31.03.2015 Views

DEPFET Active Pixel Sensors for SuperBelle PXD - Belle II - KEK

DEPFET Active Pixel Sensors for SuperBelle PXD - Belle II - KEK

DEPFET Active Pixel Sensors for SuperBelle PXD - Belle II - KEK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 1<br />

<strong>DEPFET</strong> <strong>Active</strong> <strong>Pixel</strong> <strong>Sensors</strong><br />

<strong>for</strong> <strong>Super<strong>Belle</strong></strong> <strong>PXD</strong><br />

- Status Report-<br />

Ladislav Andricek <strong>for</strong> the <strong>DEPFET</strong> Collaboration (www.depfet.org)


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 2<br />

Starting Point: The <strong>DEPFET</strong> ILC VTX Project<br />

10 groups from Germany, Spain, and Czech Republic ≈40-50 people working on the project<br />

new groups <strong>for</strong> <strong>Super<strong>Belle</strong></strong>: Japan, Hawaii, Poland, Austria<br />

See <strong>DEPFET</strong> Backup Document at www.depfet.org


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 3<br />

<strong>DEPFET</strong> Principle<br />

DEpleted P-channel FET<br />

J. Kemmer & G. Lutz, 1987<br />

Drain<br />

Gate<br />

Source<br />

• fully depleted sensitive volume, charge collection by drift<br />

• internal amplification q-I conversion: 0.5 nA/e, scales with gate length and bias current<br />

• Charge collection in "off" state, read out on demand


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 4<br />

An Array of <strong>DEPFET</strong>s<br />

Row wise read-out ("rolling shutter")<br />

• select row with external gate, read current,<br />

clear <strong>DEPFET</strong>, read current again<br />

the difference is the signal<br />

• only one row active low power consumption<br />

• two different auxiliary ASICs needed<br />

gate<br />

off<br />

on<br />

off<br />

off<br />

V GATE, ON<br />

V GATE, OFF<br />

<strong>DEPFET</strong>- matrix<br />

I DRAIN<br />

n x m<br />

pixel<br />

drain<br />

0 suppression<br />

off<br />

reset<br />

off<br />

off<br />

V CLEAR, ON<br />

reset<br />

V CLEAR, OFF<br />

V CLEAR-Control<br />

output


<strong>DEPFET</strong>s <strong>for</strong> the ILC: Achievements and Status<br />

<strong>DEPFET</strong>s <strong>for</strong> the ILC VXD<br />

<br />

<br />

Prototype System with <strong>DEPFET</strong>s (450µm), CURO and Switcher<br />

many test beams @ CERN and DESY:<br />

S/N≈140 @ 450 µm goal S/N ≈ 20-40 @ 50 µm<br />

<br />

sample-clear-sample 320 ns goal 50 ns<br />

s.p. res. with 24 µm pixels: 1.3 µm @ 450 µm<br />

goal ≈ 4 µm @ 50 µm<br />

<br />

Thinning technology established, thickness can be adjusted to the<br />

needs of the experiment (~20 µm … ~100 µm),<br />

design goal 0.11 % X 0<br />

<br />

radiation tolerance tested with single pixel structures up to<br />

1 Mrad and ~10 12 n eq /cm 2<br />

In this talk:<br />

• Towards <strong>Super<strong>Belle</strong></strong>…<br />

• New irradiation of <strong>DEPFET</strong>s to higher TIDs<br />

• Consequences ...<br />

1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 5


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 6<br />

The <strong>DEPFET</strong> Ladder <strong>for</strong> <strong>Super<strong>Belle</strong></strong> <strong>PXD</strong><br />

Some important numbers <strong>for</strong> the baseline layout:<br />

sensitive region : 1.15x7.25 cm 2 (L1), 1.15x9.26 cm 2 (L2)<br />

(subject to optimization)<br />

read-out time : 100kHz frame rate, 80ns <strong>for</strong> 4 rows<br />

material budget : 0.15% X0 (incl. frame, chips, bumps)<br />

power/module : <strong>DEPFET</strong>s ~ 0.5 W<br />

Switcher ~ 0.2 W<br />

DCD ~ 3 W on each ladder end


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 7<br />

<strong>DEPFET</strong> <strong>Pixel</strong> Cell <strong>for</strong> <strong>Super<strong>Belle</strong></strong><br />

