04.04.2015 Views

Phase and Amplitude Variation in Montreal Weather

Phase and Amplitude Variation in Montreal Weather

Phase and Amplitude Variation in Montreal Weather

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Phase</strong> <strong>and</strong> <strong>Amplitude</strong> <strong>Variation</strong><br />

<strong>in</strong> <strong>Montreal</strong> <strong>Weather</strong><br />

Jim Ramsay<br />

McGill University


The Data<br />

• 34 years of daily temperatures, 1961-1994<br />

1994<br />

<strong>in</strong>clusive<br />

• Values are averages of daily maximum<br />

<strong>and</strong> m<strong>in</strong>imum<br />

• 12410 observations <strong>in</strong> tenths of a degree<br />

Celsius<br />

• Available for <strong>Montreal</strong> <strong>and</strong> 34 other<br />

Canadian weather stations


We know that there are two k<strong>in</strong>ds of<br />

variation <strong>in</strong> these data:<br />

1. <strong>Amplitude</strong> variation: : day-to<br />

to-day <strong>and</strong><br />

year-to<br />

to-year variation <strong>in</strong> temperature<br />

at events such as the depth of w<strong>in</strong>ter.<br />

2. <strong>Phase</strong> variation: : the tim<strong>in</strong>g of these<br />

events -- the seasons arrive early <strong>in</strong><br />

some years, <strong>and</strong> late <strong>in</strong> others.


Goals<br />

• Separate phase variation from amplitude<br />

variation by register<strong>in</strong>g the series to its<br />

strictly periodic image.<br />

• Estimate components of variation due to<br />

amplitude <strong>and</strong> phase variation.


Smooth<strong>in</strong>g<br />

The registration process requires that we<br />

smooth the data two ways:<br />

1. With an unconstra<strong>in</strong>ed smooth that<br />

removes the day-to<br />

to-day variation, but<br />

leaves longer-term variation unchanged.<br />

2. With a strictly periodic smooth that<br />

elim<strong>in</strong>ates all but strictly periodic trend.


Unconstra<strong>in</strong>ed smooth<br />

• Raw data are represented by a B-spl<strong>in</strong>eB<br />

expansion us<strong>in</strong>g 500 basis functions of<br />

order 6.<br />

• Knot about every 25 days.<br />

• The st<strong>and</strong>ard deviation of the raw data<br />

about this smooth, adjusted for degrees of<br />

freedom, is 4.30 degrees Celsius.


Periodic smooth<br />

• The basis is Fourier, with 9 basis functions<br />

judged to be enough to capture most of<br />

the strictly periodic trend for a period of<br />

one year.<br />

• The st<strong>and</strong>ard deviation of the raw about<br />

data about this smooth is 4.74 deg C.<br />

• Compare this to 4.30 deg C. for the<br />

unconstra<strong>in</strong>ed smooth.


• Plott<strong>in</strong>g the unconstra<strong>in</strong>ed B-spl<strong>in</strong>eB<br />

smooth m<strong>in</strong>us the constra<strong>in</strong>ed Fourier<br />

smooth reveals some strik<strong>in</strong>g<br />

discrepancies.<br />

• We focus on Christmas, 1989. The<br />

Ramsay’s s spent the holidays <strong>in</strong> a chalet<br />

<strong>in</strong> the Townships, <strong>and</strong> awoke to –37 deg<br />

C. No ski<strong>in</strong>g, car dead, marooned!<br />

• This temperature would still be cold <strong>in</strong><br />

mid-January, but less unusual.


Registration<br />

• Let the unconstra<strong>in</strong>ed smooth be x(t) <strong>and</strong><br />

the strictly periodic smooth be x 0 (t).<br />

• We need to estimate a nonl<strong>in</strong>ear strictly<br />

<strong>in</strong>creas<strong>in</strong>g smooth transformation of time<br />

h(t), called a warp<strong>in</strong>g function, , such that<br />

a fitt<strong>in</strong>g criterion is m<strong>in</strong>imized.


Fitt<strong>in</strong>g criterion<br />

The fitt<strong>in</strong>g criterion was the smallest<br />

eigenvalue of the matrix<br />

⎡<br />

⎢<br />

⎢<br />

⎣<br />

∫<br />

∫<br />

2<br />

x () () ()<br />

0<br />

t dt ∫x0<br />

t x ⎡⎣<br />

h t ⎤⎦<br />

dt⎤<br />

⎥<br />

() ()<br />

2<br />

x ()<br />

0<br />

t x⎡h t ⎤dt x ⎡h t ⎤dt<br />

⎥<br />

⎣ ⎦ ∫ ⎣ ⎦ ⎦<br />

This criterion measures the extent<br />

to which a plot of x[h(t)] aga<strong>in</strong>st<br />

x 0 (t) is l<strong>in</strong>ear, <strong>and</strong> thus whether<br />

the two curves are <strong>in</strong> phase.


The warp<strong>in</strong>g function h(t)<br />

Every smooth strictly monotone function<br />

h(t) such that h(0) = 0 can be<br />

represented as<br />

t<br />

ht () C exp wvdvdu ( )<br />

u<br />

= ∫ ∫<br />

0 0<br />

We represent unconstra<strong>in</strong>ed function<br />

w(v) by a B-spl<strong>in</strong>e expansion. Constant<br />

C is determ<strong>in</strong>ed by constra<strong>in</strong>t h(T) = T.


The deformation d(t) = h(t) - t<br />

Plott<strong>in</strong>g this allows us to see when the<br />

seasons come early (negative<br />

deformation) or late (positive<br />

deformation).


• Mid-w<strong>in</strong>ter for 1989-1990 1990 arrived about<br />

25 days early.<br />

• The next step is to register the<br />

temperature data by comput<strong>in</strong>g x*(t) =<br />

x[h(t)]. The registered curve x*(t)<br />

conta<strong>in</strong>s only amplitude variation.<br />

• Registration was done by Matlab<br />

function registerfd, , available by ftp from<br />

ego.psych.mcgill<br />

mcgill.ca/pub/ .ca/pub/ramsay/FDAfuns


<strong>Amplitude</strong> variation<br />

• The st<strong>and</strong>ard deviation of the difference<br />

between the unconstra<strong>in</strong>ed smooth <strong>and</strong><br />

the strictly periodic smooth is 2.15 C.<br />

• The st<strong>and</strong>ard deviation of the difference<br />

between the registered smooth <strong>and</strong> the<br />

periodic smooth is 1.73 C.<br />

• (2.15 2 – 1.73 2 )/2.15 2 = .35, the proportion<br />

of the variation due to phase.


• The st<strong>and</strong>ard deviation of the raw data<br />

around the registered smooth is 2.13 C,<br />

compared with 2.07 C for the<br />

unregistered smooth.<br />

• About 10% of the total variation is due<br />

to phase.


Conclusions<br />

• <strong>Phase</strong> variation is an important part of<br />

weather behavior.<br />

• Statisticians seldom th<strong>in</strong>k about phase<br />

variation, <strong>and</strong> classical time series<br />

methods ignore it completely.<br />

• <strong>Phase</strong> variation needs more attention, <strong>and</strong><br />

registration is an essential tool.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!