27.03.2015 Views

Bellotti, A.; Crop-insect interactions using cassava as a model

Bellotti, A.; Crop-insect interactions using cassava as a model

Bellotti, A.; Crop-insect interactions using cassava as a model

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CROP-INSECT<br />

INTERACTIONS USING<br />

CASSAVA AS A MODEL:<br />

THE ROAD AHEAD<br />

Anthony C. <strong>Bellotti</strong>, , PhD. Entomologist<br />

C<strong>as</strong>sava Program. CIAT, Colombia


Cont…<br />

MAJOR ARTHROPOD PEST ASSOCIATED WITH FOUR ROOT AND<br />

TUBERCROPS:<br />

CASSAVA, POTATO, SWEET POTATO AND YAMS<br />

CASSAVA<br />

(Manihot esculenta)<br />

POTATO<br />

(Solanum tuberosum)<br />

SWEET POTATO<br />

(Ipomoea batata)<br />

YAM<br />

(Dioscorea spp.)<br />

Whiteflies:<br />

Aleurotrachelus socialis<br />

Bemisia tabaci<br />

Bemisia tuberculata<br />

Trialeurodes variabilis<br />

Bemisia tabaci<br />

Trialeurodes vaporariorum<br />

Bemisia tabaci<br />

Bemisia afer<br />

Mealybugs:<br />

Phenacoccus herreni<br />

Phenacoccus manihoti<br />

Trips:<br />

Franklinella williamsi<br />

Scyrtothrips manihoti<br />

Aphis:<br />

Myzuz persicae<br />

Thrips:<br />

Thrips palmi<br />

Yam mealybug:<br />

Pseudococcus brevipes<br />

Yam tuber scale:<br />

Aspidiella hartii<br />

Cocconut scale:<br />

Aspidiotus destructor<br />

C<strong>as</strong>sava hornworm:<br />

Erinnyis ello<br />

Potato tuber month:<br />

Pthorimaea oporculella<br />

Symmetrichema spp.<br />

Potato month:<br />

Tecia solanivora<br />

Sweet potato hornworm:<br />

Agrius convolvuli<br />

Sweet potato buttlerfly:<br />

Acraea acerata<br />

African cotton leafworm:<br />

Spodoptera littoralis


MAJOR ARTHROPOD PEST ASSOCIATED WITH FOUR ROOT AND TUBERCROPS:<br />

CASSAVA, POTATO, SWEET POTATO AND YAMS<br />

CASSAVA<br />

(Manihot esculenta)<br />

POTATO<br />

(Solanum tuberosum)<br />

SWEET POTATO<br />

(Ipomoea batata)<br />

YAM<br />

(Dioscorea spp.)<br />

ari:<br />

nonychellus tanajoa<br />

tranychus urticae<br />

Leaf minerfly:<br />

Liriomyza huidobrensis<br />

Flea beetles:<br />

Epitrix cucumeris<br />

Epitrix sp.<br />

Tortoise beetles:<br />

Aspidomorpha spp.<br />

Flea beetles:<br />

Epitrix cucumeris<br />

Epitrix sp.<br />

Systena spp.<br />

Gr<strong>as</strong>shoppers:<br />

Zonozerus variegatus<br />

Leafcutter ant.:<br />

Atta sp.<br />

emborers:<br />

ilomima clarkei<br />

Andean weevil:<br />

Premnotrypes vorax<br />

Rhigopsidius piercei<br />

West indian sweet potato weevil:<br />

Euscepes postf<strong>as</strong>ciatus<br />

Sweet potato weevil:<br />

Cyl<strong>as</strong> formicarius<br />

C. puncticollis<br />

C. bruneus<br />

Yam tuber beetle:<br />

Heteroligus meles<br />

Whitefrienged beetle:<br />

Naupactus spp.<br />

il pest:<br />

rtomenus bergi<br />

ite grubs:<br />

yllophaga spp.<br />

Cut worm:<br />

Agrotis ipsilon<br />

Golden nematods:<br />

Globodera rostochiensis<br />

Cut worm:<br />

Agrotis ipsilon<br />

White grubs:<br />

Phyllophaga spp.<br />

Wire worms:<br />

Aelus sp.<br />

Termites:<br />

Amitermes evuncifer<br />

Cricket:<br />

Gymnogryllus lucens<br />

Garden symphylam:<br />

Scutigerella immaculata


YIELD LOSSES RECORDED DUE TO ARTHROPOD DAMAGE ON<br />

ROOT AND TUBER CROPS<br />

CROPS PEST AVERAGE<br />

LOSSSES<br />

C<strong>as</strong>sava<br />

Sweetpotato<br />

Potato<br />

Yams<br />

RANGE<br />

REGION<br />

White flies<br />

Mealybugs<br />

Mites<br />

39% 5 – 80% America /<br />

África<br />

Sweetpotato<br />

weevil<br />

Potato tuber<br />

month<br />

Termites<br />

Beefles<br />

45% 10 – 50% Cuba<br />

50% 11 – 65% Colombia /<br />

India<br />

35% 29 – 42% Africa


RTHROPOD PEST: INCREASED DAMAGE TO ROOT AND TUBER<br />

ROPS<br />

A. The introduction of a pest not native to an area<br />