<strong>DEPFET</strong>s from ILC to Super<strong>KEK</strong>B:<br />

-: the principle is of course the same<br />

-: technology to a large extent also<br />

-: but the cell size is much larger!!!<br />

24x24µm 2 50x75µm 2<br />

keep W and L small (maintain clear and g q<br />

)<br />

re-design drain and source region to keep<br />

Drain<br />

Gate<br />

Source<br />

charge collection time short (


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 8<br />

Capacitively Coupled Common Clear Gate<br />

Gate<br />

poly2<br />

std.: clocked clear gate<br />

Clear<br />

n+ implant<br />

Clear Gate<br />

Gate<br />

ILC: common clear gate<br />

Clear<br />

Clear Gate<br />

Gate<br />

fast and safe clear:<br />

cap. coupled clear gate<br />

Clear<br />

Clear Gate<br />

109 Cd spectrum (22keV, 6000 e - )<br />

taken with 128x64 <strong>PXD</strong>5 matrix


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 9<br />

Internal amplification g q<br />

g<br />

q<br />

=<br />

dI<br />

D<br />

dQ<br />

μ<br />

= −<br />

L<br />

p<br />

( V<br />

2 GS<br />

−Vth<br />

)<br />

(neglecting short channel effects)<br />

<strong>PXD</strong>5: single pixel measurement<br />

S.Rummel<br />

As long as noise is dominated by r/o chip S/N linear with g q<br />

Our conservative assumption is g q<br />

≈ 500 pA/e-, but even 1nA/e- seems within reach!


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 10<br />

Two <strong>DEPFET</strong> runs <strong>for</strong> <strong>Super<strong>Belle</strong></strong><br />

First run <strong>PXD</strong>6: 2009<br />

Siltronic, FZ, DSP, , t=450µm, 400Ω.cm, Phosphorous<br />

-: first <strong>DEPFET</strong> run on SOI wafers!!<br />

-: 6 SOI and 2 std. Hi-Res Wafer<br />

-: top wafer (front side) technology like <strong>PXD</strong>5<br />

-: new technology: thinning and BS process<br />

-: Aim: - find optimal design<br />

- optimize technology and yield<br />

- provide devices <strong>for</strong> all-silicon module<br />

End Spring 2010<br />

hydrophilic bond<br />

at Tracit/Soitec<br />

230 nm thermal oxide<br />

Siltronic, FZ, DSP, , t=450µm, 400Ω.cm, Phosphorous<br />

structured Boron implant, through BOX, 90 keV, 5e14 - 1e15 cm-2<br />

alignment marks in BOX: 60nm step<br />

top layer: 50 µm<br />

DSP<br />

after bonding, grinding and double sided polishing<br />

≈420 µm<br />

<strong>Super<strong>Belle</strong></strong> Production <strong>PXD</strong>7: Start 2011<br />

-: With improved technology<br />

-: 20 Wafer? (depends on yield of <strong>PXD</strong>6)<br />

End Spring 2012<br />

preliminary wafer floor plan <strong>for</strong> <strong>PXD</strong>6


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 11<br />

Just as a Reminder: Thinning Technology<br />

a) oxidation and back side implant<br />

of top wafer<br />

Top Wafer<br />

c) process passivation<br />

Handle Wafer<br />

open backside passivation<br />

b) wafer bonding and<br />

grinding/polishing of top wafer<br />

d) anisotropic deep etching opens "windows"<br />

in handle wafer


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 12<br />

Irradiations - Devices and setup<br />

S.Rummel<br />

-: <strong>PXD</strong>5, Wafer 90, 8x12 mini-matrix, 32x24 µm 2<br />

-: irradiation with X-rays photons in Karlsruhe, ~150krad/h, Emax=60keV<br />

-: entire matrix biased in "off" during irradiation, periodically cleared<br />

-: four pixels selected to measure basic characteristics throughout irradiation<br />

