20.03.2015 Views

Download the slides

Download the slides

Download the slides

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CCCC – p. 1<br />

Covariant Canonical Cwantum Cosmology<br />

Martin Bojowald<br />

The Pennsylvania State University<br />

Institute for Gravitation and <strong>the</strong> Cosmos<br />

University Park, PA


CCCC – p. 2<br />

Background independence<br />

Background independent quantizations of gravity must show that<br />

some form of space-time “emerges” at sufficiently low curvature.<br />

Not guaranteed.<br />

Canonical approaches: constraints are quantized, receive<br />

quantum corrections. Not just dynamics but also space-time<br />

structure (gauge content) may change.<br />

S = 1<br />

16πG<br />

∫<br />

d 4 x √ |detg|<br />

(<br />

)<br />

R+αR 2 +βR ab R ab +···<br />

?<br />

Must know space-time structure before deciding which covariant<br />

combinations of metric derivatives can appear.<br />

Not just R may receive quantum corrections but also “d 4 x,” or<br />

nature of covariance and space-time tensors.


CCCC – p. 3<br />

Loop quantum gravity<br />

−→ Holonomies h e = exp( ∫ e dλAi aė a τ i ) along curves e in space.<br />

Represented as operators, but not continuous in connection.<br />

No connection operator.<br />

−→ Holonomies as ladder operators raise excitation level of<br />

geometry by discrete steps.<br />

Densitized triad quantized as flux ∫ S d2 yn a Ê a i for surfaces S in<br />

space, with discrete spectrum containing zero.<br />

−→ Spatially diffeomorphism invariant: sum over all deformed<br />

graphs. Background independent: No metric used in basic<br />

operators.<br />

More tricky: Space-time covariance, Hamiltonian constraint.<br />

Background independence often forsaken at this stage.


CCCC – p. 4<br />

Quantum corrections<br />

−→ Inverse-triad corrections from quantizing [T Thiemann 1996]<br />

{ } √|detE|d<br />

Aa,∫ i 3 x<br />

= 2πGǫ ijk ǫ abc<br />

E b j Ec k<br />

√<br />

|detE|<br />

2.5<br />

Automatic cut-off of<br />

1/E-divergences.<br />

α (r)<br />

−→ Higher-order corrections:<br />

holonomies for A i a<br />

−→ Quantum back-reaction<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 0.5 1 1.5 2<br />

µ<br />

flux eigenvalues<br />

r=1/2<br />

r=3/4<br />

r=1<br />

r=3/2<br />

r=2


CCCC – p. 5<br />

Hypersurface-deformation algebra<br />

Diffeomorphism constraint D[w a ] and Hamiltonian constraint H[N].<br />

Classical algebra<br />

{D[w a 1],D[w a 2]} = −D[L w2 w a 1]<br />

{H[N],D[w a ]} = −H[w a ∇ a N]<br />

{H[N 1 ],H[N 2 ]} = D[h ab (N 1 ∇ b N 2 −N 2 ∇ b N 1 )]<br />

ensures that <strong>the</strong>ory respects<br />

→ gauge transformations for coordinate changes: space-time<br />

Lie derivative {f,H[ǫ]+D[ξ a ]} = L (ǫ/N,ξa +ǫN a /N)f if<br />

constraints satisfied and time direction t a = Nn a +N a . [Dirac]<br />

→ slicing independence: algebra amounts to deformations of<br />

hypersurfaces<br />

[Kuchar, Teiltelboim]<br />

Anomaly-free quantum-corrected constraints generate modified<br />

gauge transformations. Space-time?


CCCC – p. 6<br />

Background independence?<br />

Status of background independence in loop quantum gravity:<br />

(+) No spatial background metric used to define states and<br />

operators, summed over spatial diffeomorphisms.<br />

Uniqueness of representation.<br />

(−) Hamiltonian constraint quantized in much more messy way.<br />

Modify classical expression by holonomy corrections<br />

(quantum corrections mixed with regulator).<br />

(−) Diffeomorphism constraint and Hamiltonian constraint<br />

contain curvature of A i a, but treated differently.<br />

(−) Off-shell algebra of Hamiltonian constraints often ignored.<br />

[see also H Nicolai, K Peeters, M Zamaklar: hep-th/0501114]<br />

Can this procedure result in any consistent space-time picture?<br />

Energy conservation?