B. Changes in crop management and production system (eg. Larger<br />

plantation size).<br />

C. Development of resistance in the pest to effective pesticides which<br />

leads to unsuccessful control<br />

D. Climate changes that are conducive to incre<strong>as</strong>ed pest frequency<br />

and population


CLIMATE CHANGES: Arthropod Pests<br />

1. Altered Rainfall Patterns and Temperature Changes:<br />

a) Relative length of wet and dry-se<strong>as</strong>on<br />

• Lowland tropics<br />

• Semiarid, se<strong>as</strong>onally dry tropics<br />

• Subtropics<br />

• Highland tropics<br />

b) Temperature Changes:<br />

• Temperature is probably the single most important<br />

environmental factor influencing <strong>insect</strong> behavior,<br />

distribution, survival and reproduction-<br />

(Bale, et al 2002)<br />

c) Pest Population Dynamics


Number of consecutive dry months<br />

(rainfall < 100 m)<br />

and <strong>c<strong>as</strong>sava</strong> distribution<br />

MITES & MEALYBUGS<br />

Current<br />

climate<br />

2050<br />

climate<br />

CCCMA<br />

a2a<br />

<strong>model</strong>


Number of consecutive dry months<br />

(rainfall < 100 mm)<br />

and <strong>c<strong>as</strong>sava</strong> distribution<br />

MITES & MEALYBUGS<br />

Current<br />

climate<br />

2050<br />

climate<br />

CCCMA<br />

a2a<br />

<strong>model</strong>


Estimated Annual Temperature Change<br />

Average of 18 IPCC climate change <strong>model</strong>s<br />

C<strong>as</strong>sava<br />

Potato<br />

Sweet potato


CLIMATE CHANGES: Arthropod Pests<br />

1. Effect on the <strong>Crop</strong>.<br />

a) More or less frequent plantings<br />

b) Altered planting dates<br />

c) Altered cropping patterns<br />

d) Changes in management practices<br />

e) <strong>Crop</strong>s species selection (intercrops)<br />

f) Overlapping planting patterns<br />

g) Staggerred plantings


The effect of climate changes on arthropod pests in selected<br />

agroecosystems may be manifested <strong>as</strong> follows<br />

1. Some pest species and niches may disappear<br />

2. The emergence of secondary pest in higher populations and ca<strong>using</strong> crop damage<br />

3. Change in pest distribution, an extension of geographical range<br />

4. Shifs in species abundance, intensification of pest management problems<br />

5. Changes in population growth rate, intrinsic rate of incre<strong>as</strong>e<br />

6. Incre<strong>as</strong>ed number of pest generation during cropping cycles<br />

7. Extension of development se<strong>as</strong>on<br />

8. Shifts in species diversity<br />

9. Changes in crop-natural enemy synchrony<br />

10. Changes in interspecific <strong>interactions</strong><br />

11. Incre<strong>as</strong>ed risk of inv<strong>as</strong>ion by exotic or migrant pest<br />

12. Introduction of alternative host that can provide a “green bridge” between cropping<br />

cycles


LIFE CYCLE OF Premnotrypes vorax (ANDEAN<br />

POTATO WEEVIL) AT DIFFERENT ALTITUDES<br />

STAGE<br />

TIBAITATA<br />

(2560 MASL)<br />

> 16°C<br />

OBONUCOS<br />

( 2700 MASL)<br />

12ºC<br />

PARAMO DE<br />

LETRAS<br />

(3500 MASL)<br />

< 10ºC<br />

EGG 30 45 76<br />

LARVA 51 54 118<br />

PUPA 20 32 46<br />

ADULT PUPAL CELL 25 + 30 + 43<br />

TOTAL 126 151 289<br />

ADULT LONGEVITY (MONTH) > 12 18 ?<br />

Zennerde Polania, 1990


CASSAVA GREEN MITES, Mononychellus tanajoa<br />

TEMPERATURE<br />

oC<br />

DEVELOPMENT TIMES/DAYS<br />

(egg to adult)<br />

15 41.1<br />

20 19.5<br />

25 10.3<br />

30 7.8


EFFECT OF TEMEPRATURE ON THE DEVELOPMENT TIME OF THE<br />

CASSAVA MEALYBUG Phenacoccus herreni<br />

TEMEPERATURE oC<br />

FAMELE<br />

(Average Develop. Days)<br />

MALES<br />

(Average Develop. Days)<br />

20 90.2 51.8<br />

22 68.3 33.1<br />

25 37.6 21.9<br />

30 39.4 19.6<br />

Herrera, et al 1987)


