21.03.2015 Views

MIT Integration Bee 2009 Worked Solutions - TweetCube

MIT Integration Bee 2009 Worked Solutions - TweetCube

MIT Integration Bee 2009 Worked Solutions - TweetCube

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MIT</strong> <strong>Integration</strong> <strong>Bee</strong> <strong>2009</strong> <strong>Worked</strong> <strong>Solutions</strong><br />

The target time is 4 minutes for eacheek!<br />

* These ones took me longer than 10 minutes!<br />

1. Trig identities:<br />

ˆ π<br />

0<br />

ˆ<br />

cos(3x)<br />

2π<br />

cos x dx =<br />

0<br />

= −2<br />

= −2<br />

= −π<br />

ˆ π<br />

cos 2xdx −<br />

ˆ π<br />

0<br />

ˆ π<br />

0<br />

sin 2 xdx<br />

0<br />

1 − cos 2x<br />

dx<br />

2<br />

sin 2x sin x<br />

dx<br />

cos x<br />

2. Hyperbolic substitution (x = cosh u) & by parts:<br />

ˆ<br />

ˆ<br />

ˆ<br />

arccosh xdx = u sinh udu = u cosh u −<br />

ˆ<br />

= u cosh u − cosh udu<br />

cosh udu<br />

= u cosh u − sinh u<br />

= xarccosh x − sinh(arccosh x)<br />

3. Partial fractions:<br />

ˆ 1 − x<br />

3<br />

ˆ<br />

1 − x 4 dx = 1<br />

1 − x 4 dx + 1 ˆ d(1 − x 4 )<br />

4 1 − x<br />

ˆ<br />

4<br />

1<br />

=<br />

(1 − x 2 )(1 + x 2 ) dx + 1 4 log(1 − x4 )<br />

= 1 ˆ<br />

1<br />

2 1 + x 2 + 1<br />

1 − x 2 dx + 1 4 log(1 − x4 )<br />

= 1 2 arctan x + 1 ˆ<br />

1<br />

4 1 + x + 1<br />

1 − x dx + 1 4 log(1 − x4 )<br />

= 1 2 arctan x + 1 [<br />

log(1 + x) − log(1 − x) + log(1 − x 4 ) ]<br />

4<br />

= 1 2 arctan x + 1 [ [<br />

log(1 + x) + log (1 − x 2 )(1 + x 2 )/(1 − x) ]]<br />

4<br />

= 1 2 arctan x + 1 [<br />

2 log(1 + x) + log(1 + x 2 ) ]<br />

4<br />

4. Partial fractions:<br />

ˆ 2 − x<br />

3<br />

x 4 − x dx = ˆ<br />

= −<br />

1 − x 3 ˆ<br />

x(x 3 − 1) dx + ˆ ˆ 1<br />

x dx + ˆ 1<br />

= − log x +<br />

= −2 log x + 1 3<br />

1<br />

x(x 3 − 1) dx<br />

1<br />

x(x − 1)(x 2 + x + 1) dx<br />

2x + 1<br />

3 x 2 + x + 1 + 1<br />

3(x − 1) − 1 x dx<br />

ˆ d(x 2 + x + 1)<br />

x 2 + x + 1 + 1 log(x − 1)<br />

3<br />

= −2 log x + 1 3 log [ (x 2 + x + 1)(x − 1) ]<br />

= −2 log x + 1 3 log(x3 − 1)<br />

1


5. * Substitution of t = π − x (dt = −dx) which leads to sin x = cos t so arccos(sin x) = t (I realised it<br />

2<br />

was this simple only after my rst thought, wanting to substitute sin x = cos t and then doing all those<br />

motions, which worked ne except for an ambiguity in sign and an awkward limit):<br />

ˆ 1<br />

0<br />

arccos(sin x)dx = −<br />

=<br />

ˆ π/2−1<br />

π/2<br />

ˆ π/2<br />

π/2−1<br />

] π/2<br />

tdt<br />

[ t<br />

2<br />

=<br />

2<br />

π/2−1<br />

= (π − 1)/2<br />

This one is deceptively simple. I was sure it was wrong until I did a numerical integration to check!<br />

tdt<br />

6. Trig identities:<br />

ˆ π/2<br />

−π/2<br />

√<br />

1 − cos xdx = 2<br />

ˆ π/2<br />

= 2 √ 2<br />

= −4 √ 2<br />

0<br />

ˆ π/2<br />

0<br />

= 4( √ 2 − 1)<br />

√<br />

1 − (1 − 2 sin 2 x 2 )dx<br />

( x<br />

)<br />

sin dx<br />

2<br />

[ ( x<br />

)] π/2<br />

cos<br />

2<br />

0<br />

7. * Substitution (y = 7 − x) & trickery (someone likes the number 7 in this question, even the limits<br />

