16.03.2015 Views

GWPcalc, the Ground Water Protection Calculator - KSCST

GWPcalc, the Ground Water Protection Calculator - KSCST

GWPcalc, the Ground Water Protection Calculator - KSCST

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Virus Transport in<br />

<strong>Ground</strong>water – Field<br />

Studies and <strong>Ground</strong>water<br />

<strong>Protection</strong><br />

Jack Schijven<br />

VIRUS ATTACHMENT AND<br />

INACTIVATION<br />

FIELD STUDIES<br />

QMRA<br />

GROUNDWATER PROTECTION<br />

GWPCalc: tool for calculating <strong>the</strong><br />

size of groundwater protection<br />

zones<br />

1 Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012


<strong>Ground</strong>water: Focus on viruses<br />

● Viruses may be transported with groundwater far<strong>the</strong>r than bacteria<br />

and protozoa<br />

– Viruses are very small<br />

– Viruses may attach little to sand grains<br />

– Viruses may survive long<br />

● Viruses may be very infectious<br />

● Diseases outbreaks from contaminated groundwater sources<br />

reported in developing and developed countries<br />

– Howard et al, WHO <strong>Ground</strong>water Monograph, 2006, chapter 10<br />

● Usually vulnerable geologic settings<br />

– Fractured rock, cross connecting well bores, leaking well cases X<br />

presence of sources such as wastewater treatment facilities,<br />

septic tanks, animal manure<br />

● Contamination may be overestimated: Mostly studies of high-risk<br />

wells<br />

2<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Viruses<br />

DNA or RNA<br />

Host<br />

Virus<br />

Attachment<br />

Protein coat<br />

Penetration<br />

Polio Rota MS2 PRD1<br />

● Human viruses: host= human cells<br />

● Bacterial viruses: host = bacteria cells<br />

● Bacteriophages MS2 and PRD1 are<br />

model viruses<br />

– Harmless to humans<br />

– Same shape and size<br />

(smallest microorganisms)<br />

– Negative charge: Poor attachment to sand<br />

– Survives well at low temperature<br />

– Easy to enumerate<br />

DNA-replication<br />

Protein syn<strong>the</strong>sis<br />

Assembly<br />

Lysis<br />

Mature viruses<br />

3<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Enumeration of viruses<br />

● Enteroviruses<br />

– Tissue culture (infectious virus particles)<br />

PCR (infectious+non-infectious virus particles)<br />

● Bacteriophages<br />

– Double Layer Agar Plate<br />

– Tube<br />

› 1 ml sample (bacteriophages)<br />

› 1 ml host bacteria<br />

› 2.5 ml growth medium<br />

with semi-solid agar<br />

– Solid agar plate<br />

– Count plaques<br />

4<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Major removal processes<br />

● Inactivation<br />

● Attachment<br />

-<br />

-<br />

- -<br />

-<br />

-<br />

-<br />

Detachment<br />

-<br />

k det<br />

- -<br />

- - - - Inactivation -<br />

µ <br />

-<br />

l<br />

-<br />

-<br />

-<br />

-<br />

k att<br />

-<br />

- -<br />

Attachment<br />

- -<br />

-<br />

- - - -<br />

- + -<br />

-<br />

+ -<br />

- -<br />

- - -<br />

+<br />

Grain of sand<br />

+<br />

-<br />

-<br />

+<br />

-<br />

-<br />

-<br />

-<br />

- - -<br />

-<br />

+<br />

-<br />

-<br />

-<br />

Inactivation<br />

-<br />

<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

µ s<br />

-<br />

-<br />

5<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Virus attachment<br />

● Bacteriophages as model<br />

viruses<br />

● Bacteriophages MS2 and<br />

PRD1 strongly negative<br />

=> attach less than most<br />

viruses<br />

● Poliovirus neutral<br />

● Coxsackievirus B4<br />

probably negative<br />

● Sticking efficiency α<br />

measure for attachment<br />

and depends on surface<br />

properties of virus and<br />

sand<br />

6<br />

C/C 0<br />

C/C 0<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

0.00001<br />

0.000001<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

0.00001<br />

0 24 48 72 96<br />

Time [hours]<br />

0 24 48 72 96 120 144 168<br />

Time [hours]<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION<br />

MS2<br />

PV1<br />

MS2<br />

CB4


Colloid filtration <strong>the</strong>ory<br />

● Collision efficiency η: Probability of collision<br />

– Physical conditions<br />

– Diffusion, interception, sedimentation<br />

● Sticking efficiency α: Probability of<br />

attachment<br />

– Chemical conditions (DLVO)<br />

● Viruses are small<br />

– Diffusion / Brownian movement →<br />

collision efficiency η<br />

– Surface charge → sticking efficiency α<br />

– At lower pH, higher ionic strength →<br />

higher α<br />

7<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Collision efficiency η 0<br />

● Collision: Interception, sedimentation, diffusion<br />

● Viruses: Diffusion<br />

0.200<br />

0.150<br />

Viruses 20-200 nm<br />

h 0<br />

0.100<br />

0.070<br />

0.050<br />

0.030<br />

Protozoa<br />

5-10 µm<br />

0.020<br />

0.015<br />

0.010<br />

Bacteria<br />

1-3 µm<br />

0.05 0.10 0.50 1.00 5.00 10.00<br />

Diameter microorganism,mm<br />

8<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Virus attachment<br />

● Attachment rate coefficient<br />

● Collision efficiency<br />

k<br />

η<br />

att<br />

=<br />

3 (1 − n)<br />

αηv<br />

2 d<br />

1/ 3 −2 / 3<br />

= 4A s<br />

N<br />

Pe<br />

c<br />

● Peclet number<br />

N = d nv /<br />

Pe<br />

c<br />

D<br />

BM<br />

● Diffusion coefficient<br />

D = K ( T + 273) /(3 d µ )<br />

BM<br />

B<br />

π p<br />

● Happel’s porosity dependent parameter<br />

with<br />

γ =<br />

( 1 − n)<br />

1/ 3<br />

A s<br />

=<br />

2(1 − γ<br />

5<br />

) /(2 − 3γ<br />

+<br />

3γ<br />

5<br />

−<br />

2γ<br />

6<br />

)<br />

9<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


CFT: Literature and spreadsheet<br />

● Yao KM, Habibian MT, O'Melia CR, <strong>Water</strong> and waste water filtration:<br />