Sao Paulo: 1900-2006<br />

Location: lon=-47.5, lat=-22.5 January-December 1900 – 2006 period.<br />

Temperature Trend = 0.21 C/decade. Significance = 100%<br />

Source: National Climatic Data Center<br />

http://www.ncdc.noaa.gov/


Effect of Climate on <strong>Crop</strong> Management (Brazil: C<strong>as</strong>sava)<br />

First cycle<br />

SOUTH BRASIL<br />

(RS, SC, PA,SP,MGS)<br />

NORTH & NORTHEAST OF BRASIL<br />

SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AGU SEP<br />

Planting<br />

Second cycle<br />

Harvest<br />

Prune<br />

Regrowth<br />

SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AGU SEP<br />

*<br />

P<br />

P<br />

P<br />

P<br />

H<br />

H<br />

H<br />

H<br />

egrowth &<br />

Planting<br />

Harvest<br />

Prune<br />

Regrowth<br />

P<br />

H


CASSAVA PESTS / BRAZIL / CLIMATE CHANGE<br />

Mites<br />

Whiteflies ( A. socialis)<br />

Mealybug (P. herreni)<br />

Lacebug<br />

Trips<br />

Hornworm<br />

Whiteflies ( B. tuberculata)<br />

Mealybug (P. manihoti)<br />

Lacebug<br />

Hornworm


FOUR PHASES OF IPM PROJECT<br />

PHASE I<br />

Problem and<br />

opportunity<br />

identification<br />

(Diagnostic)<br />

PHASE II<br />

Research &<br />

Tecnhology<br />

Development<br />

PHASE III<br />

Pilot project<br />

Problem identification<br />

Problem definition<br />

Definition of requirements for implementation<br />

Definition of research needs<br />

Establishment of an appropriate organozational structure<br />

Research (B<strong>as</strong>ic + applied)<br />

Tecnhology development<br />

Reevaluation of requirement for implementation<br />

Evaluation by farmer<br />

Implementation strategy<br />

PHASE IV<br />

Implementation<br />

Implementation<br />

Adoption and impact <strong>as</strong>sessment


RESEARCH & TECHNOLOGY DEVELOPMENT ROOT &<br />

TUBER CROPS<br />

Arthropod Pests<br />

Species<br />

Identification<br />

Geographic<br />

Dissemination<br />

Biology, Ecology<br />

Behavior<br />

<strong>Crop</strong> Damage<br />

Yield Loss<br />

Pest Management<br />

HPR<br />

Germpl<strong>as</strong>m Bank<br />

Biological Control<br />

Surveys<br />

N.E. Selection<br />

Botanical Pesticides<br />

Cultural Control<br />

Agronomic Practice<br />

Pesticides:<br />

Timing/Applications<br />

IPM<br />

(Training) (FPR) (NARS)


BIOTIC STRESSES: CASSAVA<br />

(Arthropod Pests and Dise<strong>as</strong>es)<br />

ASIA<br />

LAC<br />

PESTS:<br />

PESTS:<br />

Whiteflies<br />

Whiteflies<br />

Mites<br />

Mites<br />

Mealybugs<br />

Mealybugs<br />

Thrips<br />

Thrips<br />

Burrorwer bugs<br />

Burrorwer bugs<br />

Stemborers<br />

Stemborers<br />

Hornworm<br />

Hornworm<br />

Lacebugs<br />

Lacebugs<br />

DISEASES:<br />

DISEASES:<br />

C<strong>as</strong>sava Bacterial Blight (CBB)<br />

C<strong>as</strong>sava Bacterial Blight (CBB)<br />

C<strong>as</strong>sava Root Rots<br />

C<strong>as</strong>sava Root Rots<br />

Superelongation<br />

Superelongation<br />

Frogskin Dise<strong>as</strong>es<br />

Frogskin Dise<strong>as</strong>es<br />

AFRICA<br />

PESTS:<br />

PESTS:<br />

Whiteflies<br />

Whiteflies<br />

Mites<br />

Mites<br />

Mealybugs<br />

Mealybugs<br />

Gr<strong>as</strong>shoppesr<br />

Gr<strong>as</strong>shoppesr<br />

DISEASES:<br />

DISEASES:<br />

African C<strong>as</strong>sava Mosaic Dise<strong>as</strong>es (CMD)<br />

African C<strong>as</strong>sava Mosaic Dise<strong>as</strong>es (CMD)<br />

C<strong>as</strong>sava Brown Streak Virus (CBSV)<br />

C<strong>as</strong>sava Brown Streak Virus (CBSV)<br />

C<strong>as</strong>sava Bacterial Blight (CBB)<br />

C<strong>as</strong>sava Bacterial Blight (CBB)<br />

C<strong>as</strong>sava Root Rots<br />

C<strong>as</strong>sava Root Rots<br />

PESTS:<br />

PESTS:<br />

Whiteflies<br />

Whiteflies<br />

Mites<br />

Mites<br />

Mealybugs<br />

Mealybugs<br />

Whitegrubs<br />

Whitegrubs<br />

DISEASES:<br />

DISEASES:<br />

Root rots<br />

Root rots<br />

C<strong>as</strong>sava Bacterial Blight (CBB)<br />

C<strong>as</strong>sava Bacterial Blight (CBB)


