15.11.2012 Views

EnAlgae Macroalgal Pilot Network - Algecenter Danmark

EnAlgae Macroalgal Pilot Network - Algecenter Danmark

EnAlgae Macroalgal Pilot Network - Algecenter Danmark

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction to the Project<br />

2011 - 2015<br />

The <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong><br />

Maeve Edwards 1 , John Bothwell 2 , Matthew Dring 2<br />

& Jennifer Champenois 3<br />

1 2 3


<strong>EnAlgae</strong> (Energetic Algae )<br />

• <strong>EnAlgae</strong> is a 4 year, €14.6M Strategic Initiative of<br />

the INTERREG IVB North West Europe (NWE)<br />

Programme, combining the expertise and<br />

resources of 19 Partners plus 14 Observers<br />

encompassing 7 EU Member States.<br />

Overall aim: To develop sustainable pathways for<br />

algal bioenergy in NW Europe<br />

Website: www.enalgae.eu


<strong>EnAlgae</strong> aims to:<br />

• Improve current methods of culturing both macro- and<br />

micro-algae, through the improvement of pilot plants.<br />

• Integrate with existing industrial, agricultural and municipal<br />

processes to capture and remediate flue gas CO 2 and soluble<br />

aqueous wastes.<br />

• Address the cultural barriers which stand in the way of<br />

algal bioproduct use in Europe.


<strong>EnAlgae</strong> Partnership


<strong>EnAlgae</strong> WP1 –<br />

NW European <strong>Network</strong> of Algal <strong>Pilot</strong>s<br />

A trans-national network maximising the impact of pilot<br />

scale facilities via effective information exchange and<br />

knowledge transfer.<br />

Create a network of 9 algal<br />

pilot facilities across NWE<br />

Up-to-date inventory of<br />

facilities in NWE and<br />

standardised data<br />

management system<br />

Develop best practice for<br />

algal strain exploitation<br />

Demonstrate pilot plants to a<br />

diverse range of partners,<br />

observers, and stakeholders


<strong>EnAlgae</strong> WP2 – Sustainable algae to<br />

energy market for NW Europe<br />

Identify political, economic, social and technological<br />

opportunities for algal bioenergy within NWE, delivering<br />

information for policy-makers, industry and investors.<br />

Assess market and<br />

economics; assess<br />

technology expertise<br />

Define regulatory &<br />

planning issues<br />

Undertake policy<br />

landscaping analysis<br />

Identify life-cycle analysis<br />

and sustainability issues


<strong>EnAlgae</strong> WP3 - Decision support tool for<br />

practitioners, policy makers and investors<br />

Combine information from the algal-bioenergy delivery chain into<br />

an ICT tool to guide decision making, identify knowledge gaps and<br />

provide a roadmap for the sustainable deployment of algal<br />

bioenergy in NWE.<br />

Develop modular<br />

ICT framework to<br />

capture general<br />

and specialised<br />

process knowledge<br />

Validate tool using<br />

different algal<br />

biomass production<br />

scenarios<br />

Launch ICT tool via<br />

online Algal<br />

Information<br />

<strong>Network</strong> (AIN)


<strong>EnAlgae</strong> WP1 –<br />

NW European <strong>Network</strong> of Algal <strong>Pilot</strong>s<br />

1. UK. New algal innovation centre demonstrating a range of<br />

microalgal growth systems (open & closed)<br />

2. BE. New portable mixed microalgae / bacteria bioreactor<br />

3. IE. New large scale open-sea macroalgal cultivation (longlines)<br />

4. UK. Upgrade of microalgal flue gas CO 2 capture facility<br />

5. DE. New microalgae production attached to advanced<br />

aquaculture<br />

6. NL. New outdoor microalgae production (open ponds)<br />

7. FR. Upgrade of macroalgal raceways + longlines<br />

8. UK. Upgrade of photobioreactors co-localised<br />

with aquaculture and heavy industry<br />

9. UK. New macroalgal longlines + genetic analysis<br />

of strains


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong><br />

This will build on work recently completed by NUIG, QUB<br />

and BIM and funded by the Marine Institute (Ireland) on<br />

“Development and demonstration of viable hatchery and<br />

ongrowing methodologies for seaweed species with<br />

identified commercial potential”<br />

Species requested for trials:<br />

Palmaria palmata<br />

Laminaria digitata (Saccharina latissima added in 2010)<br />

Porphyra spp.<br />

Manuals to be published in BIM’s “Aquaculture<br />

Explained” series for Palmaria and Laminaria


Development and demonstration of viable hatchery and ongrowing<br />

methodologies for seaweed species with identified commercial<br />

potential (Marine Institute, 2008-2011)<br />

Locations of the project<br />

hatcheries (letters), and licensed<br />

sea trial sites (numbers).<br />

A. QUB Marine Laboratory<br />

B. NUIG Carna Research Facility<br />

C. DOMMRS/BIM Gearhies Lab.


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong><br />

This will build on work recently completed by NUIG,<br />

QUB and BIM and funded by the Marine Institute<br />

(Ireland) on “Development and demonstration of<br />

viable hatchery and ongrowing methodologies for<br />

seaweed species with identified commercial<br />

potential”<br />

[Give some details and show manuals.]


