20.03.2015 Views

Anti-Islanding Protection Using Histogram Analysis in Self Excited ...

Anti-Islanding Protection Using Histogram Analysis in Self Excited ...

Anti-Islanding Protection Using Histogram Analysis in Self Excited ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

International Research Journal of Applied and Basic Sciences<br />

© 2013 Available onl<strong>in</strong>e at www.irjabs.com<br />

ISSN 2251-838X / Vol, 4 (10): 2897-2907<br />

Science Explorer Publications<br />

<strong>Anti</strong>-<strong>Island<strong>in</strong>g</strong> <strong>Protection</strong> <strong>Us<strong>in</strong>g</strong> <strong>Histogram</strong> <strong>Analysis</strong><br />

<strong>in</strong> <strong>Self</strong> <strong>Excited</strong> Generations W<strong>in</strong>d Turb<strong>in</strong>es<br />

Mehdi Nooshyar 1 , Behrooz Sobhani *1<br />

1. Technical Eng<strong>in</strong>eer<strong>in</strong>g Department, University of Mohaghegh Ardabili, Ardabil, Iran<br />

∗ Correspond<strong>in</strong>g author email :b.sobhany@gmail.com<br />

ABSTRACT: Increas<strong>in</strong>g distributed resources create many problems <strong>in</strong> power systems. One of these<br />

problems is unwanted island<strong>in</strong>g phenomenon. Due to several reasons concern<strong>in</strong>g such as personnel and<br />

equipment safety, this condition should be detect <strong>in</strong> the fastest possible time. This paper is proposed a<br />

novel passive island<strong>in</strong>g detection algorithm based on voltage histogram analysis for w<strong>in</strong>d turb<strong>in</strong>es. The<br />

proposed method measures the voltage signal of w<strong>in</strong>d turb<strong>in</strong>e and detects island<strong>in</strong>g condition based on<br />

its mean square error. In order to reliable and fast detection, the sampl<strong>in</strong>g w<strong>in</strong>dow is selected from<br />

system time constant <strong>in</strong> island<strong>in</strong>g mode. The presented studies are based on time-doma<strong>in</strong> simulations<br />

us<strong>in</strong>g MATLAB, The results evaluation confirm that the proposed island<strong>in</strong>g detection method succeeds <strong>in</strong><br />

detect<strong>in</strong>g island<strong>in</strong>g mode from other switch<strong>in</strong>g conditions. Other contributed of proposed method is nondetection<br />

zone reduction of the system and also the reliability and fastness of detection process is<br />

<strong>in</strong>creased.<br />

Keywords: <strong>Island<strong>in</strong>g</strong> Detection, W<strong>in</strong>d Turb<strong>in</strong>e, <strong>Histogram</strong> algorithm, Distributed Generation, MSE<br />

INTRODUCTION<br />

DGs generally refer to Distributed Energy Resources (DERs), <strong>in</strong>clud<strong>in</strong>g photovoltaic, fuel cells, micro turb<strong>in</strong>es,<br />

small w<strong>in</strong>d turb<strong>in</strong>es, and additional equipment. In recent years, the <strong>in</strong>crease of distributed resources <strong>in</strong> the electric<br />

utility systems with ongo<strong>in</strong>g technological, social, economical and environmental aspects shows high depth of<br />

penetration of Distributed Generations (DGs). With improv<strong>in</strong>g <strong>in</strong> DGs technologies and power electronics, DG units<br />

have become more competitive aga<strong>in</strong>st the conventional centralized system. Hence, it attracts many customers<br />

from <strong>in</strong>dustrial, commercial, and residential sectors (Ze<strong>in</strong>eld<strong>in</strong> et al., 2006; Chiang et al., 2012; Jiayi et al., 2008)<br />

Many utilities around the world already have significant penetration of DGs <strong>in</strong> their system. Annually, the total<br />

global <strong>in</strong>stalled w<strong>in</strong>d capacity at the end of 2010 was 2.5% of the total global demand. Based on the current growth<br />

rates, World Wide Energy Association (WWEA) predicts that, <strong>in</strong> end of the year 2020, at least 1500 GW can be<br />

expected to be <strong>in</strong>stalled globally (www.renewableenergyworld.com). When the distributed generation systems are<br />

operated <strong>in</strong> parallel with utility power systems, especially with reverse power flow, the power quality problems<br />

become significant. Power quality problems <strong>in</strong>clude frequency deviation, voltage fluctuation, harmonics and<br />

reliability of the power system. In addition, one of the technical issues created by DG <strong>in</strong>terconnection is <strong>in</strong>advertent<br />

island<strong>in</strong>g (Dash et al., 2012; Ze<strong>in</strong>eld<strong>in</strong> et al., 2006). <strong>Island<strong>in</strong>g</strong> occurs when a DG and its local load become<br />

electrically isolated from the utility; meanwhile, the DG produces electrical energy and supplies the local load<br />