MAJOR PESTS<br />

Mealybugs<br />

Phenacoccus herreni<br />

Phenacoccus manihot<br />

Whiteflies<br />

Trialeurodes variabilis<br />

Aleurotrachelus socialis<br />

Bemisia tabaci<br />

B. tuberculata<br />

Mites<br />

Mononychellus tanajoa<br />

Mononychellus caribeanae<br />

Tetranychus urticae


Distribution of mealybugs <strong>as</strong>ociated with <strong>c<strong>as</strong>sava</strong><br />

Phenacoccus madeirensis<br />

6<br />

sp.<br />

Phenacoccus herreni<br />

P. manihoti<br />

P. maderiensis<br />

P. gossipii<br />

Ferrisia virgata<br />

6<br />

sp.<br />

3<br />

sp.


CASSAVA MEALYBUGS<br />

Homoptera:Pseudococcidae<br />

ale<br />

male<br />

Phenacoccus herreni<br />

Female<br />

Phenacoccus manihoti


C<strong>as</strong>sava Mealybug (Phenacoccus(<br />

manihoti) ) Damage in Africa<br />

Yield Losses ~ 80%


Biological Control of the C<strong>as</strong>sava Mealybug<br />

(Phenacoccus manihoti) ) in Africa<br />

Anagyrus lopezi<br />

A. lopezi –Established in all<br />

ecological zones<br />

Now present in 27 countries,<br />

covering an area of 2.7 million<br />

Km<br />

C<strong>as</strong>sava losses reduced by<br />

90-95%<br />

Estimated saving US$7.97 to<br />

20.23 billion


Yield Losses > 80%


Introduced<br />

Anagyrus diversicornis<br />

Aen<strong>as</strong>ius vexans<br />

INTRODUCED<br />

Acerophagus coccois<br />

Introduced into Br<strong>as</strong>il<br />

and rele<strong>as</strong>ed (1994-<br />

1996) CIAT/EMBRAPA


ASIA/TAILAND<br />

1975<br />

Geographic distribution of c<strong>as</strong>sa<br />

mealybugs in Brazil<br />

Origin of Phenacoccus herreni,<br />

Colombia, Venezuela<br />

1980<br />

2005<br />

Introduction<br />

A. lopezi<br />

P. herreni<br />

P. manihoti<br />

Anagyrus lopezi


CASSAVA MEALYBUG AND DAMAGE: TAILANDIA<br />

Phenacoccus herreni<br />

Phenacoccus madeirensis<br />

PARASITOIDES:<br />

Anagyrus diversicornis<br />

Acerophagus coccois<br />

Aen<strong>as</strong>ius vexans


Distribution of Phytophagous mites <strong>as</strong>sociated with<br />

<strong>c<strong>as</strong>sava</strong><br />

Oligonichus biharensis<br />

Tetranychus kansawai<br />

T. truncatus<br />

T. neocaledonucus<br />

Eutetranychus orientalis<br />

Tetranychus urticae<br />

Tetranychus marianae<br />

Mononychellus tanajoa<br />

Tetranychus urticae<br />

T. neocaledonicus


Mononychellus tanajoa<br />

C<strong>as</strong>sava Green Mite<br />

ield Losses: Americ<strong>as</strong> 21 – 73%<br />

Africa 13 – 80%


Distribution of Mononychellus tanajoa <strong>as</strong>ociated<br />

with <strong>c<strong>as</strong>sava</strong><br />

~ 1970


MANAGEMENT OF CASSAVA MITES<br />

HOST PLANT RESISTANCE<br />

BIOLOGICAL CONTROL


EVALUATION OF CASSAVA GERMPLASM FOR<br />

RESISTANCE TO THE CGM, Mononychellus tanajoa<br />

DAMAGE SCALE<br />

No. VARIETIES<br />

1.0<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

6.0<br />

0<br />

48<br />

348<br />

2442<br />

755<br />

1047<br />

8.53%<br />

TOTAL 4640<br />

1.0 >> High level of resistance<br />

2.0 >> Moderate level of resistance<br />

3.0 >> Low level of resistance<br />

4.0 – 6.0 >> Susceptible


CASSAVA GREEN MITES ON<br />

