16.11.2012 Views

reevaluating the evolution of epigyny: data from ... - Mark Fishbein

reevaluating the evolution of epigyny: data from ... - Mark Fishbein

reevaluating the evolution of epigyny: data from ... - Mark Fishbein

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Int. J. Plant Sci. 164(5 Suppl.):S251–S264. 2003.<br />

� 2003 by The University <strong>of</strong> Chicago. All rights reserved.<br />

1058-5893/2003/16405S-0005$15.00<br />

REEVALUATING THE EVOLUTION OF EPIGYNY: DATA FROM<br />

PHYLOGENETICS AND FLORAL ONTOGENY<br />

Douglas E. Soltis, 1 <strong>Mark</strong> <strong>Fishbein</strong>, and Robert K. Kuz<strong>of</strong>f 2<br />

Department <strong>of</strong> Botany and <strong>the</strong> Genetics Institute, University <strong>of</strong> Florida, Gainesville, Florida 32611, U.S.A.; Department <strong>of</strong><br />

Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762, U.S.A.; and Department <strong>of</strong><br />

Plant Biology, University <strong>of</strong> Georgia, A<strong>the</strong>ns, Georgia 30602, U.S.A.<br />

A long-standing perspective <strong>of</strong> many botanists has been that <strong>the</strong>re is a unidirectional trend in <strong>the</strong> <strong>evolution</strong><br />

<strong>of</strong> ovary position <strong>from</strong> superior to inferior and that reversals are rare if at all possible. Recent studies that<br />

formally investigate <strong>the</strong> problem <strong>of</strong> gynoecial diversification in a rigorous phylogenetic context demonstrate<br />

that <strong>the</strong> <strong>evolution</strong> <strong>of</strong> ovary position is more complex and dynamic than this traditional view suggested. It is<br />

well known that a hypogynous ground plan characterizes a vast majority <strong>of</strong> angiosperms having superior<br />

ovaries and that within a hypogynous ground plan, flowers with inferior ovaries can be produced by a<br />

developmental plan termed receptacular <strong>epigyny</strong>. However, most angiosperms with inferior ovaries have an<br />

appendicular-epigynous ground plan in which a distinctive concavity appears in <strong>the</strong> center <strong>of</strong> <strong>the</strong> floral apex<br />

during perianth initiation. Recent investigations have shown that a diverse array <strong>of</strong> ovary positions ranging<br />

<strong>from</strong> completely inferior to what superficially appear to be superior ovaries, as well as intermediate ovary<br />

positions, can all develop <strong>from</strong> flowers having an appendicular-epigynous ground plan. A wide range <strong>of</strong> ovary<br />

positions among closely related species can be produced by allometric shifts in development, entailing greater<br />

relative growth in ei<strong>the</strong>r <strong>the</strong> superior or inferior regions <strong>of</strong> an ovary. We have termed those ovaries produced<br />

via appendicular <strong>epigyny</strong> that appear superior or nearly superior “pseudosuperior ovaries.” Such ovaries are<br />

not developmentally homologous with truly superior ovaries produced via a hypogynous ground plan. We<br />

have observed, however, that errors in homology assessment <strong>of</strong> apparently superior ovaries are not uncommon,<br />

such that a number <strong>of</strong> angiosperm lineages with ovaries that have been termed superior are actually pseudosuperior.<br />

Finally, recent studies have demonstrated that reversals <strong>from</strong> an appendicular-epigynous to a<br />

hypogynous ground plan can occur but are rare.<br />

Keywords: floral development, <strong>epigyny</strong>, gynoecium, hypogyny, inferior ovary, phylogeny, character mapping.<br />

Introduction<br />

A fundamental aspect <strong>of</strong> floral diversification is <strong>the</strong> <strong>evolution</strong><br />

<strong>of</strong> ovary position (Grant 1950; Stebbins 1974; Cronquist<br />

1988). The position <strong>of</strong> <strong>the</strong> ovary has a major impact on floral<br />

architecture, concomitantly impacting various interactions<br />

with animals that include predation, pollination, and seed dispersal<br />

(Grant 1950; Stebbins 1974; Thompson 1994). In general,<br />

ovary positions have been treated as ei<strong>the</strong>r superior or<br />

inferior on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> point <strong>of</strong> attachment <strong>of</strong> <strong>the</strong> perianth<br />

and androecium relative to <strong>the</strong> ovary in an an<strong>the</strong>tic (i.e., open<br />

or mature) flower (fig. 1). A superior ovary is situated above<br />

<strong>the</strong> point <strong>of</strong> attachment <strong>of</strong> <strong>the</strong> perianth and androecium to<br />