concepts and applications, EST, 1971, 5, 1105-1112<br />

● Tufenkji N, Elimelech M. Correlation Equation for Predicting Single-<br />

Collector Efficiency in Physicochemical Filtration in Saturated Porous<br />

Media, EST, 2004, 38, 529-536<br />

● www.yale.edu/env/elimelech/publication-pdf/TECorrelationEqn.xls<br />

● http://biocolloid.mcgill.ca/publications.html<br />

log<br />

10<br />

C<br />

C<br />

0<br />

= −k<br />

att<br />

L<br />

v<br />

1<br />

ln10<br />

= −<br />

3<br />

2<br />

( 1−<br />

n)<br />

d<br />

c<br />

L<br />

αη<br />

ln10<br />

10<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


DLVO: Derjaguin-Landau-Verwey-Overbeek <strong>the</strong>ory<br />

● Double Layer force (electrostatic)<br />

– Attractive or repulsive surface charge<br />

– Depends on pH and ionic strength (IS)<br />

● Lifshitz-Van der Waals attractive force<br />

● Born repulsive force<br />

– Overlap of electron clouds at Ip => negatively charged virus<br />

● Ip (MS2) 3.9 Ip (PRD1) 3-4<br />

11<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


DLVO energy profile<br />

● Energy barrier Φ max<br />

– Repulsion<br />

● Primary minimum Φ min1<br />

– Irreversible attachment<br />

Dimensionless<br />

energy<br />

FêHk B TL<br />

5<br />

0<br />

PRD1-Quartz<br />

ÿÿÿ Electrostatic interaction<br />

ÿÿÿ London-van de Waals attraction<br />

ÿÿÿ Born repulsion<br />

— DLVO -profile<br />

F max 6.94212 z PRD1<br />

F min1 -4.39547 z Quartz<br />

F min2 -0.772816<br />

-17.5572 mV<br />

-42.1402 mV<br />

● Secundary minimum Φ min2<br />

– Reversible attachment<br />

-5<br />

-10 -9 -8 -7 -6<br />

Log 10 Separation distance @mD<br />

● Effect of pH and IS on attachment of PRD1 to sand<br />

– pH increase: more repulsive<br />

– IS increase: less repulsive<br />

● Equations: e.g. Hahn and O’Melia, EST, 2004, 38, 210-220<br />

12<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Virus inactivation<br />

● Depends on<br />

– Virus<br />

– Temperature<br />

– pH<br />

= C<br />

Exp<br />

– O<strong>the</strong>r environmental conditions<br />

C<br />

● Literature data virus inactivation in groundwater<br />

– Schijven JF and Hassanizadeh SM, CREST, 2000, 31, 49-127<br />

– Pedley S, Yates M, Schijven JF, West J, Howard G, Barrett M,<br />

Pathogens: Health relevance, transport and attenuation. In:<br />

Protecting groundwater for Health, eds: Schmoll O, Howard G,<br />

Chilton J, Chorus I, WHO, 2006, chapter 3<br />

● Inactivation rate coefficient µ l<br />

at 5-12 °C<br />

t<br />

[ − µ t] ⇒ log = − µ t = t<br />

– 0.023 (0.01 – 0.1) /day = 0.01 (0.0043 – 0.043) log 10<br />

/day<br />

C<br />

C<br />

t 0 l<br />

10<br />

l<br />

− µ<br />

l<br />

0<br />

ln10 2.3<br />

1<br />

1<br />

13<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Long term inactivation study<br />

● Objective<br />

– Determine change of ratio of infectious to defective virus<br />

particles over time<br />

● Experimental design<br />

– Three enteroviruses PV1, PV2, CB4<br />

– BGM cell culture: Infectious virus particles, Poisson-distributed<br />

plaque counts<br />

– RT-PCR: Most Probable Number estimates<br />

– Artificial <strong>Ground</strong> <strong>Water</strong> (AGW) + Artificial Surface <strong>Water</strong> (ASW)<br />

– 4 °C and 22 °C<br />

– T= 0 – a year<br />

[<br />

−λ −λ<br />

e<br />

t ]<br />

( )<br />

1<br />

● Biphasic inactivation = C fe<br />

t + 1−<br />

f<br />

C<br />

2<br />

t<br />

0<br />

14<br />

De Roda Husman et al. AEM, 2009, 75(4):1050-1057<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Inactivation curves<br />

AGW<br />

ASW<br />

● Bleu: RT-PCR; Green: BGM cell culture<br />

● Ratio RT-PCR/BGM cell culture increases over time<br />

15<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Conclusions<br />

● Ratio RT-PCR/BGM cell culture<br />

– Time dependent (increases with time)<br />

– Virus type dependent<br />

– Conditions (temperature, water) dependent<br />

● Inactivation CB4 first order; PV1 and PV2 biphasic<br />

Inactivation rate coefficient, log 10 /day<br />

<strong>Water</strong> °C PV1 PV2 CB4<br />

AGW 4 0.0031 0.0031 0.0035<br />

22 0.011 0.022 0.03<br />

ASW 4 0.0023 0.0013 0.0043<br />

22 0.012 0.0069 0.022<br />

● Inactivation rate coefficient of 0.01 log 10 /day at ≈10°C from literature data<br />

not too conservative<br />

16<br />

De Roda Husman et al. AEM, 2009, 75(4):1050-1057<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