RESISTANT CLONES HAVE:<br />

Nataima 31<br />

ICA Costeña (NG-1141-3<br />

1. Lower fecundity<br />

2. Longer development times<br />

3. Shorter adult life spans<br />

4. Higher adult and nymphal mortality<br />

5. Lower reproductive rates<br />

Than mites on susceptible clones


Biological Control of the C<strong>as</strong>sava Green Mite<br />

a Project of International Collaboration<br />

Quarantine<br />

QMP<br />

CIAT<br />

Quarantine<br />

&<br />

Introduction<br />

EMBRAPA<br />

CNPMF<br />

IITA<br />

Introduction<br />

Distribution


Phytoseiidae: Predaceous Mites


12<br />

Yield (Ton/ha)<br />

11<br />

10<br />

35% Yield loss<br />

9<br />

8<br />

Predators eliminated No Pesticide Pesticides spray Mites<br />

eliminated


Biological Control of C<strong>as</strong>sava<br />

Mites<br />

Countries Surveyed 17<br />

Sampling Sites 2500<br />

Species Collected from C<strong>as</strong>sava 66<br />

New (Unrecorded) Species 26<br />

Phytoseiid Population Studied 114<br />

Taxonomic Key Developed 53


N. idaeus T. manihoti T. aripo<br />

LEASED (1st)<br />

untries Where<br />

ished<br />

sion Rate<br />

ar)<br />

1989 1989 1993<br />

2 4 15<br />

0.01 2.5 12.5<br />

overed (Km²) < 10 1.300 400.000<br />

tion in CGM Population 0% 50% 30 - 90%<br />

Root yield incresae: 30-70% (Onzo, et al 2005)<br />

IITA/BENIN


CGM Populations reduced by 30 -90%<br />

Root yield incre<strong>as</strong>e: 30-70%<br />

(Onzo et al, 2005)


Global Distribution of Phytoseiids mites <strong>as</strong>sociated<br />

with phytophagous mites in <strong>c<strong>as</strong>sava</strong><br />

Neoseiulus longispinosus<br />

Amblyseius aerialis<br />

Neoseiulus anonymus<br />

Neo<strong>as</strong>eiulus idaeus<br />

Neoseiulus californicus<br />

Typhlodromalus limonicus<br />

Typhlodromalus aripo<br />

Typhlodromalus manihoti<br />

Galendromus annectens<br />

Galendromus helveolus<br />

> 40 species<br />

Amblyseius largoensis<br />

A.tamatavensis<br />

Euseius fustis<br />

E. papayana<br />

Euseius spp<br />

Iphiseius degenerans<br />

Neoseiulus teke<br />

Neoseiulus spp<br />

Paraphytoseius multidentatus<br />

Typhlodromalus saltus<br />

Typhlodromips rykei<br />

Phytoseius amba<br />

Amblyseus arialis<br />

Neseiulus anonymus<br />

N. idaeus<br />

Typhlodromalus limonicus<br />

Galendromus annectens<br />

G. helveolus


cional de Agricultura Tropical<br />

enter for Tropical Agriculture<br />

TETRANYCHUS MITES AND DAMAGE<br />

Potential Phytoseiids<br />

Amblyseius aerialis<br />

Phytoseiulus macropilis<br />

Neoseiulus anonymus<br />

Neoseiulus idaeus<br />

Typhlodromalus aripo<br />

Population<br />

Damage


Diagnostic<br />

B<strong>as</strong>ic Re<strong>as</strong>erch<br />

Host plant Resistance<br />

Biological Control<br />

Chemical Control<br />

Training<br />

Tropical Whitefly IPM Project (SPIPM)


Global Distribution of C<strong>as</strong>sava Whiteflies<br />

Aleurotrachelus socialis<br />

Bemisia tuberculata<br />

Bemisia afer<br />

Bemisia tabaci<br />

Aleurothrixus aepim<br />

Trialeurodes variabilis<br />

Aleurodicus dispersis


Importance of C<strong>as</strong>sava Pests in Colombia: Departament of Risaralda,<br />