form a hypogynous flower. In contrast, an inferior ovary has<br />

<strong>the</strong> perianth and androecium, also sometimes basally fused<br />

into a hypanthium, attached above <strong>the</strong> base <strong>of</strong> <strong>the</strong> ovary to<br />

form an epigynous flower. Flowers in which <strong>the</strong> outer floral<br />

appendages are basally fused are <strong>of</strong>ten called perigynous and<br />

can have ei<strong>the</strong>r superior or inferior ovaries.<br />

In angiosperm systematics, ovary position has been used as<br />

1 Author for correspondence; e-mail dsoltis@botany.ufl.edu.<br />

2 Author for correspondence; e-mail rkuz<strong>of</strong>f@plantbio.uga.edu.<br />

Manuscript received August 2002; revised manuscript received May 2003.<br />

S251<br />

a key descriptive feature <strong>of</strong> families. It has <strong>of</strong>ten been considered<br />

a relatively stable character (Grant 1950; Stebbins 1974)<br />

sometimes used to distinguish closely related families. For example,<br />

in Lythraceae, <strong>the</strong> position <strong>of</strong> <strong>the</strong> ovary is generally<br />

described as superior whereas in <strong>the</strong> closely related Onagraceae,<br />

<strong>the</strong> ovary position is inferior. As a result, those welldefined<br />

angiosperm lineages in which considerable ovary position<br />

variation has been observed, usually described as<br />

families or orders, have been <strong>the</strong> source <strong>of</strong> considerable<br />

interest.<br />

A commonly espoused view in <strong>the</strong> plant systematic literature<br />

is that in <strong>the</strong> great span <strong>of</strong> angiosperm phylogeny, ovary position<br />

has evolved in a unidirectional manner <strong>from</strong> superior<br />

to greater inferiority, generally via congenital fusion <strong>of</strong> <strong>the</strong><br />

outer floral appendages to <strong>the</strong> ovary wall; fur<strong>the</strong>rmore, reversals<br />

were considered rare or impossible (Bessey 1915; Grant<br />

1950; Stebbins 1974; Cronquist 1988; Takhtajan 1991). For<br />

heuristic purposes, we will refer to this as <strong>the</strong> “unidirectional”<br />

model <strong>of</strong> ovary position <strong>evolution</strong>.<br />

Before <strong>the</strong> mid-1990s, only a handful <strong>of</strong> investigators presented<br />

results that conflicted with <strong>the</strong> traditional view <strong>of</strong> unidirectional<br />

ovary position <strong>evolution</strong>. Tetraplasandra gymnocarpa<br />

(Araliaceae) has flowers that appear superior, but <strong>the</strong><br />

species occurs within a family characterized by near pervasive


S252 INTERNATIONAL JOURNAL OF PLANT SCIENCES<br />

Fig. 1 Diagrams <strong>of</strong> hypogynous and epigynous flowers at an<strong>the</strong>sis<br />

(A) and hypogynous and epigynous ground plans (B). A, Hypogynous<br />

flower (ovary is superior) and epigynous flower (ovary is inferior).<br />

Modified <strong>from</strong> Judd et al. (2002). B, Hypogynous and epigynous<br />

ground plans. Flowers begin development with ei<strong>the</strong>r a hypogynous<br />

ground plan or an epigynous ground plan and result in flowers with<br />

a superior or an inferior ovary, respectively. In a hypogynous flower,<br />

all <strong>of</strong> <strong>the</strong> floral organ series are initiated on a convex floral apex. There<br />

are two types <strong>of</strong> epigynous ground plans. In a receptacular-epigynous<br />

flower, <strong>the</strong> ground plan is also hypogynous, and <strong>the</strong> floral organs are<br />

again initiated on a convex floral apex, but just after organ initiation,<br />

<strong>the</strong> floral apex expands and raises, causing <strong>the</strong> floral axis to fold around<br />

<strong>the</strong> apex. In contrast, in an appendicular-epigynous flower, <strong>the</strong> floral<br />

apex flattens early in floral organogenesis and shifts to a concave<br />

formation during or just after perianth initiation.<br />

<strong>epigyny</strong> (Eyde and Tseng 1969). Similarly, Gaertnera (Rubiaceae)<br />

has ovaries that are largely superior, but it is also considered<br />

to be derived in an epigynous family (Igersheim et al.<br />

1994). Because both taxa are thought to be derived within<br />

families that are predominantly epigynous, <strong>the</strong>ir ovaries are<br />

considered secondarily superior (Igersheim et al. 1994) or <strong>the</strong><br />

flowers have been termed secondarily hypogynous (Eyde and<br />

Tseng 1969). However, developmental <strong>data</strong> were not provided<br />

in <strong>the</strong> later study, and nei<strong>the</strong>r investigation evaluated <strong>the</strong> presumed<br />

phylogenetic hypo<strong>the</strong>ses. Until recently, <strong>the</strong> factors underlying<br />