Economic assessment of Palmaria cultivation:<br />

at sea & in tanks<br />

Best yields of Palmaria after cultivation at sea obtained by settling spores on<br />

nets (3 x 1.3 m, with 10-cm mesh) and harvesting the nets after 5-6 months in<br />

the sea. Yield per net is 25-30 kg of wet Palmaria.<br />

Assuming that standard refrigerated container used as a hatchery, only 48 nets<br />

could be seeded and maintained prior to deployment, so total annual production<br />

of wet Palmaria would be 1.2-1.4 tonnes. At current prices, value of crop would<br />

be €3,000-5,000.<br />

Capital costs to install and equip container as a hatchery: €40,000<br />

Annual costs for consumables, electricity and labour: €90,000<br />

Unless yields can be greatly improved, cultivating Palmaria at sea will not<br />

provide basis for a viable business.<br />

Tank cultivation of Palmaria:<br />

Depreciation on equipment plus electricity for farm with 80x1-m 2 tanks: c.<br />

€8,000 per year.<br />

At 50 kg/tank, total yield of wet Palmaria would be 4 tonnes, worth €10,000<br />

(€14,000 if sold dry), so small margin available to pay for limited labour required.


Cultivation of Laminaria digitata at several sites in Ireland<br />

during 2010/2011,


Business Plan for the Establishment of a Seaweed Hatchery<br />

and Grow-out Farm<br />

Lucy Watson & Matthew Dring, BIM, 2011


Business Plan for the Establishment of a Seaweed Hatchery<br />

and Grow-out Farm<br />

Lucy Watson & Matthew Dring, BIM, 2011


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong> – sea trial sites<br />

Partner Site Site<br />

size<br />

QUB<br />

(Northern<br />

Ireland, UK)<br />

CEVA<br />

(Brittany,<br />

France)<br />

NUIG<br />

(Ireland)<br />

Strangford Lough,<br />

Co. Down<br />

Brittany coast,<br />

potentially several<br />

locations at existing<br />

oyster farms<br />

Onshore tanks<br />

Ventry Harbour,<br />

Co. Kerry<br />

Bertraghboy Bay,<br />

Co. Galway<br />

~8 ha.<br />

(1 ha.<br />

used)<br />

6 ha.<br />

(1 ha.<br />

used)<br />

18 ha.<br />

(1 ha.<br />

used)<br />

Site<br />

characteristics<br />

• Near shore<br />

• ++ Tidal Height<br />

• +++ Currents<br />

• + Wave action<br />

• Mixed substrate<br />

• Near shore<br />

• ++ Wave action?<br />

• +++ Tidal Height<br />

• +++ Currents<br />

• ? substrate<br />

• Near shore<br />

• + Wave action<br />

• + Tidal Height<br />

• + Current<br />

• Sand substrate<br />

Bioremediation?<br />

Not at site, but<br />

modeling kelp growth<br />

around local sewage<br />

outfalls<br />

Yes – onshore tank<br />

facilities using<br />

fishtank effluents,<br />

plus collaboration<br />

with oyster farmers<br />

Yes – using<br />

Bertraghboy Bay site<br />

with cod farm and<br />

scallop production in<br />

IMTA system


Development and demonstration of viable hatchery and ongrowing<br />

methodologies for seaweed species with identified commercial<br />

potential (Marine Institute, 2008-2011)<br />

Locations of the project<br />

hatcheries (letters), and licensed<br />

sea trial sites (numbers).<br />

A. QUB Marine Laboratory<br />

B. NUIG Carna Research Facility<br />

C. DOMMRS/BIM Gearhies Lab.


<strong>EnAlgae</strong> <strong>Macroalgal</strong> <strong>Pilot</strong> <strong>Network</strong> – planned actions<br />