One site kinetic model<br />

● Virus transport processes through saturated porous media<br />

– Advection / dispersion / attachment / detachment / inactivation<br />

● Governing equations<br />

∂C<br />

∂t<br />

= α v<br />

L<br />

ρB<br />

∂S<br />

=<br />

θ ∂t<br />

2<br />

∂ C ∂C<br />

− v − k<br />

2<br />

∂x<br />

∂x<br />

k<br />

att<br />

C<br />

−<br />

k<br />

det<br />

att<br />

ρB<br />

θ<br />

C<br />

− µ C<br />

l<br />

S − µ<br />

s<br />

+<br />

k<br />

det<br />

ρB<br />

S<br />

θ<br />

ρB<br />

S<br />

θ<br />

17<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


One kinetic site model: breakthrough curves<br />

Log<br />

scale to<br />

show tail<br />

1<br />

0.1<br />

(k att<br />

+µ l<br />

)C<br />

=> Cmax<br />

katt=0.1; kdet=0.001; mul=0; mus=0<br />

katt=0.2; kdet=0.001; mul=0; mus=0<br />

katt=0.1; kdet=0.004; mul=0; mus=0<br />

katt=0.1; kdet=0.001; mul=0.1; mus=0.1<br />

C/C 0 0.01<br />

0.001<br />

0.0001<br />

0.6<br />

0.5<br />

0.4<br />

C/C 0 0.3<br />

0.2<br />

0.1<br />

0<br />

0 5 10 15 20 25<br />

t(h)<br />

0 5 10 15 20 25<br />

t(h)<br />

k det<br />

S =><br />

level of tail<br />

µ s<br />

S =><br />

slope of tail<br />

18<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Two site kinetic model<br />

● Governing equations<br />

∂C<br />

∂t<br />

2<br />

∂ C ∂C<br />

ρB<br />

= α<br />

Lv<br />

− v − k<br />

2<br />

att1C<br />

− katt<br />

2C<br />

− µ<br />

lC<br />

+ kdet1<br />

S1<br />

+ k<br />

∂x<br />

∂x<br />

θ<br />

det2<br />

ρB<br />

θ<br />

S<br />

2<br />

1<br />

0.1<br />

Breakthrough curve of PRD1<br />

2-site kinetic model<br />

ρB<br />

θ<br />

ρB<br />

θ<br />

∂S<br />

∂t<br />

∂S<br />

∂t<br />

ρ<br />

θ<br />

µ<br />

ρ<br />

θ<br />

1 B<br />

B<br />

= k<br />

S<br />

att1C<br />

− kdet1<br />

S1<br />

−<br />

s1<br />

1<br />

ρ<br />

θ<br />

ρ<br />

θ<br />

2 B<br />

B<br />

= k<br />

S<br />

att 2C<br />

− kdet 2<br />

S2<br />

− µ<br />

s2<br />

2<br />

C/C 0<br />

0.01<br />

0.001<br />

0 1 2 3 4 5 6 7<br />

Days<br />

19<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Modeling breakthrough curves: one and two kinetic sites<br />

C/C 0<br />

1<br />

0.01<br />

0.0001<br />

b<br />

c<br />

a<br />

∂C<br />

∂t<br />

2<br />

∂ C ∂C<br />

ρB<br />

= α<br />

Lv<br />

− v − k<br />

2<br />

att1C<br />

− katt<br />

2C<br />

− µ<br />

lC<br />

+ kdet1<br />

S1<br />

+ k<br />

∂x<br />

∂x<br />

θ<br />

ρ<br />

B<br />

∂S<br />

θ ∂t<br />

ρB<br />

∂S<br />

θ ∂t<br />

ρ<br />

θ<br />

det2<br />

ρB<br />

S<br />

θ<br />

ρ<br />

θ<br />

1 B<br />

B<br />

= k<br />

S<br />

att1C<br />

− kdet1<br />

S1<br />

− µ<br />

s1<br />

1<br />

ρ<br />

θ<br />

ρ<br />

θ<br />

2 B<br />

B<br />

= k<br />

S<br />

att 2C<br />

− kdet<br />

2<br />

S2<br />

− µ<br />

s2<br />

2<br />

2<br />

0.000001<br />

0 24 48 72 96 120 144 168 192<br />

Time [hours]<br />

– v and α L<br />

from NaCl tracer<br />

– µ l<br />

from inactivation experiment<br />

– CXTFIT: 1 kinetic site model<br />

– HYDRUS-1D: 2 kinetic site model<br />

– µ s<br />

≈ slope of tail<br />

Rate coefficients A B C<br />

(day -1 )<br />

one site one site two sites<br />

katt1 4.8 2.6 2.0<br />

kdet1 6.7 0.065 0.065<br />

katt2 3.36<br />

kdet2 13.7<br />

µ s1=µ s2 5.8 0.43 0.43<br />

Goodness of fit 98% 92% 98%<br />

20<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

VIRUS ATTACHMENT AND INACTIVATION


Field study dune recharge Castricum<br />

21<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Field study dune recharge Castricum<br />

22<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Field study dune recharge Castricum<br />

23<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Salt tracer<br />

● NaCl<br />

● 7 days pulse<br />

● Pore water velocity (1.5 m/day)<br />

● Dispersivity<br />

EC (µS/cm)<br />

3800<br />

2800<br />

1800<br />

800<br />

Compartment<br />

PCO2 (2.4 m)<br />

PCO4 (6.0 m)<br />

PCO6 (17 m)<br />

0 5 10 15 20 25 30 35 40<br />

EC (µS/cm)<br />

3800<br />

2800<br />

1800<br />

Compartment<br />

PCO3 (3.8 m)<br />

PCO5 (10 m)<br />

PCO7 (30 m)<br />

800<br />

0 5 10 15 20 25 30 35 40<br />

Day<br />

24<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Breakthrough curves<br />

