Technical assistance)**<br />

Selected Publications (<strong>FMP</strong> authors in bold)<br />

Wietfeld D, Heinrich N, Furkert J, Fechner K, Beyermann<br />

M, Bienert M, Berger H (<strong>2004</strong>) Regulation of the coupling<br />

to different G proteins of rat corticotropin-releasing factor<br />

receptor type 1 in human embryonic kidney 293 cells. J<br />

Biol Chem 279, 38386-38394<br />

Oehlke J, Wallukat G, Wolf Y, Ehrlich A, Wiesner B, Berger<br />

H, Bienert M (<strong>2004</strong>) Enhancement of intracellular concentration<br />

and biological activity of PNA after conjugation<br />

with a cell-penetrating synthetic model peptide. Eur J Biochem<br />

271, 3043-3049<br />

* part of period reported<br />

** part-time


MASS SPECTROMETRY<br />

Group Leader: Dr. Eberhard Krause<br />

MASS SPECTROMETRY-BASED PROTEIN<br />

ANALYSIS<br />

Recent results emphasize the role of mass spectrometry<br />

as an essential tool for proteom studies in the field of cellular<br />

biology. The identification and quantitation of very<br />

complex protein mixtures as well as of low abundance<br />

signaling proteins require highly sensitive analytical techniques.<br />

Based on the methodological advances in peptide<br />

and protein ionization (awarded with the Nobel Prize in<br />

2002) and new powerful fragmentation techniques<br />

(MS/MS), state of the art mass spectrometry is able to provide<br />

very accurate and sensitive mass measurements as<br />

well as sequence information of peptides and high molecular<br />

weight proteins. The MS group contributed to several<br />

proteom projects which include the identification of<br />

specific proteins of molecular networks in cells following<br />

functional stimulation and the elucidation of functionally<br />

important post-translational modifications of proteins. In<br />

order to gain insight into the ionization behavior of peptides<br />

and proteins, the group is performing methodological studies.<br />

Using chemical derivatization strategies and stable<br />

isotope-labeling, improved methods are being developed<br />

for the MS-based analysis of phosphoproteins and for the<br />

high sensitive identification and quantitation of low-expressed<br />

signaling proteins, respectively. Both the proteomics<br />

work and the methodological studies are being carried out<br />

in collaboration with groups from both within and outside<br />

the <strong>FMP</strong>.<br />

Examination of erythropoietin receptor functions<br />

using different proteomic strategies<br />

The interaction between erythropoietin (EPO) and its<br />

receptor, which is expressed on late erythroid progenitor<br />

cells, initiates multiple signaling pathways by the recruitment<br />

of cytosolic src homology 2 (SH2) domain-containing<br />

proteins to the phosphorylated receptor. The phosphorylation<br />

of receptor tyrosine residues is mainly due to the<br />

activity of the Janus family kinase 2 (JAK2), a receptorassociated<br />

enzyme which is undergoing transphosphorylation<br />

after receptor dimerization. Studies using mutated<br />

forms of the EPO receptor (EPOR) have identified single<br />

tyrosine residues that are critical for the recruitment of<br />

distinct signaling proteins. However, it is still difficult to<br />

relate the function of single tyrosine residues/receptor<br />

subdomains or distinct signaling molecules/pathways to<br />

the induction of proliferative, antiapoptotic or differentiative<br />

cellular responses initiated after the binding of EPO to<br />

its receptor. Proteomic strategies seem to have an enor-<br />

mous potential in the analysis of changes in the abundance<br />

of proteins, but also in their post-translational modification.<br />

A major challenge in creating phosphoproteome<br />

maps, however, remains the fact that phosphorylated<br />

regulatory molecules are expressed at rather low levels.<br />

We applied different proteomic strategies to the investigation<br />

of structure-function relationships in the EPOR signaling<br />

complex. Using a set of EPOR mutants expressed in an<br />

identical cellular background (Fig. 1), we focused on rapid<br />

changes in the tyrosine phosphorylation state of proteins.<br />

However, the analysis using the classical approach combining<br />

two-dimensional gel electrophoresis (2-DE) and<br />

identification by MALDI-MS revealed that low expressed<br />

signaling proteins cannot be detected by this technique. An<br />

alternative strategy using 1-D gel separation of phosphoproteins<br />

and LC-tandem mass spectrometry (MS/MS)<br />

allowed us to identify proteins which are involved in intracellular<br />

signaling. Besides proteins of already established<br />

pathways, proteins could be identified which have not been<br />

linked to EPO-induced signalling so far. Thus, the phosphorylation<br />

of SUMO-1 has been suggested to be part of strategies<br />

repressing cytokine induced signals in analogy to<br />

the covalent ubiquitin attachment. We identified several<br />

GTP binding proteins as well as proteins involved in the<br />

modification/regulation of G-proteins which have not been<br />

reported to be involved in EPOR induced regulatory events.<br />

In addition, a stable isotope labeling method (Fig. 2) was<br />

used for quantitative analysis of gel-separated proteins of<br />

the EPOR signaling. The results show that identification<br />

and relative quantification of more than 200 EPOR-dependent<br />

proteins could be achieved. We can conclude from<br />

our experiments that a proteomic strategy based on a<br />

combination of one-dimensional gel separation, in-gel<br />

18O-labeling, and LC-MS/MS provides the sensitivity<br />

required for the detection of low expressed signaling<br />

molecules and offers the potential for a more comprehensive<br />

analysis of complex cellular responses (cooperation<br />

with T. Bittorf and S. Körbel, Institute for Medical Biochemistry<br />

and Molecular Biology, University of Rostock).<br />

Chemical derivatization strategies for analysis<br />

of post-translational modifications of proteins<br />

Esterification of the hydroxyl functions of threonine, serine,<br />

and tyrosine with a phosphate group is the ubiquitous<br />

modification of proteins which is involved in many signal<br />

transduction processes, for example, cell differentiation,<br />

proliferation, energy storing, and apoptosis. Although<br />

mass spectrometry has become a preferred method to<br />

analyze phosphorylated proteins, the determination of the<br />

site of phosphorylation, especially for high molecular<br />

weight proteins, remains far from routine. The low abun-<br />

Chemical Biology<br />

83


FIGURE 1<br />

Schematic representation of wild-type<br />

and mutated EGF/EPO receptors. All<br />

receptors consist of the human EGFR<br />

ligand-binding domain and the transmembrane<br />

and cytoplasmatic domains<br />

of the murine EPOR.<br />

FIGURE 2<br />

Scheme for the identification and relative<br />

quantitation of EPOR-dependent<br />

phosphoproteins by enzymatic isotope<br />

labeling.


dance of phosphoproteins, the difficulty of obtaining full<br />

sequence coverage by specific proteolysis, and the low<br />

ionization efficiency of phosphopeptides compared with<br />

their non-phosphorylated analogs may prevent the detection<br />

of specific phosphopeptides. In our group, the betaelimination/Michael<br />

addition reaction was used to replace<br />

the phosphate moiety of phosphoserine or phosphothreonine<br />

peptides by a group which should give rise to remarkably<br />

enhanced signal intensities in MALDI mass spectrometry.<br />

Several N- and S-nucleophiles were studied with<br />

regard to enhanced ionization efficiency, and optimized<br />

reaction conditions for beta-elimination/addition procedures<br />

were developed. Based on in-gel derivatization with<br />

2 phenylethanethiol (PET) we demonstrate that enhanced<br />

ionization efficiencies can be used for sensitive MS analysis<br />

of protein phosphorylation. This method was applied<br />

to determine the phosphorylation of Stat1. Stat proteins<br />

(signal transducers and activators of transcription) are<br />

cytokine-responsive transcription factors which play an<br />

important role in the regulation of gene expression. Several<br />

post-translational modifications are required for activation,<br />

whereas serine phosphorylation at position 727 is<br />

necessary for transcriptional activity. The derivatization<br />

allowed direct MS detection of the peptide sequence<br />

covering the phosphoserine position 727 of Stat1, which is<br />

normally suppressed in complex peptide mixtures.<br />

In addition, mass spectrometric analysis was able to provide<br />

evidence contradicting recent results on the role of<br />

Arg31 methylation in the DNA binding of Stat1. MS and<br />

tandem MS measurements clearly revealed that arginine<br />

in position 31 of Stat1 is not methylated to a significant<br />

extent. In conclusion, alternative explanations to methylation<br />

have to be explored to understand the molecular<br />

mechanism of reduced interferon sensitivity of tumor cells<br />

which accumulate high levels of the methyltransferase<br />

inhibitor methylthioadenosine (in cooperation with T.<br />

Meissner and U. Vinkemeier, <strong>FMP</strong>).<br />

Group members<br />

Dr. Michael Schümann<br />

Clementine Klemm (Doctoral student)<br />

Heidi Lerch (Technical assistance)<br />

Kareen Tenz (Technical assistance)*<br />

Stephanie Lamer (Technical assistance)*<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Simultane Untersuchung Erythropoietinrezeptor-abhängiger<br />

Signale durch funktionelle Proteomanalyse“ (BI 599/2)<br />

Thomas Bittorf (University of Rostock), E. Krause<br />

* part of period reported<br />

Bundesministerium für Bildung und Forschung<br />

„Identifizierung hepatozellulärer Biomarker“ (0312618/UA<br />

Massenspektrometrie) Eberhard Krause<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Kleuss C, Krause E (<strong>2003</strong>) G alpha s is palmitoylated at the<br />

N-terminal glycine residue. EMBO J 22, 826-832<br />

Czupalla C, Culo M, Müller EC, Brock C, Reusch HP,<br />

Spicher K, Krause E, Nürnberg B (<strong>2003</strong>) Identification and<br />

characterization of the autophosphorylation sites of phosphoinositide<br />

3-kinase isoforms beta and gamma. J Biol<br />

Chem 278, 11536-11545<br />

Kraus M, Bienert M, Krause E (<strong>2003</strong>) Hydrogen exchange<br />

studies on Alzheimer’s amyloid-beta peptides by mass<br />

spectrometry using matrix-assisted laser desorption/ionization<br />

and electrospray ionization. Rapid Commun Mass<br />

Spectrom 17, 222-228<br />

Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian<br />

H, Bienert M, Beyermann M (<strong>2004</strong>) Synthesis of “difficult“<br />

peptide sequences: application of a depsipeptide technique<br />

to the Jung-Redemann 10- and 26-mers and the amyloid<br />

peptide Abeta(1-42). Tetrahedron Lett 45, 7519-7523<br />

Baumgart S, Lindner Y, Kühne R, Oberemm A, Wenschuh<br />

H, Krause E (<strong>2004</strong>) The contributions of specific amino acid<br />

side chains to signal intensities of peptides in matrix-assisted<br />

laser desorption/ionization mass spectrometry. Rapid<br />

Commun Mass Spectrom 18, 863-868<br />

Klemm C, Schröder S, Glückmann M, Beyermann M,<br />

Krause E (<strong>2004</strong>) Derivatization of phosphorylated peptides<br />

with S- and N-nucleophiles for enhanced ionization efficiency<br />

in matrix-assisted laser desorption/ionization mass spectrometry.<br />

Rapid Commun Mass Spectrom 18, 2697-2705<br />

Meissner T, Krause E, Lödige I, Vinkemeier U (<strong>2004</strong>) Arginine<br />

methylation of STAT1: a reassessment. Cell 119, 587-589<br />

Collaborations<br />

Thomas Bittorf, University of Rostock<br />

Phosphoproteomics of EPO receptor signaling<br />

Ursula Gundert-Remy, Axel Oberemm, BfR <strong>Berlin</strong><br />

Proteom analysis for risk assessment of chemicals<br />

Christiane Kleuss, Institute for Pharmacology, Charité –<br />

University Medicine <strong>Berlin</strong><br />

Modifications of G-proteins<br />

Louis A. Carpino, University of Massachusetts, Amherst,<br />

MA, USA<br />

Side reaction in peptide synthesis<br />

Chemical Biology<br />

85


SYNTHETIC ORGANIC BIOCHEMISTRY<br />

Group Leader: Dr. Volker Hagen<br />

CAGED COMPOUNDS<br />

Controlled temporal and spatial release of biomolecules<br />

from photolabile precursors, called caged compounds,<br />

have become increasingly interesting in the chemical and<br />

biological communities. When caged, a biomolecule is<br />

rendered biologically inactive by derivatization with a<br />

photolabile protecting or caging group. As a result, it can<br />

be applied to cells under steady state conditions without<br />

evoking biological responses. Flash photolysis using UV<br />

light cleaves the modifying group and rapidly generates<br />

the biologically active molecule. Because photolysis of<br />

caged compounds generates effectors in situ, much faster<br />

and more spatially uniform, concentration jumps can be<br />

triggered than with other techniques. There are no diffusion<br />

problems and no spatial inhomogeneity problems<br />

with addition of substrates. Desensitization is minimized.<br />

Caging and uncaging of biomolecules are widely used for<br />

studies of mechanisms and the kinetics of cellular processes.<br />

Other applications of photoremovable protecting<br />

groups which are currently being explored are time resolved<br />

X-ray studies, protein folding, gene expression control,<br />

and also combinatorial chemistry and photolithography.<br />

Caged compounds must meet specific requirements. They<br />

should undergo fast and highly efficient photochemical<br />

reactions and display high molar absorptivities at wavelengths<br />

>300 nm, or better >350 nm. Furthermore, they<br />

should be sufficiently soluble in aqueous solutions, stable<br />

towards solvolysis, and biologically inert. Sometimes<br />

membrane-permeability is required. Commonly used<br />

caged compounds do not meet these requirements, therefore<br />

the design of novel caging groups and the development<br />

of novel caged biomolecules are necessary. Furthermore,<br />

a comparatively small number of caged compounds<br />

exists at present and the variety of applications is such<br />

that it is desirable to have a range of compounds with different<br />

characteristics to choose from.<br />

Our group deals with the development of novel caging<br />

groups and the synthesis, characterization and application<br />

of caged compounds. In the past few years, we developed<br />

[5,7-bis(carboxymethoxy)coumarin-4-yl]methyl<br />

(5,7-BCMCM),<br />

[7,8-bis(carboxymethoxy)coumarin-4-yl]methyl<br />

(7,8-BCMCM),<br />

{7-[bis(carboxymethyl)amino]coumarin-4-yl}methyl<br />

(BCMACM),<br />

[6,7-bis(ethoxycarbonylmethoxy)coumarin-4-yl]methyl<br />

(BECMCM),<br />

[7-(diethylamino)-α-methylcoumarin-4-yl]methyl<br />

(DEAMCM),<br />

α-carboxy-4,5-dimethoxy-2-nitrobenzyl (CDMNB),<br />

and 4-carboxymethoxy-2-hydroxycinnamoyl (CMHC)<br />

moieties as novel caging groups. Nearly all these caging<br />

groups bear anionic substituents which confer high<br />

aqueous solubility. Furthermore, the coumarinylmethyl<br />

caging groups absorb at wavelengths >350 nm and therefore<br />

allow uncaging at long-wavelength irradiation.<br />

Using the novel coumarinylmethyl protecting groups and<br />

our earlier introduced caging groups, we prepared improved<br />

caged versions of cyclic nucleoside monophosphates<br />

(cNMPs). Their usefulness was demonstrated in physiological<br />

studies of different types of cyclic nucleotide-gated<br />

ion channels of olfactory sensory neurons (B. Wiesner,<br />

<strong>FMP</strong>; A. Menini, Trieste; K. Benndorf, Jena) and of sperm<br />

(U. B. Kaupp, Jülich). The most useful caged cNMPs are<br />

the BCMACM, BCMCM and BECMCM-caged derivatives.<br />

We could show that photocleavage of these coumarinylmethyl-caged<br />

compounds was possible with two-photon<br />

excitation as well (collaboration with B. Wiesner, <strong>FMP</strong>)<br />

and that the liberation of the cNMPs occur in the nanosecond<br />

time scale. A fluorescence spectroscopic method for<br />

the calculation of the rate constants of the steps of the<br />

photolysis pathways was developed (collaboration with J.<br />

Bendig, <strong>Berlin</strong> and R. Schmidt, Frankfurt/Main). The high<br />

soluble BCMACM-caged compounds allow unprecedented<br />

large instantaneous steps of the cNMP concentration.<br />

Using membrane-permeable BECMCM-caged cGMP and<br />

cAMP, it was demonstrated for the first time that cGMP<br />

promotes the influx of Ca 2+ into sperm of sea urchin or starfish<br />

and it succeeds in combination with caged resact the<br />

identification of the motor response in free swimming<br />

sperm (Kaupp, Jülich).<br />

The CDMNB group was used for caging and uncaging of<br />

the vanilloid receptor agonist capsaicin (collaboration with<br />

S. Frings, Heidelberg). Caged capsaicin is a novel tool for<br />

kinetic examinations of TRPV1 channels in somatosensory<br />

neurons. First applications of CDMNB-caged capsaicin<br />

to noniceptors from rat dorsal root ganglia confirmed that<br />

it can be used as a phototrigger for the activation of noniceptors<br />

in physiological studies.<br />

The group was also concerned with the development of<br />

caged protons. Protons interact with all proteins, which<br />

modulate their structure and their catalytic properties.<br />

Therefore protons trigger events in protein folding/unfold-


ing and play a crucial role in cellular signal transduction.<br />

Kinetic studies of all these processes may be aided by<br />

photoactivatable proton precursors for the generation of<br />

rapid pH jumps. A number of caged protons have been<br />

described, but they have a lot of disadvantages. We synthesized<br />

and characterized caged protons based on<br />

variants of our newly introduced 7-(dimethylamino)coumarinylmethyl<br />

(DMACM) caging group. The novel caged proton<br />

sodium DMACM sulfate exhibits a photorelease rate<br />

constant of at least 5x10 8 s -1, long-wavelength absorption<br />

properties, a high extinction coefficient and a high quantum<br />

yield. Furthermore, DMACM sulfate is very easily soluble<br />

in water. The combination of high photosensitivity and<br />

high solubility allows to induce large pH jumps. We found<br />

also sensitivity of the compound to two-photon photolysis<br />

(collaboration with B. Wiesner, <strong>FMP</strong>) that should allow true<br />

three-dimensional resolution. The utility of the caged protons<br />

was demonstrated in studies of the H + migration along<br />

lipid bilayers (P. Pohl, S. Keller, <strong>FMP</strong>).<br />

Group members<br />

Daniel Geißler (Doctoral student)*<br />

Ralf Lechler (Doctoral student)<br />

Nico Kotzur (Student)*<br />

Brigitte Dekowski (Technical assistance)<br />

External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Neue ‚caged’ cyclische Nucleotide – Synthese, Photochemie<br />

und biologische Anwendungen“ (HA 2694/1-2)<br />

Volker Hagen<br />

European Community<br />

„Cyclic nucleotides for the study of cellular events“ (Bio4-<br />

CT98-0034)<br />

Volker Hagen, U. Benjamin Kaupp (Research Center Jülich)<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Kaupp UB, Solzin J, Hildebrand E, Brown JE, Helbig A,<br />

Hagen V, Beyermann M, Pampaloni F, Weyand I (<strong>2003</strong>) The<br />

signal flow and motor response controling chemotaxis of<br />

sea urchin sperm. Nature Cell Biol 5, 109-117<br />

* part of period reported<br />

FIGURE 1<br />

Large jumps in pH can be achieved upon<br />

flash photolysis of phototriggers for H +<br />

(F = pH-sensitive fluorescence indicator).<br />

Chemical Biology<br />

87


Geißler D, Kresse W, Wiesner B, Bendig J, Kettenmann H,<br />

Hagen V (<strong>2003</strong>) DMACM-caged adenosine nucleotides:<br />

Ultrafast phototriggers for ATP, ADP and AMP activated by<br />

long-wavelength irradiation. ChemBioChem 4,162-170<br />

Serowy S, Saparov SM, Antonenko YN, Kozlovsky W,<br />

Hagen V, Pohl P (<strong>2003</strong>) Structural proton diffusion along<br />

lipid bilayers. Biophys J 84, 1031-1037<br />

Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl<br />

P, Maric K (<strong>2003</strong>) Cyclic AMP is sufficient for triggering the<br />

exocytic recruitment of aquaporin-2 in renal epithelial<br />

cells. EMBO Rep 4, 88-93<br />

Hagen V, Frings S, Wiesner B, Helm S, Kaupp UB, Bendig<br />

J (<strong>2003</strong>) (7-Dialkylaminocoumarin-4-yl)methyl-caged compounds<br />

as ultrafast and effective long wavelength phototriggers<br />

of 8-bromo-substituted cyclic nucleotides. Chem-<br />

BioChem 4, 434-442<br />

Matsumoto M, Solzin J, Helbig A, Hagen V, Ueno S,<br />

Kawase O, Maruyama Y, Ogiso M, Godde M, Minakata H,<br />

Kaupp UB, Hoshi M, Weyand I (<strong>2003</strong>) A sperm-activating<br />

peptide controls a cGMP-signaling pathway in starfish<br />

sperm. Dev Biol 260, 314-324<br />

Collaborations<br />

Photochemistry of caged compounds<br />

J. Bendig and P. Wessig, Institute of Chemistry, Humboldt<br />

University <strong>Berlin</strong><br />

Time-resolved fluorescence spectroscopy<br />

R. Schmidt, Institute for Physical and Theoretical Chemistry,<br />

Johann Wolfgang GoetheUniversity, Frankfurt / Main<br />

Studies of cellular signaling using caged compounds and<br />

caged chemoattractants<br />

U. B. Kaupp, Institute for Biological Information Processing,<br />

Research Center Jülich<br />

Caged vanilloid receptor agonists as tools for kinetic<br />

examinations of TRPV1 channels<br />

S. Frings, Department of Molecular Physiology, University<br />

of Heidelberg<br />

Analysis of receptor systems in CNS using caged compounds<br />

H. Kettenmann, Max Delbrück Center for Molecular Medicine,<br />

<strong>Berlin</strong>-Buch<br />

Controling of gene expression by using caged compounds<br />

S. Cambridge, Max Planck Institute of Neurobiology,<br />

Munich<br />

Caged cNMPs as tools for studies of gating kinetics of<br />

CNG channels<br />

K. Benndorf, Friedrich Schiller University Jena<br />

Studies of the function of CNG channels on isolated olfactory<br />

sensory neurons using caged cNMPs<br />

A. Menini, International School for Advanced Studies,<br />

Trieste, Italy


MEDICINAL CHEMISTRY<br />

Group Leader: Prof. Jörg Rademann<br />

CHEMICAL BIOLOGY WITH SMALL<br />

MOLECULES<br />

Small molecules are powerful biological tools that can be<br />

employed as bioactive protein ligands. They are used to<br />

elucidate and modulate the functions of proteins; moreover,<br />

they have been efficient in the discovery of novel<br />

proteins or the assignment of an observed functions to<br />

specific proteins. In addition, protein ligands are the<br />

potential starting point for drug development efforts.<br />

Small molecule ligands are generally accessible by chemical<br />

synthesis. They can be targeted by classical organic<br />

synthesis methods. However, for the identification of new<br />

biological activities and the subsequent optimization of the<br />

initial compounds, rationally designed collections of molecules,<br />

denominated as chemical libraries, have to be provided.<br />

Library generation poses novel challenges to synthetic<br />

methods including product isolation and analysis.<br />

Therefore, the starting point of our work is the creation of<br />

synthetic and analytical methodology to furnish designed<br />

chemical libraries. For this purpose combinatorial organic<br />

chemistry and solid phase synthesis are applied and<br />

developed. The syntheses in most cases are operated in<br />

parallel with medium throughput.<br />

On the basis of the developed synthetic methods, focused<br />

screening libraries are designed and constructed. Focused<br />

libraries are composed of potential ligands targeting<br />

one protein or a group of target proteins. They are prepared<br />

for subsequent bioassaying in external collaborations<br />

or in-house screens.<br />

Beyond our own synthetic efforts directed at focused<br />

ligand libraries, we are engaged in the set-up of a designed<br />

generic (base) screen library. This compound collection<br />

is created to target proteins without having a focused<br />

library available or with little structural information known.<br />

In order to limit this library to a manageable size, the focus<br />

will be on the detection of fragment-based interactions<br />

with low or medium affinity. The primary hits identified in<br />

an initial screen can be taken as the starting point for a<br />

subsequent chemical refinement.<br />

For the planning of both synthetic and generic screen<br />

libraries, the input of computational chemistry and molecular<br />

modelling tools is essential. Within the <strong>FMP</strong> we have<br />

organized a medicinal chemistry panel together with the<br />

modelling group and the Screening Unit for the coherent<br />

planning of library composition and hit evaluation.<br />

To strengthen <strong>FMP</strong>’s activities in the area of chemical biology,<br />

we co-initiated the national collaboration network<br />

“ChemBioNet” and represent the <strong>FMP</strong> on the board of this<br />

network. The <strong>FMP</strong> has offered to set up a central screening<br />

library that is to consist of focused libraries, a generic<br />

screen library of limited size, and specialized compound<br />

collections in which synthetic chemists primarily from outside<br />

the <strong>FMP</strong> can deposit their compounds to make them<br />

accessible for screening. The library concept will be<br />

accompanied by a database to communicate the contents<br />

of libraries together with screening results to external<br />

users.<br />

In the specific projects, the central part of our work over<br />

the last two years was the development of novel polymer<br />

carriers and polymer reagents for focused library production.<br />

Based on polyethyleneimines, a multi-ton industrial<br />

product, very high loaded resins (“ultraresins”) were<br />

developed and used in the synthesis of peptides, heterocycles<br />

and polymer reagents. The new carriers are very<br />

economical in solid phase synthesis as they allow a much<br />

higher yield of products per gram of resin compared to<br />

commercially available carriers. The ultraresin concept<br />

has been extended towards the synthesis and delivery of<br />

dendritic, multivalent peptides to cell targets. Via a reversible<br />

cross-linking of branched polyethyleneimine, the<br />

facile preparation of high molecular weight dendrimers (up<br />

to 60 kDa) was feasible, carrying a controlled number of<br />

copies of small molecules, e.g. peptide chains or peptidomimetics.<br />

These complex constructs were shown to efficiently<br />

deliver peptide ligands across cell membranes via<br />

an endocytotic pathway. Currently the specific biological<br />

activity of such dendritic constructs is under investigation.<br />

The multivalent and dendritic structure of these artificial<br />

macromolecules is expected to render the peptide<br />

ligands less prone to proteolysis and increase their biological<br />

activity through multivalent binding.<br />

For the preparation of glycolipids we have set up a novel<br />

synthetic strategy for library production that was denominated<br />

as “hydrophobically assisted switching phase<br />

(HASP) - synthesis”. This concept allows for a flexible<br />

phase switching, each reaction step can be carried out in<br />

solution or attached to the hydrophobic carrier phase. The<br />

concept has been employed for repetitive glycosylations<br />

yielding oligosaccharides attached to a hydrophobic<br />

anchor. In the next step, a library of immuno-stimulating<br />

rhamnolipids has been prepared. These molecules are<br />

interesting in that they are low molecular weight compounds<br />

which stimulate the innate immune system in a<br />

similar way to bacterial lipopolysaccharides (LPS). Unlike<br />

LPS, these rhamnolipids do not activate the cytokine<br />

Chemical Biology<br />

89


FIGURE 1<br />

Synthetic methods<br />

& analysis<br />

excretion via the Toll-like receptors (Tlr-II and -IV) by a<br />

hitherto unknown mechanism.<br />

The main focus of the synthetic efforts was in the area of<br />

protease inhibitors. Stabilized phosphoranes were found<br />

to be an efficient tool for polymer-supported C-acylation<br />

reactions. With this concept, it was possible to construct<br />

the central element of protease inhibitors, the isosteric<br />

core, directly on the solid support. As a consequence, all<br />

substituents of peptide isoster inhibitors now can be introduced<br />

and varied flexibly. This variability is a new opportunity<br />

especially in respect to the central side chain, the<br />

P1-site, and thus could be employed to investigate the<br />

effect of P1-site variations on specificity and selectivity of<br />

protease inhibitors. In a model study, conducted with the<br />

plasmepsin II, the malaria-linked aspartyl protease of plasmodium<br />

falciparum, we discovered that P1-site mutations<br />

enhanced the affinity of norstatine inhibitors by the factor<br />

of 60 compared to the natural, i.e. substrate-derived side<br />

chain. Further protease projects yielded reversible inhibitors<br />

of the SARS-main protease (in cooperation with<br />

R. Hilgenfeld, Lübeck) and of industrial targets (patent filed<br />

with Boehringer Ingelheim Pharma in May <strong>2004</strong>).<br />

Modelliung/<br />

Structural biology<br />

(Focussed)<br />

libraries<br />

Screening<br />

concepts<br />

A future keystone of our research will be the development<br />

of novel screening concepts. In this area we have initiated<br />

a project on primary screen techniques together with<br />

the Screening Unit. Several collaborative projects within<br />

the <strong>FMP</strong> and on-Campus have been started as well.<br />

Group members<br />

Dr. Samer Al-Gharabli<br />

Dr. Ludmila Perepellichenko*<br />

Dr. Michael Barth<br />

Dr. Syed Tasadaque Ali Shah*<br />

Dr. Steffen Weik<br />

Jörg Bauer (Doctoral student)<br />

Adeeb El-Dashan (Doctoral student)<br />

Viviane Uryga-Polowy (Doctoral student)*<br />

Franziska Meier (Student)*<br />

* part of period reported


External funding<br />

Deutsche Forschungsgemeinschaft<br />

„Reaktive Intermediate in polymeren Gelen, ihre Anwendung<br />

in parallelen Synthesen von Proteaseinhibitoren<br />

sowie deren biochemische Evaluierung“ (Ra895-2)<br />

Jörg Rademann<br />

Deutsche Forschungsgemeinschaft<br />

„Diversitätsorientierte Synthese von Rhamnolipiden“<br />

(Ra895-3)<br />

Jörg Rademann<br />

Deutsche Forschungsgemeinschaft<br />

Teilprojekt im Graduate College „Chemistry in Interphases“<br />

Jörg Rademann<br />

Land Baden-Württemberg<br />

„Reaktionskaskaden“ (Landesforschungsschwerpunkt)<br />

Jörg Rademann<br />

Boehringer Ingelheim Pharma<br />

Jörg Rademann<br />

Merck Biosciences<br />

Jörg Rademann<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Rademann J (<strong>2003</strong>) Advanced polymer reagents based on<br />

activated reactants and reactive intermediates: Powerful<br />

novel tools in diversity-oriented synthesis. In: Methods in<br />

Enzymology 369, Bunin BA, Morales G (eds), Academic<br />

Press San Diego, 366-390<br />

Bauer J, Rademann J (<strong>2003</strong>) Trimellitic anhydride linker<br />

(TAL) – highly orthogonal conversions of primary amines<br />

employed in the parallel synthesis of labeled carbohydrate<br />

derivatives (including 5 pages supplemental material).<br />

Tetrahedron Lett 44, 5019 - 5023<br />

Weik S, Rademann J (<strong>2003</strong>) A Phosphorane as Supported<br />

Acylanion Equivalent. Linker Reagents for Smooth and<br />

Versatile C-C-Coupling Reactions. Angew Chem Int Ed 42,<br />

2491-2494<br />

Barth M, Rademann J (<strong>2004</strong>) Tailoring Ultraresins based on<br />

the cross-linking of polyethylene imines. Comparative<br />

investigation of the chemical composition, the swelling,<br />

the mobility, the chemical accessibility, and the performance<br />

in solid phase synthesis of very high-loaded resins.<br />

J Comb Chem 6, 340-349<br />

Barth M, Ali Shah T, Rademann J (<strong>2004</strong>) High Loading<br />

Polymer Reagents based on Polycationic Ultragels. Polymer-Supported<br />

Reductions and Oxidations with Increased<br />

Efficiency. Tetrahedron – Combinatorial Chemistry Symposium<br />

in Print 60, 8703-8709<br />

Rademann J (<strong>2004</strong>) Organic protein chemistry: drug discovery<br />

through the chemical modification of proteins. Angew<br />

Chem Int Ed 43, 4554-4556<br />

Barth M, Fischer R, Brock R, Rademann J (2005) Reversible<br />

cross-linking of hyperbranched polymers: A strategy for<br />

the combinatorial decoration of multivalent scaffolds.<br />

Angew Chem Int Ed 44, 1560-1563<br />

Bauer J, Rademann J (2005) Hydrophobically assisted<br />

phase synthesis: the flexible combination of solid-phase<br />

and solution-phase reactions employed for oligosaccharide<br />

Preparation. J Am Chem Soc 127, 7296-7297<br />

Collaborations<br />

G. Klebe, University of Marburg<br />

R. Brock, University of Tübingen<br />

R. Hilgenfeld, University of Lübeck<br />

U. Zähringer, K. Brandenburg, H. Heine, FZ Borstel<br />

T. Mayer, MPI Martinsried<br />

Chemical Biology<br />

91


SCREENING UNIT<br />

Group Leader: Dr. Jens Peter von Kries<br />

SCREENING FOR BIOACTIVE SMALL<br />

MOLECULES IN AN ACADEMIC SET UP -<br />

CHEMICAL BIOLOGY INITIATIVE<br />

Beside their medical potential as drugs which cure diseases,<br />

bioactive small molecules may also serve as powerful<br />

tools for analysis of complex biological systems. Systematic<br />

screening of large compound libraries for bioactive<br />

small molecules which serve as molecular „switches“ in<br />

biological networks may become a key technology in<br />

Chemical Biology. Therefore, the “Forschungsinstitut für<br />

Molekulare Pharmakologie“ provides a Screening Unit for<br />

academic research groups which has been functional<br />

since autumn <strong>2004</strong>. Furthermore, the institute supplies the<br />

central compound collection of the German Initiative for<br />

Chemical Biology: ChemBioNet.<br />

Biological networks<br />

About 30,000 genes determine the development and stability<br />

of a human organism. They code for proteins of the<br />

protein synthesis machinery, ion channels, receptors,<br />

kinases, adaptor- or scaffolding proteins of cellular communication<br />

pathways, cell adhesion molecules or proteins<br />

of the immune system. Their correct function is maintained<br />

by complex interactions including enzymatic modifications,<br />

like phosphorylation or proteolytic processing. For<br />

instance, adaptor proteins may serve as scaffolds after<br />

modification by phosphorylation which then in turn recruit<br />

enzymes and their corresponding substrates for further<br />

signal transduction.<br />

Comparative genomics has shown that evolution does not<br />

solely correspond to a growing number of genes, but corresponds<br />

to an increase in the complex combination of<br />

regulatory modules in multifunctional proteins or genes.<br />

Perturbation of these complex interaction networks, i.e. by<br />

mutation, viral infection or environmental influences, may<br />

result in diseases like cancer, cardiac disease or diabetes.<br />

Classical methods for analysis<br />

Many proteins have been positioned into pathways using<br />

classical genetic methods, which are based on loss of<br />

function by mutation and on complementation studies to<br />

define for example the position of a given protein in a pathway.<br />

Biochemical in vitro assays measure enzyme activities<br />

or characterize binding domains of proteins. Methods<br />

in modern molecular biology comprise overexpression<br />

experiments of wild-type or mutant proteins in cell culture.<br />

Many of those strategies result in deletion of all functions<br />

of a given protein (antisense) or result in perturba-<br />

tion of many functions, if the overexpressed domain contains<br />

multiple binding sites for other factors. Contribution<br />

of individual interactions cannot be determined from these<br />

experiments. Although some protein functions have been<br />

identified in the past, only a small part of the complex interactions<br />

and functions of the proteins encoded in the<br />

human genome is known as of yet.<br />

Small molecules: new tools for analysis<br />

The functional characterization of the proteins encoded in<br />

the humane genome and those of a growing number of<br />

model organisms present a big challenge for the biosciences.<br />

Chemistry may become a driving force for solution,<br />

as has been shown by recent publications presenting inhibitors<br />

of protein interactions and of enzymatic activities of<br />

proteins. Molecular “switches“ may be generated by chemical<br />

synthesis which modulate the activity of proteins or<br />

genes. The combination of biological and chemical<br />

methods may allow the investigation of the function of proteins<br />

which have, until now, defied functional analysis.<br />

Small bioactive molecules often bind in hydrophobic pockets<br />

of the surface of proteins. This hydrophobic character<br />

also favors crossing of cellular membranes. As small<br />

molecules extend on only small regions of a protein surface,<br />

they potentially inhibit only individual and not all<br />

functions of a protein. Therefore small molecules offer an<br />

ideal tool for identification of individual contribution of<br />

interactions towards function of multiprotein complexes,<br />

i.e. in biological signaling networks. Furthermore, selective<br />

interference with protein binding or enzyme function<br />

allows the comparison with the consequence of loss of<br />

specific functions in human diseases. Moreover, the data<br />

collection and analyses of interactions of small molecules<br />

with proteins provides insights into substrate recognition<br />

mechanisms and will allow more effective de novo design<br />

of agonists or antagonists in the future.<br />

Small molecules and structural biology<br />

Small molecules, which resemble natural substrates of<br />

enzymes (like ATP), but cannot be processed, fix dynamic<br />

structures of enzymes for x-ray analysis of crystals. They<br />

allow the analysis of the active state of an enzyme. This is<br />

an important feature as many enzymes in cancer become<br />

permanent active after mutation. Therefore, this fixed<br />

structure provides an ideal starting point for the design of<br />

inhibitors. Alternatively, this information has been used to<br />

design an enzyme-specific cosubstrate (ATP) which is only<br />

recognized by a specifically mutated enzyme for labeling<br />

of its specific downstream target proteins. In general,<br />

small molecules may help to stabilize protein structures,<br />

which cannot be structurally analyzed in their absence.