(Jayaweera et al., 2007). <strong>Island<strong>in</strong>g</strong> condition causes abnormal operation <strong>in</strong> the power system and also causes<br />

negative impacts on protection, operation, and management of distribution systems. Therefore, it is necessary to<br />

effectively detect the island<strong>in</strong>g conditions and swiftly disconnect DG from the network. Exist<strong>in</strong>g standard thus do<br />

not permit DGs to be utilized <strong>in</strong> island<strong>in</strong>g mode (Ze<strong>in</strong>eld<strong>in</strong> et al., 2007) because <strong>Island<strong>in</strong>g</strong> creates many problems<br />

(Ze<strong>in</strong>eld<strong>in</strong> et al., 2007; Swisher et al., 2001) <strong>in</strong> power systems such as: Safety hazards for personnel, Power quality<br />

problems for customers load, overload conditions of DG, out-of-phase recloser connections. In order to avoid the<br />

above problems occurr<strong>in</strong>g, island<strong>in</strong>g conditions should be detected with<strong>in</strong> less than 2 s (Wilsun et al., 2004).<br />

Orig<strong>in</strong>ally, the methods of island<strong>in</strong>g detection were divided <strong>in</strong>to two categories: communication and local. Local<br />

methods were classified as active and passive techniques, <strong>in</strong> which active techniques are based on direct<br />

<strong>in</strong>teraction with the ongo<strong>in</strong>g power system operation (Ze<strong>in</strong>eld<strong>in</strong> et al., 2007). Some important active techniques are<br />

impedance measurement, frequency shift and active frequency drift (Chowdhury et al., 2009), current <strong>in</strong>jection


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

(González and Iravani., 2006), Sandia frequency shift and Sandia voltage shift (John and Kolwalkar., 2004), and<br />

negative phase sequence current <strong>in</strong>jection (Karimi et al., 2008). Active methods usually used <strong>in</strong> converter based<br />

distributed generator. Passive techniques that used <strong>in</strong> <strong>in</strong>duction w<strong>in</strong>d turb<strong>in</strong>e generator are based on<br />

measurements and <strong>in</strong>formation at the local site. Over/under voltage and frequency (Kazemi and Sobhani., 2012) is<br />

one of the simplest passive methods used <strong>in</strong> island<strong>in</strong>g detection. Unfortunately, if the load and the generation on<br />

the island are closely matched, the change <strong>in</strong> voltage and frequency might be very small and with<strong>in</strong> the thresholds,<br />

thus lead<strong>in</strong>g to an undetected island<strong>in</strong>g situation. Other passive techniques have been proposed based on<br />

monitor<strong>in</strong>g rate of change of frequency (ROCOF)(El-Arroudi et al., 2007) and Rate of change of phase angle drift<br />

(ROCOPAD), phase angle displacement, rate of change of generator power output (Chowdhury et al.,2009),<br />

impedance monitor<strong>in</strong>g, the THD technique, non detection zone concept (Zhihong et al.,2004), vector surge and<br />

phase displacement monitor<strong>in</strong>g (Kunte and Gao .,2008) and the wavelet transform function (Hsieh et al., 2008).<br />

This paper <strong>in</strong>troduces a novel approach for island<strong>in</strong>g detect<strong>in</strong>g based on voltage histogram signal that reduce<br />

the NDZ. High distortion <strong>in</strong> voltage signal measurement is caused the Mean Absolute Error (MAE) of island<strong>in</strong>g<br />

mode voltage become very higher than grid connected mode. In order to detect island<strong>in</strong>g condition of w<strong>in</strong>d<br />

turb<strong>in</strong>es, we use of this MAE signal of voltage <strong>in</strong> this paper. The results <strong>in</strong> several conditions of local loads can be<br />

prov<strong>in</strong>g this pretense and illustrate its robust performance for island<strong>in</strong>g detection. This approach measures the<br />

voltage signal at the target distributed generation location and feeds it to the proposed histogram based algorithm<br />

<strong>in</strong> order to detect the island<strong>in</strong>g condition from other conditions.<br />

The proposed technique, which is suitable for asynchronous DGs, is expla<strong>in</strong>ed <strong>in</strong> Section 2. In Section 3 the<br />

simulation test system that used to verify the effectiveness of the proposed method is present. Section 4 explores<br />

the mathematical model and Non-Detection Zones concepts. Effectiveness and robustness of the proposed<br />

algorithm applied to the simulation test systems is present <strong>in</strong> section 5 and Section 6 concludes the paper. The<br />

simulation test systems were simulated <strong>in</strong> MATLAB/SIMULINK. The simulation results show that the proposed<br />

island<strong>in</strong>g detection technique can successfully detect island<strong>in</strong>g operations with<strong>in</strong> acceptable time duration.<br />

Proposed Algorithm<br />

Normalized <strong>Histogram</strong><br />

Let { 0,1,2,...,<br />

M −1}<br />

denote the M dist<strong>in</strong>ct values <strong>in</strong> a discrete signal of size N samples, and let n i denote the<br />

number of samples with value i. The total number, N, of samples is N = n0 + n1<br />

