21.03.2015 Views

Download the slides

Download the slides

Download the slides

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S. Tsujikawa, J. Ohashi, S.Kuroyanagi, A. De Felice, arXiv: 1305.3044 <br />

Tokyo University of Science, Shinji Tsujikawa


Proposed to resolve several cosmological problems plagued<br />

in big bang cosmology, e.g.,<br />

Horizon <br />

problem <br />

Flatness <br />

problems <br />

Responsible for <strong>the</strong><br />

origin of structure <br />

Starobinsky , Guth , Sato , Kazanas ( early 1980’s) <br />

・・・Cosmic acceleration around <strong>the</strong> energy scale


Old inflation (Sato, Kazanas, Guth) <br />

1. <br />

602 citations <br />

3. <br />

Inflationary universe: A possible solution to <strong>the</strong> horizon <br />

and flatness problems <br />

Alan H. Guth* <br />

Stanford Linear Accelerator Center, Stanford University, <br />

Stanford, California 94305 <br />

Received 11 August 1980 <br />

4414 <br />

citations <br />

2. <br />

168 citations


l “Old’’ inflation <br />

Inflationary models <br />

Many inflationary models have been proposed so far. <br />

l Curvature inflation <br />

The higher-­‐order curvature term leads to inflation. <br />

Lagrangian: <br />

Starobinsky (1980) <br />

Inflation occurs due to <strong>the</strong> first-­‐order phase transition of a vacuum. <br />

Sato (1981), Kazanas (1980), Guth (1981) <br />

l Slow-­‐roll inflation <br />

(first model of inflation) <br />

Inflation is driven by <strong>the</strong> potential energy of a scalar field. <br />

New, chaotic, power-­‐law, hybrid, natural, extra-­‐natural, eternal, D-­‐term, <br />

F-­‐term, brane, oscillating, tachyon, hill-­‐top, KKLMMT, … (too many) <br />

l K-­‐inflation <br />

Inflation is driven by <strong>the</strong> kinetic energy of a scalar field. <br />

Ghost condensate, DBI, Galileon,… <br />

l Inflation in extended <strong>the</strong>ories of gravity. <br />

Brans-­‐Dicke, Higgs, Horndeski’s <strong>the</strong>ory,…. <br />

There are also multi-­‐field models.


Standard slow-­‐roll inflation <br />

S =<br />

⇤<br />

d 4 x ⇥<br />

ä<br />

a = 8 G<br />

3<br />

V ( )<br />

V (⇥)<br />

Inflation occurs under <strong>the</strong> condition <br />

g<br />

⇥<br />

R<br />

16 G + X V (⇥)<br />

On <strong>the</strong> FLRW background, <strong>the</strong> scale factor obeys <br />

˙2<br />

˙⇥2 ⇥<br />

X = 1 (⇥ )2<br />

2<br />

V ( )<br />

Slow-­‐roll <br />

The field evolves slowly along a <br />

nearly flat potential (slow-­‐roll). <br />

In this case <br />

H<br />

Cosmic acceleration <br />

ȧ<br />

a ⇥ const. a e H inf t


Perturbations <br />

Inflaton <br />

fluctuations <br />

⇥<br />

P R<br />

Primordial <br />

spectrum of <br />

curvature <br />

perturbations <br />

CMB temperature anisotropies <br />

from inflation <br />

k<br />

Larger scales <br />

Scalar spectral index <br />

k<br />

Smaller scales <br />

( 68% CL )<br />

The primordial power spectrum is nearly scale-­‐invariant.