FIGURE 1<br />

Screening robots support to screen the 20.000 compounds of the <strong>FMP</strong> library in less than one reach<br />

Small molecules and protein families<br />

Pharmaceutical companies prefer to inhibit enzyme activities<br />

for drug development.<br />

Inhibition of protein interactions is not a favored project,<br />

because it has been shown to be extremely difficult. One<br />

cause for problems targeting protein interactions are the<br />

extensive interaction surfaces, which cannot be completely<br />

blocked by small molecules. But mutagenesis studies<br />

of many interaction surfaces demonstrate that essential<br />

contact points cluster in a small region of the interaction<br />

surface. This region is defined as a hot spot of interaction.<br />

As substitutions of single amino acid residues in these<br />

regions (point mutants) abrogate the complex formation of<br />

the proteins, small molecules, which bind there, potentially<br />

interfere in the same manner. In protein families these<br />

hot spots show significant variation in amino acid sequence.<br />

Therefore, after modification small molecules may<br />

even discriminate between family members and allow the<br />

targeting of individual interactions. In summary small<br />

molecules present an ideal tool for analysis of the complex<br />

function of the human genome.<br />

Concept of the Screening Unit<br />

Three main strategies of screening are supported:<br />

(1) Screening with moderate “HTS” using standard ELISA<br />

or fluorescence techniques. The screening lab of the<br />

Screening Unit is well equipped with a liquid handling<br />

robot and automatic dispensers, washers and different<br />

readers to support most standard screening techniques.<br />

(2) Parallel to this, a spot synthesis of peptide libraries<br />

derived from the minimal binding domains, containing permutated<br />

peptides is offered. The screening of this peptide<br />

library characterizes the hot spots for interactions<br />

(3). Use of virtual drug screening for the selection of compounds<br />

to be ordered for each project. The protein surfaces<br />

will be analyzed and used for computer-aided<br />

docking of virtual libraries into pockets of hot spots or<br />

catalytic sites.<br />

ChemBioNet: chemistry and screening facilities<br />

for Chemical Biology<br />

The German Initiative for Chemical Biology, named Chem-<br />

BioNet, is currently organizing an academic network combining<br />

the individual screening initiatives of many research<br />

institutions in close contact with industrial partners (for<br />

Chemical Biology<br />

93


detailed information see: www.chembionet.de) for support<br />

of academic screening projects. This screening network<br />

will also build up a central shared compound library at the<br />

<strong>FMP</strong> and a database of combined bioactivity profiles and<br />

chemical data of compounds (see www.chembionet.de<br />

page “Datenbank”). The network will be supported by chemistry<br />

for the modification of molecules and by the expertise<br />

of the screening centers for the setup of robust<br />

screening assays. The research projects will identify and<br />

use bioactive compounds for functional analysis of biological<br />

networks in development or in disease situations<br />

like cancer, cardiac disease, autoimmune reactions or<br />

others. Beside the established role of small molecules for<br />

identification and characterization of protein functions,<br />

these compounds may serve for the development of new<br />

drugs for interference with human diseases.<br />

Competitor or partner of pharmaceutical companies?<br />

Screening in an academic setup has the advantage that<br />

no obvious disease relevance is a prerequisite for usage of<br />

small molecules for interference and characterization of<br />

biological functions. A specific inhibitor of an individual<br />

protein function is a valuable tool, even when it “only” provides<br />

a molecular switch for characterization of a function,<br />

without any perspective for serving as a new drug. This<br />

independence from commercial aspects allows free collection<br />

of chemical and biological data of bioactive molecules.<br />

These data are not limited to a few types of enzymes<br />

as they include a much broader panel of targets.<br />

Therefore this database may provide important clues<br />

towards the design of new classes of bioactive molecules.<br />

Another advantage of the independence from commercial<br />

aspects is the chance to identify and characterize the<br />

mode of action of potential drugs years before the disease<br />

relevance becomes established. At this special point<br />

the interests of pharmaceutical companies and academic<br />

Screening Units could partially overlap, since academic<br />

institutions do not have the resources for successful drug<br />

development, and pharmaceutical companies do not want<br />

to focus on protein interactions as targets. Pharmaceutical<br />

companies could get rights of privileged usage of<br />

patents and sponsor the academic units with know how or<br />

money for library enlargement. In summary, this partnership<br />

would benefit people suffering from a disease for<br />

which no drug is available yet.<br />

Current academic projects: Mycobacterium<br />

tuberculosis enzyme inhibitor screens<br />

Infection with Mycobacterium tuberculosis, the causative<br />

bacterium of human tuberculosis, results predominantly in<br />

an asymptomatic persistent infection, often referred to as<br />

latency. Infected individuals are at risk over their lifetime<br />

to convert their asymptomatic infection into what is called<br />

reactivation tuberculosis, a disease state both potentially<br />

fatal and highly contagious. The long persistence of the<br />

bacteria in the host during asymptomatic infection in the<br />

face of a robust host immune response poses fundamental<br />

biological questions. The bacteria could be in a nonreplicative,<br />

metabolically and transcriptionally inactive and<br />

dormant state. Recent molecular genetic approaches have<br />

yielded Mycobacterium proteins and lipids important for<br />

virulence and persistence. Hence, it can be argued that<br />

the bacteria manipulate the host immune response to<br />

ensure their persistence.<br />

It is estimated that nearly 2 billion people currently suffer<br />

from latent Mycobacterium tuberculosis infection. Although<br />

the key front-line antituberculosis drugs are effective<br />

in treating individuals with acute tuberculosis, these<br />

drugs are ineffective in eliminating M. tuberculosis during<br />

the persistent stages of latent infection. Consequently,<br />

therapeutics that directly target persistent bacilli are<br />

urgently needed.<br />

The “Structural Proteomics Consortium” selected proteins<br />

from Mycobacterium tuberculosis on the basis of gene<br />

ablation experiments (MPI für Infektionsbiologie, <strong>Berlin</strong>)<br />

resulting in reduced infectiveness. The structures of<br />

selected proteins are solved at DESY in Hamburg (EMBL<br />

and MPG research groups) and screened for small molecule<br />

inhibitors at the Screening Unit in <strong>Berlin</strong> and by Combinature<br />

(NMR-screening, <strong>Berlin</strong>).<br />

Two primary screens using the 3-isopropylmalate dehydrogenase<br />

(IPMDH, enzyme for biosynthesis of branched<br />

chain amino acids) and sterol 14?-demethylase (CYP51)<br />

resulted in identification of inhibitors with IC 50-values in<br />

the micromolar range (Rajesh et al. 2005). Two structural<br />

classes of inhibitors for CYP51 resemble already published<br />

compounds as estriol (IC 50: 100 µM) or 4-phenylimidazole<br />

(IC 50: 1 mM) demonstrating the reliability of this screen be.<br />

One of the CYP51 antagonists inhibits growth of tuberculosis<br />

bacteria in human macrophages (Stefan HE Kaufmann,<br />

MPI-IB, <strong>Berlin</strong>). Therefore this compound may be used for<br />

development of new drugs against tuberculosis infections.<br />

The novel compound classes identified will be cocrystallized<br />

to analyze substrate recognition mechanisms in the<br />

catalytic site of the enzyme. The IPMDH inhibitors have<br />

been identified in a dual approach. First, a compound libra-


y of about 37,000 compounds was docked into the catalytic<br />

site of the enzyme using the computer program GOLD<br />

and default library screening settings. From 30 virtual highscore<br />

compounds, 10 were selected due to the proposed<br />

number of hydrogen bonds in the site and tested in the<br />

enzyme assay. One compound demonstrated the highest<br />

affinity of all inhibitors identified (IC 50: 35 µM). Second, the<br />

<strong>FMP</strong> small molecule library of 20,000 compounds was<br />

screened and inhibitors of IPMDH identified (IC 50: 75-250<br />

µM). Cocrystallization experiments of inhibitors with<br />

respective enzymes have been already started. Their<br />

structures serve as an input for ordering related compound<br />

structures to identify inhibitors with higher affinity<br />

for analysis in model systems which measure infectiveness<br />

of treated bacteria. These projects may result in the<br />

identification of small molecules which enable to identify<br />

the biological mechanisms of Mycobacterium tuberculosis<br />

to escape from immune defence. Beside this result, the<br />

compounds could potentially be of use in the development<br />

of drugs against tuberculosis infections in partnership with<br />

pharmaceutical companies.<br />

The Screening Unit is supported by a grant of the BMBF<br />

(0312992J, “Mycobacterium tuberculosis Strukturproteomik<br />

Konsortium”).<br />

Group members<br />

DC Angelika Ehrlich**<br />

Christoph Erdmann (Technical assistance)*<br />

Collaborations<br />

Matthias Willmanns, EMBL, Hamburg<br />

Manfred S. Weiss, EMBL, Hamburg<br />

Hans Bartunik, MPG, Hamburg<br />

W. Birchmeier, MDC, <strong>Berlin</strong><br />

* part of period reported<br />

** part-time<br />

Chemical Biology<br />

95


SCIENTIFIC AND TECHNICAL SERVICES


MICRODIALYSIS<br />

Group Leader: Dr. Regina M. Richter<br />

DIRECT MEASUREMENT OF IN VIVO<br />

PROCESSING OF BRAIN NEUROPEPTIDES<br />

USING MICRODIALYSIS<br />

Elevated cerebral levels of a variety of neuropeptides are<br />

believed to be risk factors for the development of diseases<br />

that are related to the stress syndrome, cardiovascular<br />

dysfunction and, ultimately to neurodegenerative processes<br />

such as Alzheimer’s disease (AD). Specifically, excessive<br />

accumulation and deposition of β-amyloid peptides<br />

(Aβ) form senile plaques in AD brains which are considered<br />

to be one hallmark of the disease. Emerging evidence<br />

suggests that Aβ accumulation is not in all AD cases associated<br />

with increased Aβ production. Impaired clearance<br />

of Aβ is, therefore, considered to be a critical factor in the<br />

development of AD pathology. However, the mechanisms<br />

of the in vivo clearance of these critical neuropeptides are<br />

still not understood, and elimination of Aβ from tissues and<br />

plasma by activation of degrading proteases appears to<br />

have considerable therapeutic potential. Thus, the major<br />

focus of research in our laboratory is to understand the<br />

proteolytic mechanism of in vivo Aβ degradation.<br />

For all investigated peptides we identified primary cleavage<br />

sites and involved proteases by using specific protease<br />

inhibitors. The impact of structural parameters on Aβ<br />

clearance was explored in greater detail by using double<br />

D-amino acid replacement sets and N-C inverted peptides.<br />

In addition, other factors such as astrocytes which may<br />

have a direct role in Aβ degradation have been studied. To<br />

address specific questions of peptide processing, we<br />

include transgenic and gene-targeted mouse lines that either<br />

overexpress or carry deletions of genes of interest.<br />

Our experimental tools comprise the use of reverse microdialysis<br />

both to introduce neuropeptides or inhibitors into<br />

the brain of awake rodents, as well as to collect metabolic<br />

fragments. In collaborative work, advanced mass spectrometric<br />

techniques are applied to monitor the clearance<br />

of these neuropeptides close to real-time in dialysates of<br />

a few microliters volume. Further efforts are directed<br />

towards quantitative analysis of the peptide fragments.<br />

Work report: Major objectives of the laboratory<br />

Normally soluble β-amyloid peptides (Aβ), generated by<br />

proteolytic cleavage of the β-amyloid precursor protein<br />

(APP), is a mainly 40-42 amino acid species which may<br />

extend to Aβ residue 43/46 in neuritic plaques (Zhao et al.,<br />

JBC 49, 50647, <strong>2004</strong>). Although multiple proteases such as<br />

neutral endopeptidase (NEP; neprilysin), insulin-degrading<br />

enzyme (IDE; insulysin) and angiotensin-converting enzyme<br />

(ACE) have recently been identified to degrade extracellular<br />

Aβ, the proteolytic pathways are less well understood.<br />

In particular, in vivo studies are rare and differ<br />

evidently from in vitro reports (for review Hersh, Curr<br />

Pharm Des 9, 449, <strong>2003</strong>). Reverse microdialysis in combination<br />

with advanced mass spectrometric techniques is used<br />

to study the clearance of these neuropetides in the brain<br />

of rodents (Figure 1).<br />

Using these methods, we have recently demonstrated the<br />

pathways of in vivo processing of several Aβ species by<br />

NEP using specific protease inhibitors. Current studies<br />

focus on the interplay of structural parameters and protease<br />

activity as well as on the contribution of other candidate<br />

proteases to the regulation of brain Aβ levels using relevant<br />

protease knockout and overexpressing mouse lines.<br />

Another project explores whether astrocytes could have a<br />

direct role in Aβ degradation either by Aβ-induced activation<br />

or chemotactic migration to Aβ deposits (Wyss-Coray<br />

et al., Nature Med 9: 453-456, <strong>2003</strong>). Astrocyte motility was<br />

demonstrated to be controlled by the ryanodine type 3<br />

receptor (RyR3) (Matyash et al., FASEB J 16: 84-86, 2002).<br />

These findings encouraged us to test the hypothesis that<br />

extracelluar Aβ degradation is reduced in RyR3 knockout<br />

mice associated with impaired astrocyte motility (in collaboration<br />

with H. Kettenmann, MDC, <strong>Berlin</strong>). Finally, studies are<br />

underway directed at understanding the principles of extensive<br />

amyloid deposition in cerebral vessels leading to cerebral<br />

amyloid angiopathy. While chronically reduced microcirculation<br />

is believed to impair the clearance of circulating<br />

Aβ, the reported vasoconstrictor action of circulating Aβ<br />

(Niwa et al., Am. J. Physiol 281, H2417, 2001) is still controversial.<br />

In order to address these questions, we have initiated<br />

collaborative work with M.J. Mulvany, University of<br />

Aarhus, Denmark, to explore the direct contractile effects<br />

of Aβ in microvessels, as well as the possibility that the<br />

resulting hypoperfusion results in accumulation of Aβ.<br />

A second area of research concerns the generation of bioactive<br />

angiotensin peptides from angiotensin I. In particular,<br />

angiotensin (1-7) [Ang-(1-7)] is thought to mimic and<br />

oppose the multiple actions of angiotensin II. Both the role<br />

of substrate availability and the metabolic pathways yielding<br />

to the formation of Ang-(1-7) remain unclear. Using<br />

protease knockout mouse models and protease inhibitors,<br />

we have elucidated the major pathways of Ang-(1-7) formation<br />

including the involved proteases in vivo.<br />

Main objective 1. Impact of structural parameters on Aβ<br />

processing<br />

Little is known about the impact of structural parameters<br />

on the catabolic pathways of Aβ peptides. Therefore, we


% Intensity<br />

% Intensity<br />

Wildtype mouse<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

5.3E+4<br />

0<br />

799.0 1579.4 2359.8 3140.2 3920.6 4701.0<br />

Mass (m/z)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NEP knockout mouse<br />

4.6E+4<br />

0<br />

799.0 1579.4 2359.8 3140.2 3920.6 4701.0<br />

Mass (m/z)<br />

FIGURE 1<br />

Cerebral microdialysis in a freely moving<br />

mouse.<br />

FIGURE 2<br />

Comparison of MALDI mass spectra of<br />

Aβ(1-40) peptide fragments obtained from<br />

wildtype (upper) and NEP knockout mice<br />

(bottom). The peptide was infused into<br />

the hippocampus of the animals at a very<br />

low flow rate. Relative signal intensity is<br />

given in arbitary units; m/z = mass-tocharge<br />

ratio.<br />

99 Scientific and Technical Services


tested the hypothesis that both the sequence of amino<br />

acids and the secondary structure may play a substantial<br />

role in the processing of Aβ. Thus, two N-C inverted Aβ<br />

chains, (42-1) and (40-1), and a double D-amino acid replacement<br />

set of Aβ were involved in the paradigm to study<br />

their proteolytic cleavage pattern. The two inverted Aβ<br />

species serve as inactive controls because of lacking neurotoxic<br />

properties in cell cultures (Simmons et al., Mol<br />

Pharmacol 45, 373, 1994). In contrast to regular Aβ, the<br />

inverted Aβ species were cleaved to only a few short Cterminal<br />

fragments at the peptide bond His 27-His 28, Leu 24-<br />

His 25 and Phe 22-Val 23 in the (40-1) chain (Richter & Kraus,<br />

Soc Neurosci Abstr # 409.3, <strong>2003</strong>). The cleavage site at His-<br />

His is considered to be a preferred target of IDE, whereas<br />

cleavage sites at Phe-Phe and in the N-terminal region of<br />

the N-C inverted molecule are thought to be caused by<br />

NEP. The lack of cleavage sites caused by NEP suggests<br />

that only IDE but not NEP was involved in the degradation<br />

of Aβ under these experimental conditions.<br />

Systematic double D-amino acid replacement of adjacent<br />

amino acids within the Aβ(1-42) molecule was used to study<br />

the impact of the secondary structure on Aβ clearance. In<br />

contrast to former reports, more recent studies revealed<br />

that double D-amino acid substitution efficiently inhibited<br />

the peptide degradation primarily around the replaced<br />

amino acids. In aCSF, a complete protection of the molecule<br />

against enzymatic degradation indicating a folding of the<br />

molecule was not found. These results are strongly supported<br />

by findings obtained with Aβ dissolved in buffer and<br />

subsequently analyzed with CD and ITC methods<br />

(S. Keller, unpublished data). These results suggest that the<br />

proteolytic clearance of Aβ peptides in vivo depends highly<br />

on both the primary and secondary structure of the molecule<br />

and differs significantly from that ex vivo.<br />

Main objective 2. Proteases involved in Aβ clearance<br />

First, we explored the two principal regulators of Aβ clearance:<br />

NEP and IDE. The postulated primary cleavage site<br />

at positions 33/44 (Gly-Leu) and the N-terminal directed<br />

ladder-like degradation in rat hippocampus were successfully<br />

blocked by the NEP inhibitors phosphoramidon and<br />

thiorphan, suggesting a major role of this particular protease<br />

in Aβ clearance. However, compared to the literature<br />

our in vivo findings indicate additional metabolic pathways<br />

of Aβ. For example, the intermediate fragment<br />

(10-37), identified as the major product of Aβ(1-42) cleavage<br />

by NEP (Iwata et al., Nature Med 6, 143, 2000), was<br />

not detected in our close to real-time experiments. Moreover,<br />

separate metabolic studies revealed a very rapid<br />

degradation of the fragment which does not correspond to<br />

the Aβ(10-37) accumulation in catabolic studies on radiolabeled<br />

Aβ reported by Iwata and collegues. Also, nume-<br />

rous mass spectra displayed an additional cleavage site at<br />

position 34/35 (Leu-Met) attributed to a matrix metalloproteinase-9<br />

(MMP-9) which is believed to prevent plaque<br />

formation (Backstrom et al., J Neurosci 16:7910, 1996).<br />

To study the particular role of IDE in Aβ degradation, we<br />

extended our studies to awake NEP knockout versus wildtype<br />

mice. The in vivo profile of hippocampal Aβ processing<br />

revealed cleavage patterns which match well to in<br />

vitro findings from Mukherjee and colleagues (J Neurosci<br />

20:8745-8749, 2000) in so far as short N-terminal fragments<br />

(1-11 to 1-16) dominated in mass spectra while the C-terminal<br />

region remained intact (Figure 2) (Richter et al., Soc<br />

Neurosci Abstr # 220.6, <strong>2004</strong>). These results provide strong<br />

evidence that the major proteases NEP and IDE contribute<br />

to the clearance of Aβ by cleavage of differing peptide<br />

bonds in distinct regions within the peptide chain.<br />

Group members<br />

Antje Muschter (Technical assistance)* **<br />

Christian Wolff (Technical assistance)**<br />

External funding<br />

Schering AG-Ri1; Regina Richter<br />

Selected publications (<strong>FMP</strong> authors in bold)<br />

Richter RM, Kraus M (<strong>2003</strong>). Profile and Inhibition of the in<br />

vivo Degradation of Alzheimer’s β-Amyloid Peptides in Rat<br />

Brain. Soc Neurosci Abstr # 409.3<br />

Richter RM, Heyne A, Schuchardt S (<strong>2004</strong>). Degradation of<br />

Amyloid β-Peptide in the Hippocampus of a NEP knockout<br />

Mouse Model. Soc Neurosci Abstr # 220.6<br />

Collaborations<br />

Hersh, L.B. (Dept. Molec. and Cellular Biochemistry, University<br />

of Kentucky, Lexington, KY, USA)<br />

Degradation of β-amyloid peptides in transgenic and<br />

knockout mouse models<br />

Kettenmann, H. (Dept. Cellular Neuroscience, MDC for<br />

Molecular Medicine, <strong>Berlin</strong>, Germany)<br />

Clearance of β-amyloid peptides in the brain of RyR3knockout<br />

mice<br />

Mulvany, M.J. (Dept. Pharmacology, Aarhus University,<br />

Aarhus, Denmark)<br />

Cerebral hypoperfusion and beta-amyloid plaque formation<br />

Schuchardt, S. (PLANTON GmbH), Kiel<br />

MALDI-TOF and MALDI-MS/MS analysis of the in vivo<br />

metabolism of neuropeptides<br />

* part of period reported<br />

** part-time


DNA SEQUENCING<br />

Group Leader: Dr. Erhard Klauschenz<br />

The DNA Sequencing Service Group conducts DNA<br />

sequencing for the molecular research groups of the <strong>FMP</strong>.<br />

It comprises a scientist and a technician (part-time); two<br />

automated sequencers are available (ABI 377 and ABI<br />

310).<br />

At present about 100 samples are processed weekly. The<br />

Department of Signal Transduction/Molecular Medicine<br />

submits about 60% of the samples, the Junior Research<br />

Group Cellular Signal Processing (Vinkemeier) 30%, with<br />

occasional samples from other groups.<br />

In addition to the service function, the group continues to<br />

work on the molecular analysis of the vasopressin V2<br />

receptor genes of patients (and their families) suffering<br />

from congenital nephrogenic diabetes insipidus (NDI).<br />

Group members<br />

Barbara Mohs (Technical assistance)**<br />

** part-time<br />

ADDITIONAL SERVICES<br />

Scientific workshop<br />

Jürgen Mevert<br />

Michael Uschner<br />

Holger Panzer<br />

Helmut Blick<br />

Stefanie Wendt<br />

Safety Officer<br />

Dr. Hans-Ulrich Heyne<br />

Central glassware washing facility<br />

Uwe Hackel †<br />

Animal housing<br />

Dr. Regina M. Richter<br />

Eva Lojek<br />

Petra Göritz<br />

Academic library<br />

Renate Peters<br />

Scientific and Technical Services<br />

101


Visit of the Federal President on <strong>Berlin</strong>-Buch Campus <strong>2004</strong><br />

Besuch des Bundespräsidenten auf dem Campus <strong>Berlin</strong>-Buch <strong>2004</strong><br />

PUBLIC RELATIONS AND THE MEDIA<br />

Dr. Björn Maul<br />

The Forschungsinstitut für Molekulare Pharmakologie<br />

(<strong>FMP</strong>) uses public funds to conduct the major part of its<br />

research into the basis of the effects of substances on the<br />

organism. In order to give the taxpayer, who provides the<br />

funds, some insight into how these resources are utilized,<br />

the <strong>FMP</strong> presents its work to the general public in an easily<br />

understood form.<br />

In <strong>2003</strong> and <strong>2004</strong> the <strong>FMP</strong> successfully participated in<br />

various public exhibitions and presentations. Scientists<br />

from the Institute used exhibits of interest to the layperson<br />

to introduce their fields of research at the Science Fair of<br />

the Free University <strong>Berlin</strong>, at the “Müncher Wissenschaftstage”,<br />

and at the presentation "Window on Science"<br />

held in the arcades at Potsdamer Platz.<br />

The <strong>FMP</strong> also participated in the exhibition "Swimming lab<br />

(MS Chemie)" held on a ship in summer of the Year of Chemistry,<br />

<strong>2003</strong>. The ship, which was initiated by the scienceto-public<br />

platform “Wissenschaft im Dialog”, moored in 25<br />

cities along the Rhine River and attracted more than 40,000<br />

visitors.<br />

Hans-Olaf Henkel, President of the Leibniz Association, during the<br />

inauguration of the 900 Mhz spectrometer<br />

Hans-Olaf Henkel, Präsident der Leibniz-Gemeinschaft, zur Einweihung<br />

des 900 MHz-Spectrometers<br />

In April <strong>2004</strong> the <strong>FMP</strong>, together with ten other scientific<br />

institutions from <strong>Berlin</strong> and the German Human Genome<br />

Project (DHGP), celebrated the fiftieth anniversary of the<br />

discovery of the DNA helix structure with an exhibition in<br />

the <strong>Berlin</strong> Museum of Natural History (Naturkundemuseum)<br />

that received striking attention. About 40,000 people<br />

paid a visit to the exhibition, which was the only one of its<br />

kind in all of Germany.<br />

The <strong>FMP</strong> constantly strives to inspire enthusiasm for<br />

scientific research in young people of school age. Scientists<br />

regularly visit schools, presenting easily understood<br />

lectures to promote discussion with pupils and teaching<br />

staff. In addition, the <strong>FMP</strong> once a year awards a practical<br />

course in the Life Science Learning Lab of the <strong>Berlin</strong>-Buch<br />

Campus to a winner of one of the country-wide competitions<br />

in "Youth in Research.“ In <strong>2004</strong>, the college student<br />

Sylke Höhne from Chemnitz won the prize and was hosted<br />

by the <strong>FMP</strong> in <strong>Berlin</strong>.<br />

In each of the two reporting years, the <strong>FMP</strong> took the<br />

opportunity to present itself to the general public during<br />

the <strong>Berlin</strong> Long Night of the Sciences. At this event, more<br />

than 1000 visitors came to isolate their own DNA from their


Window on science, Potsdamer Platz in <strong>Berlin</strong>: Opening lecture<br />

Schaufenster der Wissenschaft am Potsdamer Platz <strong>2003</strong>: Eröffnungsvortrag<br />

PRESSE- UND ÖFFENTLICHKEITSARBEIT<br />

Dr. Björn Maul<br />

Das Forschungsinstitut für Molekulare Pharmakologie<br />

(<strong>FMP</strong>) betreibt den überwiegenden Teil seiner Forschung<br />

über die Grundlagen der Wirkung von Stoffen auf den<br />

Organismus mit Geldern der öffentlichen Hand. Um dem<br />

Steuerzahler, der die Gelder aufbringt, Einblick zu geben,<br />

wofür diese Mittel verwendet werden, stellt das <strong>FMP</strong><br />

seine Arbeit in leicht verständlicher Form der breiten<br />

Öffentlichkeit vor.<br />

In den Jahren <strong>2003</strong> und <strong>2004</strong> beteiligte sich das <strong>FMP</strong><br />

erfolgreich an verschiedenen öffentlichen Ausstellungen<br />

und Präsentationen. Wissenschaftler des Instituts stellten<br />

ihre Forschungsgebiete anhand von für Laien eingängigen<br />

Exponaten auf der Science Fair der Freien Universität <strong>Berlin</strong>,<br />

auf der Präsentation „Schaufenster der Wissenschaft“<br />

in den Potsdamer-Platz-Arkaden und auf den Münchner<br />

Wissenschaftstagen vor.<br />

Das <strong>FMP</strong> beteiligte sich am Chemieschiff (MS Chemie) im<br />

Sommer des Jahres der Chemie <strong>2003</strong>. Diese von der „Wissenschaft<br />

im Dialog” initiierte, schwimmende Ausstellung<br />

lief 25 Städte entlang des Rheins an und wurde von mehr<br />

als 40,000 Menschen besucht.<br />

Exhibition “50th anniversary of the DNA helix structure” in the museum<br />

of Natural History<br />

Ausstellung „50 Jahre Doppelhelix“ im Naturkundemuseum<br />

Im April <strong>2004</strong> beging das <strong>FMP</strong> zusammen mit zehn weiteren<br />

wissenschaftlichen Einrichtungen aus <strong>Berlin</strong> und<br />

Brandenburg und dem Deutschen Humangenom-Projekt<br />

(DHGP) den 50. Jahrestag der Entdeckung der DNA-Helix<br />

mit einer Sonderausstellung im <strong>Berlin</strong>er Naturkundemuseum.<br />

Etwa 50,000 Menschen besichtigten die Austellung,<br />

die die einzige ihrer Art in Deutschland war.<br />

Das <strong>FMP</strong> versucht konsequent, junge Menschen bereits<br />

im Schulalter für die naturwissenschaftliche Forschung zu<br />

begeistern. Regelmäßig besuchen Wissenschaftler Schulen<br />

und stellen sich dort mit leicht verständlichen Vorträgen<br />

der Diskussion mit Schülern und Lehrern. Das Institut<br />

unterstützt den Wettbewerb „Jugend forscht“. Es vergibt<br />

einmal im Jahr einen Praktikumskurs im Gläsernen Labor<br />

des Campus als Preis für einen ausgewählten Landeswettbewerb<br />

der Aktion. In <strong>2004</strong> erhielt die Abiturientin Sylke<br />

Höhne aus Chemnitz den Preis und war eine Woche lang<br />

Gast des <strong>FMP</strong>.<br />

In jedem der beiden Berichtsjahre nahm das <strong>FMP</strong> die<br />

Gelegenheit wahr, sich in der <strong>Berlin</strong>er Langen Nacht der<br />

Wissenschaften einer breiten Öffentlichkeit zu präsentieren.<br />

Insgesamt kamen mehr als 1000 Menschen zu dieser<br />

Veranstaltung an das <strong>FMP</strong>, insbesondere um den Mitmachkurs<br />

„Meine DNA“ zu absolvieren und die eigene<br />

103 Scientific and Technical Services


“My DNA“ – The Long Night of the Sciences <strong>2003</strong> at the <strong>FMP</strong><br />

„Meine DNA“ – Lange Nacht der Wissenschaften <strong>2003</strong> am <strong>FMP</strong><br />

saliva. This special offer was first made in 2002 and became<br />

a real attraction over the years.<br />

The <strong>FMP</strong> greeted delegations from Germany and abroad<br />

and introduced the participants – government delegations,<br />

journalists, students and school pupils – to its work and<br />

that of the entire Campus. In collaboration with BBB Campus<br />

Management GmbH, the directorate consultants briefed<br />

the numerous visitors on content and organization.<br />

With the cooperation of Institute scientists, short lectures,<br />

tours of the laboratories and discussions were available.<br />

To give the media the opportunity to report significant<br />

events at the <strong>FMP</strong>, press releases were researched, written<br />

and issued. The public relations consultant as well as<br />

scientists gave interviews, e.g. for Deutschlandfunk, the<br />

Hessian and <strong>Berlin</strong> broadcasters HR and RBB, as well as<br />

Radio Eins, Radio Multi-Kulti, Korea TV, and the audio:link<br />

Internet radio station. The <strong>FMP</strong> has been reported in the<br />

major <strong>Berlin</strong> daily newspapers. The national as well as the<br />

regional press have published reports on <strong>FMP</strong> scientists<br />

and their research. <strong>FMP</strong> consultants and scientists have<br />

made several contributions to brochures, various periodicals,<br />

e.g. for the Leibniz Association, the <strong>Berlin</strong> Research<br />

Association, the German Human Genome Project and for<br />

Exhibition “Swimming lab“ <strong>2003</strong><br />

Ausstellung auf der MS Chemie <strong>2003</strong><br />

the <strong>Berlin</strong> Buch Campus. The public relations consultant<br />

supported telecasts like “nano” (3sat), “Quarks & Co.”<br />

(West German Broadcast WDR), and “ZDF-Expeditionen”<br />

(ZDF) as an adviser and by providing broadcasting<br />

material.<br />

The <strong>FMP</strong> gave independent presentations at the Parliamentary<br />

Evenings of the Leibniz Association in Brussels in<br />

<strong>2003</strong> and the Forschungsverbund <strong>Berlin</strong> e.V. (<strong>Berlin</strong><br />

Research Association) in <strong>Berlin</strong> in <strong>2004</strong>. The Institute<br />

brought the research of its scientists to the attention of the<br />

international biotech community with a presentation at the<br />

international convention BIO <strong>2004</strong>.<br />

Personnel<br />

Ulrike Lauterjung (Assistant)


Parliamentary Evening of the Forschungsverbund <strong>Berlin</strong> <strong>2004</strong><br />

Parlamentarischer Abend des Forschungsverbunds <strong>Berlin</strong> <strong>2004</strong><br />

DNA aus einer Speichelprobe zu isolieren. Dieses besondere<br />

Angebot wurde im Jahr 2002 vom <strong>FMP</strong> initiiert und<br />

hat sich zu einer echten Attraktion entwickelt.<br />

Das <strong>FMP</strong> empfing Delegationen aus dem In- und Ausland<br />

und machte die Teilnehmer – Regierungsdelegationen,<br />

Journalisten, Studenten und Schüler – mit seiner und der<br />

Arbeit des gesamten Campus bekannt. Das Direktorat<br />

bereitete, oft in Zusammenarbeit mit der BBB Campusmanagement<br />

GmbH, die zahlreichen Besuche inhaltlich und<br />

organisatorisch vor. Zusammen mit den Wissenschaftlern<br />

des Hauses wurden kurze Vorträge, Führungen durch die<br />

Labore und Gespräche angeboten.<br />

Um den Medien Anlass zur Berichterstattung über wichtige<br />

Ereignisse am <strong>FMP</strong> zu geben, wurden Pressemitteilungen<br />

recherchiert, verfasst und veröffentlicht. Der Referent<br />

für Öffentlichkeitsarbeit vermittelte und gab Interviews,<br />

z. B. für den Deutschlandfunk, den Hessischen Rundfunk<br />

(HR), den Rundfunk in <strong>Berlin</strong>-Brandenburg (RBB), Radio<br />

Eins, Radio Multi-Kulti, Korea TV und die audio:link Internet-Radiostation.<br />

Über das <strong>FMP</strong> und die <strong>FMP</strong>-Wissenschaftler<br />

und ihre Forschung wurde in der überregionalen<br />

und regionalen Presse berichtet, so auch in Artikeln wich-<br />

Science Fair <strong>2004</strong><br />

Science Fair <strong>2004</strong><br />

tiger Tageszeitungen der <strong>Berlin</strong>er Presselandschaft. Referenten<br />

und Wissenschaftler des <strong>FMP</strong> verfassten Beiträge<br />

für Broschüren und verschiedene Periodika, z. B. der Leibniz-Gemeinschaft,<br />

des Forschungsverbunds <strong>Berlin</strong> e. V.,<br />

des Deutschen Humangenomprojekts und des Campus<br />

<strong>Berlin</strong>-Buch.<br />

Der Referent für Öffentlichkeitsarbeit unterstützte verschiedene<br />

Fernsehpoduktionen, wie „nano” (3sat),<br />

„Quarks & Co.” (Westdeutscher Rundfunk) und „ZDF-<br />

Expeditionen” (ZDF) als Berater und mit audiovisuellem<br />

Material.<br />

Das <strong>FMP</strong> beteiligte sich mit eigenständigen Präsentationen<br />

an den Parlamentarischen Abenden der Leibniz-<br />

Gemeinschaft in Brüssel <strong>2003</strong> und des Forschungsverbunds<br />

<strong>Berlin</strong> e. V. in <strong>Berlin</strong> <strong>2004</strong>. Das Institut machte die<br />

internationale Biotech-Community auf die Forschung seiner<br />

Wissenschaftler mit einer Präsentation auf der BIO<br />

<strong>2004</strong> aufmerksam.<br />

105 Scientific and Technical Services


ADMINISTRATION<br />

Head: Thomas Ellermann<br />

In addition to the Administrative Director, the <strong>FMP</strong> administrative<br />

staff comprises six employees (three full-time and<br />

three part-time). After the positive conclusion of the last<br />

training cycle, the <strong>FMP</strong> has decided to take on a new<br />

office communication trainee.<br />

A main focus of activity of the administration during the<br />

reporting period was the preparation for the conversion<br />

from the cameralistic system of accounting to a cost and<br />

performance accounting system (CPA) for the institute.<br />

This CPA system will first be applied to the 2006 budget<br />

year.<br />

The Joint Federal-State Commission for Education Planning<br />

and Research Promotion demands that the institutions<br />

of the Leibniz Association introduce program budgets<br />

at the latest for the budget year 2006. The basis for this is<br />

the decision of the heads of the federal and state governments<br />

from autumn 1997 on “Securing and Quality of<br />

Research”.<br />

VERWALTUNG<br />

Leiter: Thomas Ellermann<br />

In der Verwaltung des <strong>FMP</strong> sind neben dem Verwaltungsleiter<br />

sechs Mitarbeiterinnen beschäftigt (drei Vollzeit und<br />

drei Teilzeit) beschäftigt. Nach dem positiven Abschluss<br />

des letzten Ausbildungszyklus hat sich das <strong>FMP</strong> außerdem<br />

entschlossen, erneut eine Bürokommunikations-Kauffrau<br />

auszubilden.<br />

Ein Tätigkeitsschwerpunkt der Verwaltung im Berichtszeitraum<br />

war die Vorbereitung zur Umstellung von der Fehlbedarfsfinanzierung<br />

zu einer leistungs- und ergebnisorientierten<br />

Finanzierung des Instituts. Die leistungs- und<br />

ergebnisorientierte Finanzierung ist erstmalig auf das<br />

Haushaltsjahr 2006 anzuwenden.<br />

Die Bund-Länder-Kommission für Bildungsplanung und<br />

Forschungsförderung (BLK) fordert für die Einrichtungen<br />

der Leibniz Gemeinschaft die Einführung eines Programmbudgets<br />

spätestens zum Haushaltsjahr 2006. Grundlage ist<br />

der Beschluss der Regierungschefs des Bundes und der<br />

Länder vom Herbst 1997 zur „Sicherung und Qualität der<br />

Forschung“.<br />

The cost and performance accounting system (CPA) with<br />

its two hierarchical levels, which was implemented in 2002<br />

and has been operative since <strong>2003</strong>, was the prerequisite<br />

for the introduction of the program budget. In the project<br />

group established by the <strong>Berlin</strong> Research Association<br />

(Forschungsverbund <strong>Berlin</strong> e.V., FVB) the <strong>FMP</strong> assumed in<br />