+ ... + nM<br />

−1<br />

. The normalized<br />

ni<br />

histogram has components (samples) pi = , from which it follows that:<br />

N<br />

M<br />

− 1<br />

p i = 1<br />

(1)<br />

i=<br />

0<br />

Inter <strong>Histogram</strong> Mean Square Error (IHMSE)<br />

We <strong>in</strong>troduce a measure for calculat<strong>in</strong>g the difference between two histograms and call it Inter <strong>Histogram</strong> Mean<br />

Square Error (IHMSE). Consider two histograms H 1 and H 2 . If the total number of dist<strong>in</strong>ct values (M) for two<br />

histograms are the same and ph ji shows the ith normalized component (i=1,2 …,M) of jth (j=1,2) histogram, the<br />

IHMSE between H1 and H2 is calculated as follows:<br />

1 K<br />

− 1<br />

2<br />

IHMSE ( H 1,<br />

H 2 ) = ( n i 1 − n i 2 )<br />

(2)<br />

K i = 0<br />

For each possible pairs of the histograms of island<strong>in</strong>g cases the IHMSE values are calculated and reported.<br />

Similarly for each possible pairs of the histograms of non-island<strong>in</strong>g cases the IHMSE values are calculated and<br />

reported. These IHMSE values are called Auto IHMSE (AIHMSE) because they represent difference between two<br />

histograms which related to the similar conditions. An IHMSE value, which is calculated between an island<strong>in</strong>g case<br />

histogram and a non-island<strong>in</strong>g case histogram, is called Cross IHMSE (CIHMSE) (Nobuyuki Otsu.,1979).<br />

The average value of CIHMSE is greater than the average value of AIHMSE. This difference between CIHMSE<br />

and AIHMSE values is motivated us to <strong>in</strong>troduce an approach to classify an unknown condition, based on the<br />

calculation of IHMSE (between it and known island<strong>in</strong>g or non-island<strong>in</strong>g cases), <strong>in</strong>to island<strong>in</strong>g cases or nonisland<strong>in</strong>g<br />

cases.<br />

2898


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

Suppose that we have NI known island<strong>in</strong>g cases and NN known non-island<strong>in</strong>g cases, These cases are the<br />

tra<strong>in</strong><strong>in</strong>g cases of the proposed method, then we can calculate (NI 2 + NN 2 ) and (NI×NN) possible AIHMSE and<br />

CIHMSE values respectively. All of the AIHMSE and CIHMSE values (The number of them is: NI 2 + NN 2 + NI×NN)<br />

are sorted and the histogram of them is considered. This histogram is called IHMSE histogram. It is expected that<br />

the IHMSE histogram will be a bipartite histogram <strong>in</strong> which the CIHMSE values are placed <strong>in</strong> one part and the<br />

AIHMSE values are placed <strong>in</strong> another part. Thus, a proper threshold value, we call it k*, separate the IHMSE<br />

histogram <strong>in</strong>to two groups.<br />

The value of k* can be found by an appropriate threshold<strong>in</strong>g method such as Otsu method (Nobuyuki<br />

Otsu.,1979). For an unknown case if its voltage histogram is accessible, the IHMSE values between it and known<br />

island<strong>in</strong>g cases are calculated. The average value of these IHMSEs is called as k 1 . Similarly the IHMSE values<br />

between it and known non-island<strong>in</strong>g cases are calculated and the average value of these IHMSEs is called as k 2 .<br />

By Compar<strong>in</strong>g of the value of k* with k 1 and k 2 we can determ<strong>in</strong>e the condition of the unknown case.<br />

Case Study<br />

S<strong>in</strong>gle l<strong>in</strong>e diagram of study system <strong>in</strong> this research, is shown <strong>in</strong> Fig 1. The DG unit is a w<strong>in</strong>d turb<strong>in</strong>e <strong>in</strong>duction<br />

generator which its rated voltage is 0.69 kV and is connected to a Po<strong>in</strong>t of Common Coupl<strong>in</strong>g (PCC) with a step-up<br />

transformer that its rated power is 1.5MVA. The local load is a three-phase parallel RL before the circuit breaker<br />

(CB), <strong>in</strong> which “r” stands for the series resistance <strong>in</strong>ductance and R L is the parallel load that connected to system <strong>in</strong><br />

Y connection. In order to correction the power factor a capacitor bank is used. Local load and system parameters<br />

are given <strong>in</strong> Table 1. In the grid-connected condition, the island<strong>in</strong>g mode occurs when SW2 is open. For the<br />

evaluation of island<strong>in</strong>g detection techniques the parallel R L is traditionally adopted as the local load when the load<br />

<strong>in</strong>ductance is adjusted to the system frequency. The amount of local load and capacitor should be set to allowable<br />

amount, that <strong>in</strong> island<strong>in</strong>g condition the voltage, current and frequency rema<strong>in</strong> <strong>in</strong> allowable value.<br />

It should be noted that the frequency and voltage of DG should have admissible values <strong>in</strong> both grid-connected<br />

and islanded modes. In the grid-connected condition, the voltage magnitude and frequency of the local load at the<br />

PCC are regulated by the grid.<br />

Figure 1. S<strong>in</strong>gle l<strong>in</strong>e diagram of study system<br />

