06.04.2015 Views

Power Point Presentation (PDF) - Green Chemistry Center

Power Point Presentation (PDF) - Green Chemistry Center

Power Point Presentation (PDF) - Green Chemistry Center

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Transforming the organic chemistry laboratory<br />

experience with greener laboratory experiments<br />

The challenge of greening the chemistry curriculum<br />

UO green organic chemistry curriculum: Keys to our success<br />

Recent developments - experiments and momentum<br />

<strong>Green</strong> chemistry offers many practical and<br />

fundamental advantages for chemistry education<br />

Table 1 Starting Material Employed in Classic Organic Laboratory Syntheses<br />

1902-1980<br />

Date Author<br />

Acetanilide 4-Bromoacetanilide Benzoin<br />

Starting Materials Required (grams)<br />

Aniline Acetanilide Benzaldehyde<br />

1902 Levy, 4th ed. 46.2 50.0<br />

1915 Cohen, 3rd ed. 25.0 5.0 25.0<br />

1933 Adkins 28.0 13.5 10.0<br />

1941 Fieser, 2nd ed. 18.2 13.5 25.0<br />

1963 Adams 20.0 13.5 16.0<br />

1980 Drust 10.0 5.2 10.0<br />

Adapted from: From Microscale Organic Laboratory by D.W. Mayo, R.M. Pike and S.S.<br />

Butcher, 1985<br />

Department of <strong>Chemistry</strong> and Materials<br />

Science Institute<br />

University of Oregon<br />

http://greenchem.uoregon.edu<br />

<strong>Green</strong> chemistry challenges for the academic<br />

community<br />

• Alternative processing methods. Rapid, high yield transformations<br />

at room temperature - catalysis<br />

• Better understanding of how molecular structure dictates desirable<br />

and undesirable properties - Structure-Activity Relationships (SARs)<br />

Hazardless, completely recyclable products<br />

• “Waste” or renewable resources as raw materials<br />

• Integrating green chemistry into the curriculum<br />

<strong>Green</strong> chemistry is a multidisciplinary field, involving<br />

fundamental sciences, business, law and engineering<br />

How can we bring green chemistry into an already<br />

crowded chemistry curriculum?<br />

Challenges<br />

• Overcoming the misconception that<br />

green chemistry is less rigorous<br />

• Finding experiments that illustrate<br />

green chemistry concepts and are<br />

effective in the teaching labs<br />

• Involving students in the process of<br />

greening the curriculum<br />

• Building a community to support the<br />

development and use of the curriculum<br />

Strategies<br />

• Replace rather than add course material<br />

• Modernize the curriculum using the<br />

latest green chemistry developments<br />

• Ensure quality through thorough testing<br />

• Provide a wide range of choices<br />

• Help others learn from our experience


Process used to develop and teach greener<br />

laboratory procedures<br />

Assess existing<br />

procedure<br />

Identify hazards<br />

or inefficiencies<br />

Find/develop<br />

alternative methods<br />

Test efficacy<br />

of new procedure<br />

TRADITIONAL<br />

H<br />

GREENER<br />

H<br />

A safer bromination of an olefin<br />

H<br />

Br H<br />

+<br />

CCl<br />

Br 4 or CH 2Cl 2<br />

2<br />

H<br />

1. HBr<br />

2. 30% H 2 O 2<br />

ethanol, reflux<br />

H<br />

H Br H<br />

ethanol<br />

H<br />

GREEN<br />

ethanol<br />

N H Br 3<br />

N H Br + Br 2<br />

H<br />

Br<br />

Br<br />

We teach this simple process to<br />

our students as we implement it.<br />

<strong>Green</strong>er<br />

alternative<br />

Laboratory Skills:<br />

<strong>Green</strong> Lessons Taught:<br />

Reaction set-up<br />

Less toxic solvents can be selected<br />

Vacuum filtration<br />

Hazardous reagents can be generated in situ<br />

Melting point determination<br />

Djerassi, C; Scholz, C.R. J. Am. Chem. Soc. 1948, 70, 417.<br />

Reed, S.M.; Hutchison, J.E. J. Chem. Ed. 2000, 77, 1627-1629.<br />

McKenzie, L. C.; Huffman, L. M.; Hutchison, J. E. J. Chem. Ed. 2005, 82, 306-310.<br />