S =<br />

⇤<br />

d 4 x ⇥<br />

g<br />

⇥<br />

R<br />

16 G + X V (⇥)<br />

Scalar perturbations <br />

Tensor perturbations <br />

ds 2 =<br />

(1 + 2A)dt 2 +2 i Bdtdx i + a 2 (t) [(1 + 2R) ij + h ij ] dx i dx j<br />

Scalar <br />

S (2)<br />

s = dtd 3 xa 3 Q s Ṙ 2 c 2 s<br />

a 2 ( R)2<br />

For standard potential-­‐driven inflation <br />

Q s =<br />

˙2<br />

c 2<br />

2H 2 , s =1<br />

The amplitude of curvature perturbations <br />

can be estimated by solving <strong>the</strong> equation <br />

of motion which follows from <strong>the</strong> above <br />

action. <br />

<br />

<br />

<br />

<br />

The conditions for <strong>the</strong> avoidance <br />

of ghosts and Laplacian instabilities <br />

Q s > 0 c 2 s > 0<br />

,


The CMB observations can discriminate between different potentials. <br />

Scalar spectrum: <br />

where <br />

Tensor spectrum: <br />

where <br />

Tensor-­‐to-­‐scalar ratio: <br />

The Planck constraints are <br />

r


Discrimination between inflaton potentials <br />

Lyth bound: <br />

Smaller r <br />

(i) Large-­‐field inflation (e.g., chaotic inflation, 1983) <br />

During inflation <strong>the</strong> field evolves <br />

over <strong>the</strong> large-­‐distance: <br />

<br />

(ii) Small-­‐field inflation (e.g., natural inflation, 1990) <br />

During inflation <strong>the</strong> field evolves <br />

over <strong>the</strong> small-­‐distance: <br />

A. Linde (young version) <br />

K. Freese <br />

(iii) Hybrid inflation (1994) <br />

Inflation ends due to <strong>the</strong> waterfall transition <br />

to <strong>the</strong> global minimum. <br />

A. Linde (current version)


Potential-­‐driven slow-­‐roll inflation <br />

Planck 2013 results. XXIII. Isotropy and Statistics of <strong>the</strong> CMB : arXiv:1303.5083


S.T., J. Ohashi, S. Kuroyanagi, A De Felice, arXiv: 1305.3044 <br />

Potential−driven slow−roll inflation<br />

10 0 Inclusion of high L data prefers <br />

Planck+WP+BAO+high L <br />

<strong>the</strong> smaller spectral index. <br />

Planck+WP+BAO <br />

4<br />

power law inflation<br />

10 −1<br />

2<br />

1<br />

r 0.05<br />

natural<br />

2/3<br />

10 −2<br />

large−field<br />

small−field<br />

R 2 inflation<br />

10 −3<br />

very<br />

small<br />

field<br />

hybrid2<br />

hybrid1<br />

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01<br />

n s


Inflation in extended <strong>the</strong>ories of gravity <br />

Most general single-­‐field scalar-­‐tensor <strong>the</strong>ories with second-­‐order equations of motion <br />

Horndeski (1974) <br />

Deffayet et al (2011) <br />

Charmousis et al (2011) <br />

This action covers most of <strong>the</strong> dark energy models proposed in literature. <br />

l Potential driven inflation: <br />

l K-­‐inflation: <br />

l f(R) gravity and scalar-­‐tensor gravity: <br />

l Galileon: <br />

l Gauss-­‐Bonnet coupling <br />

:


Horndeski’s paper in 1973


Second-­‐order actions of scalar perturbations <br />

We consider scalar metric perturbations <br />

, ⇥, R<br />

with <strong>the</strong> ADM metric <br />

ds 2 = [(1 + ) 2 a(t) 2 e 2R (⇤⇥) 2 ] dt 2 +2⇤ i ⇥ dt dx i + a(t) 2 e 2R dx 2<br />

We choose <strong>the</strong> uniform field gauge: =0<br />

The second-­‐order action of scalar perturbations in <strong>the</strong> Horndeski’s <strong>the</strong>ory reduces to <br />

