12.04.2015 Views

Wim Bras DUBBLE @ ESRF Netherlands Organisation - Big Science

Wim Bras DUBBLE @ ESRF Netherlands Organisation - Big Science

Wim Bras DUBBLE @ ESRF Netherlands Organisation - Big Science

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Wim</strong> <strong>Bras</strong><br />

<strong>DUBBLE</strong> @ <strong>ESRF</strong><br />

<strong>Netherlands</strong> <strong>Organisation</strong> for Scientific Research<br />

(NWO)


Outline<br />

• Short introduction synchrotron radiation<br />

• European Synchrotron Radiation Facility<br />

• <strong>DUBBLE</strong><br />

• Examples of research on Dubble


Synchrotron as X-ray source<br />

Bending magnet<br />

Electron orbit


What is the advantage of SR?<br />

Number<br />

of photons<br />

10000 1000 100 10 1 0.1<br />

10 14<br />

10 13<br />

10 11<br />

10 10<br />

10 9<br />

Wavelength (Å)<br />

• High flux<br />

• Continues spectrum<br />

• Good collimation<br />

• Beams 1 – 300 micron<br />

10 8<br />

10 7<br />

1 eV 10 eV 100 eV 1 keV 10 keV 100 keV<br />

Energy<br />

sunlight<br />

conventional<br />

X-ray generator


Scheme beam line<br />

storage<br />

ring<br />

Control cabin<br />

experiment<br />

Optics<br />

monochromator<br />

focussing


• These labs are set up as user facilities<br />

• They are relatively large scale<br />

• Belgium and the <strong>Netherlands</strong> have<br />

made the choice to participate in<br />

international facilities<br />

• However….


Once upon a time in the<br />

Watergraafsmeer<br />

1979<br />

Nomen est omen???


NWO and synchrotron radiation<br />

Daresbury also birth place of<br />

Lewis Carrol<br />

Alice en the<br />

Cheshire cat<br />

Daresbury lab in Cheshire<br />

- About 30 years ago<br />

ZWO/NWO started participation<br />

in Daresbury Lab (UK)<br />

- About 15 years ago transfer to<br />

<strong>ESRF</strong><br />

-The <strong>Netherlands</strong> has a strong<br />

SR user community


European Synchrotron Radiation Facility<br />

Grenoble France


European Synchrotron Radiation Facility<br />

• ∼ 50 beam lines (= experimental set ups)<br />

• ∼ 25 different techniques<br />

• 6 days/ week, 24 hours/day<br />

• 270 days/year (minus strike days, after all it is<br />

France….)<br />

• ∼ 1500 publications/year


the <strong>ESRF</strong><br />

270 meter


Many different experiments<br />

Protein crystallography<br />

About 25% of the beam lines<br />

About 35% of publication output<br />

Crystal distortions due to high<br />

(30 Tesla) magnetic fields<br />

Spider silk<br />

Chocolate butter crystallisation


Dutch <strong>ESRF</strong> participation<br />

• 6% of the experimental time on public beam<br />

lines is for the Benesync consortium (50/50<br />

Be/Nl)<br />

• This is not sufficient for the Dutch/Belgian<br />

demand for some techniques<br />

• Two ‘own’ beam lines<br />

• <strong>DUBBLE</strong> (part of the Dutch research<br />

infrastructure)