● Bacteriophages<br />

– MS2<br />

– PRD1<br />

C (pfp/l)<br />

1.E+09<br />

1.E+08<br />

1.E+07<br />

1.E+06<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

1.E+00<br />

MS2<br />

Compartment<br />

PCO2 (2.4 m)<br />

PCO3 (3.8 m)<br />

PCO4 (6.4 m)<br />

PCO5 (10 m)<br />

PCO6 (17 m)<br />

PCO7 (30 m)<br />

– 7 days seeding<br />

1.E-01<br />

1.E-02<br />

1.E-03<br />

0 25 50 75 100 125<br />

C (pfp/l)<br />

1.E+08<br />

1.E+07<br />

1.E+06<br />

1.E+05<br />

1.E+04<br />

1.E+03<br />

1.E+02<br />

1.E+01<br />

1.E+00<br />

1.E-01<br />

1.E-02<br />

PRD1<br />

Compartment<br />

PCO2 (2.4 m)<br />

PCO3 (3.8 m)<br />

PCO4 (6.4 m)<br />

PCO5 (10 m)<br />

PCO6 (17 m)<br />

PCO7 (30 m)<br />

1.E-03<br />

0 25 50 75 100 125<br />

25<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


MS2<br />

Inactivation<br />

● Mild conditions<br />

– near neutral pH<br />

C/C0<br />

10<br />

1<br />

Obs in peptone/saline at lab<br />

Linear fit: 0.0008 log10/day<br />

.<br />

Obs in compartment water at<br />

lab<br />

Linear fit: 0.019 log10/day<br />

Obs in well water at lab<br />

– low temperature<br />

●→ First order rate decrease<br />

0.1<br />

Linear fit: 0.028 log10/day<br />

Obs in well water at field<br />

Linear fit: 0.013 log10/day<br />

0.01<br />

0 10 20 30 40<br />

Day<br />

PRD1<br />

10<br />

Obs in peptone/saline at lab<br />

1<br />

Linear fit: 0.0026 log10/day<br />

.<br />

Obs in compartment water at<br />

lab<br />

Linear fit: 0.0032 log10/day<br />

C/C0<br />

Obs in well water at lab<br />

0.1<br />

Linear fit: 0.0041 log10/day<br />

Obs in well water at field<br />

Linear fit: 0.050 log10/day<br />

0.01<br />

0 10 20 30 40<br />

Day<br />

26<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Modeling breakthrough curves<br />

C (viruses/l)<br />

C (viruses/l)<br />

10000000<br />

100000<br />

10000000<br />

100000<br />

1000<br />

1000<br />

10<br />

0.1<br />

10<br />

0.1<br />

MS2 - Well PCO2 at 2.4 m<br />

0 20 40 60 80 100 120 140<br />

Day<br />

MS2 - Well PCO3 at 3.8 m<br />

Observation<br />

One-site model<br />

Two-site model<br />

0 20 40 60 80 100 120 140<br />

Day<br />

Observations<br />

One-site model<br />

Two-site model<br />

Rate coefficients one site two sites<br />

(day -1 )<br />

katt1 4.1 4.2<br />

kdet1 0.00087 0.00079<br />

katt2 0.47<br />

kdet2 0.54<br />

µ s1=µ s2 0.085 0.085<br />

Goodness of fit 75% 79%<br />

Rate coefficients one site two sites<br />

(day -1 )<br />

k att1 3.2 3.2<br />

k det1 0.0016 0.0022<br />

k att2 0.17<br />

k det2 0.24<br />

µ s1 =µ s2 0.092 0.092<br />

Goodness of fit 77% 80%<br />

27<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Deep well injection study<br />

● Redox-zones: Attachment to iron oxyhydroxides in O 2<br />

-zone<br />

m-Field Level<br />

- 250<br />

PP.1<br />

WP.1<br />

WP.3<br />

IP.2<br />

WP.2<br />

WP.4<br />

- 260<br />

6<br />

- 270<br />

- 280<br />

- 290<br />

- 300<br />

- 310<br />

- 320<br />

- 330<br />

- 340<br />

2<br />

5<br />

5<br />

5<br />

2 5<br />

3<br />

2<br />

2<br />

4<br />

2<br />

2<br />

5<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4 4 4<br />

4<br />

4<br />

2<br />

6<br />

6<br />

6<br />

6<br />

6<br />

6<br />

8<br />

8<br />

3<br />

3<br />

8<br />

3<br />

3<br />

10<br />

8<br />

3<br />

8<br />

1<br />

10<br />

8<br />

10<br />

12<br />

10<br />

2<br />

2 10<br />

2<br />

2<br />

2<br />

10<br />

12<br />

12<br />

clay, loam<br />

fine sand<br />

screens<br />

coarse sand<br />

temperature sensor<br />

n<br />

12<br />

12<br />

1<br />

12<br />

1 1<br />

(1)<br />

1<br />

1<br />

98 38<br />

8<br />

0<br />

12<br />

22<br />

[distance to IP.2;m]<br />

[distance to IP.2;m]<br />

71477 R 03<br />

28<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Soil passage effectively removes viruses<br />

● 8 log 10<br />

removal (non-linear with distance)<br />

– After 25 days (30 m) dune passage<br />

– After 40 days (38 m) deep well injection<br />

0<br />

Removal<br />

Log 10 (C/C 0 )<br />

-2<br />

-4<br />

-6<br />

MS2 - dune recharge<br />

PRD1 - dune recharge<br />

MS2 - deep well injection<br />

PRD1 - deep well injection<br />

-8<br />

-10<br />

0 10 20 30 40<br />

Travel time [days]<br />

29<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Removal processes during soil passage<br />