S 2 = dtd 3 xa 3 Q Ṙ2 c 2 s<br />

a 2 ( R)2<br />

Q>0 and c 2 s > 0 are required to avoid<br />

ghosts and Laplacian instabilities.<br />

where <br />

Q = w 1(4w 1 w 3 +9w 2 2)<br />

3w 2 2<br />

, c 2 s = 3(2w2 1w 2 H w 2 2w 4 +4w 1 ẇ 1 w 2 2w 2 1ẇ 2 )<br />

w 1 (4w 1 w 3 +9w 2 2 )<br />

w 1 = MplF 2 4XG 4,X 2HX ˙G 5,X +2XG 5,<br />

w 2 =2MplHF 2 2X ˙G 3,X 16H(XG 4,X + X 2 G 4,XX )+2˙(G 4, +2XG 4, X )<br />

2H 2 ˙(5XG5,X +2X 2 G 5,XX )+4HX(3G 5, +2XG 5, X )<br />

w 3 = 9MplH 2 2 F + 3(XP ,X +2X 2 P ,XX ) + 18H ˙(2XG 3,X + X 2 G 3,XX ) 6X(G 3, + XG 3, X )<br />

+18H 2 (7XG 4,X + 16X 2 G 4,XX +4X 3 G 4,XXX ) 18H ˙(G 4, +5XG 4, X +2X 2 G 4, XX )<br />

+6H 3 ˙(15XG5,X + 13X 2 G 5,XX +2X 3 G ,5XXX ) 18H 2 X(6G 5, +9XG 5, X +2X 2 G 5, XX )<br />

w 4 = MplF 2 2XG 5, 2XG 5,X ¨


Power spectrum of curvature perturbations <br />

where <br />

Kobayashi et al. (2011) <br />

De Felice and S.T. (2011) <br />

where


Tensor power spectrum <br />

Tensor perturbations: <br />

The second-­‐order action is <br />

where <br />

The tensor power spectrum is <br />

The tensor-­‐to-­‐scalar ratio is <br />

These results can be readily used for concrete models of inflation. <br />

e.g., <br />

where <br />

These observables depend on <strong>the</strong> slope of <strong>the</strong> potential.


We can apply our general results to a variety of inflation models. <br />

Standard potential-­‐driven inflation <br />

P ( ,X)=X V ( )<br />

f(R)<br />

gravity <br />

Brans-­‐Dicke <strong>the</strong>ories <br />

Non-­‐minimally coupled models <br />

Galileon inflation <br />

Field-­‐derivative couplings <br />

Running kinetic couplings <br />

k-­‐inflation <br />

etc… <br />

S = d 4 x g<br />

M 2 pl<br />

2 R + P ( ,X) G 3( ,X) + L 4 + L 5<br />

L 4 = G 4 ( ,X) R + G 4,X [( ) 2 ( µ )(<br />

µ<br />

)]<br />

L 5 = G 5 ( ,X) G µ (<br />

µ<br />

)<br />

1<br />

6 G 5,X[( ) 3 3( )( µ )(<br />

µ<br />

) + 2(<br />

µ<br />

)( )( µ )]


Inflation in f(R) gravity <br />

The slow-­‐roll parameter is <br />

Starobinsky (1980) <br />

First model of inflation <br />

Inflation occurs due to <strong>the</strong> presence <br />

of <strong>the</strong> quadratic curvature term. <br />

Inflation ends around <br />

(quasi-­‐exponential expansion)


Planck constraints on Brans-Dicke gravity with <strong>the</strong> potential<br />

Brans−Dicke <strong>the</strong>ories<br />

The observables are <br />

10 0 Starobinsky’s f(R) model <br />

10 −1<br />

BD<br />

=10 2<br />

BD<br />

=10 10<br />

where N is <strong>the</strong> number of <br />

e-­‐foldings from <strong>the</strong> end of <br />

Inflation. <br />

r 0.05<br />

10 −2<br />

BD<br />

=1<br />

BD<br />

=0<br />

10 −3<br />

10 −4<br />

BD<br />

=−1.4<br />

0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98<br />

n s


Einstein frame <br />

Jordan frame: <br />

Confomral transformation <br />

Einstein frame: <br />

where <br />

Einstein frame potential <br />

Under observational <br />

pressure <br />

The potential is nearly flat. <br />

Consistent with observations.


Higgs inflation <br />

There are several ways to accommodate Higgs for inflation. <br />

Bezrukov and Shaposhnikov (2008) <br />

Nakayama and Takahashi (2010), <br />

De Felice, S.T., Elliston, Tavakol (2011) <br />

Germani and Keghagias (2010) <br />

Kamada, Kobayashi, <br />

Yamaguchi, Yokoyama (2010)