CCCC – p. 7<br />

Energy conservation<br />

[with M Kagan, G Hossain, C Tomlin: arXiv:1302.5695]<br />

N √ deth∇ µ T µ 0 = −N ∂H matter<br />

∂t<br />

−N a∂Dmatter a<br />

∂t<br />

+L ⃗N C matter [N,N a ]+ ∂h ab<br />

∂t<br />

+∂ b<br />

(<br />

N 2 h ab D matter<br />

a<br />

δH matter<br />

δh ab<br />

)<br />

+2N c h baδH matter<br />

δh ac<br />

Classical off-shell algebra: ∂H matter /∂t = {H matter ,H[N,N a ]}<br />

cancels ∂ a (N 2 D matter<br />

a ), only one term from ∂ b T b 0.<br />

→ Deformed algebra cannot be taken care of by modified<br />

coefficients in ∇ µ T µ ν = 0.<br />

→ No energy conservation if off-shell algebra broken<br />

(or unchecked in gauge-fixed/deparameterized models).


CCCC – p. 8<br />

Consistent loop quantum gravity<br />

→ Off-shell closed operator algebra of constraints likely?<br />

→ Semiclassical states (at dynamical level)?<br />

More realistic (at least in particle-physics analogy):<br />

Effective equations.<br />

→ Ease subtleties of factor ordering and quantum<br />

representation.<br />

→ Describe general classes of semiclassical states without<br />

requiring full wave function.<br />

(Vacuum problem of quantum gravity.)<br />

→ Can be generalized to constrained systems. Allow local<br />

internal times and time changes by gauge transformations.<br />

→ Simpler derivation of closed constraint algebras.<br />

But still incomplete.


CCCC – p. 9<br />

Effective canonical dynamics<br />

Parameterize state by expectation values 〈ˆq〉 and 〈ˆp〉 of basic<br />

operators and moments<br />

(Includes mixed states.)<br />

G a,n = 〈(ˆq −〈ˆq〉) a (ˆp−〈ˆp〉) n−a 〉 symm<br />

Commutator of operators determines Poisson bracket of<br />

moments. (Symplectic space, but not after restriction to finite n.)<br />

Expectation value of Hamiltonian, interpreted as function of 〈ˆq〉,<br />

〈ˆp〉 and G a,n , provides canonical equations of motion.<br />

Effective equations: Correct classical equations for 〈ˆq〉, 〈ˆp〉 by<br />

quantum back-reaction from moments.<br />

[with A Skirzewski: math-ph/0511043]