● Effective virus removal if sites for attachment are<br />

present (mostly iron hydroxides; sticking efficiency α∼10 -3 )<br />

0<br />

● Virus population<br />

heterogeneity?<br />

Virus removal<br />

Log 10 (C/C 0 )<br />

-2<br />

-4<br />

-6<br />

MS2 - dune recharge<br />

PRD1 - dune recharge<br />

MS2 - deep well injection<br />

PRD1 - deep well injection<br />

-8<br />

● Little removal if attachment sites are absent<br />

(e.g. when oxygen deficient aquifer)<br />

→ conservative value for attachment to be used in calculation of<br />

protection zones (sticking efficiency α∼10 -5 )<br />

-10<br />

0 10 20 30 40<br />

Travel time [days]<br />

30<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

FIELD STUDIES


Dutch Drinking <strong>Water</strong> Act 2001<br />

● No pathogens in drinking water in concentrations that adversely<br />

affect public health ≠ zero => risk<br />

● Quantitative Microbiological Risk Assessment (QMRA)<br />

– WHO Drinking <strong>Water</strong> Guidelines (eds 3+4): Health based target<br />

– The Ne<strong>the</strong>rlands: Max infection risk = 10 -4 per person per year<br />

– Drinking water concentration ≈ 1 pathogen in 1 000 000 liter<br />

● QMRA required for drinking water<br />

from surface water and vulnerable groundwater<br />

● Index pathogens<br />

– Enteroviruses, Campylobacter, Cryptosporidium, Giardia<br />

31<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

QMRA


Environmental Inspectorate Guideline 5318 (2006)<br />

● How to do QMRA<br />

● QMRA from surface water to drinking water<br />

– Quality of source water (index pathogens)<br />

– Treatment efficiency (indicator organisms)<br />

Index pathogens<br />

Indicator organisms<br />

Enteroviruses 20-200 nm Bacteriophages 20-60 nm<br />

Campylobacter 1-2 µm E.coli 1-2 µm<br />

Cryptosporidium 5-6 µm Spores of sulphite<br />

Giardia 8-10 µm reducing clostridia (SSRC) 1 µm<br />

● QMRA from vulnerable groundwater to drinking water<br />

– Is protection zone of 60 days an adequate barrier (natural treatment)?<br />

● Unconfined sandy aquifers and karst aquifers are vulnerable<br />

– No protective confining (clay) layers<br />

– Karst: fast flow paths<br />

32<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

QMRA


QMRA from surface water to drinking water<br />

● C sw<br />

= Pathogen concentration in source water [N/liter]<br />

● R = Recovery = fraction of detected pathogens [-]<br />

● Z = Fraction of microorganisms passing treatment [-]<br />

● C dw<br />

= Pathogen concentration in drinking water [N/liter]<br />

● V = Consumption of unboiled drinking water [liter]<br />

● P m<br />

= Infectivity of pathogen [-]<br />

● P inf<br />

= Infection risk [per person per day or year]<br />

● P inf,day<br />

= C sw<br />

x 1/R x Z x V x P m<br />

365<br />

● P inf,year<br />

= 365.25 x P inf,day<br />

or P = 1−<br />

− P<br />

inf, year<br />

1<br />

i=<br />

1<br />

∏( )<br />

inf, dayi<br />

● Drinking water companies: point estimates (average values)<br />

● RIVM: Monte Carlo simulations (variability)<br />

33<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

QMRA


QMRA from groundwater to drinking water<br />

● Guideline 5318<br />

– Unconfined sandy and karst aquifers are considered vulnerable<br />

<strong>the</strong>refore QMRA required<br />

● <strong>Protection</strong> zone:<br />

– No sources of contamination allowed within that zone<br />

● Source concentration, C s<br />

● Setback distance r s<br />

and travel time T determine size of protection<br />

zone, which is <strong>the</strong> soil barrier<br />

● Z = fraction of pathogens<br />

able to pass <strong>the</strong> soil barrier<br />

P inf<br />

= C s<br />

x 1/R x Z x V x P m<br />

≤ 10 -4<br />

34<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

QMRA


History of 60-days protection zone<br />

● Knorr, Das Gas- und Wasserfach 1937, 80: 330-334<br />

– Survival of bacteria in a bottle of water<br />

– No bacteria detected after 60 days<br />

● 60-days protection zone<br />

– After 50-60 days no danger to public health<br />

● Austria, Denmark, Germany, Ghana,<br />

Indonesia,The Ne<strong>the</strong>rlands, UK<br />

● But viruses (and o<strong>the</strong>r pathogens)<br />

may survive longer<br />

● Is 60-days enough protection<br />

for a maximum infection risk of 10 -4 p -1 y -1 ?<br />

35<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


<strong>Protection</strong> zones that comply with 10 -4 infection risk<br />

● Shallow, unconfined sandy aquifers<br />

● Viruses leaking from a sewage pipe<br />

● Horizontal transport to <strong>the</strong> pumping well<br />

● Literature data distributions of parameters (Monte Carlo simulation)<br />

● Removal processes<br />

– Little attachment (field data at anoxic conditions), α=10 -5<br />

– Extensive literature data on virus inactivation, µ=0.01 log 10<br />

/day<br />

● Dilution in groundwater<br />

– Pumping rate Q W<br />

at well<br />

36<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Steady state model<br />

⎛ C ⎞<br />

A<br />

1 ⎛ 3 5/3 1 2⎞<br />

log ⎜<br />

⎟<br />

10<br />

= log10<br />

Z = − ⎜ αk1R<br />

+ µ<br />

lk2R<br />

⎟ + log<br />

⎝ C0⎠<br />

2.3⎝<br />

5 2 ⎠<br />

Removal = Attachment + Inactivation + Dilution<br />

C A<br />

is virus concentration at well<br />

C 0<br />

is virus concentration in wastewater<br />

α is sticking efficiency (attachment parameter) = 10 -5<br />

µ l<br />

is <strong>the</strong> inactivation rate coefficient = 0.01 log 10<br />

/day<br />

k 1<br />

en k 2<br />

physical constants<br />

q is leakage rate of sewage pipe<br />

Q is abstraction rate of groundwater<br />

R is radial distance sourcewell<br />

10<br />

⎛<br />

⎜<br />

⎝<br />

