23.03.2015 Views

Classical Calculation for Mutual Inductance of Two ... - Kurt Nalty

Classical Calculation for Mutual Inductance of Two ... - Kurt Nalty

Classical Calculation for Mutual Inductance of Two ... - Kurt Nalty

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The positions and separations are<br />

r left = L cos φa x + L sin φa y − l 2 a z<br />

r right = R cos θa x + R sin θa y + l 2 a z<br />

∆r = (L cos φ − R cos θ) a x + (L sin φ − R sin θ) a y − la z<br />

r 2 = L 2 + R 2 + l 2 − 2LR (cos φ cos θ + sin φ sin θ)<br />

= L 2 + R 2 + l 2 − 2LR cos (φ − θ)<br />

r = √ L 2 + R 2 + l 2 − 2LR cos (φ − θ)<br />

We now can write our expression <strong>for</strong> the mutual inductance.<br />

∮ ∮<br />

dt · ds<br />

M = µ<br />

= µ ∮ ∮<br />

dt · ds<br />

s t 4πr 4π s t r<br />

= µ ∮ ∮<br />

4π<br />

= µ<br />

4π<br />

= µ<br />

4π<br />

∮<br />

φ<br />

θ<br />

( ∮<br />

φ θ<br />

∮<br />

φ<br />

( ∮<br />

θ<br />

LR (cos (φ − θ)) dφdθ<br />

√<br />

L2 + R 2 + l 2 − 2LR cos (φ − θ)<br />

)<br />

LR (cos (φ − θ)) dθ<br />

√ dφ<br />

L2 + R 2 + l 2 − 2LR cos (φ − θ)<br />

)<br />

LR (cos (θ − φ)) dθ<br />

√ dφ<br />

L2 + R 2 + l 2 − 2LR cos (θ − φ)<br />

where the last step uses the even nature <strong>of</strong> the cosine to absorb a minus sign.<br />

During the inner integration over θ, φ is kept constant. We now do a change<br />

<strong>of</strong> variable,<br />

γ = θ − φ<br />

dγ = dθ inside the θ integral<br />

We can simplify the mutual inductance expression.<br />

M = µ ∮ ( ∮<br />

4π φ γ<br />

= µ ∮<br />

4π<br />

= µ ∮<br />

2<br />

γ<br />

φ<br />

( ∮<br />

dφ<br />

γ<br />

LR cos γdγ<br />

√<br />

L2 + R 2 + l 2 − 2LR cos γ<br />

)<br />

dφ<br />

)<br />

LR cos γdγ<br />

√<br />

L2 + R 2 + l 2 − 2LR cos γ<br />

LR cos γdγ<br />

√<br />

L2 + R 2 + l 2 − 2LR cos γ<br />

This integral is known in terms <strong>of</strong> the complete elliptic functions K and E.<br />

The reference integral is<br />

∮<br />

cos θdθ<br />

√ = 4√ )<br />

]<br />

a + b<br />

[(1 − β2<br />

K(β) − E(β)<br />

a − b cos θ b<br />

2<br />

√<br />

2b<br />

where β =<br />

a + b<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!