3 + 4 = 7!):<br />

I =<br />

ˆ 4<br />

3<br />

x 1/7<br />

ˆ 3<br />

(7 − x) 1/7 + x dx = − (7 − y) 1/7<br />

dy<br />

1/7 y 1/7 + (7 − y)<br />

1/7<br />

=<br />

=<br />

4<br />

ˆ 4<br />

3<br />

ˆ 4<br />

3<br />

= 1 − I<br />

⇐⇒ I = 1/2<br />

(7 − y) 1/7 + y 1/7 − y 1/7<br />

(7 − y) 1/7 + y 1/7 dy<br />

1 −<br />

y 1/7<br />

dy<br />

(7 − y) 1/7 + y1/7 [My thanks to Mark for that! I didn't spot the add/subtract trick and was baed.]<br />

8. Trig substitution (x = 2 sin u) & identities:<br />

ˆ 2<br />

1<br />

√<br />

4 − x2 dx = 2<br />

ˆ π/2<br />

= 4<br />

= 2<br />

π/6<br />

ˆ π/2<br />

π/6<br />

ˆ π/2<br />

π/6<br />

√<br />

4 − 4 sin 2 u cos udu<br />

cos 2 udu<br />

cos 2u + 1du<br />

= [sin 2u + 2] π/2<br />

π/6<br />

= 2π 3 − √<br />

3<br />

2<br />

2


9. * Hyperbolic substitution (x = sinh u, then w = 1/ sinh u, then z = w 2 + 1; i.e. z = coth 2 u) &<br />

identities:<br />

ˆ<br />

ˆ<br />

1<br />

x 2√ x 2 + 1 dx = cosh u<br />

sinh 2 u<br />

√sinh 2 u + 1 du<br />

ˆ<br />

1<br />

=<br />

sinh 2 u du<br />

ˆ<br />

−w<br />

= √<br />

w2 + 1 dw<br />

N.B. If you recall ´<br />

= − 1 2<br />

ˆ<br />

= − √ z<br />

= − coth u<br />

1<br />

√ z<br />

dz<br />

= − coth(arcsinh x)<br />

1<br />

sinh 2 u du = ´ cosech 2 u du = − coth u then you're done easily. Unlike me :(<br />

10. Trig identities, hyperbolics & substitution (u = cot x, then u = sinh t):<br />

ˆ<br />

ˆ<br />

2 csc 3 xdx = csc x csc 2 xdx<br />

=<br />

ˆ<br />

− csc x d cot x<br />

dx<br />

dx<br />

ˆ √<br />

= − 1 + cot 2 xd cot x<br />

ˆ √1<br />

= − + u2 du<br />

ˆ<br />

= − cosh 2 t dt<br />

= − 1 ˆ<br />

cosh 2t + 1 dt<br />

2<br />

= − (sinh 2t + 2t) /4<br />

= − (sinh t cosh t + t) /2<br />

[<br />

= − u √ ]<br />

1 + u 2 + arcsinh u /2<br />

= − [cot x csc x + arcsinh(cot x)] /2<br />

* This took under 10 minutes to get the idea out, but it took nearly 20 minutes for me to convince<br />

myself it is right! Not a terribly pleasant solution.<br />

11. Trig substitution (x = sin θ, then u = θ + π/4) & identities:<br />

ˆ 2<br />

0<br />

ˆ<br />

4<br />

0<br />

x + √ 4 − x dx = 4 2<br />

= 4<br />

π/2<br />

ˆ π/2<br />

0<br />

= 4 √<br />

2<br />

ˆ π/2<br />

= 2 √ 2<br />

= 2 √ 2<br />

−2 sin θ<br />

2 cos θ + 2 sin θ dθ<br />

sin θ<br />

cos θ + sin θ dθ<br />

0<br />

ˆ 3π/4<br />

π/4<br />

ˆ 3π/4<br />

π/4<br />

sin θ<br />

sin(θ + π/4) dθ<br />

sin(u − π/4)<br />

du<br />

sin u<br />

( π<br />

)<br />

cos − sin<br />

4<br />

= 2 [u − log(sin u)] 3π/4<br />

π/4<br />

= π<br />

( π<br />

4<br />

)<br />

cot u du<br />

3


12. By parts (twice):<br />

ˆ<br />

I =<br />

ˆ<br />

e −x cos xdx = −e −x cos x − e −x sin xdx<br />

ˆ<br />

= −e −x cos x + e −x sin x − e −x cos xdx<br />

= e −x (sin x − cos x) − I<br />

⇐⇒ I = e −x (sin x − cos x)/2<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!