q<br />

Q<br />

⎞<br />

⎟<br />

⎠<br />

● QMRA: p inf<br />

= C 0<br />

x Z x V x p m<br />

≤ 10 -4<br />

37<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Monte<br />

Carlo<br />

Simulations<br />

VIRUS PROPERTIES AQUIFER PROPERTIES RISK ASSESSMENT<br />

Sewage: 100 Enteroviruses/L Aquifer thickness Consumption 0.27 L/day<br />

Leakage rate q=1m3/day Grain size Rotavirus infectivity<br />

Inactivation 0.01 log10/day Porosity <strong>Protection</strong> zone 200-400m<br />

Sticking efficiency α=10-5 Temperature <strong>Protection</strong> zone 1-2 years<br />

38<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Sensitivity analysis<br />

● Size of protection zone most sensitive to inactivation and attachment<br />

Parameter<br />

Attachment α<br />

Parameter<br />

value<br />

R 95 (m)<br />

T 95 (day)<br />

T 95 (year)<br />

10 -5 231 603 1.7<br />

10 -4 132 215 0.6<br />

10 -3 47 29 0.3<br />

0.01<br />

280<br />

859<br />

2.4<br />

Inactivation µ l<br />

(day -1 )<br />

0.1<br />

0.4<br />

105<br />

55<br />

109<br />

29<br />

0.3<br />

0.08<br />

39<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Conclusions<br />

● Shallow unconfined sandy aquifers (20-35 m deep)<br />

– Travel time of 1 to 2 years (206 - 418 m setback distance)<br />

– Infection risk below 10 -4 per person per year with 95% certainty<br />

● Most sensitive model parameters for size of protection zone<br />

– Attachment and inactivation<br />

● A smaller protection zone<br />

– Demonstrate aquifer properties that lead to more virus removal<br />

– Location specific investigation<br />

● Only horizontal transport considered<br />

– If vertical transport is significant <strong>the</strong>n<br />

protection zone may be overestimated<br />

40<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Vulnerability<br />

● Environmental Inspectorate Guideline 5318 (2006)<br />

– All unconfined sandy aquifers and karst aquifers are vulnerable<br />

– QMRA of drinking water from vulnerable groundwater<br />

● <strong>Ground</strong>water companies<br />

– Deeper unconfined aquifers should be less vulnerable<br />

● Vulnerability<br />

– Ability of viruses to be transported with <strong>the</strong> groundwater<br />

– Less attenuation of virus in a more vulnerable aquifer<br />

– Attenuation depends on properties of viruses and aquifer<br />

● Size of protection zone:<br />

– Maximum risk level (health based target) [risk]<br />

– Virus source concentration [source]<br />

– Attenuation of virus concentration [vulnerability]<br />

41<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Properties of viruses<br />

● Significant threat to public health<br />

– Very infectious<br />

– Commonly gastroenteritis, but also more severe illness<br />

● Can be very persistent<br />

– survive well = inactivate slow; µ=0.01 log 10<br />

/day<br />

● Usually little attachment to sand grains<br />

– Many viruses are negatively charged; α=10 -5<br />

● Very small<br />

– 20-200 nm<br />

– Negligible straining<br />

● λ= virus removal rate coefficient<br />

(inactivation + attachment)<br />

42<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Properties of unconfined sandy aquifers<br />

● No confining layers<br />

● High permeability<br />

● In <strong>the</strong> Ne<strong>the</strong>rlands often shallow<br />

● Properties relevant to virus attachment and inactivation = λ<br />

– porosity, grain size, iron hydroxides, temperature, pH, ionic<br />

strength, ion composition, organic content, etc.<br />

● Properties relevant to virus advection, dispersion, dilution<br />

– m = anisotropy factor<br />

– Q = Pumping rate of abstraction well<br />

– H= thickness of aquifer<br />

– z t<br />

=top of well screen<br />

– z b<br />

=bottom of well screen<br />

43<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Model development<br />

● Vulnerability parameters<br />

– Virus+aquifer properties<br />

● Dimensionless model<br />

– Model parameters are dimensionless<br />

– Lower number of model parameters<br />

● Numerical calculations (FlexPDE)<br />

– Calculate r s*<br />

= dimensionless setback distance<br />

to achieve a required virus removal<br />

● Empirical formula<br />

– Fit a formula to values of r s*<br />

as a function of <strong>the</strong> vulnerability<br />

parameters<br />

● r s*<br />

= dimensionless setback distance = vulnerability index<br />

– Different combinations of <strong>the</strong> vulnerability parameters leading to<br />

<strong>the</strong> same virus attenuation have <strong>the</strong> same r<br />

*<br />

s<br />

r *<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

æ<br />

æ<br />

à<br />

à<br />

æ<br />

æ<br />

àà æ<br />

æ<br />

àààààà æ ææ æ<br />

æ<br />

æ<br />

à àà àà<br />

æ æ<br />

æ æ æ<br />

à<br />

æ<br />

æ<br />

æà<br />

à<br />

æ æææ<br />

à<br />

æ à æ<br />

æ æ à à<br />

à<br />

æ<br />

æ ææ<br />

æ<br />

æææ<br />

ææ æ æ<br />

æ æ<br />

à ææ<br />

æ<br />

æ<br />

æ<br />

æ<br />

æææ<br />

æææ<br />

æ<br />

æ<br />

ææ<br />

à<br />

à æ<br />

à<br />

ææ<br />

æ<br />

à<br />

-2 -1 0 1 2 3<br />

l *<br />

æ<br />

æ<br />

æ<br />

æ<br />

à<br />

æ<br />

æ<br />

æ<br />

æ<br />

44<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Model domain<br />

Well screen<br />

C * =10 -8<br />

Q<br />

r s * = r s<br />

/H<br />

Vulnerability index<br />

*<br />

Setback distance<br />

Contamination<br />

source<br />

H/H=1<br />

● Steady state<br />

– Constant pumping rate and constant leakage rate of virus from sewer<br />

● Horizontal radial and vertical transport<br />

● Dimensionless model<br />

– The model domain was scaled=divided by H, <strong>the</strong> aquifer thickness<br />