Partner Hatchery Site structures Site capacity (m rope)<br />

QUB<br />

(Northern<br />

Ireland, UK)<br />

CEVA<br />

(Brittany,<br />

France)<br />

NUIG<br />

(Ireland)<br />

•Upgrade of current<br />

facilities planned<br />

•Upgrade of current<br />

facilities planned<br />

•No upgrade<br />

necessary – only<br />

consumables<br />

required<br />

• Linear longlines to fill<br />

1 ha.<br />

• Infrastructure<br />

required<br />

• Linear longlines to fill<br />

1 ha.<br />

• Infrastructure<br />

required<br />

• Seaweed grid to fill<br />

1 ha.<br />

• Infrastructure<br />

required<br />

• Max. 10 x100-m longlines per<br />

ha. = 1000 m culture rope<br />

required from hatchery<br />

• Realistic yield estimate = 6 kg<br />

wet per m x1000 m = 6 tonnes<br />

• As above<br />

• Already have 30 m x 30 m<br />

grid in place; 50 x 50 m (or<br />

larger) modular system to be<br />

installed.<br />

• Capacity per grid at least<br />

1250 m culture rope. Up to<br />

2500 m. (7.5-15 tonnes wet)


<strong>EnAlgae</strong> WP1:<br />

<strong>Macroalgal</strong> pilot network – planned actions<br />

Species used: Saccharina latissima, Alaria esculenta, Laminaria<br />

digitata and L. hyperborea, Chorda filum, Saccorhiza<br />

polyschides<br />

(possibly Undaria pinnatifida in CEVA, but not in QUB or NUIG)<br />

Environmental Monitoring:<br />

All sea sites<br />

Focus on deployment periods (October to May/June)<br />

Necessary parameters: temperature, current velocity, salinity,<br />

turbidity, irradiance, nutrients, CO2, O2, chlorophyll<br />

Additional parameters (subject to funds):<br />

Wave action (modelled?)<br />

Benthic invertebrate monitoring


Marine Institute (Ireland)<br />

Marine Research Sub-Programme - Seaweed<br />

Development of a methodology for the quantitative<br />

assessment of Ireland’s inshore kelp resource<br />

RESEARCH OBJECTIVES:<br />

Partners:<br />

QUB,<br />

Envision Mapping Ltd,<br />

UC Cork<br />

• Develop, trial and assess potential methodologies for estimation of kelp<br />

standing stock biomass at two inshore sites (1 on SW Coast and 1 on West<br />

coast);<br />

• Carry out acoustic trials to estimate kelp biomass (including appropriate<br />

ground-truthing) and, where appropriate, fine-tune the methodology.


Echograms from (top) Channel 1 (38kHz) and (bottom) Channel 2 (200kHz).


Stages in converting PVI records to map the distribution of kelp biomass<br />

for the Crump Island site (Co. Galway) in the west coast survey.<br />

Track point PVI<br />

data<br />

Interpolate to grid<br />

Contour PVI values<br />

Apply regression for<br />

biomass estimation


Map of predicted biomass of Laminaria hyperborea for Crump<br />

Island site (Co. Galway) in the west coast survey.


Bioremediation<br />

of treated<br />

sewage<br />

effluents<br />

Serrated wrack,<br />

Fucus serratus


Sewage treatment plant<br />

with access to seawater<br />

for admixture of<br />

effluent – Ballyrickard<br />

Sewage Treatment<br />

Plant, Newtownards,<br />

Co. Down<br />

Seaweed tolerant to low<br />

salinity<br />

Seaweed that is<br />

abundant, easy to<br />

harvest and is efficient<br />

at removing inorganic<br />

nutrients<br />

What do you need?<br />

Fucus<br />

serratus


Seaweed-biofilter<br />

system


µmol / L<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Ballyrickard Sewage Treatment Works,<br />

Newtownards, Co. Down<br />

NO3<br />

PO4<br />

NH4<br />

July 2001<br />

Inorganic nutrient<br />

concentrations of<br />

seawater/effluent mix<br />

% removal<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 0,5 1 1,5 2 2,5<br />

Days (July 2001)<br />

Removal of inorganic nutrients<br />

by the algae (measurements:<br />

every 2h over 2d)<br />

NO3<br />

PO4<br />

NH4


Island of Ios (Aegean Sea,<br />

Greece)


Ios (Aegean) STW & bioremediation trial


Removal of phosphate by the green seaweed Ulva lactuca in a<br />

small scale sewage treatment plant (Ios island, Aegean Sea,<br />

Greece)<br />

P. Tsagkamilis, D. Danielidis, M.J. Dring and C. Katsaros<br />

University of Athens, Faculty of Biology, Athens 157 84, Greece<br />

Queen's University Marine Laboratory, Portaferry, Co. Down,<br />

BT22 1PF, Northern Ireland, U.K.<br />

Journal of Applied Phycology (2010) 22: 331-339

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!