<strong>2004</strong> the role of pilot institute for all institutes of the FVB.<br />

Following the directives of the Joint Federal-State Commission<br />

on “minimum requirements on program budgets”,<br />

a standard procedure for the fiscal part of the program<br />

budget could be developed for the institutes of the FVB.<br />

Initially, with the data from the CPA from the year <strong>2004</strong>, a<br />

program budget for the budget year 2006 was prepared.<br />

Parallel to that, a financial plan was created in coordination<br />

with the State of <strong>Berlin</strong> as funding allocator.<br />

At the request of <strong>FMP</strong> scientists, an electronic ordering<br />

system was introduced. A prerequisite for that was the<br />

successful implementation of SAP version 4.6. Research<br />

staff members can now submit their purchase requests in<br />

digital form via the intranet of the institute. After verification<br />

of the entered data, data relevant to the transaction is<br />

Die im <strong>FMP</strong> 2002 implementierte und seit <strong>2003</strong> voll produktive<br />

Kosten- und Leistungsrechnung (KLR) mit ihren zwei<br />

Hierarchieebenen war die Voraussetzung für die Einführung<br />

des Programmbudgets. In der vom Forschungsverbund<br />

<strong>Berlin</strong> e. V. eingerichteten Projektgruppe hatte das<br />

<strong>FMP</strong> <strong>2004</strong> die Rolle des Musterinstituts für alle Einrichtungen<br />

des FVB übernommen. Orientiert an den Vorgaben der<br />

BLK zu den „Mindestanforderungen an Programmbudgets“<br />

konnte ein Standardverfahren für den finanzwirtschaftlichen<br />

Teil des Programmbudgets für die Institute<br />

des FVB erarbeitet werden. Zunächst wurde mit Daten der<br />

KLR vom Jahr <strong>2004</strong> ein Programmbudget für das Haushaltsjahr<br />

2006 aufgestellt. Parallel wurde in Abstimmung<br />

mit dem Zuwendungsgeber Land <strong>Berlin</strong> ein Wirtschaftsplan<br />

erstellt.<br />

Auf Wunsch der Wissenschaftler des <strong>FMP</strong> wurde die elektronische<br />

Bestellübermittlung eingeführt. Voraussetzung<br />

dafür war die erfolgreiche Implementierung der SAP-Version<br />

4.6. Wissenschaftlich Beschäftigte haben jetzt die<br />

Möglichkeit, ihre Beschaffungsanträge in digitaler Form<br />

im Intranet des Instituts zu hinterlegen. Softwareseitig<br />

können buchungsrelevante Daten nach Prüfung über eine<br />

Schnittstelle in eine „Bestellanforderung“ (BANF) des<br />

SAP-Systems übernommen werden. Der Buchungsvor-


transferred into SAP via an interface, and an SAP purchase<br />

request is created. With this procedure, the administration’s<br />

transaction workflow is separated from the rest of<br />

the organization and cannot be accessed by third parties.<br />

The aim is to avoid error-prone and time-consuming double<br />

entries, e.g. in connection with chemical designations.<br />

Orders usually leave the institute on the same day they<br />

were entered using the intranet. Expendable material is<br />

often delivered within 24 hours of the order by the scientist,<br />

depending on the supplier. Therefore, there is no need<br />

for costly warehousing of expendable material at the <strong>FMP</strong>.<br />

Since 2002, together with the Max Delbrück Center for<br />

Molecular Medicine, the <strong>FMP</strong> has begun three building<br />

projects and has in part completed them in the period<br />

covered by the report. In <strong>2003</strong> the new lab building NMR II<br />

opened with 200 m 2 floor space used by the <strong>FMP</strong>, and in<br />

<strong>2004</strong> the 900 MHz NMR spectrometer started operation.<br />

After completion, together with the MDC, of the animal<br />

laboratory building Erwin Negelein House at the end of<br />

<strong>2004</strong>, the <strong>FMP</strong> has new animal laboratories with a total of<br />

385 m 2 at its disposal. Organizing an economically sound<br />

gang der Verwaltung ist bei diesem Verfahren immer vom<br />

Zugriff Dritter abgekoppelt. Ziel ist es fehlerträchtige und<br />

zeitaufwendige Doppelerfassungen, beispielsweise der<br />

Chemikalienbezeichnung, zu vermeiden. Bestellungen verlassen<br />

das Institut in der Regel tagesgenau. Verbrauchsmittel<br />

werden, abhängig vom Lieferanten, nicht selten<br />

innerhalb von 24 Stunden nach der Bestellung durch den<br />

Wissenschaftler ausgeliefert. Eine aufwendige Lagerhaltung<br />

von Verbrauchsmitteln ist so am <strong>FMP</strong> nicht nötig.<br />

Das <strong>FMP</strong> hat gemeinsam mit dem Max-Delbrück-Center<br />

für Molekulare Medizin seit 2002 drei Baumaßnahmen<br />

begonnen und zum Teil im Berichtszeitraum abgeschlossen.<br />

In dem <strong>2003</strong> neu errichtete Labor-Gebäude „NMR II“<br />

mit 200 m 2 vom <strong>FMP</strong> genutzter Fläche wurde <strong>2004</strong> das 900<br />

MHz-NMR-Spektrometer in Betrieb genommen. Nach<br />

Abschluss der Baumaßnahme des gemeinsam mit dem<br />

MDC erstellten Tierlaborgebäudes „Erwin-Negelein-<br />

Haus“ Ende <strong>2004</strong> kann das <strong>FMP</strong> neue Tierlabore mit insgesamt<br />

385 m 2 nutzen. Die Organisation eines wirtschaftlichen<br />

Umgangs mit diesen neuen Ressourcen in den<br />

nächsten Jahren stellt die Verwaltung des <strong>FMP</strong> vor große<br />

Anforderungen. Der Mittelaufwand für Tierhaltung wird<br />

sich stark erhöhen.<br />

usage of these new resources in the coming years presents<br />

great challenges for the <strong>FMP</strong> administration. Costs<br />

for laboratory animal care will greatly increase.<br />

The new Medicinal Genomics Research Building is due to<br />

open in 2006. Five work groups with a total of 40 employees<br />

from the <strong>FMP</strong> will use the 1.094 m 2 of floor space allotted<br />

to the institute. In the new laboratory buildings labs are<br />

being fitted out with extensive technical equipment.<br />

Personnel<br />

Silvia Mauks (Personnel Manager)<br />

Birgit Sperling (General Administration)* **<br />

Christel Otto (General Administration)<br />

Claudia Messing (General Administration)**<br />

Kerstin Brauße (General Administration)**<br />

Gabriele Schumacher (Secretary)<br />

Dana Hausbeck (Trainee)*<br />

Josephine Passow (Trainee)*<br />

Der Neubau „Medizinische Genomforschung“ wird voraussichtlich<br />

in 2006 bezogen werden. Fünf Arbeitsgruppen<br />

mit insgesamt 40 Mitarbeitern aus dem <strong>FMP</strong> werden den<br />

dem Institut zuzurechnenden Flächenanteil von 1.094 m 2<br />

nutzen. In den neuen Laborgebäuden entstehen Laborflächen<br />

mit aufwendigen technischen Ausstattungen.<br />

* part of period reported<br />

** part-time<br />

107 Scientific and Technical Services


COMPUTER SERVICES<br />

Head: Thomas Jahn<br />

The EDP Service Group is centrally located to support the<br />

scientific work of the Research Groups and the administrative<br />

infrastructure (Administration, Library, etc.) and is<br />

responsible for the following areas:<br />

• Provision of communication channels and resources<br />

• Operation and extension of network components<br />

• Central data storage, backup and interchange, print services<br />

• Standard equipment for PCs (hardware and software<br />

co-ordination)<br />

• Technical support in preparing publications and presentations<br />

The backbone of all communication channels forms an<br />

efficient network infrastructure consisting of flexible,<br />

structured network connections and an active network<br />

(modular layer 2/3 switches).<br />

All EDP services are based on a heterogenous server (Net-<br />

Ware 6 Cluster, LINUX and Windows 2k Server). The usual<br />

Internet services are made available by the EDP Group<br />

COMPUTER-SERVICE<br />

Leiter: Thomas Jahn<br />

Zur Unterstützung der wissenschaftlichen Arbeit der Forschungsgruppen<br />

und der administrativen Infrastruktur<br />

(Verwaltung, Bibliothek u. a.) ist eine Arbeitsgruppe EDV<br />

zentral angesiedelt, die für folgende Bereiche verantwortlich<br />

ist:<br />

• Bereitstellung von Kommunikationswegen und -ressourcen<br />

• Betrieb und Ausbau aller Netzwekkomponenten<br />

• zentrale Datenspeicherung, -sicherung und -austausch,<br />

Printservices<br />

• Grundausstattung PC’s (Hard- und Softwarekoordinierung)<br />

• technische Unterstützung bei Publikationserstellung<br />

und -präsentationen<br />

Das Rückgrat für alle Kommunikationswege bildet eine<br />

leistungsfähige Netzinfrastuktur, bestehend aus einer<br />

flexiblen strukturierten Netzwerkverkabelung und einem<br />

aktiven Netzwerk (modulare Layer 2/3-Switches).<br />

Basis für alle EDV-Dienstleistungen ist ein heterogener<br />

Serverpool (NetWare 6 Cluster, LINUX und Windows 2k<br />

Server).<br />

(e-mail, www (Intranet), ftp-Server). The services www (for<br />

<strong>FMP</strong> externally) and e-mail (MX-Service) are provided<br />

through cooperation with the BBB. The DFN Association is<br />

the Internet provider for the <strong>FMP</strong>. The <strong>Berlin</strong> Research Association<br />

(FV <strong>Berlin</strong>) operates SAP-R/3 server architecture for<br />

administrative tasks, used on the client side in the <strong>FMP</strong>. PC<br />

work stations with corresponding peripherals for graphics<br />

and image processing are available in the library and in a<br />

graphics room.<br />

An EDP Commission advises on investments and developmental<br />

perspectives in the IT field.<br />

The next tasks of the Group will be implementing measures<br />

to increase security, server consolidation and the evaluation<br />

of future Thin Client Applications to reduce administrative<br />

overheads.<br />

Personnel<br />

Ingrid Hermann (Software Administration)<br />

Hans-Werner Pisarz (Service Engineer)<br />

Alexander Heyne (Student)**<br />

Björn Schümann (Student)* **<br />

Durch die Arbeitsgruppe EDV werden die üblichen Internetdienste<br />

angeboten (eMail, www (Intranet), ftp-Server).<br />

Durch Kooperation mit der BBB werden die Services www<br />

(für <strong>FMP</strong> extern) und eMail (MX-Service) bereitgestellt.<br />

Der Internetprovider des <strong>FMP</strong> ist der DFN Verein. Der FV<br />

<strong>Berlin</strong> betreibt eine SAP-R/3-Serverarchitektur für Verwaltungsaufgaben<br />

die clientseitig im <strong>FMP</strong> genutzt wird.<br />

In der Bibliothek und in einem Grafikraum stehen PC-<br />

Arbeitsplätze mit entsprechender Peripherie für die Grafik-<br />

und Bildverarbeitung zur Verfügung.<br />

Eine EDV-Kommission berät über Investitionen und perspektivische<br />

Entwicklungen im IT-Bereich.<br />

Für die nächste Zukunft bereitet die Gruppe Maßnahmen<br />

zur Erhöhung der Security vor, plant Schritte zur Serverkonsilidierung<br />

und evaluiert künftige Thin-Client-Applikationen<br />

zur Senkung des administrativen Aufwandes.<br />

* part of period reported<br />

** part-time


APPENDIX


PEER REVIEWED ARTICLES <strong>2003</strong><br />

ORIGINALARBEITEN <strong>2003</strong><br />

SECTION STRUCTURAL BIOLOGY<br />

Protein Structure<br />

Castellani F, van Rossum BJ, Diehl A, Rehbein K,<br />

Oschkinat H (<strong>2003</strong>) Determination of solid-state NMR<br />

structures of proteins by means of three-dimensional 15N-<br />

13C-13C dipolar correlation spectroscopy and chemical<br />

shifts analysis. Biochemistry 42, 11476-11483<br />

Chevelkov V, van Rossum BJ, Castellani F, Rehbein K,<br />

Diehl A, Hoh M, Steuernagel S, Engelke F, Oschkinat H,<br />

Reif B (<strong>2003</strong>) 1H detection in MAS solid-state NMR spectroscopy<br />

of biomacromolecules employing pulsed field<br />

gradients for residue solvent suppression. J Am Chem Soc<br />

125, 7788-7789<br />

Labudde D, Leitner D, Krüger M, Oschkinat H (<strong>2003</strong>) Prediction<br />

algorithm for amino acid type with its secondary<br />

structure in proteins (PLATONS) using chemical shifts. J<br />

Biomol NMR 25, 41-53<br />

Ladizhansky V, Jaroniec CP, Diehl A, Oschkinat H, Griffin<br />

RG (<strong>2003</strong>) Measurement of multiple psi torsion angles in<br />

uniformly 13C, 15N-labeled alpha-spectrin SH3 domain<br />

using 3D 15N-13C-13C-15N MAS dipolar-chemical shift<br />

correlation spectroscopy. J Am Chem Soc 125, 6827-6833<br />

Pires JR, Hong X, Brockmann C, Volkmer-Engert R,<br />

Schneider-Mergener J, Oschkinat H, Erdmann R (<strong>2003</strong>)<br />

The ScPex13p SH3 domain exposes two distinct binding<br />

sites for Pex5p and Pex14p. J Mol Biol 326, 1427-1435<br />

Reif B, van Rossum B, Castellani F, Rehbein K, Diehl A,<br />

Oschkinat H (<strong>2003</strong>) Characterization of 1H-1H distances in<br />

a uniformly 2H, 15N-labeled SH3 domain by MAS solidstate<br />

NMR spectroscopy.<br />

J Am Chem Soc 125, 1488-1489<br />

Strauss H (<strong>2003</strong>) A device for facilitating the use of the<br />

French Press. Analytical Biochemistry 321, 276-277<br />

Toepert F, Knaute T, Guffler S, Pires JR, Matzdorf T,<br />

Oschkinat H, Schneider-Mergener J (<strong>2003</strong>) Combining<br />

SPOT Synthesis and Nature Peptide Ligation to Create<br />

Large Arrays of WW Domains. Angew Chem Int Ed 42,<br />

1136-1140<br />

Van Rossum B, Castellani F, Pauli J, Rehbein K, Hollander<br />

J, de Groot H, Oschkinat H (<strong>2003</strong>) Assignment of amide<br />

proton signals by combined evaluation of HN, NN and<br />

HNCA MAS-NMR correlation spectra. J Biomol NMR 25,<br />

217-223<br />

<strong>FMP</strong>-authors in bold.<br />

Zimmermann J, Kühne R, Volkmer-Engert R, Jarchau T,<br />

Walter U, Oschkinat H, Ball LJ (<strong>2003</strong>) Design of N-substituted<br />

Peptomer Ligands for EVH1 Domains. J Biol Chem<br />

278, 36810-36818<br />

Solution NMR<br />

Hupfer M, Rübe B, Schmieder P (<strong>2003</strong>) Origin and diagenesis<br />

of polyphosphate in lake sediments: A 31P-NMR<br />

study. Limnol Oceanogr 49, 1-10<br />

Otte L, Wiedemann U, Schlegel B, Pires JR, Beyermann<br />

M, Schmieder P, Krause G, Volkmer-Engert R, Schneider-<br />

Mergener J, Oschkinat H (<strong>2003</strong>) WW domain sequence<br />

activity relationships identified using ligand recognition<br />

propensities of 42 WW domains. Protein Sci 12, 491-500<br />

Structural Bioinformatics<br />

Otte L, Wiedemann U, Schlegel B, Pires JR, Beyermann<br />

M, Schmieder P, Krause G, Volkmer-Engert R, Schneider-<br />

Mergener J, Oschkinat H (<strong>2003</strong>) WW domain sequence<br />

activity relationships identified using ligand recognition<br />

propensities of 42 WW domains. Protein Sci 12, 491-500<br />

Molecular Modelling<br />

Freund C, Kühne R, Park S, Thiemke K, Reinherz EL,<br />

Wagner G (<strong>2003</strong>) Structural investigations of a GYF domain<br />

covalently linked to a proline-rich peptide. J Biomol NMR<br />

27, 143-149<br />

Karges B, Karges W, Mine M, Ludwig L, Kühne R, Milgrom<br />

E, de Roux N (<strong>2003</strong>) Mutation Ala171Thr stabilizes the<br />

gonadotropin releasing hormone receptor in its inactive<br />

conformation, causing familial hypogonadotropic hypogonadism.<br />

J Clin Endocrinol Metab 88, 1873-1879<br />

Zimmermann J, Kühne R, Volkmer-Engert R, Jarchau T,<br />

Walter U, Oschkinat H, Ball LJ (<strong>2003</strong>) Design of N-substituted<br />

Peptomer Ligands for EVH1 Domains. J Biol Chem<br />

278, 36810-36818<br />

Solid State NMR<br />

Chevelkov V, van Rossum BJ, Castellani F, Rehbein K,<br />

Diehl A, Hoh M, Steuernagel S, Engelke F, Oschkinat H,<br />

Reif B (<strong>2003</strong>) 1H detection in MAS solid-state NMR spectroscopy<br />

of biomacromolecules employing pulsed field<br />

gradients for residue solvent suppression. J Am Chem Soc<br />

125, 7788-7789<br />

Narayanan S, Bösl B, Walter S, Reif B (<strong>2003</strong>) Importance of<br />

low oligomeric weight species for prion propagation in the<br />

yeast prion system Sup35/Hsp104. Proc Natl Acad Sci<br />

U.S.A. 100, 9286-9291


Reif B, Griffin RG (<strong>2003</strong>) 1H detected 1H, 15N correlation<br />

spectroscopy in rotating solids. J Magn Reson 160, 78-83<br />

Reif B, van Rossum B, Castellani F, Rehbein K, Diehl A,<br />

Oschkinat H (<strong>2003</strong>) Characterization of 1H-1H distances in<br />

a uniformly 2H, 15N-labeled SH3 domain by MAS solidstate<br />

NMR spectroscopy. J Am Chem Soc 125, 1488-1489<br />

Protein Engineering<br />

Freund C, Kühne R, Park S, Thiemke K, Reinherz EL,<br />

Wagner G (<strong>2003</strong>) Structural investigations of a GYF domain<br />

covalently linked to a proline-rich peptide. J Biomol NMR<br />

27, 143-149<br />

SECTION CELLULAR SIGNALLING/<br />

MOLECULAR GENETICS<br />

Cellular Signalling<br />

Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal<br />

W, Valenti G (<strong>2003</strong>) cAMP induced AQP2 translocation is<br />

associated with RhoA inhibition through RhoA phosphorylation<br />

and interaction with RhoGDI. J Cell Sci 116, 1519-<br />

1525<br />

Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W,<br />

Pohl P, Maric K (<strong>2003</strong>) Cyclic AMP is sufficient for triggering<br />

the exocytic recruitment of aquaporin-2 in renal ephithelial<br />

cells. EMBO Rep 4, 88-94<br />

Protein Trafficking<br />

Engelsberg A, Hermosilla R, Karsen U, Schülein R, Dorken<br />

B, Rehm A (<strong>2003</strong>) The Golgi protein RCAS1 controls cell<br />

surface expression of tumor-associated O-linked glycan<br />

antigens. J Biol Chem 278, 22998-23007<br />

Anchored Signalling<br />

Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal<br />

W, Valenti G (<strong>2003</strong>) cAMP induced AQP2 translocation is<br />

associated with RhoA inhibition through RhoA phosphorylation<br />

and interaction with RhoGDI. J Cell Sci 116, 1519-<br />

1525<br />

Tamma G, Wiesner B, Furkert J, Hahm D, Oksche A,<br />

Schaefer M, Valenti G, Rosenthal W, Klussmann E (<strong>2003</strong>)<br />

The prostagladin E2 analogue sulprotone antagonizes<br />

vasopressin-induced antidiuresis through activation of<br />

Rho. J Cell Sci 116, 3285-94<br />

<strong>FMP</strong>-authors in bold.<br />

Schmitt R, Klussmann E, Kahl T, Ellison DH, Bachmann S<br />

(<strong>2003</strong>) Renal expression of sodium transporters and aquaporin-2<br />

inhypothyroid rats. Am J Physiol Renal Physiol 284,<br />

1097-104<br />

Storm R, Klussmann E, Geelhaar A, Rosenthal W, Maric K<br />

(<strong>2003</strong>) Osmolality and solute composition are strong regulators<br />

of AQP2 expression in renal principal cells. Am J<br />

Physiol Renal Physiol 284, 189-98<br />

Cellular Imaging<br />

Geissler D, Kresse W, Wiesner B, Bendig J, Kettenmann<br />

H, Hagen V (<strong>2003</strong>) DMACM-Caged Adenosine Nucleotides:<br />

Ultrafast Phototriggers for ATP, ADP, and AMP Activated<br />

by Long-Wavelength Irradiation. ChemBiochem 4, 162-170<br />

Hagen V, Frings S, Bendig J, Lorenz D, Wiesner B, Kaupp<br />

UB (<strong>2003</strong>) Fluoreszenzspektroskopische Quantifizierung<br />

der Freisetzung von cyclischen Nukleotiden aus photoaktivierbaren[Bis(carboxymethoxy)-cumarin-4-yl]methylestern<br />

in Zellen. Angew Chem 114, 3775-3777<br />

Hagen V, Frings S, Wiesner B, Helm S, Kaupp UB, Bendig<br />

J (<strong>2003</strong>) [7-(Dialkylamino)coumarin-4-yl]methyl-caged<br />

compounds as ultrafast and effective long-wavelength<br />

phototriggers of 8-Bromo-substituted cyclic nucleotides.<br />

ChemBiochem 4, 434-442<br />

Kamp G, Büsselmann G, Jones N, Wiesner B, Lauterwein<br />

J (<strong>2003</strong>) Energy metabolism and intracellular pH in boar<br />

(Sus scrofa) spermatozoa. Reproduction 126, 517-525<br />

Siems WE, Maul B, Wiesner B, Becker M, Walther T,<br />

Rothe L, Winkler A (<strong>2003</strong>) Effects of kinins on mammalian<br />

spermatozoa and the impact of peptidolytic enzymes.<br />

Andrologia 35, 44-54<br />

Wiesner B, Roloff B, Fechner K, Slominski A (<strong>2003</strong>) Intracellular<br />

calcium measurements of single human skin cells<br />

after stimulation with corticotropin-releasing factor and<br />

urocortin using confocal laser scanning microscopy. J Cell<br />

Sci 116, 1261-1268<br />

Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U<br />

(<strong>2003</strong>) DNA binding controls inactivation and nuclear<br />

accumulation of the transcription factor. Stat1 Genes Dev<br />

17, 1992-2005<br />

Appendix<br />

111


Molecular Cell Physiology<br />

Wallukat G, Podlovski S, Nissen ER, Morwinski R, Csonka<br />

C, Tosaki A, Blasig IE (<strong>2003</strong>) Functional and structural characterization<br />

of anti-beta1-adrenoceptor auto-antibodies<br />

of spontaneously hypertensive rats. Mol Cell Biochem 251,<br />

67-75<br />

Schroeter ML, Abdul-Khaliq H, Fruhauf S, Hohne R, Schick<br />

G, Diefenbacher A, Blasig IE (<strong>2003</strong>) Serum S100B is increased<br />

during early treatment with antipsychotics and in deficit<br />

schizophrenia. Schizophrenia Res 62, 231-236<br />

Biochemical Neurobiology<br />

Siems WE, Maul B, Wiesner B, Becker M, Walther T,<br />

Rothe L, Winkler A (<strong>2003</strong>) Effects of kinins on mammalian<br />

spermatozoa and the impact of peptidolytic enzymes.<br />

Andrologia 35, 44-54<br />

Biophysics<br />

Urbánková E, Voltchenko A, Pohl P, Jezek P, Pohl EE (<strong>2003</strong>)<br />

Transport kinetics of uncoupling proteins, Analysis of<br />

UCP1 reconstituted in planar lipid bilayers. J Biol Chem<br />

278, 32497-32500<br />

Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl<br />

P, Maric K (<strong>2003</strong>) Cyclic AMP is sufficient for triggering the<br />

exocytic recruitment of aquaporin-2 in renal ephithelial<br />

cells. EMBO Rep 4, 88-94<br />

Molecular Genetics<br />

Wieczorek G, Steinhoff C, Schulz R, Scheller M, Vingron<br />

M, Ropers HH, Nuber UA (<strong>2003</strong>) Gene expression profile of<br />

mouse bone marrow stromal cells determined by cDNA<br />

microarray analysis. Cell Tissue Res 311, 227-237<br />

Barmeyer C, Horak I, Zeitz M, Fromm M, Schultzke JD<br />

(<strong>2003</strong>) The interleukin-2-deficient mouse model. Pathobiology<br />

70, 139-142<br />

Cellular Signal Processing<br />

Chen X, Bhandari R, Vinkemeier U, Van Den Akker F,<br />

Darnell JE Jr, Kuriyan J (<strong>2003</strong>) A reinterpretation of the<br />

dimerization interface of the N-terminal domains of STATs.<br />

Protein Sci 142, 361-365<br />

Meyer T, Vinkemeier U, Meyer U (<strong>2003</strong>) Medizinische<br />

Implikationen pharmakogenomischer Behandlungsstrategien.<br />

Ethik in der Medizin 12, 207-209<br />

<strong>FMP</strong>-authors in bold.<br />

Meyer T, Vinkemeier U, Meyer U (<strong>2003</strong>) Evidence-based<br />

medicine - Was geht verloren? Ethik in der Medizin 14,<br />

3-10<br />

Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U<br />

(<strong>2003</strong>) DNA binding controls inactivation and nuclear<br />

accumulation of the transcription factor Stat1. Genes Dev<br />

17, 1992-2005<br />

SECTION CHEMICAL BIOLOGY<br />

Peptide Synthesis<br />

Carpino LA, Ionescu D, El-Faham A, Beyermann M, Henklein<br />

P, Hanay C, Wenschuh H, Bienert M (<strong>2003</strong>) Complex<br />

polyfluoride additives in Fmoc-amino acid fluoride coupling<br />

processes. Enhanced reactivity and avoidance of<br />

stereomutation. Org Lett 5, 975-977<br />

Carpino LA, Imazumi H, El Faham A, Fernando JF, Zhang C,<br />

Lee Y, Foxman BM, Henklein P, Hanay C, Mugge C,<br />

Wenschuh H, Klose J, Beyermann M, Bienert M (<strong>2003</strong>)<br />

The uronium/guanidinium peptide coupling reagents:<br />

Finally the true uronium salts. Biopolymers 71, 349<br />

Otte L, Wiedemann U, Schlegel B, Pires JR, Beyermann<br />

M, Schmieder P, Krause G, Volkmer-Engert R, Schneider-<br />

Mergener J, Oschkinat H (<strong>2003</strong>) WW domain sequence<br />

activity relationships identified using ligand recognition<br />

propensities of 42 WW domains. Protein Sci 12, 491-500<br />

Von Eggelkraut-Gottanka R, Klose A, Beck-Sickinger AG,<br />

Beyermann M (<strong>2003</strong>) Peptide (alpha)thioester formation<br />

using standard Fmoc-chemistry. Tetrahedron Lett 44,<br />

3551-3554<br />

Wissmann R, Bildl W, Oliver D, Beyermann M, Kalbitzer HR,<br />

Bentrop D, Fakler B (<strong>2003</strong>) Solution structure and function<br />

of the “Tandem inactivation domain” of the neuronal<br />

A-type potassium channel Kv1.4. J Biol Chem 278, 16142-<br />

16150<br />

Kaupp UB, Solzin J, Hildebrandt E, Brown JE, Helbig A,<br />

Hagen V, Beyermann M, Pampaloni F, Weyand I (<strong>2003</strong>) The<br />

signal flow and motor response controlling chemotaxis of<br />

sea urchin sperm. Nat Cell Biol 5, 109-117


Mass Spectrometry<br />

Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus<br />

C, Krause E, Clos J, Bruchhaus I (<strong>2003</strong>) Developmentally<br />

induced changes of the proteome in the protozoan parasite<br />

Leishmania donovani. Proteomics 3, 1811-1829<br />

Czupalla C, Nürnberg B, Krause E (<strong>2003</strong>) Analysis of class<br />

I phosphoinositide 3-kinase autophosphorylation sites by<br />

mass spectrometry. Rapid Commun Mass Spec 17, 690-<br />

696<br />

Czupalla C, Culo M, Müller EC, Brock C, Reusch HP,<br />

Spicher K, Krause E, Nürnberg B (<strong>2003</strong>) Identification and<br />

Characterization of the Autophosphorylation Sites of Phosphoinositide<br />

3-Kinase Isoforms Beta and Gamma. J Biol<br />

Chem 278, 11536-11545<br />

Beattie KA, Ressler J, Wiegand C, Krause E, Codd GA,<br />

Steinberg CEW, Pflugmacher S (<strong>2003</strong>) Comparative effects<br />

and metabolism of two microcystins and nodularin in the<br />

brine shrimp Artemia salina. Aquat Toxicol 62, 219-226<br />

Karlsson K, Sipia V, Krause E, Meriluoto J, Pflugmacher S<br />

(<strong>2003</strong>) Mass Spectrometric Detection and Quantification<br />

of Nodularin-R in Flounder Livers. Environ Toxicol Chem 18,<br />

284-288<br />

Kraus M, Bienert M, Krause E (<strong>2003</strong>) Hydrogen exchange<br />

studies on Alzheimer's amyloid-beta peptides by mass<br />

spectrometry using matrix-assisted laser desorption/ionization<br />

and electrospray ionization. Rapid Commun Mass<br />

Spec 17, 222-228<br />

Kleuss C, Krause E (<strong>2003</strong>) G-alpha-s is palmitoylated at the<br />

N-terminal glycine. EMBO J 22, 826-832<br />

Synthetic Organic Biochemistry<br />

Geissler D, Kresse W, Wiesner B, Bendig J, Kettenmann<br />

H, Hagen V (<strong>2003</strong>) DMACM-Caged Adenosine Nucleotides:<br />

Ultrafast Phototriggers for ATP, ADP, and AMP Activated<br />

by Long-Wavelength Irradiation. ChemBiochem 4, 162-170<br />

Hagen V, Frings S, Bendig J, Lorenz D, Wiesner B, Kaupp<br />

UB (<strong>2003</strong>) Fluoreszenzspektroskopische Quantifizierung<br />

der Freisetzung von cyclischen Nukleotiden aus photoaktivierbaren[Bis(carboxymethoxy)-cumarin-4-yl]methylestern<br />

in Zellen. Angew Chem 114, 3775-3777<br />

Hagen V, Frings S, Wiesner B, Helm S, Kaupp UB, Bendig<br />

J (<strong>2003</strong>) [7-(Dialkylamino)coumarin-4-yl]methyl-caged<br />

compounds as ultrafast and effective long-wavelength<br />

phototriggers of 8-Bromo-substituted cyclic nucleotides.<br />

ChemBiochem 4, 434-442<br />

<strong>FMP</strong>-authors in bold.<br />

Kaupp UB, Solzin J, Hildebrandt E, Brown JE, Helbig A,<br />

Hagen V, Beyermann M, Pampaloni F, Weyand I (<strong>2003</strong>) The<br />

signal flow and motor response controlling chemotaxis of<br />

sea urchin sperm. Nat Cell Biol 5, 109-117<br />

Matsumoto M, Solzin J, Helbig A, Hagen V, Ueno S,<br />

Kawase O, Maruyama Y, Ogiso M, Godde M, Minakata H,<br />

Kaupp UB, Hoshi M, Weyand I (<strong>2003</strong>) A sperm-activating<br />

peptide controls a cGMP-signaling pathway in starfish<br />

sperm. Dev Biol 260, 314-324<br />

Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl<br />

P, Maric K (<strong>2003</strong>) Cyclic AMP is sufficient for triggering the<br />

exocytic recruitment of aquaporin-2 in renal ephithelial<br />

cells. EMBO Rep 4, 88-94<br />

Medicinal Chemistry<br />

Rademann J (<strong>2003</strong>) Advanced polymer reagents based on<br />

activated reactants and reactive intermediates: powerful<br />

novel tools in diversity-oriented synthesis. Method Enzymol<br />

369, 366-390<br />

Weik S, Rademann J (<strong>2003</strong>) A phosphorane as supported<br />

acylanion equivalent: linker reagents for smooth and versatile<br />

C-C coupling reactions. Angew Chem Int Ed 42, 2491-<br />

2494<br />

Rademann J (<strong>2003</strong>) Trimellitic anhydride linker (TAL) –<br />

highly orthogonal conversions of primary amines employed<br />

in the parallel synthesis of labeled carbohydrate derivatives.<br />

Tetrahedon Lett 44, 5019-5023<br />

Appendix<br />

113


PEER REVIEWED ARTICLES <strong>2004</strong><br />

ORIGINALARBEITEN <strong>2004</strong><br />

SECTION STRUCTURAL BIOLOGY<br />

Protein Structure<br />

Brockmann C, Leitner D, Labudde D, Diehl A, Sievert V,<br />

Büssow K, Kühne R, Oschkinat H (<strong>2004</strong>) The solution structure<br />

of the SODD BAG-domain and a model of the SODD-<br />

BAG/HAP70 complex reveal additional SODD subfamilyspecific<br />

electrostatic interactions. FEBS Lett 558, 101-106<br />

Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder<br />

P, Korn B, Kuhne R, Oschkinat H (<strong>2004</strong>) The oxozidid subunit<br />

b8 from human complex I adopts a thioredoxin fold.<br />

Structure 12, 1645-1654<br />

Gaiser OJ, Oschkinat H, Heinemann U, Ball LJ (<strong>2004</strong>) (1),<br />

(13) C and resonance assignments of C-terminal BRCT<br />

domain from human BRCA1. J Biol NMR 30, 221-222<br />

Gaiser OJ, Ball LJ, Schmieder P, Leitner D, Strauss H,<br />

Wahl M, Kühne R, Oschkinat H, Heinemann U (<strong>2004</strong>) Solution<br />

structure, backbone dynamics, and association behavior<br />

of the C-terminal BRCT domain from the breast cancer-associated<br />

BRCA1. Biochemistry 43, 15983-15995<br />

Kahmann JD, Wecking DA, Putter V, Lowenhaupt K, Kim<br />

YG, Schmieder P, Oschkinat H, Rich A, Schade M (<strong>2004</strong>)<br />

The solution structure of the N-terminal domain of E3L<br />

shows a tyrosine conformation that may explain its reduced<br />

affinity to Z-DNA in vitro. Proc Natl Acad Sci U.S.A.<br />

101, 2712-2717<br />

Krabben L, van Rossum BJ, Castellani F, Bocharov E,<br />

Schulga AA, Arseniev AS, Weise C, Hucho F, Oschkinat H<br />

(<strong>2004</strong>) Towards structure determination of neurotoxin II<br />

bound to nicotinic acetylcholine receptor: a solid-state<br />

NMR approach. FEBS Lett 564, 319-324<br />

Mueller U, Bussow K, Diehl A, Bartl FJ, Niesen FH,<br />

Nyarsik L, Heinemann U (<strong>2004</strong>) Rapid purification and crystal<br />

structure analysis of a small protein carrying two terminal<br />

affinity tags. J Struct Funct Genomics 4, 217-225<br />

Pahlke D, Leitner D, Wiedemann U, Labudde D (<strong>2004</strong>)<br />

COPS - Cis/trans peptide bond conformation prediction of<br />

amino acids on the basis of secondary structure informations.<br />

Bioinformatics 10, 27-28<br />

Pope BJ, Zierler-Gould KM, Kuhne R, Weeds AG, Ball LJ<br />

(<strong>2004</strong>) Solution structure of human cofilin: rationalising the<br />

pH sensitivity of actin binding. J Biol Chem 279, 4840-4848<br />

<strong>FMP</strong>-authors in bold.<br />

Soukenik M, Diehl A, Leidert M, Sievert V, Büssow K,<br />

Leitner D, Labudde D, Ball LJ, Lechner A, Nägler DK,<br />

Oschkinat H (<strong>2004</strong>) The SEP domain of p47 acts as a reversible<br />

competitive inhibitor of cathepsin L. FEBS Lett 576,<br />

358-362<br />

Schleinkofer K, Wiedemann U, Otte L, Wang T, Krause G,<br />

Oschkinat H (<strong>2004</strong>) Comparative Structural and Energetic<br />

Analysis of WW Domain-peptide. J Mol Biol 344, 865-881<br />

Waldmann H, Karaguni IM, Carpintero M, Gourzoulidou E,<br />

Herrm C, Brockmann C, Oschkinat H, Muller O (<strong>2004</strong>) Sulindac-Derived<br />