<strong>the</strong> <strong>evolution</strong> <strong>of</strong> ovary position had seldom been explored<br />

in both phylogenetic and developmental contexts,<br />

leaving <strong>the</strong> unidirectional model virtually unchallenged.<br />

A clearer understanding <strong>of</strong> <strong>the</strong> <strong>evolution</strong> <strong>of</strong> ovary position<br />

requires a firm phylogenetic underpinning as well as detailed<br />

analyses <strong>of</strong> development and structural homologies within<br />

flowers. Considerable progress toward this end has been<br />

achieved recently through multidisciplinary studies <strong>of</strong> this type.<br />

Phylogenetic relationships and studies <strong>of</strong> floral development<br />

in several lineages that are remarkable for <strong>the</strong>ir ovary position<br />

diversity suggest a much more dynamic picture <strong>of</strong> floral diversification.<br />

Here, we review <strong>the</strong> insights gained through <strong>the</strong>se<br />

recent studies and provide a syn<strong>the</strong>sis <strong>of</strong> phylogenetic and ontogenetic<br />

<strong>data</strong> pertaining to ovary position <strong>evolution</strong>. Additionally,<br />

we suggest a dynamic alternative to <strong>the</strong> classical model<br />

<strong>of</strong> ovary position diversification for <strong>the</strong> angiosperms.<br />

Ovary Position Terminology<br />

Varying degrees <strong>of</strong> ovary inferiority are standardly recognized<br />

(e.g., one-half inferior, one-quarter inferior), but this<br />

practice has led to some confusion. It may indicate to some<br />

that such ovaries are not structurally homologous with deeply<br />

inferior ovaries. For clarity, we wish to draw attention to a<br />

landmark in floral morphology, which is <strong>the</strong> insertion point<br />

(IP) <strong>of</strong> <strong>the</strong> perianth and androecium on an ovary (figs. 1, 4).<br />

If any portion <strong>of</strong> an ovary extends below <strong>the</strong> IP, <strong>the</strong>n it is<br />

inferior. We also wish to clarify <strong>the</strong> terms we employ to refer<br />

to mature and developing flowers. At an<strong>the</strong>sis, <strong>the</strong> terms “superior”<br />

and “inferior” describe ovaries whereas “hypogynous”<br />

and “epigynous” describe floral architecture, in keeping with<br />

standard botanical terminology. In contrast, “hypogynous<br />

ground plan” and “epigynous ground plan” (fig. 1) describe<br />

developmental pathways. Morphologists have sometimes used<br />

<strong>the</strong> term “ground plan” to refer to <strong>the</strong> organization <strong>of</strong> <strong>the</strong><br />

flower in a broad sense (Endress 1994). We are using <strong>the</strong> term<br />

“ground plan” to refer specifically to <strong>the</strong> conformation <strong>of</strong> <strong>the</strong><br />

floral apex during organogenesis.<br />

Phylogenetic Data<br />

Phylogenetic analyses and character mapping studies have<br />

provided key insights into trends in ovary position <strong>evolution</strong><br />

and diversification, challenging <strong>the</strong> unidirectional model <strong>of</strong><br />

ovary position <strong>evolution</strong>. Character mapping studies have now<br />

been conducted at several different taxonomic levels including<br />

across all major lineages <strong>of</strong> flowering plants (Gustafsson and<br />

Albert 1999) as well as within families and genera (M. <strong>Fishbein</strong>,<br />

L. Hufford, and D. E. Soltis, unpublished manuscript;<br />

Kuz<strong>of</strong>f et al. 1999, 2001; Mort and Soltis 1999; Soltis et al.<br />

2001b). We will first review <strong>the</strong> mapping studies <strong>of</strong> Gustafsson<br />

and Albert (1999) that span angiosperms as a whole and proceed<br />

to more recent findings for one well-defined clade, Saxifragales<br />

(sensu APGII 2003), summarizing several phylogenetic<br />

analyses as well as character mapping studies. Within<br />

Saxifragaceae, we summarize an analysis conducted on Lithophragma,<br />

a particularly well-characterized genus. Additional<br />

examples will be drawn <strong>from</strong> ongoing investigations <strong>of</strong> Melastomataceae<br />