CCCC – p. 10<br />

Quantum equations of motion<br />

Anharmonic oscillator:<br />

˙q = p m<br />

ṗ = −mω 2 q −U ′ (q)− ∑ n<br />

1<br />

n!<br />

( ) n/2<br />

U (n+1) (q)˜G 0,n<br />

mω<br />

˙˜G a,n = −aω ˜G a−1,n +(n−a)ω ˜G a+1,n −a U′′ (q)<br />

mω<br />

√<br />

aU ′′′ (q)<br />

+<br />

2(mω) 3 2<br />

(√<br />

U ′′′ (q)<br />

− a 2<br />

(mω) 3 2<br />

˜G<br />

a−1,n<br />

˜G a−1,n−1 ˜G0,2 (q)<br />

+ aU′′′′ a−1,n−1 ˜G ˜G0,3<br />

3!(mω) 2<br />

˜G a−1,n+1 + U′′′′ (q)<br />

3(mω) 2 ˜G a−1,n+2 )<br />

∞ly many coupled equations for ∞ly many variables.<br />

+···


CCCC – p. 11<br />

Low energy effective action<br />

To second adiabatic order, as second order equation of motion:<br />

( )<br />

as it results from<br />

Γ eff [q(t)] =<br />

m+<br />

U ′′′ (q) 2<br />

32m 2 ω 5 (1+ U′′ (q)<br />

mω 2 ) 5 2<br />

+ ˙q2 (<br />

4mω 2 U ′′′ (q)U ′′′′ (q)<br />

+mω 2 q +U ′ (q)+<br />

(<br />

¨q<br />

128m 3 ω 7 (1+ U′′ (q)<br />

mω 2 ) 7 2<br />

) )<br />

1+ U′′ (q)<br />

mω 2 −5U ′′′ (q) 3<br />

U ′′′ (q)<br />

4mω(1+ U′′ (q)<br />

mω 2 ) 1 2<br />

= 0.<br />

∫ ( (<br />

)<br />

1 U ′′′ (q) 2<br />

dt m+<br />

2 2 5 m 2 (ω 2 +m −1 U ′′ (q)) 5 2<br />

− 1 2 mω2 q 2 −U(q)− ω ( )<br />

)1<br />

1+ U′′ (q)<br />

2<br />

2 mω 2<br />

˙q 2


Higher time derivatives<br />

Higher adiabatic order:<br />

[with S Brahma, E Nelson: arXiv:1208.1242]<br />

¨q = −ω 2 q −U ′ (q)/m<br />

where<br />

− <br />

2m 2 ω U′′′ (q) ( f(q, ˙q)+f 1 (q, ˙q)¨q +f 2 (q)¨q 2 +f 3 (q, ˙q)˙¨q +f 4 (q)¨q )<br />

+···<br />

( ) −1/2 ( ) −5/2<br />

f(q, ˙q) = 1 2<br />

1+ U′′ (q)<br />

mω +<br />

U ′′′′ (q)˙q 2<br />

2 16mω<br />

1+ U′′ (q)<br />

4 mω −<br />

5(U ′′′ (q)) 2 ˙q 2<br />

2 64m 2 ω<br />

(1+ 6<br />

( ) −7/2 ( ) −9/2<br />

− U′′′′′′ (q)˙q 4<br />

64mω<br />

1+ U′′ (q)<br />

6 mω +<br />

21(U ′′′′ (q)) 2 ˙q 4<br />

2 256m 2 ω<br />

1+ U′′ (q)<br />

8 mω 2<br />

( ) −9/2 (<br />

+ 7U′′′′′ (q)U ′′′ (q)˙q 4<br />

64m 2 ω<br />

1+ U′′ (q)<br />

8 mω −<br />

231U ′′′′ (q)(U ′′′ (q)) 2 ˙q 4<br />

2 512m 3 ω<br />

1+ U′′ (q<br />

10 mω 2<br />

( ) −13/2<br />

+ 1155(U′′′ (q)) 4 ˙q 4<br />

4096m 4 ω<br />

1+ U′′ (q)<br />

12 mω 2 CCCC – p. 12


CCCC – p. 13<br />

Effective constraints<br />

Dynamics by effective Hamiltonian<br />

constraints 〈̂polĈ〉(〈·〉,∆(·)).<br />

→ Captures dynamics<br />

of physical states.<br />

→ Allows local internal times.<br />

[arXiv:1009.5953]<br />

[Figure from arXiv:0911.4950]<br />

Α 0<br />

〈Ĥ〉(〈·〉,∆(·)) or effective<br />

p Α<br />

Α 0<br />

Α 0<br />

.5Α 0<br />

.5Α 0<br />

.5Α 0<br />

Α 0<br />

.5Α 0<br />

Α<br />

[Cosmological model in P Höhn, E Kubalova, A Tsobanjan: arXiv:1111.5193]