Ras Pathway Inhibitors Target the Ras-Ra<br />

Interaction and Downstream Effectors in the Ras Pathway.<br />

Angew Chem Int Ed 43, 454-458<br />

Wiedemann U, Boisguerin P, Leben R, Leitner D, Krause<br />

G, Mölling K, Volkmer-Engert R, Oschkinat H (<strong>2004</strong>) Quantification<br />

of PDZ Domain Specificity, Prediction of Ligand<br />

Affinity and Rational Design of Super-Binding Peptides. J<br />

Mol Biol 343, 703-718<br />

Zierler-Gould KM, Pope B, Weeds AG, Ball LJ (<strong>2004</strong>) Letter<br />

to the Editor: backbone and sidechain 1H, 13 C and 15N<br />

resonance assignments of human cofilin. J Biol NMR 29,<br />

429-430<br />

Zimmermann J, Jarchau T, Walter U, Oschkinat H, Ball LJ<br />

(<strong>2004</strong>) 1H, 13C and 15N resonance assignment of the<br />

human Spred2 EVH1 domain. J Biol NMR 29, 435-436<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G,<br />

Hermosilla R, Schaefer M, Schülein R, Rosenthal W,<br />

Oksche A (<strong>2004</strong>) Pharmacochaperones post-translationally<br />

enhance cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V2<br />

receptor. J Biol Chem 279, 47254-47263<br />

Solution NMR<br />

Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder<br />

P, Korn B, Kuhne R, Oschkinat H (<strong>2004</strong>) The oxozidid subunit<br />

B8 from human complex I adopts a thioredoxin fold.<br />

Structure 12, 1645-1654<br />

Gaiser OJ, Ball LJ, Schmieder P, Leitner D, Strauss H,<br />

Wahl M, Kühne R, Oschkinat H, Heinemann U (<strong>2004</strong>) Solution<br />

structure, backbone dynamics, and association behavior<br />

of the C-terminal BRCT domain from the breast cancer-associated<br />

BRCA1. Biochemistry 43, 15983-15995<br />

Kahmann JD, Wecking DA, Putter V, Lowenhaupt K, Kim<br />

YG, Schmieder P, Oschkinat H, Rich A, Schade M (<strong>2004</strong>)<br />

The solution structure of the N-terminal domain of E3L<br />

shows a tyrosine conformation that may explain its reduced<br />

affinity to Z-DNA in vitro. Proc Natl Acad Sci U.S.A.<br />

101, 2712-2717


Scheich C, Leitner D, Sievert V, Leidert M, Schlegel B,<br />

Simon B, Letunic K, Bussow K, Diehl A (<strong>2004</strong>) Fast identification<br />

on folded human protein domains expressed in<br />

E. coli suitable for structural analysis. BMC Structural Biology<br />

4, 4<br />

Structural Bioinformatics<br />

Neumann S, Krause G, Claus M, Paschke R (<strong>2004</strong>) Structural<br />

Determinants for G-Protein Activation and Selectivity<br />

in the Second Intracellular Loop of the Thyrotropin Receptor.<br />

Endocrinol 46, 477-485<br />

Kaufmann R, Schulze B, Krause G, Mayr LM, Setmacher U,<br />

Henklein P (<strong>2004</strong>) Proteinase-activated receptors (PARs)<br />

– The PAR3 Neo-N-terminal peptide TFRGAP interacts<br />

with PAR1. Regulatory Peptides, in press<br />

Kleinau G, Jaeschke H, Neumann S, Laettig J, Paschke R,<br />

Krause G (<strong>2004</strong>) Identification of a novel epitope in the TSH<br />

receptor ectodomain acting as intramolecular signalling<br />

interface. J Biol Chem 279, 51590-51600<br />

Müller SL, Portwich M, Schmidt A, Utepbergenov DI,<br />

Huber O, Blasig IE, Krause G (<strong>2004</strong>) The tight junction protein<br />

occludin and the adherens junction protein alphacatenin<br />

share a common interaction mechanism. J Biol<br />

Chem 280, 3747-3756<br />

Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M,<br />

Schneider-Mergener J, Krause G, Blasig IE (<strong>2004</strong>) Occludin<br />

binds to the SH3-hinge-GuK unit of zonula occludens<br />

protein 1: potential mechanism of tight junction regulation.<br />

Cell Mol Life Sci 61, 1354-365<br />

Schleinkofer K, Wiedemann U, Otte L, Wang T, Krause G,<br />

Oschkinat H (<strong>2004</strong>) Comparative Structural and Energetic<br />

Analysis of WW Domain-peptide. J Mol Biol 344, 865-881<br />

Wiedemann U, Boisguerin P, Leben R, Leitner D, Krause<br />

G, Mölling K, Volkmer-Engert R, Oschkinat H (<strong>2004</strong>) Quantification<br />

of PDZ Domain Specificity, Prediction of Ligand<br />

Affinity and Rational Design of Super-Binding Peptides. J<br />

Mol Biol 343, 703-718<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G,<br />

Hermosilla R, Schaefer M, Schülein R, Rosenthal W,<br />

Oksche A (<strong>2004</strong>) Pharmacochaperones post-translationally<br />

enhance cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V2<br />

receptor. J Biol Chem 279, 47254-47263<br />

<strong>FMP</strong>-authors in bold.<br />

Molecular Modelling<br />

Baumgart S, Lindner Y, Kuhne R, Oberemm A, Wenschuh<br />

H, Krause E (<strong>2004</strong>) The contributions of specific amino acid<br />

side chains to signal intensities of peptides in matrix-assisted<br />

laser desorption/ionization mass spectrometry. Rapid<br />

Commun Mass Spec 18, 863-868<br />

Brockmann C, Leitner D, Labudde D, Diehl A, Sievert V,<br />

Büssow K, Kühne R, Oschkinat H (<strong>2004</strong>) The solution structure<br />

of the SODD BAG-domain and a model of the SODD-<br />

BAG/HAP70 complex reveal additional SODD subfamilyspecific<br />

electrostatic interactions. FEBS Lett 558, 101-106<br />

Brockmann C, Diehl A, Rehbein K, Strauss H, Schmieder<br />

P, Korn B, Kuhne R, Oschkinat H (<strong>2004</strong>) The oxozidid subunit<br />

B8 from human complex I adopts a thioredoxin fold.<br />

Structure 12, 1645-1654<br />

Gaiser OJ, Ball LJ, Schmieder P, Leitner D, Strauss H,<br />

Wahl M, Kühne R, Oschkinat H, Heinemann U (<strong>2004</strong>) Solution<br />

structure, backbone dynamics, and association behavior<br />

of the C-terminal BRCT domain from the breast cancer-associated<br />

BRCA1. Biochemistry 43, 15983-15995<br />

Pope BJ, Zierler-Gould KM, Kuhne R, Weeds AG, Ball LJ<br />

(<strong>2004</strong>) Solution structure of human cofilin: rationalising the<br />

pH sensitivity of actin binding. J Biol Chem 279, 4840-4848<br />

Solid State NMR<br />

Chen Z, Reif B (<strong>2004</strong>) Measurements of residual dipolar<br />

couplings in peptide inhibitors weakly aligned by transient<br />

binding to peptide amyloid fibrils. J Biol NMR 29, 525-530<br />

Chevelkov V, Chen Z, Bermel W, Reif B (<strong>2004</strong>) Resolution<br />

enhancement in MAS solid-state NMR by application of<br />

13C homonuclear scalar decoupling during acquisition. J<br />

Magn Reson 172, 56-62<br />

Ventura S, Zurdo J, Narayanan S, Parreno M, Mangues R,<br />

Reif B, Chiti F, Giannoni E, Dobson CM, Aviles FX, Serrano<br />

L (<strong>2004</strong>) Short amino acid stretches can mediate amyloid<br />

formation in globular proteins: the Src homology 3 (SH3)<br />

case. Proc Natl Acad Sci U.S.A. 101, 7258-7263<br />

Protein Engineering<br />

Heuer K, Kofler M, Langdon G, Thiemke K, Freund C (<strong>2004</strong>)<br />

Structure of a helically extended SH3 domain of the T cell<br />

adapter protein ADAP. Structure 12, 603-610<br />

Kofler M, Heuer K, Zech T, Freund C (<strong>2004</strong>) Recognition<br />

sequences for the GYF domain reveal a possible splicosomal<br />

function of CD2BP2. J Biol Chem 279, 28292-28297<br />

Appendix<br />

115


SECTION CELLULAR SIGNALLING/MOLE-<br />

CULAR GENETICS<br />

Cellular Signalling<br />

Gregan B, Schäfer M, Rosenthal W, Oksche A (<strong>2004</strong>) Fluorescence<br />

resonance energy transfer analysis reveals the<br />

existence of endothelin A and endothelin B receptor<br />

homodimers. J Cardiovasc Pharmacol 44, S30-33<br />

Gregan B, Jürgensen J, Papsdorf G, Furkert J, Schaefer<br />

M, Beyermann M, Rosenthal W, Oksche A (<strong>2004</strong>) Liganddependent<br />

differences in the internalization and intracellular<br />

trafficking of endothelin A and endothelin B receptor<br />

heterodimers. J Biol Chem 279, 27679-27687<br />

Hällbrink M, Oehlke J, Papsdorf G, Bienert M (<strong>2004</strong>) Uptake<br />

of cell-penetrating peptides is dependent on the peptide-to-cell-ratio<br />

rather than on peptide concentration.<br />

Biochim Biophys Acta 1667, 222-228<br />

Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F,<br />

Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause<br />

E, Herberg FW, Valenti G, Bachmann S, Rosenthal W,<br />

Klussmann E (<strong>2004</strong>) Identification of a novel A-kinase<br />

anchoring protein 18 isoform and evidence for its role in<br />

the vasopressin-induced aquaporin-2 shuttle in renal principal<br />

cells. J Biol Chem 279, 26654-26665<br />

Hermosilla R, Oueslati M, Donalies U, Schönenberger E,<br />

Krause E, Oksche A, Rosenthal W, Schuelein R (<strong>2004</strong>)<br />

Disease-causing V2 Vasopressin Receptors are Retained<br />

in Different Compartments of the Early Secretory Pathway.<br />

Traffic 12, 993-1005<br />

Tsunoda AP, Wiesner B, Lorenz D, Rosenthal W, Pohl P<br />

(<strong>2004</strong>) Aquaporin-1, Nothing but a water channel. J Biol<br />

Chem 279, 11364-11367<br />

Wietfeld D, Heinrich N, Furkert J, Fechner K, Beyermann<br />

M, Bienert M, Berger H (<strong>2004</strong>) Regulation of the Coupling<br />

to Different G-Proteins of Rat Corticotropin-Releasing Factor<br />

Receptor Type 1 (rCRFR1) in HEK293 Cells. J Biol Chem<br />

279, 38386-38394<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G,<br />

Hermosilla R, Schaefer M, Schülein R, Rosenthal W,<br />

Oksche A (<strong>2004</strong>) Pharmacochaperones post-translationally<br />

enhance cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V2<br />

receptor. J Biol Chem 279, 47254-47263<br />

<strong>FMP</strong>-authors in bold.<br />

Protein Trafficking<br />

Droese J, Mokros T, Hermosilla R, Schuelein R, Lipp M,<br />

Hopken UE, Rehm A (<strong>2004</strong>) HCMV-encoded chemokine<br />

receptor US28 employs multiple routes for internalization.<br />

Biochem Biophys Res Comm 322, 42-49<br />

Hermosilla R, Oueslati M, Donalies U, Schönenberger E,<br />

Krause E, Oksche A, Rosenthal W, Schuelein R (<strong>2004</strong>)<br />

Disease-causing V2 Vasopressin Receptors are Retained<br />

in Different Compartments of the Early Secretory Pathway.<br />

Traffic 12, 993-1005<br />

Neuschäfer-Rube F, Rehwald M, Hermosilla R, Schülein R,<br />

Rönnstrand L, Püschel G (<strong>2004</strong>) Identification of different<br />

Ser/Thr residues in the C-terminal domain of the human<br />

EP4 reseptor for agonist-induced phosphorylation, betaarrestin<br />

interaction and sequestration Biochemistry 379,<br />

573-585<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G,<br />

Hermosilla R, Schaefer M, Schülein R, Rosenthal W,<br />

Oksche A (<strong>2004</strong>) Pharmacochaperones post-translationally<br />

enhance cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V2<br />

receptor. J Biol Chem 279, 47254-47263<br />

Anchored Signalling<br />

Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F,<br />

Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause<br />

E, Herberg FW, Valenti G, Bachmann S, Rosenthal W,<br />

Klussmann E (<strong>2004</strong>) Identification of a novel A-kinase<br />

anchoring protein 18 isoform and evidence for its role in<br />

the vasopressin-induced aquaporin-2 shuttle in renal principal<br />

cells. J Biol Chem 279, 26654-26665<br />

Cellular Imaging<br />

Geissler D, Antonenko YN, Schmidt R, Keller S, Krylova<br />

OO, Wiesner B, Bendig J, Pohl P, Hagen V (<strong>2004</strong>) (Coumarin-4-yl)methyl<br />

Esters as Highly Efficient, Ultrafast Phototriggers<br />

for Protons and Their Application to Acidifying<br />

Membrane Surfaces. Angew Chem Int Ed 44, 1195-1198<br />

Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F,<br />

Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause<br />

E, Herberg FW, Valenti G, Bachmann S, Rosenthal W,<br />

Klussmann E (<strong>2004</strong>) Identification of a novel A-kinase<br />

anchoring protein 18 isoform and evidence for its role in<br />

the vasopressin-induced aquaporin-2 shuttle in renal principal<br />

cells. J Biol Chem 279, 26654-26665


Mathas S, Lietz A, Anagnostopoulos I, Hummel F, Wiesner<br />

B, Janz M, Jundt F, Hirsch B, Johrens-Leder K, Vornlocher<br />

HP, Bommert K, Stein H, Dorken B (<strong>2004</strong>) C-FLIP mediates<br />

resistance of Hodgkin/Reed-Sternberg cells to death<br />

receptor-induced apoptosis. J Exp Med 199, 1041-1052<br />

Oehlke J, Wallukat G, Wolf Y, Ehrlich A, Wiesner B, Berger<br />

H, Bienert M (<strong>2004</strong>) Enhancement of intracellular concentration<br />

and biological activity of PNA after conjugation<br />

with a cell-penetrating synthetic model peptide. Eur J Biochem<br />

271, 3043-3049<br />

Tsunoda AP, Wiesner B, Lorenz D, Rosenthal W, Pohl P<br />

(<strong>2004</strong>) Aquaporin-1, Nothing but a water channel. J Biol<br />

Chem 279, 11364-11367<br />

Wüller S, Wiesner B, Löffler A, Furkert J, Krause G,<br />

Hermosilla R, Schaefer M, Schülein R, Rosenthal W,<br />

Oksche A (<strong>2004</strong>) Pharmacochaperones post-translationally<br />

enhance cell surface expression by increasing conformational<br />

stability of wild-type and mutant vasopressin V2<br />

receptor. J Biol Chem 279, 47254-47263<br />

Molecular Cell Physiology<br />

Haseloff RF, Blasig IE, Bauer HC, Bauer H (<strong>2004</strong>) In search<br />

of the astrocytic factor(s) modulating blood-brain barrier<br />

function in brain capillary endothelial cells in vitro. Mol Cell<br />

Neurosi, in press<br />

Moser KV, Reindl M, Blasig IE, Humpel C (<strong>2004</strong>) Brain<br />

capillary endothelial cells proliferate in response to NGF,<br />

express NGF receptors and secrete NGF after inflammation.<br />

Brain Res 1017, 53-60<br />

Müller SL, Portwich M, Schmidt A, Utepbergenov DI,<br />

Huber O, Blasig IE, Krause G (<strong>2004</strong>) The tight junction protein<br />

occludin and the adherens junction protein alphacatenin<br />

share a common interaction mechanism. J Biol<br />

Chem 280, 3747-3756<br />

Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M,<br />

Schneider-Mergener J, Krause G, Blasig IE (<strong>2004</strong>) Occludin<br />

binds to the SH3-hinge-GuK unit of zonula occludens<br />

protein 1: potential mechanism of tight junction regulation.<br />

Cell Mol Life Sci 61, 1354-365<br />

Zassler B, Blasig IE, Humpel C (<strong>2004</strong>) Protein delivery of<br />

caspase-3 induces cell death in malignant C6 glioma and<br />

brain capillary endothelial cells. J Neuro-Oncol 71, 127-134<br />

<strong>FMP</strong>-authors in bold.<br />

Biochemical Neurobiology<br />

Walter T, Stepan H, Pankow K, Gembard F, Faber R,<br />

Schultheiss HP, Siems WE (<strong>2004</strong>) Relation of ANP and BNP<br />

to their N-terminal fragments in fetal circulation: evidence<br />

for enhanced neutral endopeotidase activity and resistance<br />

of BNP to neutral endopeptidase in the fetus. BJOG<br />

111, 452-455<br />

Walter T, Stepan H, Pankow K, Becker M, Schultheiss HP,<br />

Siems WE (<strong>2004</strong>) Biochemical analysis of neutral endopeptidase<br />

activity reveals independent catabolism of atrial<br />

and brain natriuretic peptide. Biol Chem 385, 179-184<br />

Biophysics<br />

Geissler D, Antonenko YN, Schmidt R, Keller S, Krylova<br />

OO, Wiesner B, Bendig J, Pohl P, Hagen V (<strong>2004</strong>) (Coumarin-4-yl)methyl<br />

Esters as Highly Efficient, Ultrafast Phototriggers<br />

for Protons and Their Application to Acidifying<br />

Membrane Surfaces. Angew Chem Int Ed 44, 1195-1198<br />

Krylova O, Pohl P (<strong>2004</strong>) Ionophoric Activity of Pluronic<br />

Block Copolymers. Biochemistry 43, 3696-3703<br />

Saparov SM, Pohl P (<strong>2004</strong>) Beyond the diffusion limit:<br />

Water flow throught the empty bacterial potassium channel.<br />

Proc Natl Acad Sci U.S.A. 101, 4805-4809<br />

Sun J, Pohl EE, Krylova OO, Krause E, Agapov II,<br />

Tonevitzky AG, Pohl P (<strong>2004</strong>) Membrane destabilization by<br />

ricin. Eur Biophys J 33, 572-579<br />

Tsunoda AP, Wiesner B, Lorenz D, Rosenthal W, Pohl P<br />

(<strong>2004</strong>) Aquaporin-1, Nothing but a water channel. J Biol<br />

Chem 279, 11364-11367<br />

Molecular Genetics<br />

Barmeyer C, Harren M, Schmitz H, Heinzel-Pleines U,<br />

Mankertz J, Seidler U, Horak I, Wiedenmann B, Fromm M,<br />

Schulzke JD (<strong>2004</strong>) Mechanisms of diarrhea in the interleukin-2-deficient<br />

mouse model of colonic inflammation.<br />

Am J Physiol 286, 244-252<br />

Terszowski G, Waskow C, Conradt P, Lenze D, Koenigsmann<br />

J, Carstanjen D, Horak I, Rodewald HR (<strong>2004</strong>) Prospective<br />

Isolation and global gene expression analysis of<br />

the colony-forming urit-erythrocyte (CFU-E). Blood 105,<br />

1937-1945<br />

Zatovicova M, Tarabkova K, Svastova E, Gibadulinova A,<br />

Mucha V, Jakubickova L, Biesova Z, Ortova-Gut M,<br />

Parkkila S, Parkkila AK, Waheed A, Horak I, Pastorek J,<br />

Pastorekova S (<strong>2004</strong>) Monoclonal antibodies generated in<br />

CA IX-deficient mice recognize different domains of tumorassociated<br />

hypoxia-induced carbonic anhydrase IX. J<br />

Immunol Methods 282, 117-134<br />

Appendix<br />

117


Cytokine Signalling<br />

Rosenbauer F, Wagner K, Zhang P, Knobeloch KP, Iwama<br />

A, Tenen DG (<strong>2004</strong>) pDP4, a novel glycoprotein secreted by<br />

mature granulocytes, is regulated by transcription factor<br />

PU.1. Blood 103, 4294-4301<br />

Schuh K, Cartwright EJ, Jankevics E, Bundschu K, Liebermann<br />

J, Williams JC, Armesilla AL, Emerson M, Oceandy<br />

D, Knobeloch KP, Neyses L (<strong>2004</strong>) Plasma membrane Ca2+<br />

ATPase 4 is required for sperm motility and male fertility J<br />

Biol Chem 279, 28220-28226<br />

Van Spriel AB, Puls KL, Sofi M, Pouniotis D, Hochrein H,<br />

Orinska Z, Knobeloch KP, Plebanski M, Wright MD (<strong>2004</strong>)<br />

A regulatory role for CD37 in T cell proliferation. J Immunol<br />

172, 2953-2961<br />

Molecular Myelopoiesis<br />

Heymann GA, Carstanjen D, Kiesewetter H, Salama A<br />

(<strong>2004</strong>) Polymorphism of the a4-subunit of VLA-4 integrin<br />

and bone marrow transplantation. Haematologica 89,<br />

882-884<br />

Terszowski G, Waskow C, Conradt P, Lenze D, Koenigsmann<br />

J, Carstanjen D, Horak I, Rodewald HR (<strong>2004</strong>) Prospective<br />

Isolation and global gene expression analysis of<br />

the colony-forming urit-erythrocyte (CFU-E). Blood 105,<br />

1937-1945<br />

Cellular Signal Processing<br />

Marg A, Shan Y, Meyer T, Meissner T, Brandenburg M,<br />

Vinkemeier U (<strong>2004</strong>) Nucleocytoplasmic shuttling by<br />

nucleoporins Nup153 and Nup214 and CRM1-dependent<br />

nuclear export control the subcellular distribution of latent<br />

Stat1. J Cell Biol 165, 823-833<br />

Meissner T, Krause E, Vinkemeier U (<strong>2004</strong>) Ratjadone and<br />

leptomycin B block CRM1-dependent nuclear export by<br />

identical mechanisms. FEBS Lett 576, 27-30<br />

Meissner T, Krause E, Lödige I, Vinkemeier U (<strong>2004</strong>)<br />

Arginine Methylation of STAT1: A Reassessment. Cell 119,<br />

587-589<br />

Meyer T, Hendry L, Begitt A, John S, Vinkemeier U (<strong>2004</strong>)<br />

A single residue modulates tyrosine dephosphorylation,<br />

oligomerization, and nuclear accumulation of stat transcription<br />

factors. J Biol Chem 279, 18998-19007<br />

<strong>FMP</strong>-authors in bold.<br />

SECTION CHEMICAL BIOLOGY<br />

Peptide Synthesis<br />

Cansarek P, Beyermann M, Koch KW (<strong>2004</strong>) Thermodynamics<br />

of apocalmodulin and nitric oxide synthase II peptide<br />

interaction. FEBS Lett 577, 465-468<br />

Carpino LA, Krause E, Sferdean CD, Bienert M, Beyermann<br />

M (<strong>2004</strong>) Dramatically enhanced N to O acyl migration<br />

during the trifluoracetic acid-based deprotection step in<br />

solid phase peptide synthesis. Tetrahedon Lett 46, 1361-<br />

1364<br />

Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian<br />

H, Bienert M, Beyermann M (<strong>2004</strong>) Synthesis of “difficult“<br />

peptide sequences:application of a depsipeptide technique<br />

to the Jung Redemann 10- and 26-mers and the amyloid<br />

peptide Abeta (1-42). Tetrahedron Lett 45, 7519-7523<br />

Gregan B, Jürgensen J, Papsdorf G, Furkert J, Schaefer<br />

M, Beyermann M, Rosenthal W, Oksche A (<strong>2004</strong>) Liganddependent<br />

differences in the internalization and intracellular<br />

trafficking of endothelin A and endothelin B receptor<br />

heterodimers. J Biol Chem 279, 27679-27687<br />

Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F,<br />

Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause<br />

E, Herberg FW, Valenti G, Bachmann S, Rosenthal W,<br />

Klussmann E (<strong>2004</strong>) Identification of a novel A-kinase<br />

anchoring protein 18 isoform and evidence for its role in<br />

the vasopressin-induced aquaporin-2 shuttle in renal principal<br />

cells. J Biol Chem 279, 26654-26665<br />

Klemm C, Schöder S, Glückmann M, Beyermann M, Krause<br />

E (<strong>2004</strong>) Derivatization of phorphorylated peptides with<br />

S- and N-nucleophiles for enhanced ionization efficiency<br />

in matrix-assisted laser desorption/ionization mass spectrometry.<br />

Rapid Commun Mass Spectrom 18, 2697-2705<br />

Klose J, Wendt N, Kubald S, Krause E, Fechner K,<br />

Beyermann M, Bienert M, Rudolph R, Rothemund S (<strong>2004</strong>)<br />

Hexa-histidin tag position influences disulfide structure<br />

but not binding behaviour of in vitro folded N-terminal<br />

domain of rat corticotropin-releasing factor receptor type<br />

2a. Protein Sci 13, 2470-2475<br />

Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M,<br />

Schneider-Mergener J, Krause G, Blasig IE (<strong>2004</strong>) Occludin<br />

binds to the SH3-hinge-GuK unit of zonula occludens<br />

protein 1: potential mechanism of tight junction regulation.<br />

Cell Mol Life Sci 61, 1354-365


Wietfeld D, Heinrich N, Furkert J, Fechner K, Beyermann<br />

M, Bienert M, Berger H (<strong>2004</strong>) Regulation of the Coupling<br />

to Different G-Proteins of Rat Corticotropin-Releasing Factor<br />

Receptor Type 1 (rCRFR1) in HEK293 Cells. J Biol Chem<br />

279, 38386-38394<br />

Peptide Lipid Interaction/Peptide Transport<br />

Dathe M, Nikolenko H, Klose J, Bienert M (<strong>2004</strong>) Cyclization<br />

increases the antimicrobial activity and selectivity<br />

of tryptophan and arginine containing hexapeptides. Biochemistry<br />

43, 9140-9150<br />

Hällbrink M, Oehlke J, Papsdorf G, Bienert M (<strong>2004</strong>)<br />

Uptake of cell-penetrating peptides is dependent on the<br />

peptide-to-cell-ratio rather than on peptide concentration.<br />

Biochim Biophys Acta 1667, 222-228<br />

Kerth A, Erbe A, Dathe M, Blume A (<strong>2004</strong>) Infrared reflection<br />

absorption spectroscopy of amphipathic model peptides<br />

at the air/water interface. Biophys J 86, 3750-3758<br />

Oehlke J, Wallukat G, Wolf Y, Ehrlich A, Wiesner B, Berger<br />

H, Bienert M (<strong>2004</strong>) Enhancement of intracellular concentration<br />

and biological activity of PNA after conjugation<br />

with a cell-penetrating synthetic model peptide. Eur J Biochem<br />

271, 3043-3049<br />

Wessolowski A, Bienert M, Dathe D (<strong>2004</strong>) Antimicrobial<br />

activity of Arginine -& Tryptophan-rich hexapeptides: the<br />

effects of aromatic clusters, D-amino acid substitution and<br />

cyclization. J Pept Res 64, 159-69<br />

Peptide Biochemistry<br />

Oehlke J, Wallukat G, Wolf Y, Ehrlich A, Wiesner B,<br />

Berger H, Bienert M (<strong>2004</strong>) Enhancement of intracellular<br />

concentration and biological activity of PNA after conjugation<br />

with a cell-penetrating synthetic model peptide. Eur<br />

J Biochem 271, 3043-3049<br />

Wietfeld D, Heinrich N, Furkert J, Fechner K, Beyermann<br />

M, Bienert M, Berger H (<strong>2004</strong>) Regulation of the Coupling<br />

to Different G-Proteins of Rat Corticotropin-Releasing Factor<br />

Receptor Type 1 (rCRFR1) in HEK293 Cells. J Biol Chem<br />

279, 38386-38394<br />

Mass Spectrometry<br />

Baumgart S, Lindner Y, Kuhne R, Oberemm A, Wenschuh<br />

H, Krause E (<strong>2004</strong>) The contributions of specific amino acid<br />

side chains to signal intensities of peptides in matrix-assisted<br />

laser desorption/ionization mass spectrometry. Rapid<br />

Commun Mass Spec 18, 863-868<br />

<strong>FMP</strong>-authors in bold.<br />

Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian<br />

H, Bienert M, Beyermann M (<strong>2004</strong>) Synthesis of “difficult“<br />

peptide sequences:application of a depsipeptide technique<br />

to the Jung Redemann 10- and 26-mers and the amyloid<br />

peptide Abeta (1-42). Tetrahedron Lett 45, 7519-7523<br />

Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F,<br />

Schmitt R, Vossebein L, Tamma G, Beyermann M, Krause<br />

E, Herberg FW, Valenti G, Bachmann S, Rosenthal W,<br />

Klussmann E (<strong>2004</strong>) Identification of a novel A-kinase<br />

anchoring protein 18 isoform and evidence for its role in<br />

the vasopressin-induced aquaporin-2 shuttle in renal principal<br />

cells. J Biol Chem 279, 26654-26665<br />

Hermosilla R, Oueslati M, Donalies U, Schönenberger E,<br />

Krause E, Oksche A, Rosenthal W, Schuelein R (<strong>2004</strong>)<br />

Disease-causing V2 Vasopressin Receptors are Retained<br />

in Different Compartments of the Early Secretory Pathway.<br />

Traffic 12, 993-1005<br />

Klemm C, Schöder S, Glückmann M, Beyermann M, Krause<br />

E (<strong>2004</strong>) Derivatization of phorphorylated peptides with<br />

S- and N-nucleophiles for enhanced ionization efficiency<br />

in matrix-assisted laser desorption/ionization mass spectrometry.<br />

Rapid Commun Mass Spectrom 18, 2697-2705<br />

Klose J, Wendt N, Kubald S, Krause E, Fechner K, Beyermann<br />

M, Bienert M, Rudolph R, Rothemund S (<strong>2004</strong>) Hexahistidin<br />

tag position influences disulfide structure but not<br />

binding behaviour of in vitro folded N-terminal domain of<br />

rat corticotropin-releasing factor receptor type 2a. Protein<br />

Sci 13, 2470-2475<br />

Meissner T, Krause E, Lödige I, Vinkemeier U (<strong>2004</strong>)<br />

Arginine methylation of STAT1: a reassessment. Cell 119,<br />

587-589<br />

Meissner T, Krause E, Vinkemeier U (<strong>2004</strong>) Ratjadone and<br />

leptomycin B block CRM1-dependent nuclear export by<br />

identical mechanisms. FEBS Lett 576, 27-30<br />

Rettig H, Krause E, Börner HG (<strong>2004</strong>) Atom transfer radical<br />

polymerization with polypeptide-initiators: a general<br />

approach to block copolymers of sequence-defined polypeptides<br />

and synthetic polymers. Macromol Rapid Commun<br />

25, 1251-1256<br />

Sidorova MV, Molokoedov AS, Az’muko AA, Kydryavtseva<br />

EV, Krause E, Ovchinnikov MV, Bespalova ZD (<strong>2004</strong>) The<br />

Use of hydrogen Peroxide for Closing Disulfide Bridges in<br />

Peptides. Russ J Bio Chem 2, 101-110<br />

Sun J, Pohl EE, Krylova OO, Krause E, Agapov II, Tonevitzky<br />

AG, Pohl P (<strong>2004</strong>) Membrane destabilization by ricin. Eur<br />

Biophys J 33, 572-579<br />

Appendix<br />

119


Synthetic Organic Biochemistry<br />

Geissler D, Antonenko YN, Schmidt R, Keller S, Krylova<br />

OO, Wiesner B, Bendig J, Pohl P, Hagen V (<strong>2004</strong>) (Coumarin-4-yl)methyl<br />

Esters as Highly Efficient, Ultrafast Phototriggers<br />

for Protons and Their Application to Acidifying<br />

Membrane Surfaces. Angew Chem Int Ed 44, 1195-1198<br />

Medicinal Chemistry<br />

Barth M, Rademann J (<strong>2004</strong>) Tailoring Ultraresins based on<br />

the cross-linking of polyethylene imines. Comperative<br />

investigation of the chemical composition, the swelling,<br />

the mobility, the chemical accessibility, and the performance<br />

in solid phase synthesis of very high loaded resins.<br />

J Comb Chem 6, 340-349<br />

Barth M, Fischer R, Brock R, Rademann J (<strong>2004</strong>) Reversible<br />

cross-linking of hyperbranched polymers: A strategy<br />

for the combinatorial decoration of multivalent scaffolds.<br />

Angew Chem Int Ed 44, 1560-1563<br />

Rademann J (<strong>2004</strong>) High Loading Polymer Reagents based<br />

on Polycationic Ultragels. Polymer-Supported Reductions<br />

and Oxidations with Increased Efficiency. Tetrahedon Lett<br />

60, 8703-8709<br />

Rademann J (<strong>2004</strong>) Organic Protein Chemistry: Drug Discovery<br />

through the Chemical Modification of Proteins.<br />

Angew Chem Int Ed 116, 4654-4656<br />

Smerdka J, Rademann J, Jung G (<strong>2004</strong>) Polymer-bound<br />

alkyltriazenes for mild racemization-free esterification of<br />

amino acid and peptide derivatives. J Pept Sci 10, 603-611<br />

Sorg G, Thern B, Mader O, Rademann J, Jung G (<strong>2004</strong>) Progress<br />

in the preparation of peptide aldehydes via polymer<br />

supported IBX oxidation and scavenging by threonyl resin.<br />

J Pept Sci 11, 142-152<br />

Number of original articles published in peer reviewed journals ordered by impact factor<br />

Anzahl der Originalarbeiten geordnet nach Impact-Faktor<br />

Impact factor 1999 2000 2001 2002 <strong>2003</strong> <strong>2004</strong><br />

< 3 14 17 24 16 23 28<br />

3 - 4.5 13 8 7 11 6 16<br />

4.5 - 7 9 8 10 12 12 22<br />

> 7 16 10 12 19 13 14<br />

total 52 43 53 58 54 80<br />

<strong>FMP</strong>-authors in bold.