Planck constraints on non-minimally coupled chaotic inflation <br />

Non−minimally coupled models<br />

r 0.05<br />

10 −1<br />

10 −2<br />

=0<br />

(a)<br />

=−6.0<br />

×10 −3<br />

10 0 Favored observationally.<br />

(b)<br />

=−2.0×10 −3<br />

=−0.1<br />

=−10 4<br />

=0<br />

(a) n=2<br />

(b) n=4<br />

10 −3<br />

0.94 0.95 0.96 0.97 0.98<br />

n s<br />

We also have <br />

/⇠ 2 ' 4.3 ⇥ 10 10


Running kinetic couplings <br />

0.3<br />

0.25<br />

Running kinetic coupling models<br />

µ=0<br />

(b)<br />

(a) n=2<br />

(b) n=4<br />

The dilatonic running coupling <br />

leads to <strong>the</strong> decrease of r. <br />

r 0.05<br />

0.2<br />

0.15<br />

µ=0.1<br />

µ=−0.03<br />

µ=0<br />

However both <strong>the</strong> quadratic <br />

and quartic potentials are <br />

outside <strong>the</strong> 68 % CL boundary. <br />

0.1<br />

0.05<br />

(a)<br />

µ=0.1<br />

µ=10<br />

µ=10<br />

This comes from <strong>the</strong> fact that <br />

Planck data give tight upper <br />

bounds on <strong>the</strong> scalar spectral <br />

index than that of WMAP. <br />

0<br />

0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98<br />

n s


Field derivative couplings to <strong>the</strong> Einstein tensor <br />

0.25<br />

0.2<br />

Field−derivative coupling models<br />

(b)<br />

(a) n=2<br />

(b) n=4<br />

This coupling leads to <strong>the</strong> slow-­‐down <br />

of <strong>the</strong> velocity of inflaton, which <br />

leads to <strong>the</strong> decrease of r. <br />

For smaller M, <strong>the</strong> scalar spectral <br />

index gets larger. <br />

r 0.05<br />

0.15<br />

0.1<br />

smaller M<br />

(a)<br />

Both <strong>the</strong> quadratic and quartic potentials <br />

are outside <strong>the</strong> 68 % CLboundary. <br />

0.05<br />

A similar conclusion was reached for <br />

<strong>the</strong> Galileon couplings. <br />

0<br />

0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98<br />

n s


f NL<br />

B R f NL<br />

・・・nonlinear estimator of primordial scalar non-Gaussianity (NG) <br />

R(k 1 )R(k 2 )R(k 3 )⇥ = (2⇥) 3 (3) (k 1 + k 2 + k 3 )B R (k 1 ,k 2 ,k 3 )<br />

Deviation from <strong>the</strong> Gaussian distribution <br />

Equilateral <br />

Local <br />

k 1 k 2<br />

Observations <br />

WMAP <br />

f equil<br />

NL<br />

= 51 ± 272<br />

Planck <br />

k 1 k 2<br />

k 3 k 3<br />

f equil<br />

NL<br />

= 42 ± 75<br />

Theory <br />

Standard slow-­‐roll inflation <br />

L = X V ( )<br />

Observations <br />

Theory <br />

WMAP <br />

f local<br />

NL = 37 ± 40<br />

Planck <br />

f local<br />

NL =2.7 ± 5.8


Non-Gaussianities in <strong>the</strong> Horndeski’s <strong>the</strong>ory <br />

l Local shape: <br />

Under <strong>the</strong> slow-­‐variation approximation, <strong>the</strong> non-­‐linear estimator is <br />

Same as that derived by <br />

Maldacena in standard <br />

slow-­‐roll inflation (2002). <br />

Gao and Steer (2011) <br />

A. De Felice and S.T. (2011) <br />

The small local non-­‐Gaussianity in <strong>the</strong> squeezed limit is a generic <br />

feature in <strong>the</strong> single-­‐field slow-­‐variation inflation. <br />

l Equilateral shape: <br />

The leading-­‐order non-­‐linear estimator is


Observational constraints on power-law k-inflation <br />

The power-­‐law inflation can be realized by <strong>the</strong> Lagrangian <br />

(dilatonic ghost condensate) <br />

In this case <strong>the</strong> observables are <br />

c s<br />

>0.079<br />

0.02 0.04 0.06 0.08 0.1<br />

c s<br />

Generally <strong>the</strong> k-­‐inflation models <br />

are tightly constrained from <strong>the</strong> <br />

equilateral type NG.


Summary <br />

Overall, <strong>the</strong> single-­‐field small-­‐field models with <br />

are favored.


Potentials favored from observations <br />

(Einstein frame) <br />

Natural inflation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!