0 V<br />

-0.5V<br />

4V<br />

20kHz 6V/18V<br />

-5V<br />

Bulk:<br />

Back side:<br />

10V<br />

180V


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 13<br />

Irradiations - First period: Results<br />

60<br />

Co<br />

irradiation<br />

after 7.9 Mrad<br />

Vt: 0-13V after 5 days RT annealing<br />

and<br />

~1V V t<br />

variation of identical <strong>DEPFET</strong>s at same<br />

TID!<br />

7.9Mrad<br />

5 days ann.<br />

at RT<br />

1Mrad<br />

pre-irrad


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 14<br />

Irradiations - First period: Spectroscopic Per<strong>for</strong>mance<br />

S.Rummel<br />

S.Rummel<br />

non-irradiated<br />

V thresh ≈-0.2V<br />

time cont. shaping τ=10 μs<br />

Noise ENC=2.1 e - (rms)<br />

at T>23 degC<br />

Noise ENC=4.6 e - (rms)<br />

at T>23 degC<br />

7.9 Mrad, 10keV X-rays<br />

V thresh ≈-13.0V,<br />

time cont. shaping τ=10 μs


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 15<br />

Irradiations - First period: noise vs. shaping time<br />

8kTg<br />

1<br />

ENC =<br />

+<br />

m<br />

2<br />

α + 2πa<br />

f<br />

Ctot<br />

qI<br />

Leakτ<br />

2<br />

3gq<br />

τ<br />

Therm. noise 1/f I L<br />

(‏unirradiated -: Leakage current in the pixel @ RT ~40 fA ( 10-22fA<br />

-: Noise increase due to 1/f noise which is independent of bandwidth<br />

-: noise increase due to radiation is not factor 2 but only 3 e - ENC


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 16<br />

Irradiations - First period: threshold dispersion<br />

-: 4 <strong>DEPFET</strong>S ∆Vt≈1V after 8 Mrad is an issue!!<br />

-: 8x12 <strong>DEPFET</strong>s on mini-matrix, so re-bond and measure them all <strong>for</strong> higher statistic<br />

But then ... due a misunderstanding ... accidentally(!!!) the structure was annealed <strong>for</strong> 1/2h @ 110°C<br />

But on the other hand, we now know that the dispersion is not the final state and maybe<br />

even room temperature annealing will lead to the same results.<br />

Anyway, the conclusion is: Nice try, but do another irradiation!!!!


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 17<br />

Irradiations - Second Period<br />

-: <strong>PXD</strong>5, Wafer 90, 8x12 mini-matrix, 32x24 µm 2<br />

-: irradiation with X-rays photons in Karlsruhe, ~185krad/h, Emax=60keV<br />

-: entire matrix biased in "off" during irradiation, periodically cleared<br />

-: gate off voltage and common clear gate voltage was stepwise adapted to<br />

radiation induced threshold voltage shift<br />

-: 16 pixels selected to measure basic characteristics throughout irradiation<br />

0 V<br />

-0.5 -17 V<br />

4V -22V<br />

20kHz 6V/18V<br />

-5V<br />

Bulk:<br />

Back side:<br />

10V<br />

180V


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 18<br />

Irradiations - Second Period: Results<br />

-: No saturation visible with adaptive gate off<br />

parameter<br />

-: Below 0V gate off voltage higher damage<br />

-: Shift ~10V higher than with constant bias!!!<br />

-: Dispersion is still there!!<br />

-: Annealing at RT (10 days) ∆Vt≈16.5 +/- 0.8 V<br />

only Gate shown here; Clear Gate behaves similar!


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 19<br />

Reasons I - Radiation Effects<br />

≈ 200nm Gate Dielectrics<br />

1. e/h pair generation (~17eV/pair in SiO 2<br />

)<br />

2. e/h pair recombination (“charge yield”)<br />

-rad. Source<br />

- electric field in oxide<br />

3. e and h transport<br />

-e: ~ps…ns<br />

-h: ~ms…s<br />

4. hole trapping<br />

- precursor density technology<br />

5. interface trap <strong>for</strong>mation<br />

- precursor density technology<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 20<br />

Reasons <strong>II</strong> - Field Dependence, MOS-C irradiations<br />

-V FB<br />

(V)<br />

25<br />

20<br />

15<br />

10<br />

flat band voltage<br />

positive oxide charge<br />

Dose=1 Mrad<br />

d ox<br />

=86nm<br />

b. c.<br />

6.00E+012<br />

5.00E+012<br />

4.00E+012<br />

3.00E+012<br />

Nox (cm-2 )<br />

Region a.:<br />

Field minimal, <strong>DEPFET</strong> in "OFF" state, no channel,<br />

region under gate depleted and floating<br />

Region b.:<br />

small negative voltage at gate, <strong>DEPFET</strong> "ON",<br />

charges in SiO2 separated higher charge yield<br />

2.00E+012<br />

5<br />

a.<br />

Q.Wei<br />

-10 -5 0 5 10 15<br />

1.00E+012<br />

Region c.:<br />

positive voltage on gate, e- drift do poly gate,<br />

holes trapped at interface, not possible in <strong>DEPFET</strong>!<br />

V g<br />

(V)<br />

But "channel" close to the Source is not completely floating!!<br />

adaption of Gate-off voltage to negative values during irradiation increases the field there<br />

