06.04.2015 Views

Primary Thermosensory Events in Cells - Springer

Primary Thermosensory Events in Cells - Springer

Primary Thermosensory Events in Cells - Springer

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

25 <strong>Primary</strong> <strong>Thermosensory</strong> <strong>Events</strong> <strong>in</strong> <strong>Cells</strong> 467<br />

51. Yang XR, L<strong>in</strong> MJ, Sham JS (2010) Physiological functions of transient receptor potential<br />

channels <strong>in</strong> pulmonary arterial smooth muscle cells. Adv Exp Med Biol 661:109–122<br />

52. Cater<strong>in</strong>a MJ (2007) Transient receptor potential ion channels as participants <strong>in</strong> thermosensation<br />

and thermoregulation. Am J Physiol Regul Integr Comp Physiol 292:R64–R76<br />

53. Moran MM, Xu H, Clapham DE (2004) TRP ion channels <strong>in</strong> the nervous system. Curr Op<strong>in</strong><br />

Neurobiol 14:362–369<br />

54. Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM,<br />

Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian A (2002) A heat-sensitive TRP<br />

channel expressed <strong>in</strong> kerat<strong>in</strong>ocytes. Science 296:2046–2049<br />

55. McKemy DD (2005) How cold is it? TRPM8 and TRPA1 <strong>in</strong> the molecular logic of cold<br />

sensation. Mol Pa<strong>in</strong> 1:16<br />

56. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC,<br />

Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1,<br />

a TRP-like channel expressed <strong>in</strong> nociceptive neurons, is activated by cold temperatures. Cell<br />

112:819–829<br />

57. Liu B, Hui K, Q<strong>in</strong> F (2003) Thermodynamics of heat activation of s<strong>in</strong>gle capsaic<strong>in</strong> ion<br />

channels VR1. Biophys J 85:2988–3006<br />

58. Brauchi S, Orio P, Latorre R (2004) Clues to understand<strong>in</strong>g cold sensation: thermodynamics<br />

and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci USA<br />

101:15494–15499<br />

59. Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R (2006) A hot-sens<strong>in</strong>g cold receptor:<br />

C-term<strong>in</strong>al doma<strong>in</strong> determ<strong>in</strong>es thermosensation <strong>in</strong> transient receptor potential channels. J<br />

Neurosci 26:4835–4840<br />

60. Huang HW (1976) Allosteric l<strong>in</strong>kage and phase transition. Physiol Chem Phys 8:143–150<br />

61. DeLucas LJ, Moore KM, Long MM (1999) Prote<strong>in</strong> crystal growth and the International Space<br />

Station. Gravit Space Biol Bull 12:39–45<br />

62. Leeson DT, Gai F, Rodriguez HM, Gregoret LM, Dyer RB (2000) Prote<strong>in</strong> fold<strong>in</strong>g and<br />

unfold<strong>in</strong>g on a complex energy landscape. Proc Natl Acad Sci USA 97:2527–2532<br />

63. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z,<br />

Uversky VN (2008) The unfoldomics decade: an update on <strong>in</strong>tr<strong>in</strong>sically disordered prote<strong>in</strong>s.<br />

BMC Genomics 9(Suppl 2):S1<br />

64. Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part<br />

of any given proteome. J Biomed Biotechnol 2010:568068<br />

65. Artmann GM, Kelemen C, Porst D, Buldt G, Chien S (1998) Temperature transitions of<br />

prote<strong>in</strong> properties <strong>in</strong> human red blood cells. Biophys J 75:3179–3183<br />

66. Ip SH, Ackers GK (1977) Thermodynamic studies on subunit assembly <strong>in</strong> human hemoglob<strong>in</strong>.<br />

Temperature dependence of the dimer-tetramer association constants for oxygenated and<br />

unliganded hemoglob<strong>in</strong>s. J Biol Chem 252:82–87<br />

67. Valdes R Jr., Ackers GK (1977) Thermodynamic studies on subunit assembly <strong>in</strong> human<br />

hemoglob<strong>in</strong>. Calorimetric measurements on the reconstitution of oxyhemoglob<strong>in</strong> from isolated<br />

cha<strong>in</strong>s. J Biol Chem 252:88–91<br />

68. Bowler BE (2007) Thermodynamics of prote<strong>in</strong> denatured states. Mol Biosyst 3:88–99<br />

69. Levy Y, Onuchic JN (2006) Water mediation <strong>in</strong> prote<strong>in</strong> fold<strong>in</strong>g and molecular recognition.<br />

Annu Rev Biophys Biomol Struct 35:389–415<br />

70. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gat<strong>in</strong>g of TRP<br />

channels: a voltage connection? J Physiol 567:35–44<br />

71. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels<br />

<strong>in</strong> disease. Physiol Rev 87:165–217<br />

72. Rodger A, Marr<strong>in</strong>gton R, Geeves MA, Hicks M de Alwis, L, Halsall, DJ, Dafforn, TR (2006)<br />

Look<strong>in</strong>g at long molecules <strong>in</strong> solution: what happens when they are subjected to Couette flow?<br />

Phys Chem Phys 8:3161–3171<br />

73. Urry DW (1988) Entropic elastic processes <strong>in</strong> prote<strong>in</strong> mechanisms. I. Elastic structure due<br />

to an <strong>in</strong>verse temperature transition and elasticity due to <strong>in</strong>ternal cha<strong>in</strong> dynamics. J Prote<strong>in</strong><br />

Chem 7:1–34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!