(D. Penneys, M. Hils, and D. E. Soltis, unpublished<br />

manuscript).<br />

Angiosperms<br />

Gustafsson and Albert (1999) analyzed ovary position diversification<br />

across <strong>the</strong> angiosperms and mapped ovary positions<br />

obtained <strong>from</strong> selected secondary sources onto <strong>the</strong> rbcL


SOLTIS ET AL.—EVOLUTION OF EPIGYNY S253<br />

Fig. 2 Mapping <strong>of</strong> ovary position using MacClade (Maddison and Maddison 1992) onto <strong>the</strong> maximum likelihood tree obtained for Saxifragales<br />

(<strong>Fishbein</strong> et al. 2001), illustrating <strong>the</strong> <strong>evolution</strong> <strong>of</strong> ovary position (modified <strong>from</strong> M. <strong>Fishbein</strong>, L. Hufford, and D. E. Soltis, unpublished<br />

manuscript).<br />

tree <strong>of</strong> Chase et al. (1993) for 499 angiosperms. Although <strong>the</strong>ir<br />

analysis is not <strong>the</strong> most current estimate <strong>of</strong> angiosperm phylogeny,<br />

recent changes in our understanding <strong>of</strong> angiosperm<br />

phylogeny (Soltis et al. 2000; reviewed by Kuz<strong>of</strong>f and Gasser<br />

2000) do not strongly impact <strong>the</strong> conclusions <strong>of</strong> Gustaffson<br />

and Albert (1999). In one set <strong>of</strong> mapping studies, two states<br />

were employed: hypogyny (including perigyny) and all degrees<br />

<strong>of</strong> <strong>epigyny</strong> (e.g., half-inferior, one-quarter inferior), treated as<br />

a single character state. However, <strong>the</strong>se categories probably<br />

obscure some diversity. For example, many perigynous flowers<br />

should have been treated as epigynous ra<strong>the</strong>r than hypogynous.<br />

Additionally, <strong>the</strong> authors do not clarify <strong>the</strong>ir use <strong>of</strong> <strong>the</strong><br />

terms “hypogynous” and “epigynous” and probably relied on<br />

homology assessments presented in <strong>the</strong> secondary sources,<br />

which have numerous errors. We have <strong>the</strong>refore attempted to<br />

examine developmental ground plans for ovary position (see<br />

appendix).<br />

These qualifications notwithstanding, <strong>the</strong> mapping studies<br />

<strong>of</strong> Gustafsson and Albert (1999) indicated that ovary position<br />

<strong>evolution</strong> at this broad scale was dynamic. They found 64<br />

unambiguous changes <strong>from</strong> hypogyny to <strong>epigyny</strong>, with 24 such<br />

changes <strong>from</strong> <strong>epigyny</strong> to hypogyny. Although <strong>the</strong>ir figures indicate<br />

that reversals are less frequent than are transitions <strong>from</strong><br />

hypogyny to <strong>epigyny</strong>, <strong>the</strong>se results would indicate that on a<br />

broad scale, ovary position <strong>evolution</strong> is not unidirectional.<br />

Importantly, <strong>the</strong> apparent reversals observed are not evenly<br />

distributed; whereas some groups are essentially fixed for <strong>epigyny</strong>,<br />

o<strong>the</strong>rs appear more labile. Clades indicated to exemplify<br />

this lability in ovary position <strong>evolution</strong> include Goodeniaceae<br />

and Saxifragales (Gustafsson and Albert 1999); o<strong>the</strong>r clades<br />

could be added to that list including Rhamnaceae, Rhizophoraceae,<br />

and families <strong>of</strong> Myrtales including Melastomataceae<br />

and Vochysiaceae.<br />

Saxifragales<br />

Saxifragales provide an excellent system to investigate ovary<br />

position diversification because a range <strong>of</strong> ovary positions <strong>from</strong><br />

superior to inferior is present. To reconstruct phylogeny for<br />

Saxifragales, sequences <strong>from</strong> five nuclear and chloroplast genes<br />

were used (ca. 9000 bp; <strong>Fishbein</strong> et al. 2001). M. <strong>Fishbein</strong> et<br />

al. (unpublished manuscript) reconstructed <strong>the</strong> diversification<br />

<strong>of</strong> ovary position on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> morphology <strong>of</strong> flowers<br />

at an<strong>the</strong>sis (developmental <strong>data</strong> are discussed in “Saxifragales”<br />

in “Ontogenetic Data”). Gustafsson and Albert (1999) earlier<br />

reconstructed ovary position <strong>evolution</strong> in Saxifragales, but <strong>the</strong><br />

more recent phylogenetic analysis <strong>of</strong> <strong>Fishbein</strong> et al. (2001)<br />

provides greater resolution <strong>of</strong> relationships as well as a better<br />

understanding <strong>of</strong> <strong>the</strong> composition <strong>of</strong> <strong>the</strong> clade.<br />