Table1. Parameters of test system<br />

DG nom<strong>in</strong>al power<br />

660KVA<br />

Voltage rms (L-L)<br />

0.69kV<br />

r s 0.5269<br />

L s<br />

17.1mH<br />

Nom<strong>in</strong>al freguency<br />

50HZ<br />

R<br />

2667<br />

L 2.37H<br />

C<br />

1.592F<br />

2899


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

Mathematical Model<br />

System model<strong>in</strong>g<br />

State-space mathematical model for the islanded system have been provide <strong>in</strong> this section. In the island<strong>in</strong>g<br />

mode, the circuit model of w<strong>in</strong>d turb<strong>in</strong>e with fixed w<strong>in</strong>d speed has shown <strong>in</strong> Fig .2 a. and the simple model shown <strong>in</strong><br />

Fig .2 b. It is assumed that the DG unit and the local load are balanced three-phase subsystems with<strong>in</strong> the island.<br />

The state space equations of the potential island of Fig. 2 <strong>in</strong> the standard state space form are<br />

.<br />

X ( t)<br />

=<br />

y(<br />

t)<br />

= CX ( t)<br />

u ( t)<br />

=<br />

AX ( t)<br />

+ Bu ( t)<br />

v td<br />

In balanced three-phase subsystems with<strong>in</strong> the island, the state-space model is:<br />

<br />

abc<br />

di ( t)<br />

abc<br />

g<br />

abc abc<br />

v<br />

g ( t)<br />

= Ls<br />

+ rsi<br />

g ( t)<br />

+ vt<br />

( t)<br />

<br />

dt<br />

<br />

abc<br />

abc abc dvt<br />

( t)<br />

1 abc<br />

i<br />

g ( t)<br />

= im<br />

( t)<br />

+ C + vt<br />

( t)<br />

<br />

dt RL<br />

<br />

abc<br />

( t)<br />

<br />

abc dim<br />

abc<br />

vt<br />

( t)<br />

= Lm<br />

+ rmim<br />

( t)<br />

<br />

dt<br />

(3)<br />

(4)<br />

r s<br />

L ls<br />

L ' lr<br />

R L<br />

L<br />

r<br />

C<br />

L m<br />

R r<br />

s<br />

+<br />

V t R L<br />

−<br />

i L<br />

L m<br />

r m<br />

i m<br />

i c<br />

C<br />

r s<br />

L s<br />

i g<br />

V g<br />

Figure 2. Model of case study a) orig<strong>in</strong>al model b) simple model<br />

<br />

v<br />

<br />

<br />

ig<br />

<br />

<br />

vt<br />

<br />

In the αβ -frame, dynamic model of system is<br />

αβ<br />

g<br />

αβ<br />

αβ<br />

( t)<br />

( t)<br />

=<br />

( t)<br />

=<br />

αβ<br />

m<br />

m<br />

αβ<br />

g<br />

di<br />

= Ls<br />

dt<br />

i<br />

L<br />

( t)<br />

+ C<br />

αβ<br />

m<br />

di<br />

dt<br />

( t)<br />

( t)<br />

+ r i<br />

αβ<br />

t<br />

dv<br />

dt<br />

αβ<br />

s g<br />

( t)<br />

αβ<br />

m m<br />

+ r i<br />

( t)<br />

( t)<br />

+ v<br />

L<br />

αβ<br />

t<br />

1<br />

+ v<br />

R<br />

αβ<br />

t<br />

( t)<br />

( t)<br />

With transfer to rotat<strong>in</strong>g reference frame (<br />

condition and V t as reference frame:<br />

x<br />

αβ =<br />

x dq e<br />

(5)<br />

jθ<br />

) and assum<strong>in</strong>g of constant frequency <strong>in</strong> islanded<br />

2900


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

di<br />

( t)<br />

gd 1 r<br />

= v ( t)<br />

− s i ( t)<br />

+ ωi<br />

( t)<br />

−<br />

dt L gd L gd gq<br />

s s<br />

<br />

di<br />

( t)<br />

gq<br />

1<br />

= −ωi<br />

( t)<br />

− ωi<br />

( t)<br />

+ v ( t)<br />

dt gd gd L tq<br />

s<br />

<br />

dv<br />

( t)<br />

td 1 1 1<br />

= i ( t)<br />

− i ( t)<br />

− v ( t)<br />

gd md td<br />

dt C C CR<br />

L<br />

<br />

<br />

di ( t)<br />

md 1<br />

rm<br />

= v t + ωi<br />

t − i t<br />

<br />

td ( ) mq ( ) md ( )<br />

dt L<br />

L<br />

<br />

m<br />

m<br />

di<br />

( t)<br />

r<br />

mq<br />

= −ωi<br />

( t)<br />

− m i ( t)<br />

dt md L mq<br />

<br />

m<br />

ωCv<br />

= i − i<br />

td gd mq<br />

1<br />

v<br />

L td<br />

s<br />

( t)<br />

F<strong>in</strong>ally the state-space equation can be written as follow:<br />