Gate "OFF" close to the Source is then in Region b.<br />

larger threshold voltage shift, if one tries to keep (V Gate-On<br />

-V Gate-Off<br />

) constant<br />

in the experiment


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 21<br />

Consequences<br />

1. Threshold dispersion after uni<strong>for</strong>m irradiations:<br />

-: not that critical at the Gate, the resulting spread in the Drain currents (+/-20% after RT annealing)<br />

is manageable by the front end electronics<br />

-: the effects at the Clear Gate have still to be evaluated...<br />

2. Higher threshold shift when going to negative Gate-Off voltages:<br />

-: keep the Gate-Off voltage close to 0 new Switcher4 will have up to 50V range!<br />

-: the penalty is probably higher power consumption and longer rise times<br />

So, there are work-arounds, but the best would be to take advantage of having the<br />

freedom to the tailor the technology in order to minimize the radiation induced<br />

threshold voltage shift.<br />

The radiation tolerance of the <strong>DEPFET</strong> was sufficient <strong>for</strong> the ILC, but it needs more<br />

ef<strong>for</strong>t <strong>for</strong> Super<strong>KEK</strong>B!


Consequences - Improve Technology<br />

-: thinner oxide smaller shift but lower internal amplification g q<br />

-: But: g q<br />

~ sqrt(t ox<br />

) , can be compensated with higher currents and/or shorter gate length<br />

(see slide 9)<br />

-: optimized gate dielectrics<br />

35<br />

MOS - 86nm Oxi<br />

MOS - 100nm Oxi<br />

Flat Band Voltage Shift<br />

1<br />

Flat band voltage shift vs. radiation dose<br />

MNOS - 86nm Oxi & 10nm Nitride<br />

30<br />

MNOS - 86nm Oxi & 10nm Nitride<br />

MNOS - 100nm Oxi & 10nm Nitride<br />

V gate<br />

=0V<br />

25<br />

TID: 1Mrad<br />

0,75<br />

20<br />

Vfb (V<br />

Vfb (V<br />

0,5<br />

15<br />

10<br />

0,25<br />

5<br />

Irrad. to higher TID under way<br />

0<br />

-10 -5 0 5 10 15<br />

Vg (V)<br />

0<br />

0 250 500 750 1000<br />

Radiation dose (krad)<br />

Q.Wei<br />

Smaller (simpler) <strong>DEPFET</strong> technology test run planned in parallel to <strong>PXD</strong>6 production<br />

<strong>DEPFET</strong>s with thinner and optimized gate dielectrics in the final run!<br />

1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 22


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 23<br />

Summary<br />

-: Preparations <strong>for</strong> the <strong>Super<strong>Belle</strong></strong> <strong>DEPFET</strong> production are well underway, designs are being<br />

finalized. Processing starts after the Christmas break!<br />

-: ASIC and System design <strong>for</strong> the <strong>Super<strong>Belle</strong></strong> environment has started.<br />

(report at the next collaboration meeting)<br />

-: Radiation tolerance of the <strong>DEPFET</strong> remains to be an issue!<br />

per<strong>for</strong>mance after 8 Mrad okay!! Negligible reverse current after irrad. and only 3 e- (rms)<br />

noise increase.<br />

there is considerable annealing at room temperature: 10V and 70% of the total spread<br />

disappeared after 10 days at RT.<br />

but still, <strong>for</strong> a robust system design, we would need to reduce both the absolute<br />

threshold voltage shift and the dispersion<br />

-: First irradiation up to 1Mrad with thinner and optimized Gate dielectrics show the<br />

feasibility of this approach. A parallel development is planned 2009.<br />

With the given time scale <strong>for</strong> the project, we urgently need <strong>for</strong> the optimization and system design<br />

reliable numbers (with reasonable safety factors) <strong>for</strong>:<br />

-: radiation environment, both ionizing and NIEL parts<br />

-: how (in-)homogeneous is the irradiation over a ladder?<br />

-: operating temperature of the sensors (critical in case of NIEL damage)


Backup slides follow….<br />

1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 24


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 25<br />

A new r/o chip - DCD<br />

DCD: Drain Current Digitizer<br />

Test chip DCD2: 6X12 channels<br />

(Uni Heidelberg)<br />

-: improved input cascode (regulated) and current memory cells<br />

-: integrated 8bit current based ADC per channel, 12.5 MHz sampling rate<br />

-: designed <strong>for</strong> 40 pF load at the input (5cm Drain line), 12 µm r/o pitch<br />