<strong>DUBBLE</strong>: 5/6/2000 the official opening<br />

The ministers The financing The workers


<strong>DUBBLE</strong> research areas<br />

surfaces<br />

Geology/surface<br />

pollution<br />

instrumentation<br />

catalysis<br />

surfactants<br />

biological/medical<br />

polymers<br />

structure<br />

foods<br />

colloids


Two beam lines and techniques<br />

on <strong>DUBBLE</strong><br />

• Extended X-ray Absorption Fine<br />

Structure spectroscopy<br />

(EXAFS/XANES)<br />

• Small and Wide Angle X-ray Scattering<br />

(time-resolved SAXS/WAXS)<br />

3-4 user groups/week<br />

At present 70 – 80 publications/year


X-ray scattering<br />

1 – 8 meter<br />

detector<br />

sample<br />

Diffracted X-rays<br />

X-rays<br />

λ<br />

= 2d<br />

sinθ<br />

θ small d large


SAXS/WAXS<br />

1<br />

1<br />

2<br />

3<br />

4<br />

5<br />

1 limit q → 0<br />

electron density contrast<br />

density fluctuations<br />

2 Guinier range<br />

particle size<br />

3 particle shape<br />

500 nm<br />

0.2 nm<br />

4 Porod range<br />

particle surface<br />

5 Intermolecular/atomic<br />

ordering


X-ray scattering and diffraction<br />

• Combined SAXS-WAXS experiments<br />

• WAXS crystalline structure<br />

• Small angle: shape and size of clumps of<br />

atoms<br />

• SR not only static<br />

also time-resolved<br />

• 0.4 – 200 nm ‘visible’


• diffractiepatronen<br />

Scattering/diffraction patterns collected on<br />

<strong>DUBBLE</strong>


Multidisciplinary applications<br />

hip replacements<br />

polymer fibers<br />

nano technology<br />

Unwashed Eskimo hair tubulin, cell division Car exhaust<br />

Etc., etc., etc….<br />

Soot of diesel


esearcher (no safety glasses…)<br />

SAXS<br />

detector<br />

sample<br />

WAXS<br />

detector<br />

National Geographic Magazine


Human skin<br />

Epidermis<br />

(150 μm)<br />

Dermis<br />

(2000 μm)<br />

Subcutaneous<br />

fat<br />

Joke Bouwstra<br />

Division of Drug Delivery Technology<br />

Leiden/Amsterdam Center for<br />

Drug Research (LACDR)


Outer layer: Stratum Corneum<br />

‘designed’ as barrier for externl influences<br />

Transdermal drug delivery<br />

corneocyte<br />

Penetration<br />

route<br />

Lipiden (fat)<br />

matrix<br />

Hoorn<br />

laag<br />

Stratum granulosum<br />

Stratum spinosum<br />

Stratum basale<br />

Epidermis<br />

Dermis<br />

Blood vessels


Lateral order of SC lipids<br />

~0.46 nm 0.41 nm 0.41 nm 0.37 nm<br />

d<br />

liquid<br />

hexagonal<br />

orthorhombic<br />

More rigid penetration more difficult


SR required<br />

- In 5 seconds a pattern<br />

- Weak peaks not visible with<br />

conventional rotating anode


Since we have plenty of X-rays:<br />

• We can measure fast<br />

• Phase diagram of lipids can<br />

be determined<br />

• The effect of pharmacutcals<br />

can be studied on-line<br />

• Relatively small amounts of<br />

material required (important<br />

in patient derived samples)


In fact three (related) research areas:<br />

1. Development of biofilms based upon vernix<br />

caseosa.<br />

2. Studying lipid structure of diseased skin<br />

3. Development of lipid substitutes for skin<br />

penetration studies (saves some test animals)<br />

‘high five rabbits’<br />

Patent granted


In our first experiments in Daresbury, about 20 years<br />

ago, we used about 50 neatly stacked strips of skin.<br />

Nowadays we only have to use a single one. I can<br />

estimate that we require 100 x less material.<br />

Prof. Joke Bouwstra<br />

Since 1990:<br />

> 60 publications with SR<br />

10 cited ≈ 100 or more


X-ray spectroscopy


X-ray spectroscopy<br />

‘electron orbits’<br />

deformed<br />

‘electron orbits’<br />

Metal atom<br />

Metal atom<br />

‘neighbours’


ionisation<br />

Röntgen photon<br />

( )<br />

absorbed<br />

E<br />

I t<br />

I<br />

0


Difference in surroundings of metal atom;<br />

difference in absorption spectrum


Powder diffraction<br />

Incoming intensity<br />

absorbed intensity<br />

Sample cell


Again multidisciplinary<br />

catalysis<br />

Hydrogen storage<br />

liquid metals<br />

pharmaceuticals<br />

Environmental pollution<br />

Etc., etc., etc….<br />

electro chemistry<br />

cultural heritage


Catalysis: are small particles<br />

always better?<br />

Marcel di Vece, .., P. Lievens PRL 100, 236105, 2008


• Small catalytic particles have a high<br />

surface/volume ratio.<br />

• Reactions take place at the surface.<br />

• Should we always try to make particles<br />

as small as possible?<br />

• Effects of hydrogen.