rs<br />

1 <br />

− ω0<br />

0 -<br />

• Ls<br />

L <br />

s<br />

igd<br />

<br />

<br />

r<br />

i<br />

m CRLω<br />

rs<br />

L <br />

0 − mω0<br />

i<br />

ω<br />

<br />

0 − − 2ω0<br />

gq<br />

L<br />

i<br />

<br />

m<br />

LmR<br />

<br />

=<br />

L<br />

i<br />

r<br />

<br />

md<br />

<br />

m 1 2 i<br />

<br />

0 ω0<br />

−<br />

− ω0C<br />

<br />

v<br />

L<br />

td <br />

m Lm<br />

<br />

<br />

1<br />

1 1 <br />

0 −<br />

<br />

C<br />

C CRL<br />

<br />

[ i i v v ] T<br />

gd<br />

gq<br />

td<br />

tq<br />

gd<br />

gq<br />

md<br />

v<br />

tq<br />

1<br />

<br />

<br />

L <br />

s<br />

<br />

<br />

+ 0<br />

<br />

<br />

0 <br />

<br />

<br />

0<br />

<br />

[ v ]<br />

x = (8)<br />

[ y] [ 0 0 1 0]x<br />

= (9)<br />

The transfer function of state-space model is given by<br />

−1<br />

Y ( s)<br />

= C.(<br />

SI − A)<br />

. B<br />

(10)<br />

( s) Y (s)<br />

V d = (11)<br />

2<br />

(1.5s + 15.63s<br />

+ 14790) e4<br />

V td ( s)<br />

= (12)<br />

4<br />

3<br />

2<br />

(4.0e<br />

− 4) s + 1.359s<br />

+ 1.542e4s<br />

+ 6.266e5s<br />

+ 1517e6<br />

The step response of output voltage is plotted <strong>in</strong> Fig. 3.<br />

gd<br />

(6)<br />

(7)<br />

2901


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

Figure 3 . Step response of V td (s) of case study<br />

From of Fig. 3, the transient response time is about 0.15 seconds, we consider 0.15 second for analysis time to<br />

achieve reliable detection from of step response.<br />

Non Detection Zone (NDZ)<br />

In order to determ<strong>in</strong>e the performance of island<strong>in</strong>g detection method Non detection Zone (NDZ) is one of the<br />

important characteristics. NDZ is def<strong>in</strong>ed as an operat<strong>in</strong>g region where island<strong>in</strong>g conditions cannot be detected <strong>in</strong> a<br />

timely manner. In this region power mismatch between production and consumption have a small value. In this part<br />

of study, NDZ based on OVP/UVP and OFP/UVP is determ<strong>in</strong>ed. This method is implemented for constant current<br />

controlled <strong>in</strong>verters. In order to determ<strong>in</strong>e the amount of mismatch for which the OVP/UVP and OFP/UFP will fail to<br />

detect island<strong>in</strong>g, the amount of active power mismatch <strong>in</strong> terms of load resistance can be expressed as follows:<br />

∆P = 3 × V × I −3×<br />

( V + ∆V<br />

) × I = −3×∆V<br />

× I<br />

(13)<br />

Which V and I show the rated voltage and current, respectively. Acceptable voltage range <strong>in</strong> distribution network is<br />

between 0.88 pu and 1.1 pu. These voltage levels are equivalent to ∆V pu = − 0. 12 and ∆V<br />

pu = 0. 1, respectively.<br />

The calculated imbalance amount by the Eq. (13) for our test network (the output power <strong>in</strong> match condition is 150<br />

kW), are 18 kW and -15 kW, respectively. Frequency and voltage of an RLC load has the active and reactive power<br />

as follows:<br />

P<br />

Q<br />

L<br />

L<br />

V<br />

R<br />

2<br />

t<br />

= (14)<br />

L<br />

2<br />

1 <br />

= V <br />

<br />

t<br />

− ωC<br />

ωLm<br />

<br />

Where, , P and Q are the load frequency, active and reactive power, respectively. In grid connected condition,<br />

the voltage of PCCC is dictated by the ma<strong>in</strong> grid. Once the island is occurred, the deviation of PCC voltage leads to<br />

active power imbalance from the nom<strong>in</strong>al values. S<strong>in</strong>ce the output power of the <strong>in</strong>verter is <strong>in</strong> unity power factor,<br />

before island<strong>in</strong>g reactive power of load is supplied just by network and after island<strong>in</strong>g the amount of reactive power<br />

imbalance is equal to the consumed load before island<strong>in</strong>g, hence we have:<br />

2<br />

2<br />

2 V <br />

( )<br />

<br />

t ω<br />

<br />

n<br />

1 − ω LmC<br />

= 3<br />

1 −<br />

ω n Lm<br />

ω r <br />

2<br />

Vt<br />

∆ = 3<br />

2<br />

ω n Lm<br />

Q (16)<br />

(15)<br />

2902


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

Where ω n and ω r are rated frequency and resonance frequency of load, respectively. resonance frequency<br />

generate from imbalance power, then the frequency changes after the island<strong>in</strong>g occurrence is equal to the<br />

difference between network frequency and load resonance frequency.<br />

1<br />

ω r = ω n ± ∆ω , ω r =<br />

(17)<br />

L m C<br />

Thus, the reactive power imbalance needed for certa<strong>in</strong> changes <strong>in</strong> frequency can be obta<strong>in</strong>ed by,<br />