In contrast to <strong>the</strong> traditional view <strong>of</strong> unidirectional ovary


S254 INTERNATIONAL JOURNAL OF PLANT SCIENCES<br />

position <strong>evolution</strong>, mapping studies across Saxifragales reveal<br />

several possible reversals <strong>from</strong> inferior ovaries to those that<br />

appear to be superior (fig. 2; M. <strong>Fishbein</strong>, L. Hufford, and D.<br />

E. Soltis, unpublished manuscript). Inferior (or partially inferior)<br />

ovaries typify most members <strong>of</strong> <strong>the</strong> clade (fig. 2), but<br />

several reversals to ovaries that are or appear to be superior<br />

have occurred (fig. 2). The actual number <strong>of</strong> reversals is unclear<br />

because <strong>of</strong> uncertainty in phylogenetic relationships at <strong>the</strong> base<br />

<strong>of</strong> <strong>the</strong> clade. In Daphniphyllum, character state reconstructions<br />

indicate that a reversal to a superior ovary, or plesiomorphy,<br />

is equally parsimonious. Unambiguous reversals to hypogyny<br />

are seen in Crassulaceae and in Tetracarpaea (fig. 2). In Saxifragaceae,<br />

a family in which ovary position <strong>evolution</strong> appears<br />

to be so labile that it merits separate discussion, ovary position<br />

has evolved toward greater superiority in some lineages and<br />

greater inferiority in o<strong>the</strong>rs, contrary to <strong>the</strong> predictions <strong>of</strong> <strong>the</strong><br />

unidirectional model.<br />

Saxifragaceae<br />

Considerable variation in ovary position is present even<br />

within individual genera <strong>of</strong> Saxifragaceae (e.g., Saxifraga, Micran<strong>the</strong>s,<br />

Lithophragma, Chrysosplenium). The model <strong>of</strong> unidirectional<br />

ovary <strong>evolution</strong> has been invoked to account for<br />

<strong>the</strong> remarkable range <strong>of</strong> ovary positions seen in some genera,<br />

for example, Saxifraga (Stebbins 1974) and Lithophragma.<br />

Well-resolved and strongly supported topologies are now available<br />

for <strong>the</strong> entire family Saxifragaceae (Soltis et al. 1993,<br />

1996b, 2001a) as well as for many well-supported intrafamilial<br />

clades (e.g., Heuchera group: Soltis and Kuz<strong>of</strong>f 1995; R. K.<br />

Kuz<strong>of</strong>f, D. E. Soltis, and L. Hufford, unpublished manuscript;<br />

Boykinia group: Soltis et al. 1996a) and individual genera (e.g.,<br />

Saxifraga: Soltis et al. 1996b; Micran<strong>the</strong>s: Soltis et al. 1996b;<br />

Mort and Soltis 1999; Lithophragma: Kuz<strong>of</strong>f et al. 1999;<br />

Chrysosplenium: Soltis et al. 2001b), providing <strong>the</strong> opportunity<br />

to evaluate critically trends in ovary position diversification.<br />

Mapping ovary position at an<strong>the</strong>sis onto phylogenetic trees<br />

again reveals repeated reversals <strong>from</strong> inferior ovaries to those<br />

that appear to be superior. This dynamic nature <strong>of</strong> ovary position<br />

<strong>evolution</strong> was detected across <strong>the</strong> entire family as well<br />

as within several genera including Chrysosplenium (Soltis et<br />

al. 2001b), Lithophragma (Kuz<strong>of</strong>f et al. 1999, 2001), and Micran<strong>the</strong>s<br />

(Mort and Soltis 1999) as well as within well-defined<br />

clades <strong>of</strong> genera such as <strong>the</strong> Heuchera group (R. K. Kuz<strong>of</strong>f,<br />

D. E. Solits, and L. Hufford, unpublished manuscript) and<br />

across Saxifragaceae as a whole. We provide an overview <strong>of</strong><br />