-: f/e noise: 34nA@40pF, 17nA@10pF, add 37nA <strong>for</strong> memory cells<br />

50nA@40pF at 40pF with g q =500pA/e 100 e- ENC in total<br />

-: layout <strong>for</strong> bump bonding, rad. hard design<br />

-: power consumption per channel 3.6 mW (measured)<br />

-: digital hit processing done with 2nd chip/FPGA


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 26<br />

Switcher <strong>II</strong>I<br />

-: Radiation hard (AMS 0.35 µm, layout)<br />

-: up to 10V swing ( stacked transistors)<br />

-: Power: 53 mW per chip (128 chn.) at 20 MHz<br />

-: Fast settling ( 600kRad!<br />

-: Full chip produced and functional<br />

9V distributed over 3 transistors<br />

with 3V -> rad hard. technology<br />

possible


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 27<br />

50x75 µm 2 pixel IP Resolution at <strong>Super<strong>Belle</strong></strong><br />

<strong>DEPFET</strong>:<br />

"DSSD":<br />

Simulation of SVD LOI layout<br />

Stand alone tracking, single tracks, no background<br />

L1 1.3 cm (50µm x 75µm)<br />

L2 1.6 cm (50µm x 75µm)<br />

thickness: 50µm, 0.14% X 0 , noise 100e<br />

L3/L4/L5/L6 with 50µmx75µm<br />

thickness 300µm, noise 1600e<br />

beam pipe: r=1cm (Be with 10µm Au layer)<br />

Substantial improvement over <strong>Belle</strong> SVD2!<br />

very preliminary<br />

-: factor 0.5 @ high momentum<br />

-: factor 0.25 @ below 0.5 GeV/c and large theta<br />

Solid lines: <strong>Belle</strong>s SVD2, symbols: <strong>DEPFET</strong> s<strong>Belle</strong>


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 28<br />

Subtreshold current Interface trap density 1/f noise<br />

s D1<br />

(mV/dec)<br />

10 -18<br />

10 -17 Id=75uA<br />

proton<br />

mos10<br />

mos2<br />

mos4<br />

mos5<br />

s D2<br />

(mV/dec)<br />

1x10 -19<br />

60 Co<br />

1x10 -20<br />

60 Co irradiation<br />

Si (A^2/Hz)<br />

1x10 -21<br />

10 -22<br />

1x10 -23<br />

neutron<br />

non-irrad<br />

1x10 -24<br />

10 -25<br />

ΔN<br />

it<br />

=<br />

Cox<br />

⋅(<br />

s<br />

kT ⋅ln(10)<br />

− s<br />

D2 D1<br />

)<br />

10 -26<br />

1 10 100 1k 10k 100k<br />

Frequency<br />

irradiation TID / NIEL fluence ∆s (mV/dec) ∆N it<br />

(cm -2·eV-1 )<br />

gamma 60 Co 913 krad / ~ 0 88 1.6·10 11<br />

neutron ~ 0 / 2.4x10 11 n/cm 2 ~ 0 ~ 0<br />

proton 283krad / 3x10 12 n/cm 2 230 4.2·10 11<br />

Lit: ~ 10 12 -10 13 cm -2·eV -1 <strong>for</strong> 200nm gate oxide


1st Open Super<strong>KEK</strong>B Collaboration Meeting, <strong>KEK</strong>, Dezember 2008 Ladislav Andricek, MPI fuer Physik, HLL 29<br />

Possible New Layout…<br />

LOI layout<br />

<strong>DEPFET</strong> layout<br />

Layer 1 Layer 2 Layer 1 Layer 2<br />

R min<br />

/cm 1.3 1.6 1.3 1.8<br />

N 12 12 8 12<br />

Width/cm (sensitive) 0.85 1.00 1.15 1.15<br />

Width/cm (geometrical) 1.05 1.20 1.35 1.35<br />

R max<br />

/cm 1.41 1.72 1.45 1.95<br />

L min<br />

/cm 7.05 8.61 7.25 9.76<br />

L real<br />

/cm 7.1 8.6 7.3 9.8<br />

why??<br />

-: less modules in L1<br />

-: less material, connectors, services..<br />

-: greater lever arm<br />

-: only 12 150mm wafers <strong>for</strong> the full <strong>PXD</strong>!!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!