CCCC – p. 14<br />

Effective constraint algebras<br />

Systems with several classical constraints C I :<br />

→ Effective constraints C I,pol = 〈̂polĈI〉(〈·〉,∆(·)) with ̂pol<br />

polynomial in basic operators.<br />

→ Compute effective constraint algebra by Poisson brackets.<br />

Easier than commutators of operators. Parameterizable.<br />

→ Check off-shell consistency of first-class constraints.<br />

Example: Hamiltonian and diffeomorphism constraints obey<br />

hypersurface-deformation algebra of classical space-time.<br />

{D[w a 1],D[w a 2]} = −D[L w2 w a 1]<br />

{H[N],D[w a ]} = −H[w a ∇ a N]<br />

{H[N 1 ],H[N 2 ]} = D[h ab (N 1 ∇ b N 2 −N 2 ∇ b N 1 )]


CCCC – p. 15<br />

Relevance of effective methods<br />

→ “Big-bang state” largely unknown.<br />

Consider generic states in effective parameterization.<br />

→ Local internal times: Do not require artificial matter contents<br />

such as free, massless scalar or dust.<br />

→ No gauge-fixing or deparameterization, or solution of<br />

classical constraints required before quantization:<br />

Check off-shell consistency of constraint algebra and<br />

corresponding space-time structure.<br />

Quantum space-time structure derived, not presupposed.<br />

Surprises . . .


CCCC – p. 16<br />

Homogeneous models<br />

Dynamics poorly understood even in homogeneous models.<br />

(Even kinematics [arXiv:1206.6088].)<br />

In most cases, restricted not just by symmetry but also, and<br />

crucially, by matter ingredients.<br />

→ Usual choices of matter (for deparameterization) or states<br />

(Gaussian) eliminate most quantum back-reaction, too<br />

restrictive.<br />

→ Symmetry eliminates control on space-time structure.<br />

Homogeneous models trivialize <strong>the</strong> constraint algebra,<br />

crucial issues overlooked.<br />

Need realistic matter and at least perturbative inhomogeneity to<br />

obtain propagation equations and see if and how structure<br />

evolves through high density.


CCCC – p. 17<br />

Deformed deformations<br />

−→ Inverse-triad corrections in Hamiltonian<br />

1<br />

16πG<br />

∫<br />

d 3 xNα ǫ ijkF i ab Ea j Eb k<br />

√<br />

|detE|<br />

+···<br />

−→ Poisson-bracket algebra modified.<br />

Deform but do not violate covariance:<br />

{D[w a 1],D[w a 2]} = −D[L w2 w a 1]<br />

{H[N],D[w a ]} = −H[w a ∇ a N]<br />

{H[N 1 ],H[N 2 ]} = D[α 2 h ab (N 1 ∇ b N 2 −N 2 ∇ b N 1 )]<br />

[with G Hossain, M Kagan, S Shankaranarayanan: arXiv:0806.3929]


CCCC – p. 18<br />

Space-time?<br />

Deformed gauge algebra implies that <strong>the</strong>ory is no longer<br />

invariant under space-time diffeomorphisms.<br />

Same number of gauge generators: <strong>the</strong>ory remains consistent.<br />

Can be evaluated with canonical methods (Hamiltonian<br />

equations of motion, gauge transformations, observables, . . . ).<br />

But no analog of space-time metric or line element:<br />

ds 2 = g ab dx a dx b<br />

not invariant since transformations of g ab and dx a no longer<br />

match.<br />

(Warning for homogeneous models or perturbations:<br />

Often, “effective” FLRW metric −dt 2 +a(t) 2 (dx 2 +dy 2 +dz 2 )<br />

assumed with a(t) subject to modified Friedmann equation.)