a,<br />

Quindio & Cald<strong>as</strong><br />

100<br />

FREQUENCY<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

75,58<br />

32,25<br />

32,25<br />

22,58<br />

Yield reduction in<br />

farmer trials: 58%<br />

20<br />

10<br />

1,61<br />

9,67<br />

14,51<br />

4,83 4,83<br />

0<br />

Whitefly Shootflies Mite Hornworm Whitegrubs Thrips Burrower<br />

bugs<br />

18%<br />

PESTS<br />

52%<br />

Leafcutter<br />

ants<br />

No<br />

34%<br />

82%<br />

KNOWLEDGE<br />

NO KNOWLEDGE<br />

CHEMICAL BIOLOGICAL NON CONVENTIONAL NO CONTROL<br />

LACK OF KNOWLEDGE OF PEST CONTROL PRACTICES USED BY FARMER<br />

9%<br />

5%


WHITEFLIES<br />

High whitefly populations occur during rainy periods when<br />

there is considerable leaf and plant growth<br />

Whitefly populations can double every 4.1 days<br />

Yield losses from 40% to 79% recorded in field trials


Pesticides cause<br />

a disequilibria<br />

Disruption of biological control of<br />

Whiteflies and other pest (Mites,<br />

Mealybugs)<br />

Incre<strong>as</strong>ed resistance of pests to<br />

pesticides<br />

Host plant resistance is<br />

the most economic<br />

solution for control of<br />

<strong>c<strong>as</strong>sava</strong> whiteflies


DEVELOPING PLANTS RESISTANT TO<br />

ARTHROPOD PESTS<br />

Germpl<strong>as</strong>m Bank: ample genetic diversity<br />

Methodology for m<strong>as</strong>s rearing pest<br />

Methodology to distinguish resistant and susceptible<br />

germpl<strong>as</strong>m<br />

Ample natural field populations of pest to permit selection<br />

pressure<br />

Breeding scheme to incorporate resistance into<br />

commercial cultivars


M<strong>as</strong>s rearing and germpl<strong>as</strong>m evaluation


Nonadapted source<br />

of resistance<br />

x<br />

Agronomically desirable<br />

Susceptible clones<br />

Evaluation of progeny for agronomic desirability plus resistance<br />

Crossing again to resistance source<br />

NO<br />

Resistance levels adequate<br />

Recurrent selection<br />

YES<br />

Crossing again to good<br />

agronomic source<br />

NO<br />

Agronomic performance adequate<br />

Rele<strong>as</strong>e cultivar<br />

YES


C<strong>as</strong>sava Germpl<strong>as</strong>m Evaluated for Whitefly (Aleurotrachelus<br />