2<br />

<br />

2<br />

V<br />

<br />

t <br />

f n<br />

∆Q<br />

= 3 1 −<br />

ω<br />

2<br />

L ( f − ∆f<br />

) (18)<br />

n m<br />

n <br />

In this study, the acceptable frequency range consider between 49.7 and 50.3Hz which are equal to ∆f = −0. 3<br />

and ∆ f = 0. 3 Hz. thereupon, the amounts of reactive power imbalances are 6.393kVAr and -6.51kVAr,<br />

respectively.<br />

Figure 4.NDZ for the study test system<br />

SIMULATION RESULTS<br />

In this section, the test system shown <strong>in</strong> Fig. 1 has been simulated by MATLAB/Simul<strong>in</strong>k. The rated parameters<br />

of system, DG, and load are listed <strong>in</strong> Table.1. The proposed island<strong>in</strong>g detection method has been also tested for<br />

various conditions.<br />

<strong>Island<strong>in</strong>g</strong> Mode Test<br />

In order to shows the performance of the proposed technique, the various load conditions is analyzed <strong>in</strong> island<strong>in</strong>g<br />

mode. When the imbalance of reactive power value is equal to zero and active power value is <strong>in</strong> NDZ range, <strong>in</strong> this<br />

conditions the island<strong>in</strong>g detection is more difficult to identify. The details of the test load conditions are presented <strong>in</strong><br />

Table.2. Addition, the load quality factor is equal to 1.8 which is the maximum recommended amount <strong>in</strong> standards.<br />

Power (kW)<br />

R (k)<br />

L (mH)<br />

C(mF)<br />

Table2. various loads for island<strong>in</strong>g mode test<br />

Case1 Case2 Case3 Case4<br />

146<br />

147 148 152<br />

2.7397 2.7211 2.7027 2.6316<br />

3.192 3.192 3.192 3.192<br />

3.174 3.174 3.174 3.174<br />

Case5<br />

154<br />

2.5974<br />

3.192<br />

3.174<br />

Case6<br />

156<br />

2.5641<br />

3.192<br />

3.174<br />

For tested load conditions that are presented <strong>in</strong> Table.2. Circuit breaker of w<strong>in</strong>d turb<strong>in</strong>e opens at t=3 sec and<br />

w<strong>in</strong>d turb<strong>in</strong>e with its local loads isolated from power grid and island<strong>in</strong>g mode is occurred. Effective value of voltage<br />

and frequency of the PCC for each case is plotted <strong>in</strong> Fig.5. and Fig. 6, respectively. <strong>Histogram</strong> of voltage signal for<br />

2903


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

<strong>Island<strong>in</strong>g</strong> condition is illustrated <strong>in</strong> Fig. 7. The mean square error of voltage histograms between these studies is<br />

represented <strong>in</strong> table (3). It can be seen, that the value of MSE <strong>in</strong> this conditions between each two island<strong>in</strong>g<br />

conditions is variant <strong>in</strong> 0-19.87 range.<br />

Figure 5. Effective voltage waveform of the system <strong>in</strong> island<strong>in</strong>g modes<br />

Figure 6. the frequency of system for island<strong>in</strong>g conditions<br />

Figure 7. <strong>Histogram</strong> signal of voltage for island<strong>in</strong>g mode test<br />

2904


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 1<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 2<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 3<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 4<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 5<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 6<br />

Table 3. MSE between each two <strong>Island<strong>in</strong>g</strong> conditions (IHMSE values)<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 1<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 2<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 3<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 4<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 5<br />

<strong>Island<strong>in</strong>g</strong><br />

Condition 6<br />

0 9.16 17 15.04 11.76 18.6<br />

9.16 0 8.84 9.8 14.44 11.66<br />

17 8.84 0 8.96 16.62 10.58<br />

15.04 9.8 8.96 0 16.28 12.82<br />

11.76 14.44 16.62 16.28 0 19.78<br />

18.6 11.66 10.58 12.82 19.78 0<br />

Switch<strong>in</strong>g Condition<br />

In this section, the other switch<strong>in</strong>g conditions such as load, motor and capacitor bank that details is present <strong>in</strong><br />

Table.4 at the time t = 3sec, island<strong>in</strong>g conditions is applied to the system. Effective voltage waveform and its<br />

frequency are represented <strong>in</strong> Fig.8 and Fig.9 respectively. <strong>Histogram</strong> of voltage signal <strong>in</strong> these conditions is<br />

illustrated <strong>in</strong> Fig. 10. MSE value of voltage histogram signals between each two switch<strong>in</strong>g condition are shown <strong>in</strong><br />