REVIEWS <strong>2003</strong>/<strong>2004</strong><br />

ÜBERSICHTSARBEITEN <strong>2003</strong>/<strong>2004</strong><br />

Abdul-Kaliq H, Schubert S, Stoltenburg-Didinger G, Huebler<br />

M, Troitsch D, Wehsack A, Boettcher W, Schwaller B,<br />

Crausaz M, Celio M, Schroeter ML, Blasig IE, Hetzer R,<br />

Lange PE (<strong>2003</strong>) Release patterns of astrocytic and neuronal<br />

biochemical markers in serum during and after experimental<br />

settings of cardiac surgery. Neurol Neurosci/<br />

Molecular Markers of Brain Damage 21, 141-150<br />

Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H<br />

(<strong>2003</strong>) Recognition of proline rich motifs (PRMs) by small<br />

adaptor domains: An important class of protein-protein<br />

interactions in signal transduction. Angew Chem Int Ed 44,<br />

2852-2869<br />

Meyer T, Vinkemeier U (<strong>2004</strong>) Nucleocytoplasmic shuttling<br />

of STAT transcription factors. Eur J Biochem 271, 4606-<br />

4612<br />

Oehlke J, Lorenz D, Wiesner B, Bienert M (<strong>2004</strong>) Studies<br />

on the cellular uptake of substance P- and lysine-rich,<br />

KLA-derived model peptides. J Mol Recognit 17, 1-10<br />

Oehme P, Schmidt J, Hinkel U (<strong>2004</strong>) Vitamin K und seine<br />

Funktionen im Körper. Pharmazie 29-31<br />

Oehme, P (<strong>2004</strong>) Theoretische und klinische Aspekte der<br />

Sucht. Meine Begegnungen mit der Suchtforschung.<br />

Medizin und Gesellschaft 51, 109-119<br />

Pohl P (<strong>2004</strong>) Combined transport of water and ions<br />

through membrane channels. Biol Chem 385, 921-926<br />

Rademann, J (<strong>2004</strong>) Organic protein chemistry: drug discovery<br />

through the chemical modification of proteins.<br />

Angew Chem Int Ed 43, 4554-4556<br />

Schülein R (<strong>2004</strong>) The early stages of the intracellular<br />

transport of membrane proteins: clinical and pharmacological<br />

implications. Rev Physiol Biochem Pharmacol 151,<br />

45-91<br />

Vinkemeier U (<strong>2004</strong>) Getting the message across, STAT.<br />

Design principles of a molecular signaling circuit. J Cell<br />

Biol 167, 197-201<br />

<strong>FMP</strong>-authors in bold.<br />

CONTRIBUTIONS IN MONOGRAPHS<br />

<strong>2003</strong>/<strong>2004</strong><br />

BEITRÄGE ZU SAMMELWERKEN <strong>2003</strong>/<strong>2004</strong><br />

<strong>2003</strong><br />

Haseloff RF, Krause E, Blasig IE<br />

Proteomics of the brain endothelium: Separation of proteins<br />

by two-dimensional gel electrophoresis and identification<br />

by mass spectrometry<br />

In: Methods of Molecular Medicine: The blood-brain barrier<br />

- Biology and research protocols (Ed.: Nag S) 89, 465-<br />

477, Humana Press <strong>2003</strong>, Totowa, NJ, USA<br />

Klussmann E<br />

Protein kinase A<br />

In: Online pharmacology reference database, Elsevier Science<br />

Inc <strong>2003</strong>, Amsterdam, The Netherlands<br />

Krause E<br />

Proteomics<br />

In: Encyclopedic Reference of Molecular Pharmacology<br />

(Eds.: Rosenthal W, Offermanns S) 766-770, Springer Verlag<br />

<strong>2003</strong>, Heidelberg, Germany<br />

Krause G<br />

Molecular Modelling<br />

In: Encyclopedic Reference of Molecular Pharmacology<br />

(Eds.: Rosenthal W, Offermann S) 603-609, Springer Verlag<br />

<strong>2003</strong>, Heidelberg, Germany<br />

Meyer T, Vinkemeier U<br />

JAK/STAT Pathway<br />

In: Encyclopedic Reference of Molecular Pharmacology,<br />

(Eds.: Rosenthal W, Offermanns S) 527-530, Springer Verlag<br />

<strong>2003</strong>, Heidelberg, Germany<br />

Oksche A<br />

Endothelins<br />

In: Encyclopedic Reference of Molecular Pharmacology<br />

(Eds.: Rosenthal W, Offermanns S) 339-345, Springer Verlag<br />

<strong>2003</strong>, Heidelberg, Germany<br />

Schmidt A, Utepbergenov DI, Krause G, Blasig IE (<strong>2003</strong>)<br />

Direct demonstration of the association of the blood-brain<br />

barrier proteins ZO-1 and occludin using surface plasmon<br />

resonance spectroscopy-effect of SIN-1<br />

In: Blood-Spinal Cord and brain barriers in health and<br />

disease (Eds.: Sharma HS, Westmann J), Elsevier Science/<br />

Academic Press <strong>2003</strong>, San Diego, USA<br />

Schülein R, Rosenthal W<br />

Protein Trafficking and Quality Control<br />

In: Encyclopedic Reference of Molecular Pharmacology<br />

(Eds: Rosenthal W, Offermanns S) 758-762, Springer Verlag<br />

<strong>2003</strong>, Heidelberg, Germany<br />

Appendix<br />

121


<strong>2004</strong><br />

Bauer HC, Bauer H, Haseloff RF, Blasig IE<br />

The role of glia in the formation and function of the bloodbrain<br />

barrier<br />

In: Neuroglia 2nd Edition (Eds.: Ramson B, Kettenmann H)<br />

325-333, Oxford University Press <strong>2004</strong>, Oxford, UK<br />

Freund C<br />

The Gyf Domain<br />

In: Modular Protein Domains (Eds.: Cesareni G, Gimona M,<br />

Sudol M, Yaffe M) 107, Wiley-VHC <strong>2004</strong>, Weinheim, Germany<br />

Hagen V<br />

Uncaging and photoconversion/activation<br />

In: Encyclopedic Reference of Genomics and Proteomics<br />

in Molecular Medicine (Eds.: Ganten D, Ruckpaul K) in<br />

press, Springer Verlag <strong>2004</strong>, Heidelberg, Germany<br />

Kuehne R, Krause G, Rosenthal W<br />

Entdeckungsstrategien in der Wirkstoffforschung<br />

In: Handbuch der Psychopharmakologie (Eds: Holsboer F,<br />

Gruender G, Benkert O) in press, Springer Verlag <strong>2004</strong>, Heidelberg,<br />

Germany<br />

Klussmann E<br />

Protein Kinase A<br />

In: xPharm 1.0 (Eds.: Enna SJ, Bylund DB), Elsevier <strong>2004</strong>,<br />

Amsterdam, The Netherlands<br />

Krause E<br />

Mass Spectrometry: MS/MS<br />

In: Encyclopedic Reference of Genomics and Proteomics<br />

in Molecular Medicine (Eds.: Ganten D, Ruckpaul K) in<br />

press, Springer Verlag <strong>2004</strong>, Heidelberg, Germany<br />

Oehme, P<br />

Zwischen Wissenschaft und Politik<br />

In: Sitzungsbericht der Leibniz-Sozietät (Ed.: Steiger KP)<br />

67, Trafo-Verlag <strong>2004</strong>, <strong>Berlin</strong>, Germany<br />

Oehme P, Göres E, Rosenthal W, Ganten D<br />

Pharmakologische Institutionen <strong>Berlin</strong>-Buch und <strong>Berlin</strong>-<br />

Friedrichsfelde<br />

In: Geschichte und Wirken der pharmakologischen, klinisch-pharmakologischen<br />

und toxikologischen Institute<br />

(Ed.: Philippou A) 698-711, Berenkamp Verlag Innsbruck<br />

<strong>2004</strong>, Austria<br />

Oksche A, Pohl P, Krause G, Rosenthal W<br />

Molecular biology of diabetes insipidus<br />

In: Encyclopedia of Molecular Cell Biology and Molecular<br />

Medicine (Ed.: Meyers RA) 301-324, Wiley-VCH <strong>2004</strong>,<br />

Weinheim, Germany<br />

<strong>FMP</strong>-authors in bold.<br />

Rademann J<br />

Combinatorial Chemistry - Concepts and Methods for<br />

Tasks of Molecular Optimization<br />

In: Encyclopedic Reference of Molecular Pharmacology<br />

(Eds.: Offermanns S, Rosenthal W) 257-261, Springer Verlag<br />

<strong>2004</strong>, Heidelberg, Germany<br />

Rademann J<br />

Solid phase synthesis (SPS) and polymer-assisted solution<br />

phase (PASP) synthesis<br />

In: Highlights in Bioorganic Chemistry (Eds.: Wennemers<br />

H, Schmuck C) 290-293, Wiley-VCH <strong>2004</strong>, Weinheim, Germany<br />

Rademann J<br />

Novel polymer- and linker reagents employed for the preparation<br />

of protease inhibitor libraries<br />

In: Highlights in Bioorganic Chemistry (Eds.: Wennemers<br />

H, Schmuck C) 277-290, Wiley-VCH <strong>2004</strong>, Weinheim, Germany<br />

Rademann J<br />

Inhibition of Proteases<br />

In: Highlights in Bioorganic Chemistry (Eds.: Wennemers<br />

H, Schmuck C) 293-295, Wiley-VCH <strong>2004</strong>, Weinheim, Germany<br />

Rosenthal W, Seyberth H<br />

Besonderheiten der Arzneimitteltherapie im Kindesalter<br />

In: Pharmakotherapie/Klinische Pharmakologie, 12th<br />

Edition (Eds.: Lemmer B, Brune K) 507-516, Springer Verlag<br />

<strong>2004</strong>, Heidelberg and <strong>Berlin</strong>, Germany<br />

Schmidt A, Utepbergenov DI, Krause G, Blasig IE<br />

Direct demonstration of association between the bloodbarrier<br />

proteins ZO-1 and occludin using surface plasmon<br />

resonance spectroscopy - Effect of SIN-1<br />

In: Blood-Spinal Cord Barriers in Health and Disease (Ed.:<br />

Sharma HS) 11-17, Elsevier Verlag/Academic Press <strong>2004</strong>,<br />

Heidelberg, Germany<br />

Zimmermann J<br />

EVH1/WH1 domains<br />

In: Modular Protein Domains (Eds.: Cesareni G, Gimona M,<br />

Sudol M, Yaffe M) 73-102. Wiley-VHC <strong>2004</strong>, Weinheim,<br />

Germany<br />

MONOGRAPHS <strong>2003</strong>/<strong>2004</strong><br />

MONOGRAPHIEN <strong>2003</strong>/<strong>2004</strong><br />

Offermanns S (Eds.), Rosenthal W<br />

Encyclopedic Reference of Molecular Pharmacology<br />

Springer Verlag <strong>2004</strong>, Heidelberg, Germany


MEMBERSHIPS IN EDITORIAL BOARDS<br />

<strong>2003</strong>/<strong>2004</strong><br />

MITGLIEDSCHAFTEN IN EDITORIAL<br />

BOARDS <strong>2003</strong>/<strong>2004</strong><br />

Bienert, Michael<br />

Journal of Receptors and Signal Transduction<br />

Taylor and Francis, Philadelphia<br />

Member since <strong>2003</strong><br />

Blasig, Ingolf<br />

Glia<br />

Wiley-Liss, New York<br />

Member since <strong>2004</strong><br />

Oschkinat, Hartmut<br />

Journal of Structural and Functional Genomics<br />

Kluwer Academic Publishers, Netherlands<br />

Rademann, Jörg<br />

Journal of Combinatorial Chemistry<br />

American Chemical Society<br />

Member since 2002<br />

Rosenthal, Walter<br />

Journal of Molecular Medicine<br />

Springer Verlag, Heidelberg<br />

Member 2001-<strong>2004</strong><br />

Rosenthal, Walter<br />

Handbook of Experimental Pharmacology Series<br />

Springer Verlag, Heidelberg, Germany<br />

INVITED TALKS <strong>2003</strong>/<strong>2004</strong><br />

EINGELADENE VORTRÄGE <strong>2003</strong>/<strong>2004</strong><br />

Becker M (<strong>2004</strong>)<br />

NEP-deficient mice - a new model for the late onset human<br />

obesity?<br />

Peptidase-Workshop, EMC Rotterdam. Rotterdam, The<br />

Netherlands<br />

Beyermann M (<strong>2003</strong>)<br />

In vitro folding, disulfide pattern, and characterization of<br />

the first extracellular domain of rat corticotropin-releasing<br />

factor receptor<br />

6th German Peptide Symposium. <strong>Berlin</strong>, Germany<br />

Bienert M (<strong>2003</strong>)<br />

Cellular Uptake of Model Amphipathic Peptides, Cellular<br />

Transport Strategies for Targeting of Epitopes, Drugs and<br />

Reporter Molecules – Celltarget<br />

Workshop. Budapest, Hungary<br />

Bienert M (<strong>2003</strong>)<br />

Cellular Uptake of Peptides: Design and Synthesis of Peptide-Derived<br />

Carriers for the Delivery of Biologically Active<br />

Compounds into Cells<br />

Opening lecture - EU-Project QLK3-CT-2002-01989: Target<br />

specific delivery systems for gene therapy based on cellpenetrating<br />

peptides. Stockholm, Sweden<br />

Bienert M (<strong>2004</strong>)<br />

Design, Synthesis and Characterization of Beta-Sheet-Forming<br />

Peptides: The FBP 28 WW Domain<br />

10th Akabori Conference. Awaji, Japan<br />

Blasig IE (<strong>2003</strong>)<br />

Phosphorylation and Protein-Protein Interactions<br />

Gordon Research Conference: Barriers of the Brain. Tilton,<br />

USA<br />

Blasig IE (<strong>2003</strong>)<br />

Interaction of tight junction proteins - Oligomerization of<br />

ZO-1 and recruitment of occludin<br />

CVB <strong>2003</strong>. Amarillo, USA<br />

Blasig IE (<strong>2003</strong>)<br />

Hinge region of the SH3-GuK unit of ZO-1 is regulated by<br />

occludin and oligomerization of ZO-1<br />

6th Symposium Signal Transduction of the Blood-Brain<br />

Barriers. Szeged, Ungarn<br />

Blasig IE (<strong>2004</strong>)<br />

Struktur, Funktion und Dichtheit der Blut-Hirnschranke<br />

Hahn-Meitner-Institut. <strong>Berlin</strong>, Germany<br />

Appendix<br />

123


Carstanjen D (<strong>2003</strong>)<br />

Die Rolle des Interferon induzierten Transkriptionsfaktors,<br />

ICSBP, in der Reifung und Funktion von Zellen des myelopoetischen<br />

Systems<br />

Charitè Universitätsmedizin, Campus Benjamin Franklin.<br />

<strong>Berlin</strong>, Germany<br />

Dathe M (<strong>2004</strong>)<br />

Apolipoprotein E-derived peptides and drug delivery to the<br />

brain<br />

7 th Symposium Signal Transduction of the Blood Brain<br />

Barriers. Potsdam, Germany<br />

Freund F (<strong>2003</strong>)<br />

Molecular recognition of proline-rich sequences by the<br />

GYF domain<br />

Max-Planck-Institut für Biophysikalische Chemie. Göttingen,<br />

Germany<br />

Freund F (<strong>2004</strong>)<br />

Struktur-Funktionsbeziehungen wichtiger T-Cell-Proteine<br />

BMBF Bundesministerium für Bildung und Forschung.<br />

<strong>Berlin</strong>, Germany<br />

Freund F (<strong>2004</strong>)<br />

Proline-rich sequence recognition by GYF domains<br />

Universität des Saarlandes. Saarbrücken, Germany<br />

Freund F (<strong>2004</strong>)<br />

Molecular Recognition<br />

Max-Planck-Institut für Biochemie. München, Germany<br />

Freund F (<strong>2004</strong>)<br />

Proline-rich sequence recognition by GYF domains<br />

Johann Wolfgang Goethe-Universität Frankfurt, Germany<br />

Haseloff RE (<strong>2003</strong>)<br />

Alterations in the protein expression of rat brain capillary<br />

endothelial cells induced by oxidative stress<br />

6th Symposium Signal Transduction of the Blood-Brain<br />

Barriers. Szeged, Ungarn<br />

Keller S (<strong>2004</strong>)<br />

Can Cell-Penetrating Peptides Cross Lipid Membranes?<br />

Institut für Physikalische Chemie. Martin-Luther-Universität<br />

Halle, Germany<br />

Klussmann E (<strong>2004</strong>)<br />

Anchored cAMP signalling in the vasopressin-induced<br />

aquaporin-2 shuttle in renal principal cells<br />

The Biotechnology Centre of Oslo. University of Oslo, Norway<br />

Knobeloch KP (<strong>2003</strong>)<br />

Zytokin-Rezeptoren und Zytokin-abhängige Signalwege:<br />

the role of Interferon Consensus Sequence Binding Protein<br />

in hematopoiesis<br />

International Hannover Workshop on Cytokine Receptors<br />

and Cytokine Signaling. Hannover, Germany<br />

Krause E (<strong>2004</strong>)<br />

Massenspektrometrie in der Proteomforschung<br />

Bundesanstalt für Materialforschung. <strong>Berlin</strong>-Adlershof,<br />

Germany<br />

Krause G (<strong>2004</strong>)<br />

Gemeinsamkeiten von Struktur und Funktion des Tight<br />

Junction Proteins Occludin und des Adherens Junction<br />

Proteins alpha-Catenin<br />

Institut für Chemie und Pathobiochemie der Freien Universität<br />

<strong>Berlin</strong>, Germany<br />

Krause G (<strong>2004</strong>)<br />

The tight junction protein occludin and the adherens<br />

junction protein alpha-catenin share a common interaction<br />

mechanism with ZO-1<br />

7th International Symposium Signal Transduction in the<br />

blood-brain barriers. Potsdam, Germany<br />

Krause G (<strong>2004</strong>)<br />

Identifizierung von Wechselwirkungsepitopen zwischen<br />

Zellkontaktproteinen der tight junctions<br />

Workshop Neue Peptidtechnologien. Max Brünger Zentrum,<br />

Universität Leipzig, Germany<br />

Krause G (<strong>2004</strong>)<br />

Structural determinants for the activation of glycoprotein<br />

hormon receptors<br />

Institut für Reproduktionsmedizin, Universität Münster,<br />

Germany<br />

von Kries JP (<strong>2004</strong>)<br />

Screening for beta-Catenin Antagonists<br />

Max-Planck-Institute of Molecular Cell Biology and Genetics<br />

Dresden, Germany<br />

von Kries JP (<strong>2004</strong>)<br />

Screening in an academic setup<br />

EMBL Hamburg, Germany<br />

Leitner D (<strong>2004</strong>)<br />

PASTE und PAPST for biomolecules<br />

Spanish NMR User’s meeting. Madrid, Spain<br />

Maul B (<strong>2003</strong>)<br />

Neuropeptidasen und Alkoholsucht<br />

Zentralinstitut für Seelische Gesundheit. Mannheim, Germany


Oehme P (<strong>2004</strong>)<br />

Theoretische und klinische Aspekte der Sucht<br />

Zentrum für Human- und Gesundheitswissenschaften, FB<br />

Humanmedizin der Freien Universität <strong>Berlin</strong>, Germany<br />

Oehme P (<strong>2004</strong>)<br />

Toleranz als essentieller Schutzmechanismus - Reflektionen<br />

aus pharmakologischer Sicht<br />

Wissenschaftliche Konferenz der Leibniz-Sozietät e.V.<br />

<strong>Berlin</strong>, Germany<br />

Oschkinat H (<strong>2003</strong>).<br />

From Gene to Structure as viewed by NMR. Structures of<br />

membrane proteins by solid-state NMR. NMR in Molecular<br />

Biology<br />

Euroconference on Structural Genomics. Obernai, France<br />

Oschkinat H (<strong>2003</strong>)<br />

NMR-Spectroscopy of membrane proteins<br />

5th International Conference on Molecular Structural Biology.<br />

Vienna, Austria<br />

Oschkinat H (<strong>2003</strong>)<br />

A concept for structure determination of small membrane<br />

proteins by 3D magic angle spinning NMR and its application<br />

to the x spectrin SH3 domain<br />

45th Rocky Mountain Conference on Analytical Chemistry.<br />

Denver, USA<br />

Oschkinat H (<strong>2003</strong>)<br />

NMR-Spectroscopy of membrane proteins<br />

8th International Dahlem Symposium on Cellular Signal<br />

Recognition and Transduction. <strong>Berlin</strong>, Germany<br />

Oschkinat H (<strong>2003</strong>)<br />

NMR-Spectroscopy of membrane proteins<br />

4th Colloquium on Transport. Rauischholzhausen, Germany<br />

Oschkinat H (<strong>2003</strong>)<br />

The solid-state MAS-NMR structure of the 62-residue<br />

alpha-spectrin SH3 domain and the potential of NMR for<br />

the investigation of membrane proteins<br />

44th ENC Experimental Nuclear Magnetic Resonance Conference.<br />

Savannah, USA<br />

Oschkinat H (<strong>2003</strong>)<br />

The solid-state MAS-NMR structure of the 62-residue<br />

alpha-spectrin SH3 domain and the potential of NMR for<br />

the investigation of membrane proteins<br />

The 3rd Alpine Conference on Solid-State Nuclear Magnetic<br />

Resonance. Chamonix-Mont, France.<br />

Oschkinat H (<strong>2004</strong>)<br />

Protein-protein interaction investigated by solution and<br />

Solid-state NMR<br />

EMBL Heidelberg, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

Structure determination of proteins by magic angle spinning<br />

MAS NMR<br />

Barossa Valley, Australia<br />

Oschkinat H (<strong>2004</strong>)<br />

Protein-protein interactions viewed by solution and solidstate<br />

NMR<br />

Paris, France<br />

Oschkinat H (<strong>2004</strong>)<br />

Protein-Protein Interactions and Membrane Proteins Investigated<br />

by Solution and Solid-State NMR<br />

University of Florence, Italy<br />

Oschkinat H (<strong>2004</strong>)<br />

Molecular Profiles - Target search in molecular pharmacology<br />

Max-Delbrück-Center <strong>Berlin</strong>-Buch, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

Protein-protein interactions viewed by solution and solidstate<br />

NMR<br />

Technische Universität München, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

Structural genomics, membrane proteins and automation<br />

Ventura, USA<br />

Oschkinat H (<strong>2004</strong>)<br />

Viewing protein-protein interactions and membrane proteins<br />

by solution and solid-state NMR<br />

Biozentrum der Universität Basel, Switzerland<br />

Oschkinat H (<strong>2004</strong>)<br />

NMR analysis of protein modules<br />

New York, USA<br />

Oschkinat H (<strong>2004</strong>)<br />

Structures of membrane proteins by solution an solid and<br />

solid-state NMR<br />

New Jersey, USA<br />

Oschkinat H (<strong>2004</strong>)<br />

Zelluläre Protein-Interaktion und pharmakologische Interferenz<br />

Charité-Universitätsmedizin <strong>Berlin</strong>, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

Structure determination of proteins by magic angle spinning<br />

MAS NMR<br />

Martin-Luther-Universität Halle-Wittenberg, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

NMR approaches to structures of membrane proteins<br />

Ascona, Schweiz<br />

Appendix<br />

125


Oschkinat H (<strong>2004</strong>)<br />

An apoE-derived peptide mediates uptake of PEG-liposomes<br />

onto brain capillary endothelial cells<br />

Bad-Herrenalb, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

NMR-Spectroscopy of membrane proteins<br />

5th International Conference on Molecular Structural Biology.<br />

Vienna, Austria<br />

Oschkinat H (<strong>2004</strong>)<br />

Quality control of the vasopressin V2 receptor in the ER<br />

and ER/Golgi intermediate compartment<br />

4th Action Meeting on new Drugs and Treatment. <strong>Berlin</strong>,<br />

Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

Aufbau der Technologieplattform NMR-Messtechnik für<br />

die Proteomforschung<br />

Braunschweig, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

Magic-angel-spinning solid-state NMR of proteins<br />

IFIA-BioNMR. Karlsruhe, Germany<br />

Oschkinat H (<strong>2004</strong>)<br />

Structure determination of proteins by magic angle spinning<br />

MAS NMR<br />

University of Osaka, Japan<br />

Oschkinat H (<strong>2004</strong>)<br />

Design, Synthesis and Characterization of ß-Sheet-Forming<br />

peptides: The FBP 28 WW Domain<br />

Awaji, Japan<br />

Oschkinat H (<strong>2004</strong>)<br />

Protein structure determination by magic-angle spinning<br />

solid state NMR<br />

Lille, France<br />

Oschkinat H (<strong>2004</strong>)<br />

Protein Structure Determination by Solid State MAS NMR<br />

Frauenchiemsee, Germany<br />

Pankow K (<strong>2004</strong>)<br />

Influence of the natriuretic peptide structure on degradation<br />

by NEP<br />

Peptidase-Workshop, EMC Rotterdam, The Netherlands<br />

Pohl P (<strong>2004</strong>)<br />

Fluid transport through membrane channels and epithelial<br />

cells<br />

Tagung der Gesellschaft für Biochemie und Molekularbiologie.<br />

Münster, Germany<br />

Pohl P (<strong>2004</strong>)<br />

Fluid transport through membrane channels and epithelial<br />

cells<br />

Johannes Keppler Universität, Linzer Winter Workshop.<br />

Linz, Austria<br />

Pohl P (<strong>2004</strong>)<br />

Fluid transport through membrane channels and epithelial<br />

cells: Calcium and Transport Processes<br />

Universität des Saarlandes in Homburg, Germany<br />

Rademann J (<strong>2004</strong>)<br />

Polymer-unterstützte C-Acylierungen gegen Malaria<br />

Novabiochem Seminar, Technische Universität <strong>Berlin</strong>,<br />

Germany<br />

Rademann J (<strong>2004</strong>)<br />

P1-Variation in Peptidisosteren: Molekulare Diversität<br />

durch die Kombination von C- and N-Acylierungen<br />

Max-Bergmann Kreis. Munster, France<br />

Rademann J (<strong>2004</strong>)<br />

Molekulare Werkzeuge für die chemische Industrie<br />

Bioclub der Freien Universität <strong>Berlin</strong>. <strong>Berlin</strong>, Germany<br />

Rademann J (<strong>2004</strong>)<br />

P1-Site Diversity in Peptide Isoster Libraries via Smooth<br />

CC-Couplings on Linker Reagents.<br />

ACS National Meeting. Philadelphia, USA<br />

Rademann J (<strong>2004</strong>)<br />

New linkers, resins and reagents - some problems of polymer-supported<br />

synthesis and attemps to solve them.<br />

ABC Technologies Symposium. Basel, Switzerland<br />

Rademann J (<strong>2004</strong>)<br />

Molekulare Werkzeuge für die Chemische Biologie<br />

(Antrittsvorlesung)<br />

Freie Universität <strong>Berlin</strong>, Germany<br />

Rademann J (<strong>2004</strong>)<br />

New roads to Chemical Diversity: From P1-Site Mutants in<br />

Malaria Inhibitors to Combinatorial Synthesis of Complex<br />

Modified Dendrimers<br />

Quaid-iAzzam University. Islamabad, Pakistan<br />

Rademann J (<strong>2004</strong>)<br />

Diversitäts-orientierte Synthese von Glycolipiden durch<br />

hydrophob unterstützte Synthese von Glycopeptiden<br />

Forschungszentrum Borstel, Germany<br />

Rademann J (<strong>2004</strong>)<br />

Reversibly cross-linked dendrimers - A strategy for the<br />

facile synthesis and combinatorial variation of complex,<br />

multivalent protein-mimics<br />

7 th International Symposium on Biomolecular Chemistry -<br />

ISBOC-7. Sheffield, United Kingdom


Reif B (<strong>2003</strong>)<br />

Molecular Interactions between the yeast prion protein<br />

Sup35 and the molecular chaperone Hsp104<br />

Euresco Conference on NMR in Molecular Biology. Obernai,<br />

France<br />

Reif B (<strong>2003</strong>)<br />

Aggregation behaviour of misfolding peptides and proteins<br />

modulated by molecular chaperones: solution and solidstate<br />

NMR experiments<br />

IMB-Symposium „Protein Folding and Aggregation – From<br />

Principles to Pathological Implications”. Jena, Germany<br />

Reif B (<strong>2003</strong>)<br />

Use of Protons in MAS Solid-State NMR in perdeuterated<br />

peptides and proteins<br />

EMBO-ILL workshop on Deuterium labeling techniqes for<br />

biomolecular NMR and neutron scattering. Grenoble,<br />

France<br />

Reif B (<strong>2004</strong>)<br />

Molecular Interactions between Sup35 and Hsp104 characterized<br />

by Solution State NMR<br />

Baltimore, USA<br />

Reif B (<strong>2004</strong>)<br />

Use of Protons in MAS Solid-State NMR in perdeuterated<br />

peptides and proteins<br />

Asilomar Conference Center, Pacific Grove, California,<br />

USA<br />

Reif B (<strong>2004</strong>)<br />

Protons in MAS Solid-State NMR<br />

Forschungszentrum Karlsruhe, Germany<br />

Reif B (<strong>2004</strong>)<br />

Use of perdeuteration in MAS Solid State NMR<br />

Denver, Colorado, USA<br />

Reif B (<strong>2004</strong>)<br />

Multidimensional NMR in Structural Biology<br />

Il Ciocco, Italy<br />

Rosenthal W (<strong>2003</strong>)<br />

Cyclic AMP-triggered exocytosis<br />

VIIIth International Dahlem Symposium on Cellular Signal<br />

Recognition and Transduction. <strong>Berlin</strong>, Germany<br />

Rosenthal W (<strong>2003</strong>)<br />

Biomedical research and biotechnology in <strong>Berlin</strong>-Buch:<br />

Bioprofile – wohin führt der Weg? Von der Heilpflanze zum<br />

Drug Design<br />

BioTechnica - Workshop: International Biotechnology -<br />

New Concepts in Molecular Medicine from Finland and<br />

Germany. <strong>Berlin</strong>, Germany<br />

Rosenthal W (<strong>2003</strong>)<br />

Leuchttürme der <strong>Berlin</strong>er Wissenschaft. Biotechnologie in<br />

<strong>Berlin</strong>-Brandenburg<br />

Veranstaltung der Initiative „An Morgen denken“. <strong>Berlin</strong>,<br />

Germany<br />

Rosenthal W (<strong>2003</strong>)<br />

Mechanismen der Antidiurese<br />

Symposium Fortschritt und Praxis der Endokrinologie zur<br />

Eröffnung des ambulanten Hochschulzentrums für Endokrinologie,<br />

Diabetologie und Ernährung. <strong>Berlin</strong> / Potsdam,<br />

Germany<br />

Rosenthal W (<strong>2004</strong>)<br />

The human V2 vasopressin receptor: gene, the protein, the<br />

mutation and rescue strategies of mutant receptors<br />

Annual congress of the European Renal Association –<br />

European Dialysis and Transplant Association. Lisbon, Portugal<br />

Schmieder P (<strong>2004</strong>)<br />

Towards the structure of the chromophore in bacterial<br />

phytochromes<br />

Herbsttagung des Hahn-Meitner-Instituts <strong>Berlin</strong>, Germany<br />

Schmieder P (<strong>2004</strong>)<br />

Aspekte der Strukturbestimmung von Proteinen mittels der<br />

NMR-Spektroskopie<br />

Hahn-Meitner-Institut <strong>Berlin</strong>, Germany<br />

Schülein R (<strong>2004</strong>)<br />

Compartmentalization of NDI-casing vasopressin V2<br />

receptor mutants in the early secretory pathway<br />

5th Global NDI Conference. Phoenix, USA<br />

Schülein R (<strong>2004</strong>)<br />

Functional significance of the cleavable signal peptides of<br />

corticotropin-releasing factor receptors<br />

Symposium on Inflammation and Pain. <strong>Berlin</strong>, Germany<br />

Schülein R (<strong>2004</strong>)<br />

Intracellular transport of G protein-coupled receptors<br />

along the secretory pathway<br />

Symposium on Neuro-Immune Interaction in Pain. <strong>Berlin</strong>,<br />

Germany<br />

Siems, WE<br />

ACE and NEP - relations to alcohol preference<br />

Peptidase-Workshop, EMC-Rotterdam, The Netherlands<br />

Sun X (<strong>2004</strong>)<br />

Development and Properties of domain-selective murine<br />

ACE forms<br />

Peptidase-Workshop, EMC-Rotterdam, The Netherlands<br />

Appendix<br />

127


EXTERNAL FUNDING <strong>2003</strong>/<strong>2004</strong><br />

DRITTMITTEL<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1583<br />

2105<br />

2178<br />

6867<br />

1998 1999 2000 2001 2002 <strong>2003</strong> <strong>2004</strong><br />

Others 11 3 6 3 5 37 28<br />

Foundations 216 174 112 2 231 158 116<br />

Industry 92 53 29 51 134 197 110<br />

EU 43 74 217 122 710 414 1984<br />

<strong>Berlin</strong> 52 54 51 0 0 0 0<br />

BMBF 514 696 773 5422 1045 974 886<br />

DFG 656 1050 992 1267 1073 1383 1349<br />

2989<br />

Distribution of annual expenditure shown for the sources of income since 1998<br />

Verteilung der jährlichen Ausgaben über die Drittmittelgeber seit 1998<br />

(total expenses per year in italics)<br />

(kursiv: Gesamtausgaben pro Jahr)<br />

3163<br />

4473


T€<br />

T€<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

0<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

1383<br />

974<br />

0<br />

<strong>2003</strong><br />

DFG BMBF <strong>Berlin</strong> EU Industry Foundations Others<br />

1349<br />

886<br />

Expenses during the period reported: contribution of the sources of income<br />

Drittmittelausgaben im Berichtszeitraum: Verteilung über die Drittmittelgeber<br />

0<br />

414<br />

<strong>2004</strong><br />

1984<br />

DFG BMBF <strong>Berlin</strong> EU Industry Foundations Others<br />

197<br />

110<br />

158<br />

116<br />

37<br />

28<br />

External Funding<br />

129


PARTICIPATION IN <strong>RESEARCH</strong> NETWORKS<br />

<strong>2003</strong>/<strong>2004</strong><br />

BETEILIGUNG AN NETZWERKEN UND<br />

VERBUNDPROJEKTEN <strong>2003</strong>/<strong>2004</strong><br />

Sonderforschungsbereiche der Deutschen<br />

Forschungsgemeinschaft<br />

Sonderforschungsbereich 449: Struktur und Funktion<br />

membranständiger Rezeptoren<br />

Teilprojekt A3: Struktur und Funktion von Transportsignalen<br />

des Vasopressin V2-Rezeptors<br />

Ralf Schülein, Walter Rosenthal<br />

Laufzeit: 01.99-12.04<br />

Sonderforschungsbereich 449: Struktur und Funktion<br />

membranständiger Rezeptoren<br />

Teilprojekt B1: Bestimmung der Raumstrukturen von<br />

Rezeptor-gebundenen Agonisten und Antagonisten mittels<br />

Festkörper-NMR-Spektroskopie<br />

Hartmut Oschkinat<br />

Laufzeit: 01.02-12.04<br />

Sonderforschungsbereich 449: Struktur und Funktion<br />

membranständiger Rezeptoren<br />

Teilprojekt A6: Untersuchungen von CRF- und CRF-Rezeptor-Mutanten<br />

zur Entwicklung eines Modells für die<br />

Liganderkennung von G-Protein-gekoppelten Rezeptoren<br />

der Familie 2<br />

Michael Bienert, Michael Beyermann, Walter Rosenthal<br />

Laufzeit: 01.99-12.04<br />

Sonderforschungsbereich 498: Protein-Kofaktor-Wechselwirkungen<br />

in biologischen Prozessen<br />

Teilprojekt C1: Schlüsselreaktionen der biologischen Wasserstoffaktivierung<br />

am Beispiel der [NiFe]-Hydrogenasen<br />

Hartmut Oschkinat, Bärbel Friedrich (HU)<br />

Laufzeit: 01.03-12.05<br />

Sonderforschungsbereich 498: Protein-Kofaktor-Wechselwirkungen<br />

in biologischen Prozessen<br />

Teilprojekt B6: NMR-spektroskopische Untersuchungen<br />

von lichtinduzierten Strukturveränderungen in Protein-<br />

Chromophorkomplexen<br />

Peter Schmieder<br />

Laufzeit: 01.03-12.05<br />

Sonderforschungsbereich 366: Signalerkennung und<br />

-Umsetzung<br />

Teilprojekt Z3: Herstellung und Haltung genetisch veränderter<br />

Mäuse<br />

Elvira Rohde, Ivan Horak<br />

Laufzeit: 01.09-12.05<br />

Sonderforschungsbereich 366: Signalerkennung und<br />

-Umsetzung<br />

Teilprojekt A11: Verbreitung und Bedeutung N-terminaler<br />

Signalpeptide bei G-Protein-gekoppelten Rezeptoren<br />

Ralf Schülein, Walter Rosenthal<br />

Laufzeit: 01.97-12.05<br />

Sonderforschungsbereich 594: Molekulare Maschinen in<br />

Proteinfaltung und Proteintransport<br />

Teilprojekt A3: Biochemische und NMR-Strukturuntersuchungen<br />

an Sup35p im Komplex mit Hsp104, Hsp40 und<br />

Hsp70<br />

Bernd Reif<br />

Laufzeit 05.01-04.04<br />

Forschergruppen der Deutschen<br />

Forschungsgemeinschaft<br />

Forschergruppe 299: Optimierte molekulare Bibliotheken<br />

zum Studium biologischer Erkennungsprozesse<br />

Teilprojekt 2/2-1: Struktur, Stabilität und Spezifikation von<br />

nichtkatalytischen Proteindomänen und deren Verwendung<br />

als Werkzeuge für das Design einer stabilen minimalen<br />

ß-Faltblattstruktur und das Verständnis von pathologischen<br />

Prozessen<br />

Hartmut Oschkinat, Michael Bienert<br />

Laufzeit: 06.01-12.05<br />

Forschergruppe 299: Optimierte molekulare Bibliotheken<br />

zum Studium biologischer Erkennungsprozesse<br />

Teilprojekt 2/2-2: Theoriegestützte NMR-spektroskopische<br />

Analyse von Protein-Ligand-Wechselwirkungen unter Verwendung<br />

von Peptid-Bibliotheken<br />

Hartmut Oschkinat<br />

Laufzeit: 06.01-12.05<br />

Forschergruppe 299: Optimierte molekulare Bibliotheken<br />

zum Studium biologischer Erkennungsprozesse<br />

Teilprojekt 7/2-1: Studium der Ligand-Erkennung von<br />

CRH-Rezeptoren mit Peptid- und nichtpeptidischen Bibliotheken<br />

Michael Bienert, Jens Schneider-Mergener<br />

Laufzeit: 06.99-12.05<br />

Forschergruppe 463: Innovative Arzneistoffe und Trägersysteme<br />

– Integrative Optimierung zur Behandlung entzündlicher<br />

und hyperproliferativer Erkrankungen<br />

Teilprojekt 7B: Hirntargeting mittels oberflächenmodifizierter<br />

Nanosuspensionen und Apolipoprotein E-Peptid<br />

beladener Trägersysteme<br />

Margitta Dathe<br />

Laufzeit: 11.01-12.07


Graduiertenkollegs der Deutschen Forschungsgemeinschaft<br />

GK 238/3: Schadensmechanismen im Nervensystem – Einsatz<br />

von bildgebenden Verfahren<br />

Ingolf Blasig<br />

Laufzeit: 01.03-12.05<br />

GK 276: Signalerkennung und -umsetzung<br />

Alexander Oksche, Walter Rosenthal<br />

Laufzeit: 10.99-09.05<br />

GK 865: Vaskuläre Regulationsmechanismen<br />

Alexander Oksche, Walter Rosenthal<br />

Laufzeit: 04.03-03.07<br />

GK 441: Chemie in Interphasen<br />

Jörg Rademann<br />

Laufzeit: 10.99-09.07<br />

Leitprojekte des Bundesministeriums für<br />

Bildung und Forschung<br />

Proteinstrukturfabrik 01 GG 9812: Strukturanalyse mit<br />

hohem Durchsatz für medizinisch relevante Proteine<br />

Teilprojekt 9: NMR-Spectroscopy<br />

Hartmut Oschkinat, Peter Schmieder, Dietmar Leitner<br />

Laufzeit: 10.98-09.04<br />

Proteinstrukturfabrik 01 GG 9812: Strukturanalyse mit<br />

hohem Durchsatz für medizinisch relevante Proteine<br />

Teilprojekt 10: NMR-structure determination<br />

Hartmut Oschkinat, Dirk Labudde, Ilia Poliakov<br />

Laufzeit: 10.98-09.04<br />

Verbundprojekte des Bundesministeriums für<br />

Bildung und Forschung<br />

Verbundprojekt 0312992J: Proteomische Methoden für<br />

molekulare Strukturen von Zielproteinen aus dem Mycobacterium<br />

tuberculosis Genom und ihrer Ligandkomplexe<br />

zur Suche von Wirkstoffen<br />

Hartmut Oschkinat, Jens von Kries<br />

Laufzeit: 04.04-06.06<br />

Verbundprojekt 0312890G: Proteomweite Analyse membrangebundener<br />

Proteine<br />

Hartmut Oschkinat<br />

Laufzeit: 04.03-03.06<br />

EU-Projekte<br />

EU-Projekt QLK3-2000-00924: Exploiting synthetic SH2scaffolded<br />

repertoire libraries to profile cancer cells and<br />

interfere with cancer-related phenotypes<br />

Hartmut Oschkinat<br />

Laufzeit: 12.00-30.11.03<br />

EU-Projekt QLRT-2000-00987: Antidiuretics using shortaction<br />

vasopressin – V2-receptor agonists as a new therapeutic<br />

strategy of urinary incontinence and voiting disorders<br />

Walter Rosenthal<br />

Laufzeit: 09.01-08.04<br />

EU-Projekt QLK3-CT-2002-02149: Anchored cAMP signalling<br />

– Implications for treatment of human disease<br />

Enno Klussmann, Walter Rosenthal<br />

Laufzeit: 11.02-20.05<br />

EU-Projekt QLK3-CT-2002-01989: Target specific delivery<br />

systems for gene therapy based on cell-penetrating peptides<br />

Michael Bienert, Johannes Oehlke, Margitta Dathe<br />

Laufzeit: 03.03-02.06<br />

Appendix<br />

131


COOPERATIONS WITH CONTRACT<br />

<strong>2003</strong>/<strong>2004</strong><br />

VERTRAGLICHE KOOPERATIONEN <strong>2003</strong>/<strong>2004</strong><br />

Vereinbarung über die Zusammenarbeit zwischen der<br />

Freien Universität <strong>Berlin</strong> und dem Forschungsverbund<br />

<strong>Berlin</strong> e. V. für das <strong>FMP</strong><br />

- Freie Universität <strong>Berlin</strong><br />

Vereinbarung über die Zusammenarbeit zwischen der<br />

Charité – Universitätsmedizin <strong>Berlin</strong> und dem Forschungsverbund<br />