<strong>the</strong> results for Lithophragma.<br />

Lithophragma includes only 10 species but exhibits extensive<br />

variation in ovary position <strong>from</strong> what has been termed<br />

superior to completely inferior, with a range <strong>of</strong> intermediate<br />

forms present (Taylor 1965). Hence, Lithophragma represents<br />

an ideal group with which to study ovary position diversification<br />

in a phylogenetic context. Kuz<strong>of</strong>f et al. (1999) provided<br />

a well-resolved phylogenetic hypo<strong>the</strong>sis for <strong>the</strong> genus and subsequently<br />

interpreted ovary position <strong>evolution</strong>. On <strong>the</strong> basis<br />

<strong>of</strong> <strong>the</strong> results <strong>of</strong> Kuz<strong>of</strong>f et al. (1999) as well as broader phylogenetic<br />

surveys (Soltis and Kuz<strong>of</strong>f 1995; R. K. Kuz<strong>of</strong>f, D. E.<br />

Soltis, and L. Hufford, unpublished manuscript), <strong>the</strong> closest<br />

relatives <strong>of</strong> Lithophragma are well known. Parsimony recon-<br />

structions indicate that <strong>the</strong> hypo<strong>the</strong>sized ancestor <strong>of</strong> Lithophragma<br />

possessed an ovary that was inferior, with approximately<br />

half <strong>of</strong> its ovary situated below <strong>the</strong> point <strong>of</strong> insertion<br />

for <strong>the</strong> perianth and androecium (hereafter, <strong>the</strong> “insertion<br />

point”). From this ancestral condition, <strong>the</strong>re has been <strong>evolution</strong><br />

toward increasing <strong>the</strong> portion <strong>of</strong> <strong>the</strong> ovary below <strong>the</strong><br />

insertion point (fig. 3) in some species (L. affine, L. parviflorum,<br />

L. trifoliatum) and also toward increasing <strong>the</strong> portion <strong>of</strong><br />

<strong>the</strong> ovary above <strong>the</strong> insertion point in several o<strong>the</strong>r species<br />

such as L. heterophyllum, L. campanulatum, and L. glabrum<br />

(fig. 3). Statistical analyses <strong>of</strong> <strong>the</strong> ovary position versus <strong>the</strong><br />

relative positions <strong>of</strong> species in <strong>the</strong> phylogeny indicate that<br />

ovary position <strong>evolution</strong> in <strong>the</strong> genus does not fit a pattern <strong>of</strong><br />

a trend toward greater superiority (Kuz<strong>of</strong>f et al. 1999). These<br />

results indicate that ovary position <strong>evolution</strong> in Lithophragma<br />

(fig. 3) has been highly labile, moving toward greater superiority<br />

in some lineages and greater inferiority in o<strong>the</strong>rs, again<br />

contrary to <strong>the</strong> unidirectional model.<br />

Variation in ovary position is evident not only within small<br />

genera such as Lithophragma and Chrysosplenium but also<br />

across Saxifragaceae, with considerable variation also present<br />

among genera and clades <strong>of</strong> genera such as <strong>the</strong> Heuchera and<br />

Boykinia groups and within <strong>the</strong> three largest genera in <strong>the</strong><br />

family, Micran<strong>the</strong>s, Chrysosplenium, and Saxifraga. There is<br />

no clear trend in gynoecial <strong>evolution</strong> <strong>from</strong> superior to inferior<br />

ovary position within Saxifragaceae as a whole or within individual<br />

genera or clades <strong>of</strong> genera; <strong>evolution</strong>ary shifts in <strong>the</strong><br />

opposite direction appear to be common in some lineages.<br />

Fig. 3 Mapping <strong>of</strong> ovary position using MacClade (Maddison and<br />

Maddison 1992) onto <strong>the</strong> shortest phylogenetic trees obtained for Lithophragma,<br />

illustrating <strong>the</strong> <strong>evolution</strong> <strong>of</strong> ovary position (modified <strong>from</strong><br />

Kuz<strong>of</strong>f et al. 1999, 2001).


Melastomataceae<br />

A similar, highly dynamic picture <strong>of</strong> ovary position diversification<br />

is emerging for Melastomataceae. When we focus on<br />

just one well-supported clade within <strong>the</strong> family that consists<br />

largely <strong>of</strong> section Miconeae, mapping studies (D. Penneys, M.<br />

Hils, and D. E. Soltis, unpublished manuscript) employing<br />

most parsimonious trees on <strong>the</strong> basis <strong>of</strong> analysis <strong>of</strong> ITS sequences<br />

do not indicate a unidirectional trend in ovary position<br />

<strong>evolution</strong>. Beginning with an inferred ancestor that was halfinferior,<br />

mapping studies indicate that in several instances,<br />

<strong>the</strong>re has been <strong>evolution</strong> toward increasing inferiority; significantly,<br />