Table 5.<br />

Power (kW)<br />

R (k)<br />

L (H)<br />

C(F)<br />

Table 4. Parameters of various load <strong>in</strong> switch<strong>in</strong>g condition<br />

Case1<br />

Case2<br />

Case3<br />

(Load switch<strong>in</strong>g) (Load switch<strong>in</strong>g) (motor start<strong>in</strong>g)<br />

75kW<br />

(Out)<br />

5.33<br />

35.1<br />

0.289<br />

75kW<br />

(IN)<br />

5.33<br />

35.1<br />

0.289<br />

60kW<br />

Power<br />

factor=0.78 lag<br />

(In)<br />

Case4<br />

(Capacitor<br />

switch<strong>in</strong>g)<br />

40kVAr<br />

Figure 8. Effective voltage waveform of the system <strong>in</strong> switch<strong>in</strong>g conditions<br />

Figure 9 . the frequency of system for switch<strong>in</strong>g conditions<br />

2905


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

Figure10. <strong>Histogram</strong> signal of voltage for switch<strong>in</strong>g mode<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 1<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 2<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 3<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 4<br />

Table 5. MSE between each two switch<strong>in</strong>g test conditions (IHMSE values)<br />

Non <strong>Island<strong>in</strong>g</strong> Condition<br />

1<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 2<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 3<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 4<br />

0 5.88 9.96 6.06<br />

5.88 0 7.60 7.56<br />

9.96 7.60 0 10.50<br />

6.06 7.56 10.50 0<br />

Proposed Algorithm for the case under study<br />

Figure 7 and Fig. 10 show histograms for voltage signals of six different cases of island<strong>in</strong>g conditions and<br />

histograms for voltage signals of four different cases of non-island<strong>in</strong>g conditions, respectively. For each possible<br />

pairs of the histograms of island<strong>in</strong>g cases (Fig.7) the IHMSE values are calculated and reported <strong>in</strong> Table 3.<br />

Similarly for each possible pairs of the histograms of non-island<strong>in</strong>g cases (Fig.10) the IHMSE values are calculated<br />

and reported <strong>in</strong> Table 5. Table 6 shows all 24 possible values of CIHMSE values for the histograms of Figs.<br />

Obviously the average value of CIHMSE is greater than the average value of AIHMSE. From of these values that<br />

their m<strong>in</strong>imum is greater than maximum IHMSE values for each group (island<strong>in</strong>g and non-island<strong>in</strong>g), island<strong>in</strong>g<br />

condition can be classified from other condition.<br />

Table 6. MSE between each switch<strong>in</strong>g and island<strong>in</strong>g test conditions (CIHMSE values)<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 1<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 2<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 3<br />

Non <strong>Island<strong>in</strong>g</strong><br />

Condition 4<br />

<strong>Island<strong>in</strong>g</strong> <strong>Island<strong>in</strong>g</strong> <strong>Island<strong>in</strong>g</strong> <strong>Island<strong>in</strong>g</strong> <strong>Island<strong>in</strong>g</strong> <strong>Island<strong>in</strong>g</strong><br />

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6<br />

37.3 29.26 25.78 26.34 30.1 22.56<br />

39.08 31.72 27.50 27.42 31.16 25.40<br />

39.48 34.20 31.54 29.34 34.84 28.98<br />

37.08 30.62 26.96 25.86 30.22 23.18<br />

2906


Intl. Res. J. Appl. Basic. Sci. Vol., 4 (10), 2897-2907, 2013<br />

CONCLUSION<br />

Increas<strong>in</strong>g of distributed generat<strong>in</strong>g units and enlarged size of them <strong>in</strong> a modern power system is caused the<br />

protection aga<strong>in</strong>st island<strong>in</strong>g has become extremely challeng<strong>in</strong>g nowadays. The island<strong>in</strong>g condition of distributed<br />

generation should be detected due to safety reasons and to ma<strong>in</strong>ta<strong>in</strong> quality of power supplied to the customers.<br />

Voltage histogram based analysis is proposed for island<strong>in</strong>g detection of w<strong>in</strong>d turb<strong>in</strong>es <strong>in</strong> this paper. Reduc<strong>in</strong>g the<br />

NDZ to as close as possible and fast detection are the ma<strong>in</strong> contribute of the proposed technique <strong>in</strong> this paper. In<br />

order to show the performance of the proposed method, the test w<strong>in</strong>d turb<strong>in</strong>e system simulated <strong>in</strong> MATLAB<br />

software. Six island<strong>in</strong>g condition <strong>in</strong> NDZ and four switch<strong>in</strong>g condition <strong>in</strong> test system are simulated and proposed<br />

island<strong>in</strong>g detection applied to these conditions.<br />

The results show the suitable reliability of the proposed method under different load conditions, such as load<br />

and capacitor bank switch<strong>in</strong>g and motor start<strong>in</strong>g that island<strong>in</strong>g detection under these conditions is difficult. The<br />

method was able to detect the island<strong>in</strong>g condition of an <strong>in</strong>duction generator type of a w<strong>in</strong>d turb<strong>in</strong>e with<strong>in</strong> less than<br />