<strong>Berlin</strong> e. V. für das <strong>FMP</strong><br />

- Charité – Universitätsmedizin <strong>Berlin</strong><br />

Kooperationsvereinbarung: Gemeinsamer Neubau und<br />

Nutzung des Genomzentrums<br />

- Max-Delbrück-Centrum für Molekulare Medizin, <strong>Berlin</strong>,<br />

Germany<br />

Kooperationsverbarung: Gemeinsame Nutzung des Hermann-von-Helmholtz-Hauses<br />

- Max-Delbrück-Centrum für Molekulare Medizin, <strong>Berlin</strong>,<br />

Germany<br />

Kooperationsvereinbarung für das Verbundprojekt „Proteomweite<br />

Analyse membrangebundener Proteine (Pro-<br />

Amp)<br />

- Johann Wolfgang Goethe-Universität Frankfurt, Germany<br />

- GSF-Forschungszentrum für Umwelt und Gesundheit<br />

GmbH, Germany<br />

- Max-Planck-Gesellschaft zur Förderung der Wissenschaften<br />

e. V., Germany<br />

Kooperationsvereinbarung: Ausbau und Intensivierung<br />

der wissenschaftlichen Zusammenarbeit<br />

- Deutsches Primatenzentrum GmbH, Göttingen, Germany<br />

- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg,<br />

Germany<br />

- Heinrich-Pette-Institut für experimentelle Virologie und<br />

Immunologie, Hamburg, Germany<br />

- Forschungszentrum Borstel, Zentrum für Medizin und<br />

Biowissenschaften, Borstel, Germany<br />

- Institut für Molekulare Biotechnologie e.V., Jena<br />

Kooperationsvereinbarung: Automatisierte Methoden für<br />

molekulare Strukturen von biologischen Makromolekülen<br />

aus dem Mycobakterium-tuberculosis-Genom und<br />

ihrer Ligandkomplexe zur Suche von Wirkstoffen mit<br />

Hochdurchsatz Chiptechnologien (Strukturgenomprojekt)<br />

- European Molecular Biology Laboratory (EMBL), Hamburg<br />

und Heidelberg, Germany<br />

- Max-Planck-Gesellschaft zur Förderung der Wissenschaften<br />

e. V., München, Germany<br />

- Max-Planck-Institut für Infektionsbiologie, <strong>Berlin</strong>, Germany<br />

- Technische Universität München, Wissenschaftszentrum<br />

Weihenstefan, Freising, Germany<br />

- Combinature Biopharm AG, <strong>Berlin</strong>, Germany<br />

- Marresearch GmbH, Norderstedt, Germany<br />

- Biomax Informatics AG, Martinsried, Germany<br />

Forschungs- und Entwicklungsvereinbarung<br />

- IKOSATEC GmbH, Garching, Germany<br />

- Combinature Biopharm AG, <strong>Berlin</strong>-Buch, Germany<br />

Kooperationsvereinbarung: Strukturanalyse mit hohem<br />

Druck für medizinisch relevante Proteine<br />

- Proteinstrukturfabrik: Projekt des Bundesministeriums<br />

für Bildung und Forschung, Germany<br />

Kooperationsvereinbarung zur Erbringung von Verwertungsleistungen<br />

- Ascenion GmbH, München, Germany<br />

Kooperationsvereinbarung über die Fortsetzung der<br />

Öffentlichkeitsarbeit auf dem Forschungscampus <strong>Berlin</strong>-<br />

Buch<br />

- BBB Management GmbH, <strong>Berlin</strong>, Germany<br />

Kooperationsvereinbarung: (Forschungs- und Entwicklungsvereinbarung)<br />

Identifizierung von 2-D-separierten<br />

Proteinen über In-Gel-Verdau, Massenspektrometrie und<br />

Datenbankanalyse<br />

- Bundesinstitut für Risikobewertung, <strong>Berlin</strong>, Germany<br />

- Bundesinstitut für Verbraucherschutz und Veterinärmedizin,<br />

Germany<br />

Kooperationsvereinbarung: Massenspektrometrische<br />

Charakterisierung von Fluoreszenz-markierten Glyko- und<br />

Phosphopeptiden<br />

- Biosyntan GmbH, <strong>Berlin</strong>-Buch, Germany<br />

Forschungs- und Entwicklungsvereinbarung: Development<br />

of isotope labelled media for protein expression in<br />

bacteria, yeast, insect cells and higher organisms<br />

- Cambridge Isotope Laboratories, Massachusetts, USA<br />

Nutzungs- und Dienstleistungsvereinbarung: Gemeinsame<br />

Nutzung von Forschungsgeräten und technologischen<br />

Einrichtungen<br />

- Charité-Universitätsmedizin <strong>Berlin</strong>, Germany


Kooperationsvereinbarung zur Nutzung von Übertragungsstrecken<br />

als Zugangsleitungen zum Gigabit-Wissenschaftsnetz<br />

G.WiN<br />

- Verein zur Förderung eines Deutschen Forschungsnetzes<br />

e. V., <strong>Berlin</strong>, Germany<br />

Kooperationsvereinbarung über die Zusammenarbeit im<br />

Rahmen von Projekten<br />

- Freie Universität <strong>Berlin</strong>, Germany<br />

Kooperationsvereinbarung: Transfer von Naturstoffen,<br />

Derivaten und Analoga<br />

- Hans-Knöll-Institut für Naturstoff-Forschung e. V. , Germany<br />

Collaboration Agreement mit der AG Oschkinat<br />

- Max-Delbrück-Centrum für Molekulare Medizin, <strong>Berlin</strong><br />

Kooperationsvereinbarung: Molecular Fingerprinting of<br />

the Blood-Brain Barrier in Hypoxia-Targeting Brain Vessels<br />

to Treat Stroke<br />

- National Research Council of Canada, Montreal<br />

Infrastrukturnutzungsvereinbarung<br />

- PFS biotech AG, <strong>Berlin</strong>, Germany<br />

Kooperationsvereinbarung: Nutzung der Primärdatenbank<br />

PD Dr. IE Blasig<br />

- Ressourcenzentrum für das Deutsche Humangenomprojekt,<br />

Germany<br />

Kooperationsvereinbarung für Auftragsmessungen<br />

Prof. Dr. H. Oschkinat<br />

- Schering AG, <strong>Berlin</strong>, Germany<br />

Kooperationsvereinbarung: Structure determination by<br />

NMR<br />

- University of Oxford, UK<br />

Kooperationsvereinbarung<br />

- The University Wisconsin, Madison, USA<br />

Infrastrukturnutzungsvereinbarung<br />

Combinature Biopharm AG, <strong>Berlin</strong>, Germany<br />

Kooperationsvereinbarung China-Konsortium<br />

- Deutsches Diabetes Zentrum (DDZ) an der Heinrich-<br />

Heine-Universität, Düsseldorf, Germany<br />

- Deutsches Primatenzentrum GmbH (DPZ), Göttingen<br />

- Forschungszentrum Borstel (FZB) – Zentrum für Medizin<br />

und Biowissenschaften, Borstel, Germany<br />

- Hans-Knöll-Institut für Naturstoff-Forschung (HKI),<br />

Jena, Germany<br />

- Heinrich-Pette-Institut für Experimentelle Virologie und<br />

Immunologie (HPI) , Germany<br />

- Leibniz-Institut für Neurobiologie IfN, Magdeburg, Germany<br />

- Leibniz-Institut für Molekulare Biotechnologie (IMB),<br />

Jena, Germany<br />

- Institut für Pflanzenbiochemie (IPB), Halle a.d. Saale,<br />

Germany<br />

- Institut für Pflanzengenetik und Kulturpflanzenforschung<br />

(IPK), Gatersleben, Germany<br />

Appendix<br />

133


MEETINGS, WORKSHOPS, SYMPOSIA<br />

<strong>2003</strong>/<strong>2004</strong><br />

WISSENSCHAFTLICHE VERANSTALTUNGEN<br />

<strong>2003</strong><br />

6th Symposium Signal Transduction in the Blood-Brain<br />

Barriers<br />

Blasig IE, Haseloff RF<br />

Szeged/Ungarn<br />

September <strong>2003</strong><br />

<strong>Berlin</strong> Magnetic Resonance Seminar and High-Field NMR<br />

Facility Users Meeting<br />

Oschkinat H<br />

Forschungsinstitut für Molekulare Pharmakologie, <strong>Berlin</strong>-<br />

Buch, Germany<br />

December <strong>2003</strong><br />

4th Progress report meeting, EU-Project: Anti-diuresis<br />

using short-acting vasopressin-V2-receptor agonists as a<br />

new therapeutic strategy of urinary incontinence and voiding<br />

disorders<br />

Klussmann E, Rosenthal W, Lauterjung U<br />

Magnus-Haus, <strong>Berlin</strong>, Germany<br />

June <strong>2003</strong><br />

1st Progress report meeting, EU-Project: Anchored cAMP<br />

signalling / RTD grant - Implication for treatment of human<br />

diseases<br />

Klussmann E, Rosenthal W, Lauterjung U<br />

Magnus-Haus, <strong>Berlin</strong>, Germany<br />

June <strong>2003</strong><br />

6. Deutsches Peptidsymposium (mit internationaler Beteiligung)<br />

Bienert M, Dreissigacker M, Dathe M<br />

Humboldt-Universität zu <strong>Berlin</strong>, Germany<br />

March <strong>2003</strong><br />

8th International Dahlem Symposium on Cellular Signal<br />

Recognition and Transduction, <strong>Berlin</strong><br />

Rosenthal W<br />

Charite - Universitätsmedizin <strong>Berlin</strong>, Germany<br />

June <strong>2003</strong><br />

<strong>2004</strong><br />

34. Jahrestagung der Deutschen Gesellschaft für Immunologie<br />

Horak I<br />

<strong>Berlin</strong>, Henry Ford Building, Germany<br />

September <strong>2004</strong><br />

Festsymposium zur Einweihung des 900-MHz-Spektrometers<br />

am <strong>FMP</strong><br />

Oschkinat H, Steuer A, Maul B<br />

Max-Delbrück-Communications Center, <strong>Berlin</strong>-Buch, Germany<br />

July <strong>2004</strong><br />

7th International Symposium on Signal Transduction in the<br />

Blood-Brain Barriers<br />

Blasig IE, Haseloff RF<br />

Potsdam, Germany<br />

September <strong>2004</strong><br />

EMBO Practical Course "Multidimensional NMR in Structural<br />

Biology II”<br />

Oschkinat H (Co-Organisator)<br />

Ciocco, Italy<br />

September <strong>2004</strong><br />

25. Tagung des Max-Bergmann-Kreises<br />

Bienert M<br />

Munster, France<br />

October <strong>2004</strong>


WORK IN PANELS <strong>2003</strong>/<strong>2004</strong><br />

GREMIENARBEIT <strong>2003</strong>/<strong>2004</strong><br />

Walter Rosenthal<br />

- Mitglied im Kuratorium des Deutschen Instituts für<br />

Ernährungsforschung, Potsdam-Rehbrücke<br />

- Stellvertretender Sprecher der Sektion C Lebenswissenschaften<br />

der Leibniz Gemeinschaft<br />

- Mitglied des Wissenschaftlichen Beirats des Hans-<br />

Knöll-Insituts, Jena<br />

- Kuratoriumsmitglied der <strong>Berlin</strong>-Brandenburgischen<br />

Fortbildungsakademie (BBFA)<br />

- Leiter des Instituts für Pharmakologie, Charité-Universitätsmedizin<br />

<strong>Berlin</strong><br />

- Schatzmeister im Verbund biowissenschaftlicher und<br />

biomedizinischer Gesellschaften (vbbm)<br />

Hartmut Oschkinat<br />

- Mitglied des Aufsichtsrats der Firma PSF Bio AG, <strong>Berlin</strong><br />

Ivan Horak<br />

- Wissenschaftlicher Direktor der Forschungseinrichtung<br />

für Experimentelle Medizin, FU <strong>Berlin</strong><br />

- Ombudsmann für Gute Wissenschaftliche Praxis des<br />

Forschungsverbundes <strong>Berlin</strong> e.V.<br />

- Sprecher der Arbeitsgruppe Tierhaltung der Gemeinsamen<br />

Kommission nach § 3 (3) UniMedG<br />

- Mitglied des Beirats in der Transgenic Core Facility der<br />

RCC Gen bio tec GmbH, Campus <strong>Berlin</strong>-Buch<br />

Michael Bienert<br />

- Wissenschaftlicher Sekretär des Max-Bergmann-Kreises<br />

REVIEW ACTIVITIES <strong>2003</strong>/<strong>2004</strong><br />

GUTACHTERTÄTIGKEIT <strong>2003</strong>/<strong>2004</strong><br />

Bienert, Michael<br />

Organisations<br />

- Deutsche Forschungsgemeinschaft<br />

Research Institutions<br />

- Universität Halle<br />

- Humboldt-Universität zu <strong>Berlin</strong><br />

Journals<br />

- Org Lett<br />

- Drug Design Review-Online<br />

- Tetrahedron Lett<br />

- J Mass Spec<br />

- Amino Acids<br />

- J Pept Sci<br />

- J Am Chem Soc<br />

- J Mol Recognit<br />

- Pept Res<br />

Blasig, Ingolf<br />

Organisations<br />

- Deutsche Forschungsgemeinschaft<br />

- Research Grant Council Hong Kong<br />

- Jubiläumsfond Österreichische Nationalbank<br />

- Assoziazone Italiana per la Ricerca Cancro<br />

Research Institutions<br />

- Philipps-Universität Magdeburg<br />

- Universität Potsdam<br />

- Charité-Universitätsmedizin <strong>Berlin</strong><br />

Journals<br />

- Neurochemistry<br />

- Glia<br />

- J Neurosci<br />

- J Pharm Pharmacol<br />

- J Neurochem<br />

- Neurochemical Research<br />

Carstanjen, Dirk<br />

Journals<br />

- Bone marrow transplantation<br />

Dathe, Margitta<br />

Organizations<br />

- The Israel Science Foundation<br />

Journals<br />

- J Pep Res<br />

- Eur J Biochem<br />

- Biochim Biophysica Acta<br />

Appendix<br />

135


- Comb Chem<br />

- Biophys J<br />

- J Biol Chem<br />

- New J Chem<br />

- Biochem J<br />

- Regul Peptides<br />

- Org Biomol Chem<br />

Freund, Christian<br />

Organisations<br />

- University of Oxford<br />

Journals<br />

- Regul Peptides<br />

Hagen, Volker<br />

Research Institutions<br />

- Bayrische-Maximilians Universität Würzburg<br />

Journals<br />

- Angew Chemie<br />

- ChemBioChem<br />

- J Am Chem Soc<br />

- Blood<br />

- Eur J Med Chem<br />

- J Mol Struct<br />

Haseloff, Rainer<br />

Journals<br />

- J Photochemistry and Photobiology B-Biology<br />

- Free Radicals Research<br />

Horak, Ivan<br />

Organisations<br />

- Deutsche Forschungsgemeinschaft<br />

- Deutsche Krebshilfe<br />

- Boehringer Ingelheim Fonds<br />

Research Institutions<br />

- Yorkshire Cancer Research, UK<br />

- Universität zu Lübeck<br />

- Taussig Cancer Center, The Cleveland Clinic Foundation<br />

Journals<br />

- J Biol Chem<br />

- Immunity<br />

- Eur J Immunol<br />

- J Mol Cell Biol<br />

- Blood<br />

- Nucleic Acids Research<br />

- Journal Leukemia<br />

Klussmann, Enno<br />

Organisations<br />

- Health Research Board, Ireland<br />

Journals<br />

- JCI<br />

- Glia<br />

- Biol of the Cell<br />

- Biol Cell<br />

- Neuroscience Letters<br />

- J Cell Sci<br />

- Kidney Int<br />

- J Biol Chem<br />

- Eur J Cell Biol<br />

Krause, Eberhard<br />

Journals<br />

- J Anal Chem<br />

- J Pept Sci<br />

- J Mass Spec<br />

- Biochemistry<br />

Krause, Gerd<br />

Journals<br />

- QSAR Journal<br />

- J Comput Aid Mol Des<br />

Meyer, Thomas<br />

Research Institutions<br />

- Georg-August-Universität Göttingen<br />

Journals<br />

- Circulation<br />

Oehlke, Johannes<br />

Journals<br />

- Biochim Biophys Acta<br />

- Eur J Biochem<br />

Oschkinat, Hartmut<br />

Organisations<br />

- Deutsche Forschungsgemeinschaft<br />

- Österreichische Akademie der Wissenschaften<br />

- Schering AG<br />

- Swiss Federal Institute of Technology Zürich<br />

- Studienstiftung Bonn<br />

- Schweizerischer Nationalfond zur Förderung von<br />

Wissenschaftlicher Forschung<br />

- FWF Der Wissenschaftsfond


Research Institutions<br />

- Freie Universität <strong>Berlin</strong><br />

- Ludwig-Maximilians-Universität München<br />

- Bayerische-Maximilians Universität Würzburg<br />

- Humboldt-Universität zu <strong>Berlin</strong><br />

- Ecole Normale Supérieure de Lyon<br />

- Charité-Universitätsmedizin <strong>Berlin</strong><br />

- Eidgenössische Technische Hochschule Zürich<br />

Journals<br />

- J Mol Biol<br />

- J Magn Reson<br />

- J Biol NMR<br />

- J Am Chem Soc<br />

- Nat Struct Biol<br />

- Science<br />

- Biochemistry<br />

- Proc Natl Acad Sci U.S.A.<br />

Piontek, Jörg<br />

Journals<br />

- GLIA<br />

Pohl, Peter<br />

Organisations<br />

- Wellcome Trust<br />

Research Institutions<br />

- Christian-Albrechts-Universität zu Kiel<br />

- Humboldt-Universität zu <strong>Berlin</strong><br />

Journals<br />

- Biochemistry<br />

- Biophys J<br />

- Eur J Biochem<br />

- J Bioelectrochemical Society<br />

- BioMed Central<br />

- TIPS<br />

- Proc Natl Acad Sci U.S.A.<br />

Richter, Regina<br />

Journals<br />

- Vasc Pharmacol<br />

- Eur J Pharmacol<br />

- J Cardiovasc Pharma<br />

- Psychopharmacology<br />

Rosenthal, Walter<br />

Organisations<br />

- Deutsche Forschungsgemeinschaft<br />

- Ärztekammer <strong>Berlin</strong><br />

- Fakulte de Science Chile<br />

- Boehringer Ingelheim<br />

- Österreichischer Wissenschaftsfond<br />

- Alexander von Humboldt Stiftung<br />

- Ministerio Dell`Istruzione, Dell ùniversita` E Della Ricera<br />

Research Institutions<br />

- Freie Universität <strong>Berlin</strong><br />

- Technische Universität <strong>Berlin</strong>/DRFZ<br />

- Philipps-Universität Marburg<br />

- Eidgenössische Technische Hochschule Zürich<br />

- Eberhard-Karls-Universität Tübingen<br />

- Institut für Zoo- und Wildtierforschung<br />

- Université Montpellier<br />

- Bayerische Maximilians-Universität München<br />

- Christian-Albrechts-Universität zu Kiel<br />

- Universität des Saarlandes<br />

- Oregon Health and Science University Portland<br />

- Fachhochschule Lausitz<br />

Journals<br />

- Neuroscience Letters<br />

- Nephrology Dialysis Transplantation<br />

- Human Molecular Genetics<br />

- Biology of the cell<br />

- Pharmacol & Toxicol<br />

- Hormone Research<br />

- Encyclopedia of Biological Chemistry<br />

- Eur J of Cell Biol<br />

- EJB<br />

- Eur J Biochem<br />

- Eur Biophys J Biophys<br />

- FEBS Lett<br />

- The Lancet<br />

- Kidney Int<br />

Schmieder, Peter<br />

Organizations<br />

- Studienstiftung des deutschen Volkes<br />

Journals<br />

- ChemBioChem<br />

- J Magn Reson<br />

- Chemistry (Wiley VCH)<br />

Schülein, Ralf<br />

Journals<br />

- FEBS Lett<br />

- Biotechniques<br />

Appendix<br />

137


Siems, Wolf-Eberhard<br />

Journals<br />

- J Mol Med<br />

Utebergenov, Darkhan<br />

Journals<br />

- J Neurochem<br />

Vinkemeier, Uwe<br />

Organizations<br />

- European Molecular Biology Organizations<br />

- Boehringer Ingelheim Fonds<br />

- Österreichische Akademie der Wissenschaften<br />

- DAAD<br />

Journals<br />

- Biochim Biophys Acta<br />

- Biochem Biophys Res Comm<br />

- Dev Cell<br />

- EMBO J<br />

- Eur J Biochem<br />

- FEBS Left<br />

- J Cell Biol<br />

- Mol Cell Biol<br />

- Nucleic Acids Res<br />

- Proc Natl Acad Sci U.S.A.<br />

ACADEMIC TEACHING <strong>2003</strong>/<strong>2004</strong><br />

LEHRE <strong>2003</strong>/<strong>2004</strong><br />

Beyermann, Michael<br />

Biophysik-Praktikum zum Biacore-Gerät<br />

Freie Universität <strong>Berlin</strong><br />

Bienert, Michael<br />

Vorlesung Proteine und Peptide<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Vorlesung zum Biophysikpraktikum (Biacore-Gerät)<br />

Freie Universität <strong>Berlin</strong><br />

Blasig, Ingolf<br />

Vorlesung Funktionelle Biochemie<br />

Universität Potsdam<br />

Mastercourse „Medical Neurosciense“. Reguläre Vorlesung,<br />

Seminare und Praktikum<br />

Universität Potsdam<br />

Mastercourse „Medical Neurosciense“. Fakultative Vorlesung<br />

und Seminar<br />

Universität Potsdam<br />

Dathe, Margitta<br />

Biophysik für Studenten der Biochemie: CD-Spektroskopie<br />

Freie Universität <strong>Berlin</strong><br />

Freund, Christian<br />

Vorlesung Protein Engineering<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Molekulare Immunologie<br />

Freie Universität <strong>Berlin</strong><br />

Horak, Ivan<br />

Vorlesung Knock-Out-Mäuse<br />

Freie Universität <strong>Berlin</strong><br />

Keller, Sandro<br />

Vorlesung Biophysik für Studenten der Biochemie: Isotherm<br />

Titration Calorimetry<br />

Freie Universität <strong>Berlin</strong><br />

Klussmann, Enno<br />

Kursus der Allgemeinen Pharmakologie und Toxikologie<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion:<br />

A-Kinase-Ankerproteine<br />

Charite-Universitätsmedizin <strong>Berlin</strong>


Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion:<br />

Affinitätspräzipationstechniken<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion<br />

für Biochemiker, Biologen, Mediziner und<br />

Pharmazeuten<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Kursus der Allgemeinen Pharmakologie und Toxikologie<br />

für Humanmediziner<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Krause, Eberhard<br />

Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion<br />

– Massenspektrometrie Proteinanalytik (Proteomics)<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Krause, Gerd<br />

Vorlesung Grundlagen Molecular Modelling<br />

Technical University of Applied Sciences, <strong>Berlin</strong><br />

Vorlesung Grundlagen Molecular Modelling<br />

Technical University of Applied Sciences, <strong>Berlin</strong>, FB Bioinformatics<br />

Krause, W<br />

Spezialkurs Sucht<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Psychopharmakologie im Praktikum Molekulare und<br />

zelluläre Signaltransduktion<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Lorenz, Dorothea<br />

Kursus Mikroskopische Techniken (Intrazelluläre Ca2+-<br />

Messungen)<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Meyer, Thomas<br />

Vorlesung Innere Medizin für Zahmediziner<br />

Universität Göttingen<br />

Praktikum Innere Medizin<br />

Universität Göttingen<br />

Vorlesung Pathologie und Klinik internistischer und chirurgischer<br />

Erkrankungen<br />

Universität Göttingen<br />

Oschkinat, Hartmut<br />

Vorlesung Biologische NMR-Spektroskopie<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Biophysikalische Methoden<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Grundlagen und neue Techniken der<br />

biologischen NMR-Spektroskopie<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Grundlagen der biologischen NMR-Spektroskopie<br />

Freie Universität <strong>Berlin</strong><br />

Pohl, Peter<br />

Vorlesung Mikroskopie<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Vorlesung Experimentelle Biophysik<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Vorlesung Biomechanik<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Vorlesung Biophysik III<br />

Johannes-Kepler Universität Linz<br />

Vorlesung Biophysik I<br />

Johannes-Kepler Universität Linz<br />

Übungen zur Physik<br />

Johannes-Kepler Universität Linz<br />

Rademann, Jörg<br />

Vorlesung Heterocyclen<br />

Universität Tübingen<br />

Vorlesung Stereochemistry<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Combinatorial Chemistry<br />

Quaid-i-Azzam University, Islamabad<br />

Vorlesung Chemie für Biologen<br />

Universität Tübingen<br />

Vorlesung Aktuelle Methoden der Bioorganischen<br />

Synthese<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Bioorganic and Natural Product Chemistry<br />

Freie Universität <strong>Berlin</strong><br />

Richter Regina<br />

Vorlesung Anwendung der Mikrodialysetechnik in der<br />

Neuropharmakologie<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Appendix<br />

139


Rosenthal, Walter<br />

Vorlesung Gentherapie I<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Weitere alternative Therapieformen<br />

Charite-Universitätsmedizin<br />

Vorlesung Pharmakokinetik<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Arzneimittel-Metabolismus/Pharmakogenetik<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Gentherapie II (Mechanismen)<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Stammzellen<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Homöopathie<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Placebo<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Antivirale Therapie, Antigenese, Gentherapie<br />

Charite-Unviersitätsmedizin <strong>Berlin</strong><br />

Schmieder, Peter<br />

Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Multidimensionale NMR-Spektroskopie-Grundlagen<br />

und Anwendungen in der Strukturaufklärung<br />

Technische Universität <strong>Berlin</strong><br />

Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion<br />

Technische Universität <strong>Berlin</strong><br />

Grundlagen und Anwendungen der Mehrdimensionalen<br />

NMR-Spektroskopie<br />

Technische Universität <strong>Berlin</strong><br />

Schülein, Ralf<br />

Kursus der Allgemeinen Pharmakologie und Toxikologie<br />

Charite-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion<br />

für Biochemiker, Biologen, Mediziner und<br />

Pharmazeuten<br />

Chartie-Universitätsmedizin <strong>Berlin</strong><br />

Kursus der allgemeinen Pharmakologie<br />

Charité-Universitätsmedizin <strong>Berlin</strong><br />

Vorlesung Molekulare Pharmakologie und zelluläre Signaltransduktion<br />

Charité-Universitätsmedizin <strong>Berlin</strong><br />

Vinkemeier, Uwe<br />

Vorlesung Aktuelle Themen der zellulären Siganltransduktion<br />

Freie Universität <strong>Berlin</strong><br />

Vorlesung Mechanismen der molekularen Signalverarbeitung<br />

Freie Universität <strong>Berlin</strong><br />

Praktikum Mechanismen der Signalverarbeitung<br />

Freie Universität <strong>Berlin</strong><br />

Wiesner, Burkhard<br />

Laser Scanning Mikroskopie: Möglichkeiten und Grenzen<br />

optischer Methoden zur Untersuchung subzellulärer Prozesse<br />

Freie Universität <strong>Berlin</strong><br />

Konfokale Mikroskopie (Molekulare Pharmakologie und<br />

zelluläre Signaltransduktion)<br />

FU/<strong>FMP</strong><br />

Molekulare Pharmakologie und zelluläre Signaltransduktion<br />

FU/<strong>FMP</strong><br />

Mikroskopische Techniken (FRAP, FREt, Reflexionsmessungen)<br />

HU/<strong>FMP</strong><br />

Laser Scanning Mikroskopie: Möglichkeiten und Grenzen<br />

optischer Methoden zur Untersuchung subzellulärer Prozesse<br />

Freie Universität <strong>Berlin</strong>


CALLS FOR APPOINTMENTS <strong>2003</strong>/<strong>2004</strong><br />

RUFE <strong>2003</strong>/<strong>2004</strong><br />

Hermosilla, Ricardo (<strong>2003</strong>)<br />

Juniorprofessur für Pathologie der Signaltransduktion<br />

am Institut für Pharmakologie der Charite-Universitätsmedizin<br />

<strong>Berlin</strong>, Germany<br />

Pohl, Peter (<strong>2004</strong>)<br />

Lehrstuhl für Biophysik<br />

Technisch-Naturwissenschaftliche Fakultät der Johannes-<br />

Kepler-Universität Linz<br />

Pires, Ricardo (2002)<br />

Associated Professor for Biochemistry and Structural Biology<br />

Instituto De Ciencas Biomédicas, Universidade Federal do<br />

Rio de Janeiro, Brasil<br />

POSTDOCTORAL LECTURE QUALIFICATIONS<br />

<strong>2003</strong>/<strong>2004</strong><br />

HABILITATIONEN <strong>2003</strong>/<strong>2004</strong><br />

Oksche, Alexander (<strong>2003</strong>) Molekulare Grundlagen angeborener<br />

und erworbener polyurischer Störungen<br />

Charité-Universitätsmedizin <strong>Berlin</strong><br />

Schülein, Ralf (<strong>2003</strong>) The early secretory pathway of membrane<br />

proteins: clinical and pharmacological implications<br />

Charité-Universitätsmedizin <strong>Berlin</strong><br />

141 Appendix


GRADUATIONS <strong>2003</strong>/<strong>2004</strong><br />

PROMOTIONEN <strong>2003</strong>/<strong>2004</strong><br />

Alken, Martina (<strong>2004</strong>) Functional significance of N-terminal<br />

signal peptides of G protein-coupled receptors<br />

Freie Universität <strong>Berlin</strong><br />

Andreeva, Anna (<strong>2004</strong>) Protein kinase C isoform antagonism<br />

controls occludin phosphorylisation and tight<br />

junction assembly<br />

Freie Universität <strong>Berlin</strong><br />

Barth, Michael (<strong>2004</strong>) Entwicklung neuer, hochbeladener<br />

Trägermaterialien für die organische Festphasensynthese<br />

auf Basis von vernetztem Polyethylenimin – Anwendung im<br />

Bereich der Peptidsynthese, für Polymerreagenzien und<br />

zur Synthese von peptidfunktionalisierten Dendrimeren<br />

Eberhard Karls Universität Tübingen<br />

Begitt, Andreas (<strong>2004</strong>) Nukleocytoplasmatischer Transport<br />

und Geninduktion durch den Transkriptionsfaktor STAT1<br />

Freie Universität <strong>Berlin</strong><br />

Boisguerin, Prisca (<strong>2004</strong>) Characterization of PDZ Domain/<br />

Ligand Specifity<br />

Freie Universität <strong>Berlin</strong><br />

Castellani, Federica (<strong>2004</strong>) Structure determination of<br />

immobilized proteins by solid-state NMR spectroscopy<br />

Freie Universität <strong>Berlin</strong><br />

Eckhardt, Torsten (<strong>2004</strong>) Design, Synthese, Photochemie<br />

und biologische Anwendung von ausgewählten „caged“<br />

cyclischen Adenosin-3, 5´-monophosphaten<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Edemir, Bayram (<strong>2004</strong>) Klonierung und Charakterisierung<br />

einer neuen AKAP18-Isoform, AKAP18δ, und ihre mögliche<br />

Beteiligung an der AVP-vermittelten AQP2-Translokation<br />

Freie Universität <strong>Berlin</strong><br />

Meyer, Thomas (<strong>2004</strong>) Nukleäre Akkumulation und Zielgenerkennung<br />

von STAT1-Transkriptionsfaktoren<br />

Freie Universität <strong>Berlin</strong><br />

Osiak, Anna (<strong>2004</strong>) Die Rolle der ubiquitinähnlichen Gene<br />

UBL 14 und ISG15 in vivo<br />

Freie Universität <strong>Berlin</strong><br />

Sauer, Ines (<strong>2004</strong>) Apolopoprotein E - abgeleitete Peptide<br />

als Vektoren zur Überwindung der Blut-Hirn-Schranke<br />

Freie Universität <strong>Berlin</strong><br />

Serowy, Steffen (<strong>2004</strong>) Migration von Protonen entlang der<br />

Oberfläche ebener Bilipidmembranen<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Thielen, Anja (<strong>2004</strong>) Identifizierung transportrelevanter<br />

Aminosäurereste im proximalen C-Terminus des humanen<br />

Vasopressin-V2-Rezeptors<br />

Freie Universität <strong>Berlin</strong><br />

Storm Robert (<strong>2004</strong>) Extracellular osmolality and solute<br />

composition participate in the expressional regulation of<br />

Aquaporin-2 in renal inner medullary collecting duct cells.<br />

Evidence for an involvement of the TonE/TonEBP pathway<br />

Freie Universität <strong>Berlin</strong><br />

Wessolowski, Axel (<strong>2004</strong>) Amphipathische Hexapeptide -<br />

Interaktion mit Membranen<br />

Freie Universität <strong>Berlin</strong><br />

Zimmermann, Jürgen (<strong>2004</strong>) Struktur und Funktion von<br />

EVH1-Domänen<br />

Freie Universität <strong>Berlin</strong><br />

Zühlke, Kerstin (<strong>2003</strong>) Strukturelle und funktionelle Bedeutung<br />

der konservativen Disulfidbrücke des Vasopressin-<br />

V2-Rezeptors<br />

Freie Universität <strong>Berlin</strong>


DIPLOMA THESES <strong>2003</strong>/<strong>2004</strong><br />

DIPLOMARBEITEN <strong>2003</strong>/<strong>2004</strong><br />

<strong>2003</strong><br />

Brandenburg, Martin<br />

Kerntransportverhalten trunkierter STAT-Porteine<br />

Technische Fachhochschule <strong>Berlin</strong><br />

Hahn, Janina<br />

Untersuchungen zu Chromophor-Protein-Interaktionen in<br />

ortsspezifischen Mutanten von Phytochrom Cph1 aus Cyanobakterium<br />

Synechocystis<br />

Freie Universität <strong>Berlin</strong><br />

Heine, Markus<br />

Wasserstoffperoxyd-induzierte Veränderungen der Aktivität<br />

und Expression ausgewählter Proteine in Epithelzellen<br />

Freie Universität <strong>Berlin</strong><br />

Paschke, Carmen<br />

Erweiterte Peakformanalyse zur Verbesserung der automatischen<br />

Resonanzzuordnung von NMR-Spektren<br />

Fachhochschule Lausitz<br />

Schröder, Stephan<br />

Derivatisierung phosphorylierter Peptide zur Erhöhung der<br />

Signalintensität in der Massenspektrometrie<br />

Technische Universität <strong>Berlin</strong><br />

Thurisch, Boris<br />

Strategien zur gezielten Expressions-Inhibition des murinen<br />

FMIP-Gens<br />

Technische Fachhochschule <strong>Berlin</strong><br />

Wendt, Norbert<br />

Strukturuntersuchungen der Disulfidstruktur an N-terminalen<br />

CRF-Rezeptoren<br />

Technische Universität <strong>Berlin</strong><br />

<strong>2004</strong><br />

Cubic, Ivona<br />

Charakterisierung von Proteinen mittels Kapillar-HPLC und<br />

Massenspektrometrie<br />

Technische Fachhochschule <strong>Berlin</strong><br />

El-Dashan, Adeeb<br />

Milde C-Acylierungen von polymergebundenen Carboxylatphosphoranen<br />

für Anwendungen in der Medizinischen<br />

Chemie<br />

Eberhard-Karls-Universität Tübingen<br />

Kotzur, Nico<br />

Synthese und Photochemie von photolabilen cAMP-Derivaten<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Kubald, Sybille<br />