<strong>the</strong>re has been <strong>evolution</strong> to what appear to be completely<br />

superior ovaries in two separate instances: in <strong>the</strong> Monochaetum,<br />

Tibouchina, Pilocosta clade and also again,<br />

independently in <strong>the</strong> Meriania, Axinaea, Graffenrieda clade<br />

(D. Penneys, M. Hils, and D. E. Soltis, unpublished manuscript).<br />

Thus, on <strong>the</strong> basis <strong>of</strong> this character analysis for <strong>the</strong><br />

taxa sampled, we can infer multiple changes in ovary position.<br />

The <strong>evolution</strong> <strong>of</strong> ovary position <strong>from</strong> inferior to half-inferior<br />

has occurred as least five times, and our <strong>data</strong> support two<br />

reversals to a superior ovary position. This example is comparable<br />

to those reviewed for clades within Saxifragaceae and<br />

illustrates well just how labile ovary position can be within<br />

some groups <strong>of</strong> angiosperms.<br />

Ontogenetic Data<br />

Typically, ovary positions have been described and decisions<br />

concerning structural homology made exclusively on <strong>the</strong> basis<br />

<strong>of</strong> an<strong>the</strong>tic floral structure; i.e., superior and inferior ovaries<br />

typically are distinguished on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> point <strong>of</strong> attachment<br />

<strong>of</strong> o<strong>the</strong>r floral appendages relative to <strong>the</strong> ovary through<br />

<strong>the</strong> examination <strong>of</strong> an<strong>the</strong>tic flowers. Although an<strong>the</strong>tic floral<br />

structure is important, early floral development serves as an<br />

additional line <strong>of</strong> evidence to differentiate among flowers that<br />

are hypogynous and those that are epigynous (Kuz<strong>of</strong>f et al.<br />

2001; Soltis and Hufford 2002). Boke (1964) and Kaplan<br />

(1967) demonstrated that hypogynous and epigynous flowers<br />

actually differ in form <strong>from</strong> <strong>the</strong> time <strong>of</strong> organogenesis, although<br />

<strong>the</strong> significance <strong>of</strong> <strong>the</strong>ir criteria for homology assessment<br />

has <strong>of</strong>ten been overlooked. There are two basic ground<br />

plans <strong>of</strong> floral development, hypogynous and epigynous; we<br />

review each in figure 1. Perigynous flowers may be a source<br />

<strong>of</strong> confusion to some. A perigynous flower may have an ovary<br />

that is partially inferior, or <strong>the</strong> ovary could be truly superior<br />

in some taxa. Perigynous flowers with partially inferior ovaries<br />

have an epigynous developmental ground plan; those with<br />

truly superior ovaries have a hypogynous ground plan.<br />

The early floral conformation <strong>of</strong> most hypogynous flowers<br />

(see “Complexities and Caveats”) represents what is termed a<br />

hypogynous ground plan. Hypogynous flowers generally exhibit<br />

a convex floral apex throughout organogenesis (fig. 1;<br />

van Heel 1981, 1983, 1984; Endress 1994). This ground plan<br />

is common in <strong>the</strong> angiosperms and likely accounts for many<br />

flowers with ovaries described as superior on <strong>the</strong> basis <strong>of</strong> <strong>the</strong><br />

examination <strong>of</strong> an<strong>the</strong>tic flowers. For example, a hypogynous<br />

ground plan characterizes many basal angiosperm lineages<br />

such as Piperaceae and Alismataceae as well as some earlybranching<br />

eudicots such as members <strong>of</strong> Ranunculaceae and<br />

SOLTIS ET AL.—EVOLUTION OF EPIGYNY S255<br />

Papaveraceae (<strong>the</strong> appendix summarizes some <strong>of</strong> <strong>the</strong> diversity<br />

in gynoecial development). Ontogenetic studies have also<br />

shown a hypogynous ground plan to be present in many core<br />

eudicot lineages, including families <strong>of</strong> Caryophyllales such as<br />

Caryophyllaceae and Chenopodiaceae (Sattler 1973) as well<br />

as many eurosids such as Fabaceae (Tucker et al 1985; Tucker<br />

1987), Malvaceae s. l. (Jenny 1988), and Brassicaceae (Sattler<br />

1973) and also asterids such as Solanaceae (Sattler 1973, 1977;<br />

appendix).<br />

A modification in <strong>the</strong> final stages <strong>of</strong> development <strong>of</strong> a hypogynous<br />

ground plan is represented by what is termed receptacular<br />

<strong>epigyny</strong>. Receptacular <strong>epigyny</strong> arises when a floral<br />

apex remains convex throughout organogenesis, but just after<br />

gynoecial primordia emerge, <strong>the</strong> periphery <strong>of</strong> <strong>the</strong> floral apex<br />

expands and rises, creating a basin in its center (Boke 1963,<br />

1964). Although a modification <strong>of</strong> a hypogynous ground plan,<br />

this type <strong>of</strong> floral development yields inferior ovaries at an<strong>the</strong>sis.<br />