0.15 s.<br />

REFERENCES<br />

Ze<strong>in</strong>eld<strong>in</strong> H H. , Saadany E F EL, Salama M M A. 2006. <strong>Island<strong>in</strong>g</strong> Detection of Inverter Based distributed Generation, IEE<br />

Proc.Gener.Transm.Distrib. 153: 644-652<br />

Chiang W J, Jou H L, Wu J C. 2012. Active island<strong>in</strong>g detection method for <strong>in</strong>verter-based distribution generation power. International Journal of<br />

Electrical Power & Energy Systems. 42: 158-166<br />

Jiayi H, Chuanwen J, Rong X. 2008. A review on distributed energy resources and micro-grid, Renew, Sust Energ Rev: 2472-2483.<br />

http://www.renewableenergyworld.com/rea/news/article/2011/05/worldw<strong>in</strong>d-outlook-down-but-not-out.<br />

Dash P K, Padhee M, Barik S K. 2012. Estimation of power quality <strong>in</strong>dices <strong>in</strong> distributed generation systems dur<strong>in</strong>g power island<strong>in</strong>g conditions,<br />

International Journal of Electrical Power & Energy Systems. 36: 18-30<br />

Ze<strong>in</strong>eld<strong>in</strong> H H, El-Saadany Ehab F, Salama MMA. 2006. Impact of DG <strong>in</strong>terface control on island<strong>in</strong>g detection and non-detection zones, IEEE<br />

Trans Power Delivery. 21:1515–23.<br />

Jayaweera D, Galloway S, Burt G, McDonald JR. 2007. A sampl<strong>in</strong>g approach for <strong>in</strong>tentional island<strong>in</strong>g of distributed generation, IEEE Trans. on<br />

Power Syst. 22: 514-21.<br />

Ze<strong>in</strong>eld<strong>in</strong> HH, Abdel-Galil T, El-Saadany EF, Salama MMA. 2007. <strong>Island<strong>in</strong>g</strong> detection of grid connected distributed generators us<strong>in</strong>g TLS-<br />

ESPRIT, Electr. Power Syst Res, 77: 155-62.<br />

Wilsun X, Konrad M, Sylva<strong>in</strong> M. 2004. An assessment of DG island<strong>in</strong>g detection methods and issues for Canada, CETC-Varennes. 074: 1-6.<br />

Swisher R, De Azua CR, Clenden<strong>in</strong> J. 2001. Strong w<strong>in</strong>ds on the horizon: w<strong>in</strong>d power comes of age, Proceed<strong>in</strong>gs of the IEEE. 89: 1757-64.<br />

Chowdhury SP, Chowdhury S, Crossley PA. 2009. <strong>Island<strong>in</strong>g</strong> protection of active distribution networks with renewable distributed generators: a<br />

comprehensive survey. Electr Power Syst Res. 79: 1-9.<br />

Hernández-González G, Iravani R. 2006. Current <strong>in</strong>jection for active island<strong>in</strong>g detection of Electronically-Interfaced distributed resources. IEEE<br />

Trans On Power Deliv. 2: 1698-1705.<br />

John V, Ye Z, Kolwalkar A. 2004. Investigation of anti island<strong>in</strong>g protection of power converter based distributed generators us<strong>in</strong>g frequency<br />

doma<strong>in</strong> analysis, IEEE Trans on Power Electronic. 19(5): 1177-1183.<br />

Karimi H, Yazdani A, Iravani R. 2008. Negative-sequence current <strong>in</strong>jection for fast island<strong>in</strong>g detection of distributed resource unit, IEEE Trans<br />

on Power Deliv. 23(1): 493-501.<br />

Kazemi Karegar H, Sobhani B. 2012. Wavelet transform method for island<strong>in</strong>g detection of w<strong>in</strong>d turb<strong>in</strong>es, Renewable Energy. 38 : 94-106<br />

El-Arroudi K, Joós G, Kamwa I, McGillis DT. 2007. Intelligent based approach to island<strong>in</strong>g detection <strong>in</strong> distributed generation, IEEE Trans on<br />

Power Deliv. 22: 825-35.<br />

Zhihong Y, Kolwalkar A, Zhang Y, Du P, Wall<strong>in</strong>g R. 2004. Evaluation of anti-island<strong>in</strong>g schemes based on non detection zone concept, IEEE<br />

Trans of Power Electronic. 19: 1171-1176.<br />

Kunte SR, Gao W. (2008). Comparison and review of island<strong>in</strong>g detection techniques for distributed energy resources, IEEE 40th North<br />

American Power Symposium, 28-30 Sept: 1-8.<br />

Hsieh CT, L<strong>in</strong> JM, Huang SJ. 2008. Enhancement of island<strong>in</strong>g-detection of distributed generation systems via wavelet transform-based<br />

approaches, International Journal of Electrical Power & Energy Systems 30(10): 575-580.<br />

Nobuyuki Otsu, "A Threshold Selection Method from Gray-Level <strong>Histogram</strong>s," IEEE trans. on systems, Vol SMC-9, No.1, 1979.<br />

2907

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!