CCCC – p. 19<br />

Cosmological perturbation equations<br />

[with G Calcagni: arXiv:1011.2779]<br />

Dynamics of density perturbations u, gravitational waves w:<br />

−u ′′ +s(α) 2 ∆u+(˜z ′′ /˜z)u = 0<br />

−w ′′ +α 2 ∆w +(ã ′′ /ã)w = 0<br />

Wave equations. Corrections to tensor-to-scalar ratio.<br />

2.5<br />

2<br />

Do not need high density.<br />

Crucial for falsifiability:<br />

α−1 large for small lattice spacing.<br />

Two-sided bounds on<br />

discreteness scale.<br />

α (r)<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 0.5 1 1.5 2<br />

µ<br />

r=1/2<br />

r=3/4<br />

r=1<br />

r=3/2<br />

r=2


Scalar mode<br />

−u ′′ +s(α) 2 ∆u+(˜z ′′ /˜z)u = 0 [with G Calcagni, S Tsujikawa 2011]<br />

1 x 10−4<br />

0.9<br />

0.8<br />

10 −8 < δ = α−1 < 10 −4<br />

0.7<br />

0.6<br />

much closer than<br />

δ (k 0<br />

)<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

l P and l H<br />

0<br />

0 0.005 0.01<br />

ε (k ) V 0<br />

0.015 0.02<br />

CCCC – p. 20


CCCC – p. 21<br />

Holonomy corrections<br />

Hypersurface-deformation algebra with pointwise holonomy<br />

corrections: H −→ l −1 sin(lH) in perturbative cosmology.<br />

Incomplete: Corrections in series expansion cannot be<br />

separated from higher space and time derivatives. (R ∼ ∂Γ+Γ 2 )<br />

with β = cos(2lH).<br />

[S(⃗w 1 ),S(⃗w 2 )] = −S(L ⃗w2 ⃗w 1 )<br />

[T(N),S(⃗w)] = −T(⃗w · ⃗∇N)<br />

[T(N 1 ),T(N 2 )] = S(β(N 1<br />

⃗ ∇N2 −N 2<br />

⃗ ∇N1 ))<br />

−w ′′ +β∆w +(ã ′′ /ã)w = 0<br />

β = −1 at maximal density (maximum of sin(lH), “bounce”).<br />

[J Reyes 2009; A Barrau, T Cailleteau, J Grain, J Mielczarek 2011]


CCCC – p. 22<br />

Signature change<br />

β ≈ −1 at high density.<br />

Space-time signature Euclidean.<br />

[with G Paily: arXiv:1112.1899]<br />

c∆t<br />

v/c<br />

Minkowski geometry<br />

Euclidean geometry


CCCC – p. 23<br />

Ill-posed bounce<br />

Bounce models require high density, where signature turns<br />

Euclidean.<br />

→ Quantum space-time: no metric/line element, but deformed<br />

constraint algebra determines space(-time) structure.<br />

→ Physical consequence: elliptic ra<strong>the</strong>r than hyperbolic partial<br />

differential equations for physical modes.<br />

No deterministic evolution. No initial-value problem.<br />

→ Signature change not a consequence of small<br />

inhomogeneity:<br />

Inhomogeneity only used to probe space-time structure<br />

because homogeneous models are too restrictive.<br />

→ Does not rely on subtleties of perturbation <strong>the</strong>ory:<br />

Same effects in spherically symmetric models.


CCCC – p. 24<br />

Some recent results<br />

Off-shell constraint algebra.<br />

Operator results encouraging and fully consistent with effective<br />

calculations.<br />

[A Perez, D Pranzetti: arXiv:1001.3292]<br />

[A Henderson, A Laddha, C Tomlin: arXiv:1204.0211, arXiv:1210.3960]<br />

[C Tomlin, M Varadarajan: arXiv:1210.6869]<br />

Derivative expansion for integrated holonomies.<br />

Work in progress. [with G Paily and J Reyes]<br />

Combination of inverse-triad and holonomy corrections.<br />

Work in progress. [T Cailleteau]


CCCC – p. 25<br />

Models of quantum space-time<br />

(Weak) relation with doubly special relativity.<br />

[MB, G Paily: arXiv:1212.4773 ]<br />

Holonomy-deformation interpreted as version of κ-Poincaré:<br />

−→ Linear N and ⃗w and flat space produce Poincaré if β = 1.<br />

−→ For β ≠ 1, dependence on extrinsic curvature takes <strong>the</strong> form<br />

of non-linear energy dependence at boundaries.<br />

−→ However, this version does not act on standard κ-Minkowski.<br />

Background independence and form of quantum space-time<br />

remain unclear in loop quantum gravity.<br />

Homogeneous models and most extensions do not grasp<br />

quantum space-time structure.<br />

Not an approximation: just anomalous.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!