socialis) ) Resistance<br />

(Total GB 5406 Accessions)<br />

Evaluation Sites<br />

Departments<br />

Valle del Cauca<br />

(CEUNP-Palmira Palmira and Jamundí)<br />

Cauca<br />

(Santander de Quilichao)<br />

Tolima<br />

(Espinal-CORPOICA)<br />

Atlantic Co<strong>as</strong>t<br />

Atlántico (4 Locations),<br />

Bolívar (1), Sucre (3),<br />

Córdoba (1)<br />

5363 Genotypes Evaluated<br />

367 Promising<br />

13 Locations<br />

40 Selected


MEcu 72<br />

70% Mortality of Nymphal Instars


Whiteflies Host Plant Resistance<br />

Whiteflies Host Plant Resistance<br />

Aleurotrachelus socialis feeding on Resistance<br />

Genotypes have:<br />

Less oviposition<br />

ANTIXENOSIS<br />

Reduced size<br />

Longer development time ANTIBIOSIS<br />

Higher mortality<br />

Than those feeding on susceptible genotypes<br />

Results in<br />

Slower reproduction rate<br />

Reduce population build-up


Developing a Whitefly Resistant Commercial<br />

C<strong>as</strong>sava Cultivar<br />

Parents:<br />

MEcu 72(R) x MBra 12 (T)<br />

Progeny (127), Selected:<br />

GC 489-4<br />

CG 489-31<br />

CG 489-34<br />

CG 489-23<br />

Susceptible Controls:<br />

CMC 40<br />

H 305-122<br />

MCol 1505(T?)<br />

Farmers Cultivars:<br />

Aroma<br />

Quindío


YIELD OF 6 CASSAVA GENOTYPES EVALUATED UNDER WHITEFLY<br />

(Aleurotrachelus socialis) ) PRESSURE AT CORPOICA,<br />

NATAIMA (B), EL ESPINAL, TOLIMA<br />

35<br />

30<br />

YIELD (T/ha)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

CG 489-31 CG 489-34 CG 489-23 CG 489-4 CMC 40 Aroma<br />

CG 489-31<br />

Genotypes<br />

Ecu 72 x MBra 12<br />

Farmer cultivar


RELEASE OF NATAIMA-31<br />

Colombia, MADR, 2003


C<strong>as</strong>sava Cultivars and Hybrids Resistant<br />

to Whiteflies<br />

(A. socialis)<br />

Nataima 31<br />

MEcu 72<br />

MEcu 64<br />

MPer 334<br />

MPer 415<br />

MPer 273<br />

MPer 611<br />

MPer 317<br />

MPer 216<br />

MBra 292<br />

CG 489-34<br />

CG 489-23<br />

CG 489-31<br />

CG 489-4<br />

CM 8424-6<br />

CM 8424-33<br />

CM 8424-2<br />

uced into Africa (Uganda): Resistance to B. tabaci


BIOLOGICAL CONTROL<br />

Percent mortality of A. socialis nynphs infected with different<br />

entomopathogens (Isolates)<br />

Lecanicillium lecanii<br />

% Mortality<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

36.7 33.3<br />

44.4<br />

*<br />

65.4<br />

*<br />

36.8<br />

Paecilomyces fumosoroseus<br />

*<br />

47.1<br />

Beauveria b<strong>as</strong>siana<br />

15 16.8<br />

10<br />

0<br />

Isolate<br />

CIAT 210 CIAT 211 CIAT 212 CIAT 215 CIAT 216 CIAT 217 Control 1 Control 2<br />

* Collected from A. socialis


FUNGAL<br />

ENTOMOPATHOGENS<br />

(Lecanicillium lecanni)<br />

Cepa CIAT 215<br />

PRODUCTO COMERCIAL<br />

BioCanii®<br />

(BIOTROPICAL S.A.)<br />

PRODUCTO<br />

COMERCIAL Vercani®<br />

(SAFER)<br />

Lecanicillium lecanii on development Stages of A. socialis<br />

07


CHEMICAL CONTROL<br />

Stake treatment - Immersion<br />

in a solution of<br />

Thiamethoxam (Actara®)<br />

Foliar application<br />

APPLY TO LOWER LEAF SURFACE


ACTION THRESHOLD<br />

ge<br />

)<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Economic threshold<br />

Economic damage<br />

10 20 30 40 50 60 70 80<br />

Population<br />

(P)<br />

Initiate control<br />

Initiate control<br />

Biological application:<br />

Adult-Egg: 1 – 50<br />

Nynph – Pupae: 1 - 200<br />

Chemical application:<br />

Adult-Egg: 51 - 200<br />

Nynph – Pupae: 201 - 500


Yield (t/ha)<br />

30<br />

20<br />

C<strong>as</strong>sava yields (t/ha) of seven treatments for Whitefly<br />

Control.<br />

(Calarca, Quindio, Col., 2008)<br />

Stake treatment<br />

Population monitor<br />

Foliar application – Chemical. (2)<br />

Foliar application - Biological (1)<br />

10<br />

Neem<br />

Extract<br />

Integrated<br />

Control<br />

Enthomophthora<br />

Extract<br />

L. lecanii B. b<strong>as</strong>siana Garlic/chili<br />

Extract<br />

control<br />

Treatments<br />

Control applications needs only during first 6 months of crop cycle


African C<strong>as</strong>sava Mosaic Dise<strong>as</strong>e<br />

isia tabaci<br />

ACMD: Not prese<br />

in the Americ<strong>as</strong> a<br />

most of Asia (Indi


Bemisia tabaci (Biotype B) Survival on Manihot esculenta (C<strong>as</strong>sava) and<br />

M. carthaginensis when Populations Originate from Three Alternate Hosts<br />

2%<br />

Ph<strong>as</strong>eolus vulgaris<br />

3%<br />

Euphorbia pulcherrima<br />

27.5% 60%<br />

Jatropha gossypiifolia<br />

M. esculenta M. carthaginensis


cional de Agricultura Tropical<br />

enter for Tropical Agriculture<br />

QUARENTINE<br />

MOVEMENT OF CASSAVA PESTS FROM INFESTED TO NON-<br />

INFESTED AREAS<br />

EM CUTTINGS<br />

Mites<br />

Mealybugs<br />

Thrips<br />

Stemborers<br />

Scales<br />

Shoot flies<br />

FOLIAGE / PLANTS<br />

• Whiteflies<br />

• Hornworm<br />

• Lacebugs<br />

FRUIT<br />

• Fruitflies


cional de Agricultura Tropical<br />

enter for Tropical Agriculture<br />

QUARENTINE RECOMMENDATIONS:<br />

GENERAL<br />

Material should be collected, processed and shipped with the necessary<br />

precautions to avoid accidental movement of pest<br />

Under no circumstances should germpl<strong>as</strong>m be moved <strong>as</strong> rooted plant<br />

material except for in vitro plantlets<br />

C<strong>as</strong>sava germpl<strong>as</strong>m can be moved <strong>as</strong> seed, pathogen-test in vitro material,<br />

or <strong>as</strong> cuttings from re-established pathogen-tested in vitro material that h<strong>as</strong><br />

been grown under containment.<br />

Only under special circumstances should the movement of untested,<br />

vegetative material be considered<br />

All germpl<strong>as</strong>m should be collected from healthy-looking plants and when<br />

possible from are<strong>as</strong> where quarantine pests are not present.<br />

Germpl<strong>as</strong>m from are<strong>as</strong> where pest of quarantine concern are known to occur<br />

should go through intermediate, or post-entry quarantine<br />

The transfer of germpl<strong>as</strong>m should be carefully planned in consultation with<br />

quarantine authorities and should be in amounts that allow adequate<br />

handling and examination. The material should be accompanied with the<br />

necessary documentation.