● Dimensional virus removal rate coefficient<br />

– Inactivation + attachment: λ*= λ n π H 3 /Q<br />

45<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Radial water flow under steady state conditions<br />

● Governing equation<br />

k<br />

z<br />

2<br />

∂ h<br />

2<br />

∂z<br />

– where, t [T] is <strong>the</strong> time, h [L]is <strong>the</strong> hydraulic head, k r<br />

[LT -1 ] is <strong>the</strong><br />

hydraulic conductivity in <strong>the</strong> r-direction and k z<br />

[LT -1 ] is <strong>the</strong><br />

hydraulic conductivity in <strong>the</strong> z-direction<br />

+<br />

k<br />

r<br />

r<br />

∂<br />

∂r<br />

∂h<br />

r<br />

∂r<br />

=<br />

0<br />

● Dimensionless flow equation<br />

1<br />

m<br />

2<br />

∂ h<br />

∂z<br />

*<br />

*2<br />

+<br />

1<br />

r<br />

*<br />

∂<br />

∂r<br />

*<br />

⎛<br />

⎜r<br />

⎝<br />

*<br />

∂h<br />

∂r<br />

*<br />

*<br />

⎞<br />

⎟<br />

⎠<br />

=<br />

0<br />

– Division of governing equation by k r<br />

and scaling to H [L] which is<br />

<strong>the</strong> total thickness of all aquifer layers<br />

46<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Virus transport<br />

● Governing equation<br />

v<br />

z<br />

∂ 2<br />

C ∂C<br />

∂ C<br />

+ vr<br />

− Dzz<br />

−<br />

1<br />

2<br />

∂z<br />

∂r<br />

∂z<br />

r<br />

∂<br />

∂r<br />

⎛<br />

⎜<br />

⎝<br />

D<br />

rr<br />

r<br />

∂C<br />

∂r<br />

⎞<br />

⎟<br />

⎠<br />

= −λC<br />

– where, v r<br />

and v z<br />

are <strong>the</strong> vertical and radial pore water velocities<br />

– λ [T -1 ] is <strong>the</strong> virus removal rate coefficient, which entails both<br />

attachment and inactivation.<br />

– D rr<br />

≈α r<br />

v r<br />

and D zz<br />

≈α z<br />

v z<br />

[L 2 T -1 ] are <strong>the</strong> dispersion coefficients in r and<br />

z directions.<br />

● Dimensionless virus transport equation<br />

v<br />

∂<br />

∂z<br />

∂<br />

∂r<br />

∂<br />

∂z<br />

*<br />

*<br />

2 *<br />

*<br />

* C * C<br />

* * C 1 * * * C<br />

* *<br />

z<br />

+ v 0.1<br />

v<br />

v r<br />

C<br />

* r<br />

− α<br />

*<br />

r r<br />

− α<br />

*2 * r<br />

⎜<br />

* r<br />

⎟ = −λ<br />

*<br />

r<br />

∂<br />

∂r<br />

⎛<br />

⎜<br />

⎝<br />

∂<br />

∂r<br />

⎞<br />

⎟<br />

⎠<br />

47<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Parameter<br />

Description<br />

* *<br />

A = 2r<br />

l<br />

Leakage area<br />

s<br />

s<br />

s<br />

Dimensionless<br />

parameters<br />

48<br />

Varied in numerical simulations<br />

* A<br />

Cross sectional area of <strong>the</strong> screen of <strong>the</strong> abstraction well<br />

w<br />

Aw<br />

=<br />

2<br />

πH<br />

* r<br />

*<br />

α = α<br />

r<br />

0.005rs<br />

H =<br />

Dispersivity in <strong>the</strong> r -direction.<br />

* α<br />

*<br />

Dispersivity in <strong>the</strong> z -direction<br />

z<br />

α<br />

z<br />

= = 0.1α<br />

r<br />

H<br />

* C<br />

Virus concentration with C<br />

R<br />

[L -3 ] <strong>the</strong> concentration at <strong>the</strong><br />

C =<br />

abstraction well at R [L] from <strong>the</strong> source of contamination.<br />

*<br />

C<br />

s<br />

C R<br />

Virus concentration at <strong>the</strong> contamination source<br />

* h<br />

Aquifer thickness<br />

h =<br />

H<br />

πH<br />

2 πH<br />

Horizontal hydraulic conductivity,<br />

*<br />

kr<br />

= kr<br />

= ∑tri<br />

Q Q<br />

where tr<br />

i<br />

[m 2 day -1 ] is <strong>the</strong> transmissivity of i-th aquifer layer.<br />

3<br />

* nπH<br />

Dimensionless removal rate coefficient,<br />

λ = λ<br />

Q<br />

k<br />

Anisotropy ratio<br />

r<br />

m =<br />

k<br />

z<br />

* q<br />

Dilution, where q = 1 m 3 day -1 (Schijven et al., 2006).<br />

Q =<br />

Q<br />

* r * z<br />

Radial and vertical coordinate<br />

r = , z =<br />

H H<br />

2<br />

2<br />

* nπH<br />

* nπH<br />

Radial and vertical pore water velocity<br />

vr = v r<br />

, vz<br />

= vz<br />

Q<br />

Q<br />

* zb<br />

* z Bottom and top of <strong>the</strong> well screen<br />

t<br />

zb<br />

= 1−<br />

, zt<br />

= 1−<br />

H H<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Numerical simulations (FlexPDE)<br />