Extrazelluläre Domäne des Rezeptors für den Corticotropin-Releasing-Faktor:<br />

Klonierung in Expression eines<br />

N-Terminus-Schleife-Konstrukts als Bindungsmodell<br />

Technische Fachhochschule <strong>Berlin</strong><br />

Lassowski, Brigitte<br />

Untersuchungen zur Clonierung und Reinigung von Tight-<br />

Junction-Proteinen<br />

Universität Potsdam<br />

Renner, Armin<br />

Funktionelle Bedeutung des Signalpeptides des Corticotropin-Releasing-Faktor<br />

Rezeptors 2a<br />

Julius-Maximilians-Universität Würzburg<br />

Roswadowski, Inga<br />

Untersuchungen zur Struktur und Funktion von Tight-<br />

Junction-Proteinen<br />

Technische Fachhochschule <strong>Berlin</strong><br />

Schröder, Stephan<br />

Derivatisierung phophorylierter Peptide zur Erhöhung der<br />

Ionisierungen der Massenspektrometrie<br />

Technische Universität <strong>Berlin</strong><br />

Zech,Tobias<br />

Functional studies of the adapter protein CD2BP2<br />

Freie Universität <strong>Berlin</strong><br />

143 Appendix


INTERNSHIPS <strong>2003</strong>/<strong>2004</strong><br />

PRAKTIKANTEN <strong>2003</strong>/<strong>2004</strong><br />

Ballmer, Boris<br />

10.11.<strong>2003</strong>–05.12.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Berger<br />

Behling, Katja<br />

01.06.<strong>2004</strong>–25.06.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr.Berger<br />

Behnken, Swantje<br />

16.08.<strong>2004</strong>–08.10.<strong>2004</strong><br />

Universität Potsdam – Biochemie<br />

Supervision : Dr. Donalies<br />

Bibow, Stefan<br />

01.05.<strong>2004</strong>–31.07.<strong>2004</strong><br />

Humboldt-Universität zu <strong>Berlin</strong> – Biophysik<br />

Supervision: Prof. Reif<br />

Bieberstein, Andrea<br />

06.10.<strong>2003</strong>–20.02.<strong>2004</strong><br />

Fachhochschule Lausitz – Biotechnologie<br />

Supervision: Dr. Donalies<br />

Blick, Kristin<br />

12.05.<strong>2003</strong>–20.06.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Berger<br />

Böthe, Matthias<br />

08.12.<strong>2003</strong>-30.01.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: S. Keller<br />

Böthe, Matthias<br />

01.07.<strong>2004</strong>–11.08.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Dathe<br />

Brückner, Kathrin<br />

07.04.<strong>2003</strong>–09.05.<strong>2003</strong><br />

Technische Universität Dresden – Chemie<br />

Supervision: Dr. Siems<br />

Christian, Frank<br />

15.09.<strong>2003</strong>–24.10.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Klussmann<br />

Cubic, Ivona<br />

01.09.<strong>2003</strong>–29.02.<strong>2004</strong><br />

Technische Fachhochschule – Biochemie<br />

Supervision: Dr. E. Krause<br />

Curth, Sebastian<br />

14.06.<strong>2004</strong>–10.09.<strong>2004</strong><br />

Technische Fachhochschule <strong>Berlin</strong> – Biotechnologie<br />

Supervision: Dr. Donalies<br />

Elß, Franka<br />

04.10.<strong>2004</strong>–25.03.2005<br />

Fachhochschule Magdeburg – Pharmakologie<br />

Supervision: Dr. E. Krause<br />

Erel, Funda<br />

01.02.<strong>2003</strong>–31.03.<strong>2003</strong><br />

Vorpraktikum Biotechnologie<br />

Supervision: Dr. Klußmann<br />

Ernst, Oliver<br />

20.10.<strong>2003</strong>–19.04.<strong>2004</strong><br />

Technische Universität <strong>Berlin</strong> – Biotechnologie<br />

Supervision: Dr. Donalies<br />

Femmer, Christian<br />

01.08.<strong>2004</strong>–15.10.<strong>2004</strong><br />

Technische Universität <strong>Berlin</strong> – Biotechnologie<br />

Supervision: Dr. Klose<br />

Gartmann, Marco<br />

20.10.<strong>2003</strong>–31.12.<strong>2003</strong><br />

Universität Potsdam – Biochemie<br />

Supervision: Dr. Haseloff<br />

Gasser, Carlos<br />

14.05.<strong>2004</strong>–16.07.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Pohl<br />

Giebel, Sebastian<br />

01.06.<strong>2004</strong>-16.07.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: S. Keller<br />

Groß, Anika<br />

02.02.<strong>2004</strong>–12.03.<strong>2004</strong><br />

Freie Universität Belin – Pharmazie<br />

Supervision: Dr. Schmieder<br />

Güngör, Volkan<br />

01.02.<strong>2004</strong>–30.04.<strong>2004</strong><br />

Berufsanfänger<br />

Supervision: H.-J. Mevert


Guse, Katrin<br />

19.04.<strong>2004</strong>-04.06.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: S. Keller<br />

Han, Soeng-Ji<br />

19.07.<strong>2004</strong>-03.09.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: S. Keller<br />

Hamidzadek, Nadja<br />

27.01.<strong>2003</strong>–27.03.<strong>2003</strong><br />

Weiterbildung (Arbeitsamt) – Biochemie<br />

Supervision: Dr. Labudde<br />

Heinze, Mathias<br />

01.02.<strong>2004</strong>–31.03.20004<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

Supervision: T. Jahn<br />

Heuberger, Julian<br />

08.11.<strong>2004</strong>–14.12.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Dathe<br />

Hübner, Florian<br />

01.11.<strong>2004</strong>-18.02.2005<br />

Technische Fachhochschule <strong>Berlin</strong><br />

Supervision: Dr. Pohl<br />

Hühn, Stephan<br />

29.03.<strong>2004</strong>-07.05.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: S. Keller<br />

Jahnke, Nadine<br />

01.06.<strong>2004</strong>-16.07.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: S. Keller<br />

Jehle, Stefan<br />

11.08.<strong>2003</strong>–24.10.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Prof. Oschkinat<br />

Kalmbach, Norman<br />

06.01.<strong>2003</strong>–31.01.<strong>2003</strong><br />

Technische Fachhochschule <strong>Berlin</strong> – Biotechnologie<br />

Supervision: Dr. Vinkemeier<br />

Kaltofen, Sabine<br />

21.07.<strong>2003</strong>–10.10.<strong>2003</strong><br />

Fachhochschule Zittau<br />

Supervision: Dr. Krabben<br />

Kamitz, Anne<br />

08.01.<strong>2004</strong>–02.04.<strong>2004</strong><br />

Abiturientin<br />

Supervision: Dr. Vinkemeier<br />

Kieseritzky, Gernot<br />

01.03.<strong>2004</strong>–09.04.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Pohl<br />

Kirsch, Jenny<br />

13.04.<strong>2004</strong>–30.04.2005<br />

Universität Potsdam – Biochem.<br />

Supervision: Dr. Blasig<br />

Kotzur, Nico<br />

01.03.<strong>2004</strong>–31.12.<strong>2004</strong><br />

Humboldt-Universität <strong>Berlin</strong> – Chemie<br />

Supervision: Dr. Hagen<br />

Kraemer, Florian<br />

01.08.<strong>2004</strong>–24.09.<strong>2004</strong><br />

Universität Potsdam – Biochemie<br />

Supervision: Prof. Horak<br />

Kron, Anja<br />

01.09.<strong>2003</strong>–30.01.<strong>2004</strong><br />

Fachhochschule – Biotechnologie<br />

Supervision: Dr. Leitner<br />

Kronsbein, Helena<br />

10.03.<strong>2003</strong>–28.03.<strong>2003</strong><br />

Technische Universität München – Biochemie<br />

Supervision: Dr. Schmieder<br />

Krüger, Kerstin<br />

15.04.<strong>2003</strong>–14.10.<strong>2003</strong><br />

Rharmazie-Praktikantin<br />

Supervision: Dr. Siems<br />

Krüger, Magnus<br />

01.11.<strong>2004</strong>–30.04.2005<br />

Freie Universität <strong>Berlin</strong> – Pharmazie<br />

Supervision: Dr. Beyermann<br />

Kuhn, Ramona<br />

04.08.<strong>2003</strong>–26.09.<strong>2003</strong><br />

Technische Universität – <strong>Berlin</strong> – Umweltschutz<br />

Supervision: Dr. Wiesner<br />

Lassowski, Birgit<br />

01.01.<strong>2003</strong>–31.03.<strong>2003</strong><br />

Universität Potsdam – Biotechnologie<br />

Supervision: Dr. Blasig<br />

145 Appendix


Leddin, Mathias<br />

01.08.<strong>2003</strong>–31.01.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Bio<br />

Supervision: Dr. Knobeloch<br />

Lisewski, Ulrike<br />

14.04.<strong>2004</strong>–18.05.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Pohl<br />

Marter, Katrin<br />

05.05.<strong>2004</strong>–31.10.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biologie<br />

Supervision: Dr. Haseloff<br />

Mehmedi, Burhan<br />

24.11.<strong>2003</strong>–26.12.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Siems<br />

Mitschke, Doreen<br />

02.06.<strong>2003</strong>–11.07.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Klußmann<br />

Müller, Jeanette<br />

19.04.<strong>2004</strong>-04.06.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: S. Keller<br />

Narayanan, Raghav<br />

17.05.<strong>2004</strong>–07.08.<strong>2004</strong><br />

Neu Delhi<br />

Supervision: Dr. Freund<br />

Neumann, Christine<br />

23.02.<strong>2004</strong>–02.04.<strong>2004</strong><br />

Universität Marburg – Biologie<br />

Supervision: Dr. Vinkemeier<br />

Neumann, Marleen<br />

03.02.<strong>2003</strong>–08.03.<strong>2003</strong><br />

Technische Fachhochschule <strong>Berlin</strong> – Biotechnologie<br />

Supervision: Dr. Wiesner<br />

Niehage, Christian<br />

01.08.<strong>2004</strong>–31.10.<strong>2004</strong><br />

Freie Univerisät <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Blasig<br />

Oehlke, Elisabeth<br />

12.07.<strong>2004</strong>–30.08.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Chemie<br />

Supervision: Dr. Hagen<br />

Overath, Thorsten<br />

01.09.<strong>2003</strong>–26.10.<strong>2003</strong><br />

Technische Universität <strong>Berlin</strong> – Biotechnologie<br />

Supervision: Dr. Siems<br />

Overath, Thorsten<br />

23.02.<strong>2004</strong>–14.05.<strong>2004</strong><br />

Technische Universität – Biotechnologie<br />

Supervision: Dr. Siems<br />

Petrovska, Silvija<br />

15.11.<strong>2004</strong>–10.12.<strong>2004</strong><br />

Skopje-Mazedonien<br />

Supervision: Dr. Siems<br />

Pietske, Matthias<br />

19.07.<strong>2004</strong>-03.09.<strong>2004</strong><br />

Universität Potsdam – Biochemie<br />

Supervision: S. Keller<br />

Prigge, Matthias<br />

24.09.<strong>2003</strong>–07.11.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Pohl<br />

Reibitz, Franziska<br />

01.02.<strong>2004</strong>–31.07.<strong>2004</strong><br />

Pharmazeutin<br />

Supervision: Dr. Siems<br />

Roswadowski, Inga<br />

01.06.<strong>2004</strong>–30.09.<strong>2004</strong><br />

Technische Fachhochschule <strong>Berlin</strong> – Biotech.<br />

Supervision: Dr. Blasig<br />

Santamaria, Katja<br />

19.02.<strong>2003</strong>–28.02.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong><br />

Supervision: Dr. Klussmann<br />

Schäfer, Zasia<br />

06.09.<strong>2004</strong>–08.10.<strong>2004</strong><br />

Universität Potsdam – Biochemie<br />

Supervision: Dr. Carstanjen<br />

Schlede, Stephanie<br />

04.08.<strong>2003</strong>–29.08.<strong>2003</strong><br />

Universität Potsdam – Biotechnologie<br />

Supervision: Dr. Siems<br />

Schmidt, Marco<br />

08.12.<strong>2003</strong>–31.01.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Hagen


Schröder, Kati<br />

24.02.<strong>2003</strong>–14.03.<strong>2003</strong><br />

Technische Universität <strong>Berlin</strong> – Biotechnologie<br />

Supervision: M. Alken<br />

Schulz, Katrin<br />

01.12.<strong>2004</strong>–28.02.2005<br />

Charitè-Universitätsmedizin <strong>Berlin</strong><br />

Supervision: Dr. Blasig<br />

Schumacher, Anne<br />

04.08.<strong>2003</strong>–12.09.<strong>2003</strong><br />

Humboldt-Universität zu <strong>Berlin</strong> – Biologie<br />

Supervision: Dr. Krabben<br />

Schumacher, Anne<br />

01.06.<strong>2004</strong>–31.07.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biologie<br />

Supervision: Dr. Diehl<br />

Schumann, Franziska<br />

15.09.<strong>2004</strong>–28.02.2005<br />

Technische Fachhochschule <strong>Berlin</strong>. – Chemietechnologie<br />

Supervision: Dr. Beyermann<br />

Schuster, Ariane<br />

01.07.<strong>2004</strong>–30.04.2005<br />

Universität Potsdam – Biochemie<br />

Supervision: Dr. Blasig<br />

Seifert, Christoph<br />

03.03.<strong>2003</strong>–28.03.<strong>2003</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Siems<br />

Socher, Elke<br />

17.02.<strong>2003</strong>–19.03.<strong>2003</strong><br />

Humboldt-Universität zu <strong>Berlin</strong> – Chemie<br />

Supervision: Dr. Hagen<br />

Stengel, Florian<br />

25.05.<strong>2004</strong>–06.07.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Siems<br />

Stenzel, Denise<br />

01.09.<strong>2003</strong>–30.01.<strong>2004</strong><br />

Fachhochschule Lausitz – Biotechnologie<br />

Supersision: Dr. Knobeloch<br />

Strohschein, Susan<br />

07.01.<strong>2003</strong>–15.02.<strong>2003</strong><br />

FU <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Blasig<br />

Teodorczyk, Marcin<br />

07.06.<strong>2004</strong>–27.08.<strong>2004</strong><br />

Italien – Biotechnologie<br />

Supervision: Dr. Klussmann<br />

Trippens, Jessica<br />

19.10.<strong>2004</strong>–11.01.2005<br />

Technische Hochschule <strong>Berlin</strong> – Biotechnologie<br />

Supervision: Dr. Carstanjen<br />

Vorwinkel, Jakob<br />

08.03.<strong>2004</strong>–07.05.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Pohl<br />

Wellmann, Anke<br />

29.03.<strong>2004</strong>–13.08.<strong>2004</strong><br />

Freie Universität <strong>Berlin</strong>: Biotechnologie<br />

Supervision: Dr. Krabben<br />

Winkler, Franziska<br />

26.07.<strong>2004</strong>–26.08.<strong>2004</strong><br />

Technische Fachhochschule <strong>Berlin</strong> – Biochemie<br />

Supervision: Dr. Siems<br />

Wolf, Constanze<br />

13.04.<strong>2004</strong>–12.07.<strong>2004</strong><br />

Universität Potsdam – Biologie<br />

Supervision: Dr. Blasig<br />

Wolkenhauer, Jan<br />

01.01.<strong>2003</strong>–30.06.<strong>2003</strong><br />

Universität Potsdam – Biotechnologie<br />

Supervision: Dr. Wiesner<br />

Zuleger, Nikolaj<br />

01.09.<strong>2003</strong>–30.01.<strong>2004</strong><br />

Fachhochschule Lausitz – Biotechnologie<br />

Supervision: Dr. Blasig<br />

Zschörnig, Barbara<br />

25.08.<strong>2003</strong>–26.09.<strong>2003</strong><br />

Universität Regensburg – Biochemie<br />

Supervision: Dr. Vinkemeier<br />

Zimmerling, Katrin<br />

25.10.<strong>2004</strong>–18.03.2005<br />

Hochschule Anhalt – Pharmazeutische Technologie<br />

Supervision: Dr. Dathe<br />

Appendix<br />

147


GUEST SCIENTISTS <strong>2003</strong>/<strong>2004</strong><br />

GASTWISSENSCHAFTLER <strong>2003</strong>/<strong>2004</strong><br />

<strong>2003</strong><br />

Antonenko, Juri<br />

30.01.<strong>2003</strong>–27.02.<strong>2003</strong><br />

01.11.<strong>2003</strong>–30.11.<strong>2003</strong><br />

Belozerski Insitut Moscow, Russia<br />

Alexandrov, Alexej<br />

15.03.<strong>2003</strong>–15.09.<strong>2003</strong><br />

01.11.<strong>2003</strong>–31.05.<strong>2004</strong><br />

Kazan University, Russia<br />

Ayuyan, Artem<br />

13.08.<strong>2003</strong>–30.11.<strong>2003</strong><br />

Academy of the Sciences, Moscow, Russia<br />

Balla, Zsolt<br />

01.09.<strong>2003</strong>–14.09.<strong>2003</strong><br />

University of Debrecen, Hungary<br />

Barany-Wallje, Elsa<br />

08.09.<strong>2003</strong>–29.02.<strong>2004</strong><br />

University of Stockholm, Sweden<br />

Lents, Alexander<br />

24.07.<strong>2003</strong>–28.09.<strong>2003</strong><br />

Academy of the Sciences Moscow, Russia<br />

Pechanova, Olga<br />

25.06.<strong>2003</strong>–20.07.<strong>2003</strong><br />

Academy of the Sciences Slovakia, Bratislava<br />

Paulis, Ludovit<br />

17.11.<strong>2003</strong>–21.11.<strong>2003</strong><br />

Academy of the Sciences Slovakia, Bratislava<br />

Pires, Jose R.<br />

01.11.<strong>2003</strong>–31.01.<strong>2004</strong><br />

University of Rio de Janeiro, Brasil<br />

Woineshet, Zenebe<br />

25.06.<strong>2003</strong>–20.07.<strong>2003</strong><br />

Academy of the Sciences Bratislava, Slovakia<br />

Sokolov, Valerij<br />

20.06.<strong>2003</strong>–18.07.<strong>2003</strong><br />

01.10.<strong>2003</strong>– 31.10.<strong>2003</strong><br />

Academy of the Sciences Moscow, Russia<br />

<strong>2004</strong><br />

Alexandrov, Alexej<br />

01.11.<strong>2003</strong>–15.03.<strong>2004</strong><br />

Kazan University, Russia<br />

Antonenko, Juri<br />

30.04.<strong>2004</strong>–30.05.<strong>2004</strong><br />

01.10.<strong>2004</strong>–31.10.<strong>2004</strong><br />

Belozerski Institute, University of Moscow, Russia<br />

Andreeva, Anna<br />

01.04.<strong>2004</strong>–31.05.<strong>2004</strong><br />

Russia, Scholarship holder<br />

Arbuzova, Anna<br />

19.04.<strong>2004</strong>–28.05.<strong>2004</strong><br />

University of New York in Stony Brook, USA<br />

Barany-Wallje, Elsa<br />

08.09.<strong>2003</strong>–29.02.<strong>2004</strong><br />

University of Stockholm, Sweden<br />

Coin, Irene<br />

01.10.<strong>2004</strong>–31.10.<strong>2004</strong><br />

Italy, Scholarship holder<br />

Khanfar, Monther<br />

08.07.<strong>2004</strong>–19.09.<strong>2004</strong><br />

University of Zarga, Hashemite, Jordanien Uni<br />

Kumari, Neha<br />

01.05.<strong>2004</strong>–31.12.<strong>2004</strong><br />

India, Scholarship holder<br />

Lents, Alexander<br />

11.08.<strong>2004</strong>–11.10.<strong>2004</strong><br />

Frumkin Institute for Electrochemistry, University of Moscow,<br />

Russia<br />

Magalhaes de Souza, Crista<br />

01.01.<strong>2004</strong>–30.11.<strong>2004</strong><br />

Oswald Criz Institute, Rio de Janeiro, Brasilia<br />

Pires, Richardo<br />

01.11.<strong>2003</strong>–31.01.<strong>2004</strong><br />

01.12.<strong>2004</strong>–28.02.2005<br />

University of Rio de Janeiro, Brasil<br />

Schreibelt, Gerty<br />

03.05.<strong>2004</strong>–25.09.<strong>2004</strong><br />

VU Medical centre Amsterdam, The Netherlands


Sokolov, Valerij<br />

11.03.<strong>2004</strong>–11.04.<strong>2004</strong><br />

18.10.<strong>2004</strong><br />

17.11.<strong>2004</strong><br />

Frumkin Institute for Electrochemistry, University of Moscow,<br />

Russia<br />

Sokolenko, Elena<br />

11.08.<strong>2004</strong>–11.10.<strong>2004</strong><br />

Frumkin Institute for Electrochemistry, University of Moscow,<br />

Russia<br />

Sommer, Klaus<br />

15.11.<strong>2004</strong>–28.01.2005<br />

Universität of Linz, Austria<br />

LECTURES AT THE <strong>FMP</strong> <strong>2003</strong><br />

KOLLOQUIEN UND SEMINARE AM <strong>FMP</strong> <strong>2003</strong><br />

Bauer, Hans (Institut für Molekularbiologie, Salzburg,<br />

Austria)<br />

Tight junction proteins<br />

26.02.<strong>2003</strong><br />

Host: Blasig IE<br />

Beitz, Eric (Institut für Pharmazeutische Chemie, Universität<br />

Tübingen, Germany)<br />

Aquaporin mediated water permeability in the inner ear<br />

07.10.<strong>2003</strong><br />

Host: Klussmann E<br />

Berger, Hartmut (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

GS/GI coupling of the CRF receptors type 1 in HEK cells<br />

14.01.<strong>2003</strong><br />

Beyermann, Michael (Forschungsinstitut für Molekulare<br />

Pharmakologie, <strong>Berlin</strong>-Buch, Germany)<br />

Struktur- und Bindungsstudien extracellulärer Rezeptordomänen<br />

11.03.<strong>2003</strong><br />

Blasig IE (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Structure, Function and Regulation of Tight Junction Proteins,<br />

25.11.<strong>2003</strong><br />

Blechert, Siegfried (Institut für Chemie der Technischen<br />

Universität <strong>Berlin</strong>, Germany)<br />

Metathese und Wirkstoffchemie – eine starke Kombination<br />

17.07.2005<br />

Host: Oschkinat H<br />

Carstanjen, Dirk (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Die Rolle des Interferon induzierten Transkriptionsfaktors<br />

ICSBP in der Reifung und Funktion von Zellen des myelopoetischen<br />

Systems<br />

09.12.<strong>2003</strong><br />

Danilov, Sergei M (Anestesiology Research Center, Chicago,<br />

USA)<br />

Structure-function studies of angiotensin-converting enzyme<br />

using monoclonal antibodies<br />

24.11.<strong>2003</strong><br />

Host: Siems WE<br />

Appendix<br />

149


Dathe, Margitta (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

ApoE-Peptid-Lipidkomplexe: Trägermodelle für eine Wirkstoffaufnahme<br />

ins ZNS<br />

14.10.<strong>2003</strong><br />

Dieckmann, Torsten (University of California)<br />

Mechanism of action of Rab GTPases in intracellular vesicular<br />

protein transport<br />

02.07.<strong>2003</strong><br />

Host: Oschkinat H<br />

Diehl, Anne (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Protein production for structure determination by NMR<br />

and X-ray<br />

25.02.<strong>2003</strong><br />

Duffy, Heather S. (Albert-Einstein College of Medicine,<br />

New York, USA)<br />

pH dependent inter- and intramolecular interactions on<br />

connexin43: Regulation of a junctional complex<br />

02.09.<strong>2003</strong><br />

Host: Blasig IE<br />

Folkers, Gerd (Eidgenössische Technische Hochschule<br />

Zürich, Switzerland)<br />

Designing the Locks and Creating new Keys: Molecular<br />

Design Methodology for Genetic Switches<br />

06.05.<strong>2003</strong><br />

Host: Bienert M<br />

Freund, Christian (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

GYF and AH3 domain mediated interactions in eukayotic<br />

signaling<br />

10.06.<strong>2003</strong><br />

Glockshuber, Rudi (Eidgenössische Technische Hochschule<br />

Zürich, Switzerland)<br />

Catalysis of disulfide bond formation in Escherichia coli<br />

21.01.<strong>2003</strong><br />

Host: Bienert M<br />

Goody, Roger (Max-Planck-Institut für Molekulare Physiologie,<br />

Dortmund, Germany)<br />

Mechanisms of actions of Rab GTPases in intracellular<br />

vesicular protein transport<br />

01.07.<strong>2003</strong><br />

Host: Oschkinat H<br />

Gottschalk, Kay (Weizmann Institute of Science, Israel)<br />

Computational Approaches to Transmembrane Protein<br />

Structure<br />

27.11.<strong>2003</strong><br />

Host: Reif B<br />

Hagen, Volker (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Caged compounds: Design and applications<br />

13.05.<strong>2003</strong><br />

Hauri, Hans-Peter (Universität Basel, Switzerland)<br />

Protein traffic early in the secretory pathways: dynamics<br />

and signals<br />

23.09.<strong>2003</strong><br />

Host: Hermosilla R<br />

Heinz, Dirk (Department of Structural Biology, Braunschweig,<br />

Germany)<br />

Bacterial invasion at atomic resolution<br />

16.09.<strong>2003</strong><br />

Host: Rosenthal W<br />

Heise, Bernd (Institut für Experimentelle Physik der Universität<br />

Ulm, Germany)<br />

Structural investigations on peptaibols via liquid and solid<br />

state NMR<br />

18.03.<strong>2003</strong><br />

Host: Oschkinat H<br />

Helm, Volkhard (MPI Frankfurt, Germany)<br />

Studying protein-protein interactions in silico<br />

11.02.<strong>2003</strong><br />

Host: Freund C<br />

Hennemann, Hanjo (Center of advanced european studies<br />

and research, Bonn, Germany)<br />

Ras recruitment system: analysis of protein function and<br />

protein networks and its high throughput application<br />

21.10.<strong>2003</strong><br />

Host: Rosenthal W<br />

Hermosilla, Ricardo (Forschungsinstitut für Molekulare<br />

Pharmakologie, <strong>Berlin</strong>-Buch, Germany)<br />

Intracellular degradation pathways of wild-type and transport-defective<br />

mutant vasopressin V2 receptors<br />

09.07.<strong>2003</strong><br />

Hougardy, Stefan (Institut für Informatik der Humboldt-Universität<br />

zu <strong>Berlin</strong>, Germany)<br />

Three-Dimensional similarity of Small Molecules<br />

13.11.<strong>2003</strong><br />

Host: Vinkemeier U<br />

Johnson, Nils (Forschungszentrum Karlsruhe, Germany)<br />

Analysis of protein network in living cells<br />

02.12.<strong>2003</strong><br />

Host: Vinkemeier U


Jordt, Sven (Department of Cellular & Molecular Pharmacology,<br />

UCSF, USA)<br />

The Pain Gate – Functional Domains in the Capsaicin<br />

Receptor<br />

16.12.<strong>2003</strong><br />

Host: Rosenthal W<br />

Klussmann, Enno (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Protein kinase A anchoring proteins and Rho are involved<br />

in the AVP-indused shuttling of aquaporin<br />

11.02.<strong>2003</strong><br />

Krabben, Ludwig (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

NMR am Membranprotein<br />

30.09.<strong>2003</strong><br />

Krause, Eberhard (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Structural analysis of peptides and proteins by mass spectrometry<br />

22.04.<strong>2003</strong><br />

Krause, Gerd (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Predictions of structure-function relationships: Advantages<br />

and limits of structural bioinformatics<br />

08.04.<strong>2003</strong><br />

Kühne, Ronald (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Luteinizing Hormone Releasing Hormone Receptor: Molecular<br />

dynamics and model-based ligand design<br />

24.06.<strong>2003</strong><br />

Ladizhansky, Vladimir (Francis Bitter Magnet Laboratory,<br />

Cambridge, UK)<br />

Techniques for modern solid-state NMR<br />

10.01.<strong>2003</strong><br />

Host: Oschkinat H<br />

Lang, Christine (Institut für Mikrobiologie und Genetik der<br />

Technischen Universität <strong>Berlin</strong>, Germany)<br />

Production of proteins for structural genomics using yeast<br />

as hosts<br />

30.04.<strong>2003</strong><br />

Host: Schade M<br />

Markley, John L. (University of Wisconsin-Madison, USA)<br />

Structural Genomics of the Eukaryote Arabidopsis thaliana<br />

23.09.<strong>2003</strong><br />

Host: Oschkinat H<br />

Marx, Dominik (Lehrstuhl für Theoretische Chemie, Ruhr-<br />

Universität Bochum, Germany)<br />

Proton Transfer along Hydrogen-Bonded Networks<br />

20.05.<strong>2003</strong><br />

Host: Pohl P<br />

Monsees, Thomas (Zentrum für Dermatologie und Andrologie,<br />

Giessen, Germany)<br />

Expression von Kininrezeptoren im Rattentestis: Eine funktionelle<br />

Bedeutung für die Spermatogenese<br />

13.01.<strong>2003</strong><br />

Host: Siems WE<br />

Mourot, Alexandre (Laboratoire De Chimie Bioorganique,<br />

France)<br />

Investigation of the conformational transitions of the nicotinic<br />

receptor by photoaffinity labeling, 12.12.<strong>2003</strong><br />

Host: Pohl P<br />

Müller, Jürgen (National Cancer Institute at Frederick,<br />

USA)<br />

C-TAK1 is a regulator of the MAPK scaffold protein KSR<br />

and various other signaling proteins<br />

20.03.<strong>2003</strong><br />

Host: Rosenthal W<br />

Multhaup, Gerd (Institut für Chemie und Biochemie, Freie<br />

Universität <strong>Berlin</strong>, Germany)<br />

Implication of amyloid precursor protein ligands in amyloidogenesis<br />

26.08.<strong>2003</strong><br />

Host: Reif B<br />

Palczewski, Krysztof (Department of Ophtalmology of the<br />

University of Washington, USA)<br />

Structure, function and membrane organisation of vertebrate<br />

rhodopsin<br />

10.04.<strong>2003</strong><br />

Host: Krause G<br />

Reiser, Oliver (Institut für Organische Chemie der Universität<br />

Regensburg, Germany)<br />

Arglabin, ein vielversprechender Farnesyltransferase-<br />

Inhibitor<br />

13.02.<strong>2003</strong><br />

Host: Bienert M<br />

Scharnagl, Hubert (Universitätsklinikum Freiburg, Germany)<br />

Apolipoprotein E, Lipidstoffwechsel und die Alzheimersche<br />

Krankheit<br />

12.06.2005<br />

Host: Dathe M<br />

Appendix<br />

151


Schmalz, Hans-Günther (Universität zu Köln, Germany)<br />

Mediated synthesis of biologycally relevant small molecules<br />

27.03.<strong>2003</strong><br />

Host: Oschkinat H<br />

Schmidt, Gundula (Albert-Ludwigs-Universität Freiburg,<br />

Germany)<br />

Mechanism and function of Rho targeting bacterial toxins<br />

19.08.<strong>2003</strong><br />

Host: Rosenthal W<br />

Schmieder, Peter (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Strukturen von GPCRs mit Lösungs-NMR<br />

22.07.<strong>2003</strong><br />

Schubert, Mario (University of British Columbia in Vancouver,<br />

Canada)<br />

Insights into mRNA degradation in E. coli - The S1 domain<br />

of Rnase E<br />

19.06.<strong>2003</strong><br />

Host: Oschkinat H<br />

Schülein, Ralf (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

The early secretory pathway of G protein-coupled receptors:<br />

clinical and pharmacological implications<br />

28.01.<strong>2003</strong><br />

Serrano, Luis (European Molecular Biology Laboratory,<br />

Heidelberg, Germany)<br />

Sequence determinants of amyloid formation<br />

20.10.<strong>2003</strong><br />

Host: Oschkinat H<br />

Siems, Wolf-Eberhard (Forschungsinstitut für Molekulare<br />

Pharmakologie, <strong>Berlin</strong>-Buch, Germany)<br />

NEP und ACE, zwei „alte“ Enzyme mit vielen neuen Chancen<br />

16.12.<strong>2003</strong><br />

Sinning, Irmgard (Biochemie-Zentrum Heidelberg,<br />

Germany)<br />

Expression of G-protein coupled receptors in the eye of<br />

transgenic Drosophila<br />

04.03.<strong>2003</strong><br />

Host: Rosenthal W<br />

Stiles, Brad (Institut für Experimentelle und Klinische<br />

Pharmakologie und Toxikologie, Freiburg, Germany)<br />

Biotoxins: Antrax to Venoms<br />

14.02.<strong>2003</strong><br />

Host: Rosenthal W<br />

Stubbs, Milton T. (Institut für Biotechnologie, Martin-<br />

Luther-Universität Halle, Germany)<br />

Understanding protein - ligand interactions: Effects of flexibility<br />

18.02.<strong>2003</strong><br />

Host: Oschkinat H<br />

Vinkemeier, Uwe (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Regulation der subzellulären Verteilung von STAT1<br />

27.05.2005<br />

Zamora, Salvador Ventura (Departemente de Bioquimica i<br />

Biologia Molecular, University of Barcelona, Spain)<br />

Short amino acid sequences can trigger protein amyloid<br />

formation in globular proteins<br />

15.07.<strong>2003</strong><br />

Host: Reif B


LECTURES AT THE <strong>FMP</strong> <strong>2004</strong><br />

KOLLOQUIEN UND SEMINARE AM <strong>FMP</strong> <strong>2004</strong><br />

Ahnert-Hilger, Gudrun (Institut für Anatomie der Charitè-<br />

Universitätsmedizin <strong>Berlin</strong>, Germany)<br />

Regulation of vesicular neurotransmitter transporters by<br />

heterotrimeric G-proteins<br />

17.02.<strong>2004</strong><br />

Host: Klussmann E<br />

Appelt, Christian (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Peptide-lipid interaction: structural investigations by NMR<br />

and Molecular Dynamics<br />

13.04.<strong>2004</strong><br />

Baeuerlein, Edmund (Max-Planck-Institut für Biochemie,<br />

Martinsried, Germany)<br />

BIOMINERALISATION. Von Biologie zu Materialwissenschaften<br />

und Molekularbiologie<br />

15.11.<strong>2004</strong><br />

Host: Oschkinat H<br />

Banci, Lucia (Centro Risonanze Magnetiche, University of<br />

Florence, Italy)<br />

NMR on Metalloprotein in Structural Genomics<br />

03.05.<strong>2004</strong><br />

Host: Oschkinat H<br />

Boelens, Wilbert (University of Njimegen, Department of<br />

Biochemistry, The Netherlands)<br />

Involvement of the small heat shock protein aB-crystallin<br />

in cellular stress regulation<br />

06.04.<strong>2004</strong><br />

Host: Reif B<br />

Cordes, Frank (Konrad-Zuse-Zentrum für Informationstechnik,<br />

<strong>Berlin</strong>, Germany)<br />

Conformation Databases for Virtual Screening<br />

18.05.<strong>2004</strong><br />

Host: Kühne R<br />

Gast, Klaus (Max-Delbrück-Center, <strong>Berlin</strong>-Buch, Germany)<br />

Critical oligomers in protein misfolding and aggregation<br />

10.02.<strong>2004</strong><br />

Host: Bienert M<br />

Gershengorn, Marvin (NIH/NIDDK Bethesda, USA)<br />

Pharmacology of Thyrotropin-Releasing Hormone Receptors:<br />

Similarities and Differences<br />

02.03.<strong>2004</strong><br />

Host: Krause G<br />

Gohla, Antje (Departments of Immunology and Cell Biology,<br />

La Jolla, USA)<br />

Regulation of cytoskeletal dynamics by Chronophin, a<br />

novel unconventional cofilin phosphatase<br />

30.03.<strong>2004</strong><br />

Host: Rosenthal W<br />

Harteneck, Christian (Institut für Pharmakologie der<br />

Charité Universitätsmedizin <strong>Berlin</strong>, Germany)<br />

Kationenkanäle auf der Suche nach neuen Funktionen: Die<br />

molekulare Vielfalt der TRP-Kanäle<br />

07.09.<strong>2004</strong><br />

Host: Rosenthal W<br />

Heise, Tilmann (Heinrich-Pette-Institut Hamburg,<br />

Germany)<br />

The La Protein, a multifunctional RNA binding protein<br />

essential for cell cycle progression<br />

05.10.<strong>2004</strong><br />

Host: VinkemeierU<br />

Henning, Mirko (Department of Molecular Biology & The<br />

Skaggs Institute of Chemical Biology, La Jolla, USA)<br />

Labeling Methodology and 19F NMR of Fluorinated RNA<br />

02.06.<strong>2004</strong><br />

Host: Reif B<br />

Horuk, Richard (Berlex AG, Richmont, Californien, USA)<br />

CCR1 receptor antagonists from the bench to the Clinic<br />

07.12.<strong>2004</strong><br />

Host: Kühne R<br />

Huber, Otmar (Charité Universitätsmedizin <strong>Berlin</strong>, Germany)<br />