• Movie unable to incorporate in pdf


• Some atoms get disconnected due to the<br />

hydrogen treatment<br />

• They re-attach predominantly to larger<br />

particles<br />

• The large particles grow at the expense of the<br />

small ones (Ostwald ripening)<br />

• Conclusion: loss of active catalytic surface<br />

Only with EXAFS we can see what happens with the smallest particles


Technique combinations<br />

• Movie unable to incorporate in pdf<br />

Groep Bert Weckhuijsen, Utrecht<br />

How do I make a working catalyst?


Structure grows<br />

1. Early in reaction, no crystal, X-ray<br />

spectroscopy (XAFS)<br />

2. A little later, X-ray diffraction WAXS<br />

3. When it has grown sufficient, SAXS<br />

4. In the end catalytic activity XAFS,<br />

(UvVis, Raman spectroscopy)


All these steps one wants to study on-line<br />

• Infrastructure<br />

• Industrially<br />

relevant<br />

conditions<br />

• High gas<br />

pressure<br />

• Flow<br />

• Operando<br />

conditions


In-situ multi-technique approach of zeolite synthesis<br />

1.5<br />

B<br />

Normalised Absorption<br />

1.0<br />

0.5<br />

0<br />

20<br />

30<br />

40<br />

66.7<br />

A<br />

50<br />

0.0<br />

640 660 680<br />

7700 7800 7900<br />

Energy (eV)<br />

Raman Shift cm -1<br />

Raman<br />

XAFS<br />

1.5<br />

UV-Vis<br />

584 625<br />

542<br />

SAXS<br />

WAXS<br />

Absorbance<br />

1.0<br />

0.0016<br />

*<br />

525<br />

470<br />

400 600 800<br />

Wavelength (nm)<br />

I(q).q 3.3 [a.u]<br />

0.0008<br />

0.0000<br />

0.01 0.1<br />

log(q) Å -1


Unique instrumentation<br />

• Sample at high pressure/temperature<br />

• Simultaneous 5 techniques possible<br />

• All aspects of the sample and kinetics<br />

can be studied simultaneously


We can:<br />

• Follow particle growth<br />

• Study the catalytic actions<br />

• Follow the life cycle of the<br />

catalyst<br />

Catalyst crystals<br />

All in a single experiment !


Technique combinations and<br />

sample control<br />

• Already for 20 (10) years a speciality of<br />

the NWO (<strong>DUBBLE</strong>) beam lines<br />

• Studies of physical-chemistry processes<br />

on-line


Another SAXS example


From picture to ‘icon’<br />

Yousuf Karsh


Picture Icon<br />

Required:<br />

• Good picture<br />

• Good quality reproduction<br />

• Large scale/volume reproduction<br />

H. Terryn, T Rayment and coworkers


Offset rotation printing<br />

Ink roller<br />

Dampening roller<br />

“Offset” Blanket<br />

Paper<br />

Impression cylinder<br />

Ink film<br />

Plate cylinder<br />

with printing<br />

plate Oleophilic image area<br />

Hydrophilic non-image area<br />

This lithographic method is being used for high quality printing<br />

750 x 10 6 m 2 /jaar


The Aluminium surface<br />

• Is being prepared with electrochemistry<br />

• Controlled roughness required (uniform pitting)<br />

surface<br />

Aluminium hydroxide layer<br />

AC current<br />

High Voltage<br />

High Amperage<br />

Small pit blocked


During electrolysis:<br />

• Roughness changes<br />

• Layer of ‘smut’ forms<br />

• Composition unclear<br />

• So far only studied with off-line<br />

techniques<br />

• SEM, XPS etc. (vacuum<br />

required)