● Dutch groundwater database<br />

– Dimensionless parameter values of 35 unconfined aquifers<br />

– λ=0.03 day -1 (α =10 -5 , µ l =0.01 log 10 /day)<br />

Dimensionless parameter Mean Min Max Values for numerical simulation<br />

λ* removal rate coefficient 45 0.79 645 0.01, 0.1, 1, 10, 100, 1000<br />

Q* dilution factor 0.00012 0.000037 0.0019 0.0001, 0.001<br />

k r * horizontal hydraulic conductivity 500 4.4 6900 10, 100, 1000<br />

m anisotropy factor 1.6 1 3.5 1, 2, 5, 10<br />

z t * top of well screen 0.72 0.31 1 1, 0.85, 0.75, 0.5<br />

z t *-z b * length of well screen 0.43 0.042 0.82 025, 0.5<br />

H (m) aquifer depth 116 23 334 -<br />

C s * virus source concentration 10 4 …10 8<br />

● 212 cases simulated<br />

● Set vulnerability index r s * to get required removal (such that C * at well =1)<br />

● No effect of k r *<br />

● Fit r s * to vulnerability parameters<br />

49<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


First fitting step: If z t*<br />

=1 (horizontal transport)<br />

● Numerical simulations =><br />

Linear relation lnr s * and lnλ *<br />

● Steady state solution,<br />

neglecting dispersion<br />

ln r<br />

*<br />

s<br />

1<br />

= ln ln<br />

s<br />

Q<br />

2<br />

1<br />

2<br />

[<br />

* *] *<br />

C + ln − ln<br />

r<br />

* 2<br />

s<br />

=<br />

λ<br />

C<br />

Q<br />

* *<br />

s<br />

*<br />

λ<br />

*<br />

● Fit data to<br />

ln r<br />

● R 2 =99.9%<br />

● a 1 = 0.557<br />

● a 2 = 0.467<br />

● Empirical formula<br />

[<br />

* *] *<br />

C + lnQ<br />

a ln<br />

*<br />

s<br />

= a1<br />

ln ln<br />

s<br />

+<br />

r<br />

*<br />

s<br />

2<br />

λ<br />

[<br />

* *<br />

( )] 0.557 * −0.<br />

467<br />

ln C Q<br />

= λ<br />

s<br />

50<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Second fitting step: If z t *


Empirical formula<br />

r<br />

*<br />

s<br />

=<br />

( ) − ⎡<br />

− − * 2.19 *<br />

* * 0.557 * 0.467 * 0.227 * 0.383 −1.17<br />

zt<br />

1.64<br />

*<br />

*<br />

lnC 0.207( −1) [ 0.529 − 2.99 ] * ⎤<br />

sQ<br />

λ Exp Cs<br />

Q λ m zt<br />

Exp zt<br />

zb<br />

⎥ ⎦<br />

⎢⎣<br />

● R 2 =97.9%<br />

52<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


Conclusions<br />

● Empirical formula developed to calculate vulnerability index<br />

(dimensionless setback distance) and setback distance of an<br />

unconfined sandy aquifer to protect against virus contamination<br />

● Deeper unconfined aquifers with deep well screen are less<br />

vulnerable and even more is anisotropy factor m>1<br />

● A higher pumping rate Q increases dilution and flow rate, <strong>the</strong> net<br />

effect is increased vulnerability<br />

● Integral part of Quantitative Microbial Risk Assessment<br />

● Next steps:<br />

– Incorporate in Inspectorate Guideline 5318<br />

– Compare calculated with actual setback distances<br />

53<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GROUNDWATER PROTECTION


GWPCalc<br />

Empirical formula from<br />

numerical calculations,<br />

including vertical<br />

transport<br />

(Schijven et al., 2010)<br />

Virus source<br />

(leaking sewer or<br />

septic tank at<br />

groundwater table)<br />

or any o<strong>the</strong>r<br />

contaminant<br />

Well<br />

screen<br />

Aquifer<br />

thickness H<br />

Required removal:<br />

Source 100 vir/L=><br />

8 log 10<br />

removal=><br />

<strong>Ground</strong>water 10 -6 vir/L=><br />

Infection risk


Example 0<br />

●<br />

●<br />

Unconfined / shallow / well screen high<br />

Most sensitive aquifer thickness, pumping rate<br />

and removal rate coefficient<br />

55<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GWPCalc


Example 1<br />

●<br />

●<br />

Unconfined / less shallow / well screen high<br />

Most sensitive aquifer thickness, pumping rate<br />

and removal rate coefficient<br />

56<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GWPCalc


Example 2<br />

●<br />

●<br />

Unconfined / less shallow / well screen deep<br />

Also sensitive to changes in anisotropy<br />

57<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GWPCalc


Example 3<br />

●<br />

Confined / less shallow / well screen deep<br />

58<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GWPCalc


Example 4<br />

●<br />

●<br />

●<br />

Well screen crosses a confining layer<br />

Virus transport in upper aquifer<br />

Dilution with water from lower, clean aquifer<br />

59<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GWPCalc


Conclusions<br />

● GWPCalc is a tool with a quickand-easy<br />

to use formula to<br />

identify vulnerable sandy aquifers<br />

and situations that require<br />

attention<br />

● GWPCalc be used to identify<br />

sources of contamination<br />

● One removal rate coefficient:<br />

GWPCalc can be used for any<br />

contaminant<br />

GWPCalc<br />

60<br />

Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012<br />

GWPCalc


QUESTIONS?<br />

● GWPCalc is for free<br />

● QMRAspot@rivm.nl<br />

● Jack.Schijven@rivm.nl<br />

61 Field Studies and <strong>Ground</strong>water <strong>Protection</strong> | Feb 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!