Analysis using green metrics<br />

• Appropriate metrics for teaching laboratories:<br />

– Enhance student safety<br />

– Reduce the volume and hazard of the wastestream<br />

– Ease reliance on environmental controls<br />

– Improve reaction efficiency<br />

• Atom economy, percent experimental atom<br />

economy, E factor, effective mass yield<br />

McKenzie, L. C.; Huffman, L. M.; Hutchison, J. E. "The evolution of a green<br />

chemistry laboratory experiment greener brominations of stilbene," Journal of<br />

Chemical Education 2005, 82, 306-310.<br />

O<br />

Solventless Aldol Condensation<br />

mp 40-42 oCmp 42-45 oCmp 178 - 181 ° C<br />

Chemical Concepts:<br />

Melting point determination<br />

and depression<br />

Aldol condensation reaction<br />

Recrystallization skills<br />

+<br />

O<br />

1. NaOH<br />

2. H 3 O + workup<br />

OCH 3<br />

OCH 3<br />

H 3 CO OCH 3<br />

<strong>Green</strong> Lessons:<br />

Solventless reactions<br />

Atom economical reactions<br />

Rothenberg, G.; Downie, A. P.; Raston, C. L.; Scott, J. L.<br />

J. Am. Chem. Soc. 2001, 123, 8701-8708.<br />

Raston, C. L.; Scott, J. L. <strong>Green</strong> <strong>Chemistry</strong> 2000, 2, 49-52.<br />

O


Liquid CO 2 as a green extraction solvent<br />

Liquid CO 2 extraction in the teaching laboratory<br />

Traditional Method<br />

Orange Peel<br />

<strong>Green</strong> Method<br />

Orange Peel<br />

Steam distill<br />

and/or<br />

Organic solvent<br />

CO 2 (liquid)<br />

No organic solvent<br />

D-limonene<br />

Chemical Concepts:<br />

Solid/liquid extraction<br />

Natural products (terpenes)<br />

Spectroscopy<br />

Phase transitions<br />

<strong>Green</strong> Lessons:<br />

Use of safer solvents<br />

Prevention of waste<br />

<strong>Green</strong> materials processing<br />

McKenzie, L. C.; Thompson, J. E.; Sullivan, R.; Hutchison, J. E. "<strong>Green</strong><br />

chemical processing in the teaching laboratory: A convenient liquid CO 2<br />

extraction of natural products," <strong>Green</strong> Chem. 2004, 355-358.<br />

<strong>Green</strong> Organic <strong>Chemistry</strong> Laboratory Manual<br />

Target audience: Sophomore-level organic<br />

chemistry laboratory<br />

• Introduction<br />

• Identification of Chemical Hazards<br />

• Chemical Exposure and<br />

Environmental Contamination<br />

• Evaluation of Chemical Hazards<br />

• Introduction to <strong>Green</strong> <strong>Chemistry</strong><br />

• Alternative Solvents<br />

• Alternative Reagents<br />

• Reaction Design and Efficiency<br />

• Alternative Feedstocks and Products<br />

Plus 19 <strong>Green</strong> Organic <strong>Chemistry</strong> Experiments<br />

Laboratory curriculum project implementation<br />

250<br />

200<br />

150<br />

100<br />

Fall term 2003<br />

Synthesis, separations, spectroscopy<br />

1. Solventless Aldol condensation<br />

2. Bromination of an alkene<br />

3. Preparation/distillation of<br />

cyclohexene<br />

4. Synthesis of adipic acid<br />

5. Oxidative coupling of alkynes<br />

6. Gas phase porphyrin synthesis<br />

7. Solvent effects on kinetics<br />

8. Molecular mechanics modeling<br />

50<br />

0<br />

97-<br />

98<br />

98-<br />

99<br />

99-<br />

00<br />

00-<br />

01<br />

01-<br />

02<br />

04-<br />

05<br />

Number of<br />

Students<br />

Winter term 2004<br />

Synthesis, spectroscopy, applications<br />

1. Electrophilic iodination with KI/NaOCl<br />

2. Palladium-catalyzed aryl halide/alkyne<br />

coupling<br />

3. Polymer-supported oxidation chemistry<br />

4. Friedel-Crafts acylation of ferrocene<br />

5. Thiamine-mediated benzoin condensation<br />

6. Self-assembled monolayers/patterning<br />

7. Combinatorial synthesis of antibiotics


The approach changes the way students think about<br />

chemical hazards and chemistry<br />

"After taking this course I have a much better opinion of chemistry .... I feel like<br />