The fate of Cell-cell contacts in apoptotic epithelial cells<br />

15.06.<strong>2004</strong><br />

Host: Blasig IE<br />

Hundsrucker, Christian/Weber, Viola (Forschungsinstitut<br />

für Molekulare Pharmakologie, <strong>Berlin</strong>-Buch, Germany)<br />

Peptide Disruptors of AKAP-PKA Interactions<br />

07.12.<strong>2004</strong><br />

John, Susan (King's College, London, UK)<br />

Regulating the transcriptional activity of STAT5<br />

16.11.<strong>2004</strong><br />

Host: Vinkemeier U<br />

Kofler, Michael (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

<strong>FMP</strong>, NWG Protein Engineering<br />

Recognition Code of GYF domains<br />

07.12.<strong>2004</strong><br />

Appendix<br />

153


Kungl, Andreas (Universität Graz, Switzerland)<br />

Biophysical Investigations of Chemokine-Receptor and<br />

Co-Receptor Interactions<br />

06.01.<strong>2004</strong><br />

Host: Oschkinat H<br />

Labudde, Dirk/Leitner, Dietmar (Forschungsinstitut für<br />

Molekulare Pharmakologie, <strong>Berlin</strong>-Buch, Germany)<br />

Tools and concepts for automation of protein structure<br />

determination by NMR<br />

09.03.<strong>2004</strong><br />

Langer, Gernot (Schering AG, <strong>Berlin</strong>, Germany)<br />

Early Drug Discovery - Target identification, Assay development<br />

& High throughput screening 16.11.<strong>2004</strong><br />

Host: Kühne R<br />

Livett, Bruce G (University of Melbourne, Australia)<br />

Beauty and the Beast: molecular Prospecting for Novel<br />

Drugs from the Sea: the discovery, properties and development<br />

of the novel analgesic, conotoxin Vc1.1 (ACV1)<br />

26.01.<strong>2004</strong><br />

Host: Oehme P<br />

Llinas, Miguel (Department of Chemistry of the Carnegie<br />

Mellon University, Pittsburgh, USA)<br />

Is it NMR or is it crystallography? CLOUDS: a direct<br />

method for protein structure elucidation via NMR proton<br />

densities<br />

15.06.<strong>2004</strong><br />

Host: Oschkinat H<br />

Lorenz, Dorothea (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Electron microscopy in cell biology. Methods and perspectives<br />

24.02.<strong>2004</strong><br />

Luy, Burkhard (Institut für Organische Chemie und Biochemie<br />

II der Technischen Universität München, Germany)<br />

Structural Investigations on the Pulmonary Surfactant<br />

Associated Lipopeptide SP-C and Novel NMR-Techniques<br />

Concerning Small Molecules in Organic Solvents<br />

29.07.<strong>2004</strong><br />

Host: Reif B<br />

Marg, Andreas (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

STAT – Abwege<br />

25.05.<strong>2004</strong><br />

Mayer, Thomas (Max-Planck-Institute of Biochemistry,<br />

Department of Cell Biology, Martinsried, Germany)<br />

Small molecules: versatile probes to study mitotic kinesins<br />

05.10.2005<br />

Host: von Kries J<br />

Oelgeschläger, Thomas (Marie Curie Research Institut,<br />

Transcription Laboratory, Oxted, UK)<br />

Core promoter-specific regulation of RNA polymerase II<br />

transcription<br />

04.05.<strong>2004</strong><br />

Host: Vinkemeier U<br />

Overduin, Michael (University of Birmingham, UK)<br />

Membrane binding domains: the good, the bad, and the<br />

ugly<br />

14.04.<strong>2004</strong><br />

Host: Oschkinat H<br />

Pardo, Leonardo (Universidad Autonoma de Barcelona,<br />

Spain)<br />

Bioinformatic Approaches Leading to an Understanding of<br />

the Structure and Activity of G-protein coupled receptors<br />

30.11.<strong>2004</strong><br />

Host: Kühne R<br />

Rapp, Wolfgang (Rapp Polymer GmbH, Tübingen,<br />

Germany)<br />

Ein universelles Linkerkonzept zur sequenziellen Abspaltung<br />

von Peptiden und Erzeugung von geschützten Peptidamiden<br />

06.05.<strong>2004</strong><br />

Hosts: Bienert M, Beyermann M<br />

Reif, Bernd (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Misfolding proteins and molecular chaperones by solution<br />

and solid-state NMR<br />

10.11.<strong>2004</strong><br />

Rosen, Michael (Southwestern Medical Center Dallas,<br />

University of Texas, USA)<br />

Structural and Biochemical Mechanisms of Signal Integration<br />

by the Wiskott-Aldrich Syndrome Protein<br />

25.03.<strong>2004</strong><br />

Host: Oschkinat H<br />

Salditt, Tim (Institut für Röntgenphysik, Universität Göttingen,<br />

Germany)<br />

Probing the Structure, and Interactions of Polypeptides in<br />

Lipid Bilayers by X-ray and Neutron Scattering<br />

12.03.<strong>2004</strong><br />

Host: Freund C<br />

Scott, John D. (FRS, Oregon Health & Sciences University,<br />

Portland, USA)<br />

The Molecular Architecture of Signal Transduction complexes<br />

05.02.<strong>2004</strong><br />

Host: Klussmann E


Seelig, Joachim (Biozentrum Universität Basel, Switzerland)<br />

Detergents, Peptides and Microdomains in Membranes<br />

04.02.<strong>2004</strong><br />

Host: Bienert M<br />

Seitz, Oliver (Humboldt-Universität zu <strong>Berlin</strong>, Germany)<br />

Erzwungene Interkalation – Wie man Basenlücken stopft<br />

und Mutationen in DNA nachweist 19.10.<strong>2004</strong><br />

Host: Bienert M<br />

Soderhäll, Arvid (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Suggested function of the antimicrobial cyc-RW peptide<br />

from MD-simulations<br />

22.06.<strong>2004</strong><br />

Sommer, Klaus (Medizinische Universität Wien, Austria)<br />

Inhibitor of apoptosis protein survivin is upregulated by<br />

oncogenic c-H-Ras<br />

28.10.<strong>2004</strong><br />

Host: Pohl P<br />

Stefan, Eduard (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Phosphodiesterase pde4 is involved in the vasopressinmediated<br />

water reabsorbtion by regulating the localization<br />

of the water channel aquaporin-2<br />

11.05.<strong>2004</strong><br />

Strauss, Holger (Forschungsinstitut für Molekulare Pharmakologie,<br />

<strong>Berlin</strong>-Buch, Germany)<br />

Biophysical investigations on the N-terminus of cyanobacterial<br />

phytochrome Cph1d2<br />

23.03.<strong>2004</strong><br />

Tycko, Robert (Laboratory of Chemical Physics, NIDDK,<br />

Bethesda, USA)<br />

Structure of Unfolded Proteins and Amyloid Fibrils: Experimental<br />

Constraints from Solid State NMR 13.10.<strong>2004</strong><br />

Hosts: Reif B, Oschkinat H<br />

Wüstner, Daniel (Max-Delbrück-Center, <strong>Berlin</strong>-Buch, Germany)<br />

Transport und function of cholesterol in epi<br />

01.12.<strong>2004</strong><br />

Hosts: Rosenthal W, Bienert M<br />

Appendix<br />

155


TECHNOLOGY TRANSFER <strong>2003</strong>/<strong>2004</strong><br />

Also in <strong>2003</strong> and <strong>2004</strong>, the <strong>FMP</strong> submitted patent applications<br />

for economically promising research results, assessed<br />

the prospects for commercial success and, where<br />

appropriate, initiated commercialization activities. Due to<br />

the proximity to biotech companies on the <strong>Berlin</strong>-Buch<br />

campus and in the <strong>Berlin</strong>-Brandenburg region, excellent<br />

conditions for the utilization of research results are provided.<br />

To further optimize commercialization activities, the <strong>FMP</strong><br />

entered a contract agreement with Ascension GmbH in<br />

Munich. Since that time Ascension has been assessing<br />

inventions of <strong>FMP</strong> employees with regard to patents and<br />

especially to market-relevant aspects.<br />

The <strong>FMP</strong> currently holds eight registered or granted<br />

patents on a total of four inventions. Applications for additional<br />

patents have been submitted.<br />

TECHNOLOGIETRANSFER <strong>2003</strong>/<strong>2004</strong><br />

Auch in den Jahren <strong>2003</strong> und <strong>2004</strong> hat das <strong>FMP</strong> für wirtschaftlich<br />

vielversprechende Forschungsergebnisse<br />

Schutzrechte angemeldet, Verwertungschancen geprüft<br />

und gegebenenfalls Maßnahmen zur kommerziellen Verwertung<br />

ergriffen. Durch die räumliche Nähe zu biotechnologischen<br />

Firmen auf dem Campus <strong>Berlin</strong>-Buch und in<br />

der Region <strong>Berlin</strong>/Brandenburg sind optimale Voraussetzungen<br />

für die Anwendung von Forschungsergebnissen<br />

gegeben.<br />

Um die Verwertungsaktivitäten weiter zu optimieren,<br />

wurde im August <strong>2004</strong> eine Zusammenarbeit mit der<br />

Ascenion GmbH (München) vertraglich vereinbart. Seitdem<br />

bewertet die Ascenion Erfindungen von <strong>FMP</strong>-Mitarbeitern<br />

hinsichtlich patent- und vor allem marktrelevanter<br />

Gesichtspunkte.<br />

Das <strong>FMP</strong> hält derzeit acht eingetragene oder erteilte<br />

Schutzrechte auf insgesamt vier Erfindungen. Für weitere<br />

Erfindungen sind Anmeldeverfahren zur Erteilung von<br />

Schutzrechten eingeleitet.<br />

Inventions and patents<br />

Erfindungen und Schutzrechte<br />

Hagen V, Bauer PJ<br />

Als Verknüpfungsreagenzien einsetzbare dimaleinimidosubstituierte<br />

Dihydroxyalkane und Verfahren zu deren Herstellung<br />

DE 195 33 867 C1 (filed 24.04.1997)<br />

EP 96938012.0 (filed 02.05.<strong>2003</strong>)<br />

PCT/DE96/01742<br />

US 09/043,263 (filed 15.06.1999)<br />

priority establishing patent application: 13.09.1995<br />

Hagen V, Kaupp UB<br />

Neue photolabile 8-substituierte cyclische Nucleotidester,<br />

Verfahren zu ihrer Herstellung und Verwendung<br />

DE 195 29 025.9<br />

EP 96927617.9-1270<br />

WO 97/05155<br />

priority establishing patent application: 29.07.1995<br />

<strong>FMP</strong>-inventors in bold.


Hagen V, Kaupp B, Bendig, Wiesner B<br />

Neue, Photolabile Cumarinylmethylester von cyclischen<br />

Nucleotiden, Verfahren zu deren Herstellung und ihre Verwendung<br />

DE 100 21 256 A1<br />

PCT/EP01/03512<br />

EP 01 929 464.4-2110<br />

JP 2001-578448<br />

US 01/03512<br />

priority establishing patent application: 20.04.2000<br />

Labudde D, Leitner D, Schubert M, Winter R, Oschkinat H,<br />

Schmieder P<br />

Vorrichtung und Verfahren zur Zuordnung der NMR-Signale<br />

von Polypeptiden<br />

DE 10144661.6-33 (filed 14.08.<strong>2003</strong>)<br />

EP 02777009.8<br />

PCT/EP02/09959<br />

US 10/799,447<br />

priority establishing patent application: 11.09.2001<br />

Labudde D<br />

Verfahren zur Ermittlung von Verschiebungen der Hirnareale<br />

durch Tumorbildung und deren Darstellung auf<br />

einem Bildschirm<br />

DE 100 13 360.6 (filed 22.07.<strong>2004</strong>)<br />

PCT/DE01/00955<br />

JP 00<strong>2003</strong>527899 T2<br />

US 10/221,064<br />

EP 01916923.4<br />

priority establishing patent application: 09.03.2000<br />

Maric K<br />

Tablett für Feuchtkammer (Gebrauchsmuster)<br />

DE 2002109.5 (filed 05.04.2001)<br />

priority establishing application: 8.12.2000<br />

Meyer T, Vinkemeier U<br />

Verwendung von dimer-spezifischen Nuclear-Lokalisations-Signalpeptiden<br />

(dsNLS) abgeleitet aus der STAT-DNA<br />

Bindungsdomäne<br />

DE 102 01 791.3<br />

PCT/EP<strong>2003</strong>/000240<br />

EP 03702426.2-2107<br />

priority establishing patent application: 17.01.2002<br />

Rosenthal W, Klußmann E, Oksche A<br />

Neue Spleißvariante eines Proteinkinase A-Ankerproteins<br />

und Verwendung dieser<br />

DE 103 06 085.5<br />

PCT/EP<strong>2003</strong>/09892<br />

CA PCT/EP <strong>2003</strong>/09892<br />

EP 03 750 490.9-2405<br />

JP 502327850<br />

US 10/526.768<br />

priority establishing patent application: 7.2.<strong>2003</strong><br />

Rosenthal W, Klußmann E, Hundsrucker C<br />

Peptide zur Inhibition der Interaktion von Proteinkinase A<br />

und Proteinkinase A-Ankerprotein<br />

DE 10 <strong>2004</strong> 031 579.5<br />

priority establishing patent application: 29.06.<strong>2004</strong><br />

Soderhäll A, Kühne R, et al.<br />

Neue, peptidomimetische, oral verfügbare LHRH Antagonisten<br />

mit Tetrahydrocarbazol-Grundkörper<br />

rights sold in <strong>2004</strong><br />

Siems W, Walther T, Melzig MF<br />

Verwendung von NEP-assoziierten Molekülen zur Behandlung<br />

von nichtimmunogenen-nichthypertensiven Zivilisationskrankheiten<br />

DE 103 11 984.1-41<br />

PCT/DE<strong>2004</strong>/000491<br />

priority establishing patent application: 12.3.<strong>2003</strong><br />

Vinkemeier U<br />

Neue Nucleus-Export-Signalpeptide (NES), sie enthaltende<br />

Fusionsproteine sowie deren Verwendung<br />

DE 100 35 867 A1<br />

PCT/EP01/08065<br />

EP 01954035.0<br />

US 10/333,082<br />

priority establishing patent application: 14.07.2000<br />

Vinkemeier U, Meyer T<br />

A single residue modulates Tyrosine Dephosphorylation,<br />

oligomerization, and nuclear accumulation of Stat Transcription<br />

factors<br />

EP 04 09 0039.1<br />

PCT/EP<strong>2004</strong>/001462<br />

priority establishing patent application: 10.2.<strong>2004</strong><br />

Vinkemeier U, Meyer T<br />

Verfahren zur Detektion von nukleozytoplasmatischen<br />

Transportprozessen<br />

DE 10 <strong>2004</strong> 046 327.1<br />

priority establishing patent application: 20.09.<strong>2004</strong><br />

Vinkemeier U, Meyer T, Marg A<br />

Hyperactive Stat molecules and their use in assays<br />

employing gene activation<br />

EP 04 077 629.6<br />

priority establishing patent application: 17.09.<strong>2004</strong><br />

<strong>FMP</strong>-inventors in bold.<br />

Appendix<br />

157


STRUCTURE OF THE FORSCHUNGSINSTITUT FÜR MOLEKULARE PHARMAKOLOGIE (<strong>FMP</strong>)<br />

Forschungsverbund<br />

<strong>Berlin</strong> e. V.<br />

Staff Council<br />

Burkhard Wiesner<br />

Structural<br />

Biology<br />

Protein Structure<br />

Hartmut Oschkinat<br />

Solution NMR<br />

Peter Schmieder<br />

Structural<br />

Bioinformatics<br />

Gerd Krause<br />

Molecular<br />

Modelling<br />

Ronald Kühne<br />

Solid State NMR<br />

Bernd Reif<br />

Protein Engineering<br />

Christian Freund<br />

Cellular Signalling<br />

Walter Rosenthal<br />

Protein Trafficking<br />

Ralf Schülein<br />

Anchored Signalling<br />

Enno Klußmann<br />

Cellular Imaging<br />

Burkhard Wiesner<br />

Molecular Cell<br />

Physiology<br />

Ingolf E. Blasig<br />

Biochemical<br />

Neurobiology<br />

Wolf-Eberhard Siems<br />

Cellular Signalling /<br />

Molecular Genetics<br />

Director<br />

Walter Rosenthal<br />

Molecular Genetics<br />

Ivan Horak<br />

Cytokine Signaling<br />

Klaus P. Knobeloch<br />

Molecular<br />

Myelopoiesis<br />

Dirk Carstanjen<br />

Cellular Signal<br />

Processing<br />

Uwe Vinkemeier<br />

Chemical<br />

Biology<br />

Peptide Chemistry<br />

& Biochemistry<br />

Michael Bienert<br />

Peptide Synthesis<br />

Michael Beyermann<br />

Peptide Lipid Interaction/<br />

Peptide Transport<br />

Margitta Dathe<br />

Johannes Oehlke<br />

Peptide Biochemistry<br />

Hartmut Berger<br />

Mass Spectrometry<br />

Eberhard Krause<br />

Synthetic Organic<br />

Biochemistry<br />

Volker Hagen<br />

Medicinal Chemistry<br />

Jörg Rademann<br />

Screening Unit<br />

Jens Peter von Kries<br />

Public Relations<br />

Björn Maul<br />

Safety Officer<br />

Hans-Ulrich Heyne<br />

Administration,<br />

Technical and<br />

Scientific Services<br />

Administration<br />

Thomas Ellermann<br />

Computer Services<br />

Thomas Jahn<br />

Technical Services<br />

Hans-Jürgen Mevert<br />

Library<br />

Michael Beyermann<br />

Renate Peters<br />

Animal Housing<br />

Regina Richter<br />

Microdialysis<br />

Service<br />

Regina Richter<br />

DNA Sequencing<br />

Service<br />

Erhard Klauschenz


ORGANIGRAMM<br />

Forschungsverbund<br />

<strong>Berlin</strong> e. V.<br />

Betriebsrat<br />

Burkhard Wiesner<br />

Strukturbiologie Zell-Signalling/Molekulare Genetik Chemische Biologie Verwaltung, technische<br />

und wissenschaftliche<br />

Dienste<br />

Proteinstruktur<br />

Hartmut Oschkinat<br />

Lösungs-NMR<br />

Peter Schmieder<br />

Strukturelle<br />

Bioinformatik<br />

Gerd Krause<br />

Molekulares Modelling<br />

Ronald Kühne<br />

Festkörper-NMR<br />

Bernd Reif<br />

Protein Engineering<br />

Christian Freund<br />

Zell-Signalling<br />

Walter Rosenthal<br />

Protein-Trafficing<br />

Ralf Schülein<br />

Anchored Signalling<br />

Enno Klußmann<br />

Zell-Imaging<br />

Burkhard Wiesner<br />

Molekulare<br />

Zellphysiologie<br />

Ingolf E. Blasig<br />

Biochemische<br />

Neurobiologie<br />

Wolf-Eberhard Siems<br />

Direktor<br />

Walter Rosenthal<br />

Molekulare Genetik<br />

Ivan Horak<br />

Zytokin-Signalling<br />

Klaus P. Knobeloch<br />

Molekulare<br />

Myelopoese<br />

Dirk Carstanjen<br />

Zelluläre<br />

Signalverarbeitung<br />

Uwe Vinkemeier<br />

Peptidchemie &<br />

Biochemie<br />

Michael Bienert<br />

Peptidsynthese<br />

Michael Beyermann<br />

Peptid-Lipid-Interaktion/Peptidtransport<br />

Margitta Dathe<br />

Johannes Oehlke<br />

Peptidbiochemie<br />

Hartmut Berger<br />

Massenspektrometrie<br />

Eberhard Krause<br />

Synthetische Organische<br />

Biochemie<br />

Volker Hagen<br />

Medizinische Chemie<br />

Jörg Rademann<br />

Screening-Unit<br />

Jens Peter von Kries<br />

Öffentlichkeitsarbeit<br />

Björn Maul<br />

Arbeitssicherheit<br />

Hans-Ulrich Heyne<br />

Verwaltung<br />

Thomas Ellermann<br />

Computer-Service<br />

Thomas Jahn<br />

Technischer Service<br />

Hans-Jürgen Mevert<br />

Bibliothek<br />

Michael Beyermann<br />

Renate Peters<br />

Tierhaltung<br />

Regina Richter<br />

Mikrodialyseservice<br />

Regina Richter<br />

DNA-Sequenzierservice<br />

Erhard Klauschenz<br />

Structure of the <strong>FMP</strong><br />

159


INDEX<br />

A<br />

Al-Gharabli, Samer ............................................................. 90<br />

Alken, Martina ..................................................................... 40<br />

Andreeva, Anna Y. ............................................................... 49<br />

Antonenko, Yuri ................................................................... 57<br />

Appelt, Christian ............................................................ 16, 18<br />

Ayuyan, Artem ..................................................................... 57<br />

B<br />

Ball, Linda ............................................................................. 13<br />

Balling, Rudolf ........................................................................ 2<br />

Bárány-Wallje, Elsa ............................................................ 76<br />

Barth, Michael ..................................................................... 90<br />

Bauer, Jörg ........................................................................... 90<br />

Becker, Matthias ................................................................. 55<br />

Beck-Sickinger, Annette G. ................................................. 2<br />

Begitt, Andreas .................................................................... 66<br />

Benedict, Melanie ............................................................... 63<br />

Ben-Slimane, Uta ................................................................ 33<br />

Berger, Hartmut ............................................................. 70, 80<br />

Beyermann, Michael .................................................... 70, 72<br />

Bienert, Michael ................................................... 70, 75, 76<br />

Blasig, Ingolf ........................................................................ 49<br />

Blasig, Rosel ........................................................................ 64<br />

Blick, Helmut ...................................................................... 101<br />

Blum, Christopher ............................................................... 43<br />

Bohne, Kerstin ..................................................................... 64<br />

Boisguerin, Prisca ............................................................... 13<br />

Boldt, Liane .......................................................................... 60<br />

Brauße, Kerstin ................................................................. 107<br />

Bräutigam, Matthias ............................................................. 2<br />

Brockmann, Christoph ........................................... 13, 25, 26<br />

Buschner, Michael ............................................................ 101<br />

C<br />

Carstanjen, Dirk ................................................................... 62<br />

Cartier, Regis ........................................................................ 66<br />

Castellani, Federica ............................................................ 13<br />

Chen, Zhongjing ................................................................... 29<br />

Chernogolov, Alex ............................................................... 29<br />

Chevelkov, Veniamin ........................................................... 29<br />

Coin, Irene ............................................................................ 74<br />

D<br />

Dasari, Muralidhar .............................................................. 29<br />

Dathe, Margitta ....................................................... 70, 75, 76<br />

Dekowski, Brigitte ............................................................... 87<br />

Diehl, Anne ........................................................................... 13<br />

Djurica, Maja ....................................................................... 63<br />

Donalies, Ute ........................................................................ 40<br />

Dreissigacker, Marianne ................................................... 70<br />

E<br />

Ehrlich, Angelika ..................................................... 74, 75, 95<br />

Eichhorst, Jenny .................................................................. 48<br />

Eilemann, Barbara .............................................................. 50<br />

Eisenmenger, Frank ...................................................... 24, 26<br />

El-Dashan, Adeeb ............................................................... 90<br />

Ellermann, Thomas ........................................................... 106<br />

Erdmann, Christoph ............................................................ 95<br />

Evers, Heide ......................................................................... 14<br />

F<br />

Fälber, Katja ......................................................................... 13<br />

Fechner, Klaus ..................................................................... 82<br />

Fink, Uwe ...............................................................................29<br />

Flinders, Jeremy .................................................................. 13<br />

Fossi, Michele ...................................................................... 13<br />

Freund, Christian ........................................................... 31, 32<br />

G<br />

Geelhaar, Andrea ................................................................ 43<br />

Geißler, Daniel ..................................................................... 87<br />

Georgi, Monika .................................................................... 82<br />

Gomoll, Michael .................................................................. 43<br />

Göritz, Petra ....................................................................... 101<br />

Griesinger, Christian ............................................................. 2<br />

H<br />

Hackel, Uwe ....................................................................... 101<br />

Hagen, Volker ................................................................. 70, 86<br />

Hahn, Janina .................................................................. 16, 18<br />

Handel, Lilo ........................................................................... 14<br />

Hartmann, Gislinde ............................................................. 50<br />

Haseloff, Reiner F. ............................................................... 49<br />

Hausbeck, Dana ................................................................ 107<br />

Heine, Markus ..................................................................... 50<br />

Heinrich, Nadja ................................................................... 82<br />

Heinze, Matthias ........................................................... 31, 33<br />

Henn, Volker ......................................................................... 43<br />

Hermann, Ingrid ................................................................. 108<br />

Heuer, Katja .................................................................... 32, 33<br />

Heyne, Alexander .............................................................. 108<br />

Heyne, Hans-Ulrich ........................................................... 101<br />

Hiller, Matthias ..................................................................... 13


Hologne, Maggy ...................................................................29<br />

Holtmann, Henrik ................................................................. 13<br />

Horak, Ivan ........................................................................... 36<br />

Hübel, Stefan ....................................................................... 26<br />

Hundsrucker, Christian ....................................................... 43<br />

J<br />

Jahn, Reinhard ...................................................................... 2<br />

Jahn, Thomas .................................................................... 108<br />

Jehle, Stefan ........................................................................ 14<br />

Joost, Hans-Georg ................................................................ 2<br />

Joshi, Mangesh ................................................................... 13<br />

K<br />

Kallies, Axel .......................................................................... 63<br />

Kahlich, Bettina ................................................................... 55<br />

Keller, Sandro ................................................................ 76, 78<br />

Kiesling, Alexandra ............................................................. 36<br />

Kirsch, Jenny ....................................................................... 50<br />

Kisser, Agnes ....................................................................... 60<br />

Klauschenz, Erhard ........................................................... 101<br />

Kleinau, Gunnar ............................................................. 20, 23<br />

Klemm, Clementine .............................................................. 85<br />

Klemm, Janet ....................................................................... 64<br />

Klose, Annerose .................................................................. 74<br />

Klose, Jana............................................................................ 74<br />

Klussmann, Enno ................................................................. 42<br />

Knobeloch, Klaus-Peter ..................................................... 59<br />

Köhler, Christian .................................................................. 13<br />

Königsmann, Jessica ...........................................................63<br />

Kofler, Michael ..............................................................31, 33<br />

Kotzur, Nico............................................................................87<br />

Krabben, Ludwig .................................................................. 13<br />

Krätke, Oliver .........................................................................74<br />

Krause, Dagmar.....................................................................74<br />

Krause, Eberhard ........................................................... 70, 83<br />

Krause, Gerd......................................................................... 20<br />

Krause, Winfried .................................................................. 55<br />

Kries, Jens-Peter von................................................ 3, 70, 92<br />

Krylova, Oxana O.................................................................. 57<br />

Kühne, Ronald................................................................. 24, 25<br />

Kummerow, Mandy ............................................................. 66<br />

L<br />

Labudde, Dirk ....................................................................... 13<br />

Lättig, Jens...................................................................... 20, 23<br />

Lamer, Stephanie ................................................................. 85<br />

Lange, Vivien ........................................................................ 14<br />

Lassowski, Birgit ................................................................. 50<br />

Lauterjung, Ulrike .............................................................. 104<br />

Lechler, Ralf ......................................................................... 87<br />

Leidert, Martina ................................................................... 14<br />

Lentz, Alexander................................................................... 57<br />

Leitner, Dietmar ................................................................... 13<br />

Lerch, Heidi .......................................................................... 85<br />

Liesenfeld, Oliver ................................................................. 76<br />

Lojek, Eva ............................................................................ 101<br />

Lödige, Inga .......................................................................... 66<br />

Lorberg, Dörte ...................................................................... 50<br />

Lorenz, Dorothea ........................................................... 43, 48<br />

M<br />

Mac, Thien-Thi .................................................................... 14<br />

Manks, Silvia ...................................................................... 107<br />

Marg, Andreas ..................................................................... 66<br />

Margania, Valentina ........................................................... 57<br />

Maul, Björn ................................................................. 102, 103<br />

McSorley, Theresa .............................................................. 43<br />

Meier, Franziska .................................................................. 90<br />

Meissner, Torsten ................................................................ 66<br />

Melchior, Frauke ................................................................... 2<br />

Messing, Claudia ............................................................... 107<br />

Mevert, Jürgen....................................................................101<br />

Meyer, Stephanie ................................................................ 66<br />

Meyer, Thomas .................................................................... 66<br />

Michl, Dagmar ..................................................................... 40<br />

Mikoteit, Kerstin .................................................................. 50<br />

Mohs, Barbara ................................................................... 101<br />

Mollajew, Rustam ................................................................ 57<br />

Motzny, Katrin ................................................................ 31, 33<br />

Müller, Sebastian L. ................................................ 20, 23, 50<br />

Muschter, Antje ................................................................. 100<br />

N<br />

Narayanan, Saravanakumar ............................................. 29<br />

Nedvetsky, Pavel ................................................................. 43<br />

Niehage, Christian .............................................................. 50<br />

Niendorf, Sandra ................................................................. 60<br />

Nikolenko, Heike ................................................................. 78<br />

Index<br />

161


O<br />

Oczko, Brunhilde ................................................................. 48<br />

Oehlke, Johannes ......................................................... 70, 75<br />

Oschkinat, Hartmut ....................................................... 10, 12<br />

Osiak, Anna .......................................................................... 60<br />

Otto, Christel ...................................................................... 107<br />

Oueslati, Morad ................................................................... 40<br />

P<br />

Pahlke, Doreen .................................................................... 14<br />

Pankow, Kristin .................................................................... 55<br />

Pankow, Rüdiger ................................................................. 64<br />

Panzer, Holger .................................................................... 101<br />

Passow, Josephine ........................................................... 107<br />

Perepellichenko, Ludmila ................................................... 90<br />

Peters, Renate ................................................................... 101<br />

Petschick, Heidemarie ....................................................... 36<br />

Piontek, Jörg ........................................................................ 49<br />

Piotukh, Kirill .................................................................. 31, 33<br />

Pires, Ricardo ...................................................................... 13<br />

Pisarz, Barbara .................................................................... 74<br />

Pisarz, Hans-Werner ........................................................ 108<br />

Pohl, Peter ............................................................................ 57<br />

Poliakov, Ilja ......................................................................... 14<br />

Prigge, Matthias .................................................................. 57<br />

Pritz, Stephan ....................................................................... 74<br />

R<br />

Rademann, Jörg ........................................................ 3, 70, 89<br />

Reif, Bernd ............................................................................ 28<br />

Rehbein, Kristina ................................................................. 14<br />

Richter, Regina M. ....................................................... 98, 101<br />

Ringling, Martina ................................................................. 48<br />

Rosenthal, Walter ............................................................ 6, 36<br />

Rossum, Barth van .............................................................. 13<br />

Roswadowski, Inga ............................................................. 50<br />

Rötzschke, Olaf .................................................................... 25<br />

Rückert, Christine ............................................................... 49<br />

Rutz, Claudia ........................................................................ 40<br />

S<br />

Santamaria, Katja ................................................................ 43<br />

Saparov, Sapar M. .............................................................. 57<br />

Sauer, Ines ..................................................................... 76, 78<br />

Scharnagel, Hubert ............................................................. 76<br />

Schlegel, Brigitte ........................................................... 16, 18<br />

Schmidt, Antje ..................................................................... 46<br />

Schmieder, Peter ................................................................. 16<br />

Schmikale, Bernhard .......................................................... 74<br />

Schneeweiß, Ulrike ............................................................ 33<br />

Schülein, Ralf ....................................................................... 33<br />

Schümann, Michael ............................................................ 85<br />

Schumacher, Gabriele ...................................................... 107<br />

Schumann, Björn ............................................................... 108<br />

Schrey, Anna .................................................................. 24, 26<br />

Schröder, Nikolaj ................................................................. 14<br />

Schulz, Katrin ....................................................................... 50<br />

Schuster, Ariane .......................................................... 50, 152<br />

Selfe, Joanna ....................................................................... 63<br />

Serowy, Steffen ............................................................. 57, 76<br />

Shan, Ying ............................................................................ 66<br />

Siems, Wolf-Eberhard ........................................................ 52<br />

Singh Bal, Manjot ................................................................ 50<br />

Söderhäll, Arvid ....................................................... 24, 25, 26<br />

Sokolenko, Elena ................................................................. 57<br />

Sokolov, Valerij .................................................................... 57<br />

Soukenik, Michael .............................................................. 14<br />

Souza, Christina de ............................................................. 57<br />

Sperling, Birgit ................................................................... 107<br />

Stefan, Eduard ..................................................................... 43<br />

Steuer, Andrea ..................................................................... 10<br />

Strauss, Holger .............................................................. 16, 18<br />

Sun, Xiaoou .......................................................................... 55<br />

Sylvester, Marc ............................................................. 32, 33<br />

T<br />

Tasadaque Ali Shah, Syed ................................................. 90<br />

Tenz, Kareen ......................................................................... 85<br />

Thielen, Anja ........................................................................ 40<br />

Thiemke, Katharina ................................................. 31, 32, 33<br />

Thakur, Mina ........................................................................ 64<br />

Tremmel, Sandra ................................................................. 74<br />

Tsunoda, Satoshi ................................................................. 56<br />

U<br />

Uryga-Polowy, Viviane ....................................................... 90<br />

Uschner, Michael .............................................................. 101<br />

Utepbergenov, Darkhan ..................................................... 49<br />

V<br />

Vargas, Carolyn ................................................................... 14<br />

Venta, Nicola ........................................................................ 66<br />

Vinkemeier, Uwe .................................................................. 65<br />

Vogelreiter, Gabriela ..................................................... 78, 82<br />

W<br />

Waldmann, Herbert ............................................................... 2<br />

Walter, Juliane ..................................................................... 50<br />

Weber, Viola ......................................................................... 43<br />

Weik, Steffen ........................................................................ 90<br />

Weisgraber, Karl .................................................................. 76<br />

Wendt, Stefanie ................................................................. 101<br />

Wessolowki, Axel ................................................................ 78<br />

Wichard, Jörg ...................................................................... 26


Wiedemann, Urs ...................................................... 14, 20, 23<br />

Wiesner, Burkhard ........................................................ 46, 75<br />

Wietfeld, Doreen ................................................................. 74<br />

Wietstruck, Markus ............................................................ 60<br />

Winkler, Lars ........................................................................ 50<br />

Wolf, Constanze ................................................................... 50<br />

Wolf, Yvonne .................................................................. 75, 78<br />

Wolff, Christian .................................................................. 100<br />

Z<br />

Zimmermann, Jürgen ................................................... 32, 33<br />

Zuleger, Nikolaj ............................................................ 50, 145<br />

Index<br />

163


Forschungsinstitut für<br />

Molekulare Pharmakologie (<strong>FMP</strong>)<br />

Campus <strong>Berlin</strong>-Buch<br />

Robert-Rössle-Straße 10<br />

13125 <strong>Berlin</strong><br />

Tel.: +49-30-9489-2920<br />

Fax: +49-30-9489-2927<br />

www.fmp-berlin.de<br />

Ausfahrt/Exit<br />

Schönerlinder Str.<br />

Ausfahrt/Exit<br />

Weißensee


<strong>FMP</strong><br />

C71 Tier- und Laborgebäude<br />

C81 Forschungsinstitut für Molekulare Pharmakologie (<strong>FMP</strong>)<br />

C81.1 NMR-Haus I (<strong>FMP</strong>)<br />

C81.2 NMR-Haus II (<strong>FMP</strong>)<br />

C83 Max-Delbrück-Communactions Center<br />

C84 Hermann-von-Helmholtz-Haus<br />

C87 Genomforschung<br />

D16 Bebig GmbH<br />

D23 Eckert & Ziegler AG<br />

D72 BioTeZ GmbH<br />

D79 Erwin-Negelein-Haus<br />

D80 Otto-Warburg-Haus<br />

D82 Karl-Lohmann-Haus<br />

D85 Arnold-Graffi-Haus<br />

A10 Bibliothek<br />

A13 Infocenter, Gläsernes Labor<br />

A14 Mensa<br />

A15 Charles River Deutschland GmbH<br />

A8 Torhaus<br />

A9 Pförtner<br />

B46 Robert-Rössle-Klinik<br />

B54 Hans-Gummel-Gästehaus<br />

B55 Oskar-und-Cécile-Vogt-Haus<br />

B61 Salvadore-Luria-Haus<br />

B63 Tierhaus<br />

B64 epo GmbH<br />

C27 Walter-Friedrich-Haus<br />

C31 Max-Delbrück-Haus<br />

Maps/Lagepläne<br />

165

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!