Identification and Genetic Mapping of Host Plant<br />

Resistance to Whiteflies and Green Mites in Wild<br />

relatives of C<strong>as</strong>sava<br />

ACCESSIONS OF M.<br />

flabellifolia<br />

T: 833 ACCESSIONS OF 33 WILD SPECIES<br />

source for resistance or tolerance to biotic and abiotic stresse


Average Damage Rating<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

5 15 25 35 45 55<br />

Days after infestation<br />

MFLA 444-<br />

002<br />

ECU 72<br />

CMC 40<br />

MPER 417-<br />

003<br />

MPER 417-<br />

005


Oviposition curves of Aleurtrachelus socialis on accessions of<br />

Manihot flabellifolia and susceptible (CMC-40) and resistant<br />

(Mecu-72) <strong>c<strong>as</strong>sava</strong> genotipes<br />

Eggs/females/2<br />

days<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

M fla61<br />

M fla52<br />

M fla19<br />

M fla33<br />

M fla25<br />

M fla21<br />

M fla15<br />

M fla75<br />

C M C 40<br />

M Ecu72<br />

5<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34<br />

Age of females (days)<br />

Age of females (days)


Survival curves of Aleurotrachelus socialis famales on accesions<br />

of Manihot flabellifolia and susceptible (CMC-40) and resistant<br />

(Mecu-72) <strong>c<strong>as</strong>sava</strong> genotipes<br />

Proportion of live<br />

female<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Mfla61<br />

Mfla52<br />

Mfla19<br />

Mfla33<br />

Mfla25<br />

Mfla21<br />

Mfla15<br />

Mfla75<br />

CMC40<br />

MEcu72<br />

0.1<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36<br />

Days after infestation


Summary of Genetic Mapping for<br />

Whiteflies<br />

Over 500 SSR markers scored in bulk segregant analysis (BSA)<br />

About 7 markers found to be <strong>as</strong>sociated with resistance<br />

Putative markers <strong>as</strong>sociated with resistance to whiteflies are being tested<br />

GENOTIPO<br />

FLA 347-007<br />

MTAI 8<br />

76-1<br />

76-7<br />

80-1<br />

81-2<br />

220-9<br />

224-6<br />

225-6<br />

226-10<br />

229-7<br />

231-19<br />

235-10<br />

236-15<br />

236-16<br />

236-17<br />

242-2<br />

248-2<br />

259-40<br />

260-5<br />

76-2<br />

214-3<br />

214-9<br />

217-7<br />

219-3<br />

229-3<br />

229-12<br />

231-2<br />

232-2<br />

232-5<br />

232-8<br />

235-3<br />

235-5<br />

235-8<br />

235-21<br />

235-25<br />

235-94<br />

235-95<br />

OTIPO 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5<br />

Y 346


Development of Genetic markers for<br />

Resistance to C<strong>as</strong>sava Green Mites from M.<br />

esculenta sub spp flabelllifolia


Moderate Levels of Green Mites (M.tanajoa) Resistance have<br />

been found in BC 1 derivatives of some accessions of<br />

M.esculenta sub spp flabellifolia<br />

7<br />

6<br />

5<br />

MFLA 444-002<br />

ECU 72<br />

Average Damage Rating<br />

4<br />

3<br />

2<br />

1<br />

CMC 40<br />

MPER 417-003<br />

MPER 417-005<br />

0<br />

10 15 20 25<br />

Days of infestation


Genotyping and Phenotyping of BC 1 Mapping<br />

Populations for Resistance to Green Mites<br />

Summary of Genetic mapping for Green Mites<br />

Over 600 SSR markers scored in bulk segregant analysis (BSA)<br />

About 7 markers found to be <strong>as</strong>sociated with resistance<br />

Two markers confirmed to be <strong>as</strong>sociated with resistance to CGM<br />

Resistance Bulk Susceptible Bulk<br />

SSRY 11


18<br />

Oviposition (# eggs/female/3 days) on Mononychellus<br />

tanajoa on different genotypes of Wild Manihot species<br />

(30 repetitions)<br />

15<br />

Average # eggs<br />

12<br />

9<br />

6<br />

3<br />

0<br />

CM C 40 M . violacea 1 M . flabellifolia<br />

75<br />

M .brachyloba M . alutacea 4 M . filamentosa<br />

3<br />

M . tristi 8<br />

Genotypes


Important criteria and future trends in<br />

management of arthropod pests<br />

Greater yield losses on larger plantations.<br />

Changing climatic patterns will influence pest occurrence and population dynamic.<br />

Incre<strong>as</strong>ed pesticide use in relation to larger plantations and industrial production.<br />

Disruption of natural biological control.<br />

Continual or overlapping production cycles:<br />

Incre<strong>as</strong>ed pest incidence and population<br />

Numerous pesticide applications<br />

Development of biological and botanical pesticides:<br />

Fungal entomopathogens, baculoviruses<br />

Neem<br />

High cost of production<br />

Host plant resistance most practical and cost efficient for small and large producers.<br />

Incre<strong>as</strong>ed research emph<strong>as</strong>is on wild Manihot species <strong>as</strong> source of resistance to major pests.<br />

Quarentine regulations


“ECOLOGY like Genetics,<br />

is not about Equilibrium States.<br />

It is about change, change, change.<br />

Nothing stays the same forever.”<br />

Genome: M. Ridley, 2002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!