With on-line SAXS experiments:<br />

• Electrolysis creates gas<br />

bubbles<br />

• This influences the<br />

transport properties of<br />

‘smut’<br />

∞<br />

2 2<br />

Q q I q dq ρ ϕ ϕ<br />

= = Δ ∫<br />

0<br />

( ) ( )<br />

smut gas<br />

• SAXS gives unique<br />

possibilities to study this<br />

process on-line


• Fundamental knowledge of electrochemical<br />

problems<br />

• But applications very close


The perfect garbage bag<br />

Groepen:<br />

P. Lemstra<br />

H.E.H. Meijer


polyethylene<br />

Molten it looks like spaghetti<br />

SAXS<br />

In solid state semi-crystalline<br />

- amorphous parts<br />

- crystalline parts<br />

The ratio amorphous/crystalline and the<br />

spatial orientation determine the<br />

macroscopic properties<br />

WAXS


Polymer processing<br />

With a little pre treatment crystallisation is easier<br />

Orient the polymer chains first<br />

Chains can be oriented by pulling,<br />

Pushing, shearing etc<br />

After that crystallisation is much easier


Why polyethylene?<br />

• Invented already in 1933<br />

• 80 million metric tons/year<br />

• It used to be low quality materials


Better materials<br />

• Through better catalysis, better materials<br />

• Controlled polymer chain lengths<br />

• Mixtures of bimodal chain lengths have<br />

unique properties<br />

• Recycling no problem<br />

• Fundamental knowledge of the crystallisationprocess<br />

of blends has to be improved


Film blowing<br />

•Movie unable to incorporate in pdf<br />

• Way to make films<br />

• Molten polymer<br />

• Annular die<br />

•Extrusion


SAXS<br />

WAXS<br />

X-ray beam<br />

Scattering pattern<br />

elongation multiaxial


Each year:<br />

• We use enough of<br />

this to cover the<br />

earth 3x<br />

• A reduction in<br />

thickness whilst<br />

retaining strength….<br />

• Less oil required<br />

• Less polution<br />

• Etc.<br />

But even a garbage bag becomes a piece of ‘high tech’


The future of EXAFS<br />

• A conventional beam line 40 – 80 meter<br />

• In Japan there is a line of 1 kilometre<br />

• We want one of several light years


X-ray stars and interstellar dust


• In super novas iron rich dust is created<br />

• In super novas dust is also being<br />

destroyed<br />

• There is a surplus of dust in the universe<br />

• Where does this come from and is it all<br />

the same composition?


• The spectra of different classes of X-ray<br />

stars are well known<br />

• Measure on earth the spectrum<br />

• The differences between the well known<br />

source and the measured data make it<br />

possible to reconstruct the EXAFS<br />

pattern, i.e. the mineral structure


Use the Milky Way as radiation source<br />

- X-ray spectrum of stars known<br />

- On earth we can see what is absorbed


The role of <strong>DUBBLE</strong>:<br />

• The dust is iron rich<br />

• Pure, amorphous or crystalline iron<br />

silicates<br />

• Calculate the EXAFS spectrum as<br />

function of position in Milky Way<br />

• Different position, different dust???<br />

• Very accurate EXAFS calibration spectra<br />

required <strong>DUBBLE</strong>


We hope no weird<br />

results will be found


500<br />

400<br />

totaal aantal<br />

publicaties<br />

300<br />

June 2010<br />

200<br />

100<br />

0<br />

1996 1998 2000 2002 2004 2006 2008 2010<br />

jaar<br />

500 e<br />

Group Lekkerkerker<br />

University Utrecht<br />

Ex VUB


• Largest Dutch-Flemish collaboration<br />

• > 80 publications/year in many different fields<br />

• 500-600 visiting<br />

researchers<br />

technicians<br />

students<br />

per year<br />

• 7 <strong>DUBBLE</strong> staff and several <strong>ESRF</strong> colleagues<br />

enable this


<strong>DUBBLE</strong> (and <strong>ESRF</strong>) research:<br />

• Ranging from very fundamental to<br />

very applied<br />

• Ranging from life sciences to hard<br />

core physics<br />

• A real toolbox for Dutch<br />

researchers


Thanks for your attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!