I am learning something that has an actual important application to the real<br />

world."<br />

"I have decided to get a minor in chemistry so I can make more conscious<br />

decisions regarding chemistry and avoid destructive practices for my health or<br />

the environment."<br />

• Teaches students a rational procedure for analyzing/minimizing<br />

hazards<br />

• Empowers students to use chemistry to solve environmental<br />

problems - "Ambassadors of <strong>Green</strong> <strong>Chemistry</strong>"<br />

• Changes the way students and society view chemicals, chemistry<br />

and chemists - "Know the hazards, not all chemicals are hazardous"<br />

Our experience introducing green chemistry - there<br />

are many incentives<br />

We are generating less waste and a less hazardous waste stream.<br />

Winter term disposal numbers (14.2L of aqueous, 1L of flammable<br />

organic and 1kg of solid waste for 180 students)<br />

The project has been great for University public relations<br />

More than 20 articles have now been published around the world<br />

Enhances student recruiting<br />

We have seen strong interest from undergrads and grads who want to<br />

be part of green chemistry<br />

Opportunity to upgrade curriculum and facilities<br />

University invested in a showcase lab facility to highlight the program<br />

Improved educational atmosphere<br />

The new lab setting is an excellent learning environment<br />

The new green chemistry lab<br />

<strong>Green</strong> chemistry offers many practical and<br />

fundamental advantages for chemistry education<br />

Table 1 Starting Material Employed in Classic Organic Laboratory Syntheses<br />

1902-1980<br />

Date Author<br />

Acetanilide 4-Bromoacetanilide Benzoin<br />

Starting Materials Required (grams)<br />

Aniline Acetanilide Benzaldehyde<br />

1902 Levy, 4th ed. 46.2 50.0<br />

1915 Cohen, 3rd ed. 25.0 5.0 25.0<br />

1933 Adkins 28.0 13.5 10.0<br />

1941 Fieser, 2nd ed. 18.2 13.5 25.0<br />

1963 Adams 20.0 13.5 16.0<br />

1980 Drust 10.0 5.2 10.0<br />

Adapted from: From Microscale Organic Laboratory by D.W. Mayo, R.M. Pike and S.S.<br />

Butcher, 1985


Next steps<br />

More labs!<br />

Disseminate our and other’s labs via the GEMs<br />

database<br />

Promote the community through workshops,<br />

symposia and collaborations<br />

Build the “business case” for green chemistry<br />

Workshop participants 2001-present<br />

Addressing the case for green chemistry<br />

“<strong>Green</strong> chemistry will be more expensive”<br />

Must carefully consider costs of reagents, solvents, disposal, engineering<br />

controls, new labs, etc.<br />

“There are no lab exercises available and I don’t have time to develop my own”<br />

A wide range of experiments are now in development around the<br />

country. There should be a lot of choice soon.<br />

“There is no room in the curriculum for new material”<br />

Don’t add, replace.<br />

“The curriculum will not train students to work with hazardous materials”<br />

Most students will not work with hazardous substances after organic.<br />

Don’t have to work with hazardous substances to learn proper technique.<br />

“<strong>Green</strong> is political, not scientific…green chemistry is not rigorous”<br />

Designing better products and better processes is what synthetic chemists<br />

do. <strong>Green</strong> chemistry provides a new challenge.


Acknowledgments<br />

Prof. Ken Doxsee<br />

Dr. Scott Reed<br />

Ms. Lallie McKenzie<br />

Mr. Marvin Warner<br />

Ms. Lauren Huffman<br />

Dr. Julie Haack<br />

Dr. Rob Gilbertson<br />

Mr. Gary Succaw<br />

Dr. John Thompson<br />

Ms. Kathryn Parent<br />

Ms. Anna Shope<br />

Dr. Leif Brown<br />

Mr. Gerd Woehrle<br />

and the Students of CH337G and CH338G<br />

The Alice C. Tyler Perpetual Trust<br />

The University of Oregon

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!