Floral development <strong>of</strong> this kind is very uncommon,<br />

characterizing Cactaceae and Aizoaceae (Kaplan 1967; Weberling<br />

1992).<br />

Most inferior ovaries (see “Complexities and Caveats”) are<br />

<strong>the</strong> result <strong>of</strong> an appendicular-epigynous pattern <strong>of</strong> floral development<br />

(fig. 1). Appendicular <strong>epigyny</strong> also begins floral organogenesis<br />

with a convex floral apex, but during or just after<br />

perianth initiation, a concavity develops in <strong>the</strong> center <strong>of</strong> <strong>the</strong><br />

floral apex. The concavity forms as <strong>the</strong> emerging perianth and<br />

androecium rise up <strong>from</strong> <strong>the</strong> floral axis as an annular meristem<br />

that elongates through zonal growth (fig. 1; Kaplan 1967;<br />

Leins 1972; Magin 1977). Stamen primordia initiate on <strong>the</strong><br />

flanks <strong>of</strong> <strong>the</strong> resultant concavity. As it deepens, stylar primordia<br />

are also initiated on <strong>the</strong> flanks <strong>of</strong> this concavity below <strong>the</strong><br />

stamen primordia. This appendicular-epigynous pattern is <strong>the</strong><br />

most common type <strong>of</strong> epigynous floral development (Kaplan<br />

1967; Magin 1977), characterizing a large number <strong>of</strong> families<br />

including Apiaceae (Magin 1977; Leins and Erbar 1985), Araliaceae<br />

(Erbar and Leins 1988), Asteraceae (Leins and Erbar<br />

1987), Calyceraceae (Erbar 1993), Campanulaceae (Kaplan<br />

1967), Goodeniaceae (Leins and Erbar 1989), Rhamnaceae<br />

(Medan 1988), Rhizophoraceae (Juncosa 1988), Saxifragaceae<br />

(Kuz<strong>of</strong>f et al. 2001; Soltis and Hufford 2002), Stylidiaceae<br />

(Erbar 1992), Vitaceae (Gerrath and Posluszny 1988), Vochysiaceae<br />

(Litt 1999; A. Litt and D. W. Stevenson, unpublished<br />

manuscript), Begoniaceae (Charpentier et al. 1989), and<br />

Rubiaceae (Igersheim et al. 1994; see appendix for a summary<br />

<strong>of</strong> numerous examples <strong>of</strong> an appendicular-epigynous ground<br />

plan).<br />

Recent ontogenetic studies conducted in a phylogenetic context<br />

have extended our understanding <strong>of</strong> how shifts among<br />

ovary positions occur developmentally. They show that in lineages<br />

characterized by appendicular <strong>epigyny</strong>, it is possible to<br />

create a wide range <strong>of</strong> ovary positions (Leins 1972), including<br />

some ovaries that appear superior, through allometric shifts in<br />

<strong>the</strong> amount <strong>of</strong> relative growth in superior and inferior portions<br />

<strong>of</strong> <strong>the</strong> ovary. These recent results are reviewed for Saxifragaceae<br />

and Saxifragales, respectively.<br />

Saxifragaceae<br />

Studies <strong>of</strong> floral development in Lithophragma have helped<br />

elucidate <strong>the</strong> <strong>evolution</strong> <strong>of</strong> ovary position in Saxifragaceae (Ku-


S256 INTERNATIONAL JOURNAL OF PLANT SCIENCES<br />

Fig. 4 SEM photographs illustrating <strong>the</strong> structural diversity in inferior ovaries in Lithophragma. A, Lithophragma glabrum, exhibiting a<br />

pseudosuperior ovary. B, Lithophragma tenellum, exhibiting a half-inferior ovary. C, Lithophragma trifoliatum, exhibiting a deeply inferior<br />

ovary. For each flower, <strong>the</strong> insertion point (IP) <strong>of</strong> <strong>the</strong> perianth and androecium, which divides <strong>the</strong> superior and inferior regions <strong>of</strong> an inferior<br />

ovary, is designated with an arrow. H p hypanthium; Se p sepal; P p petal; S p stamen; St p style (modified <strong>from</strong> Kuz<strong>of</strong>f et al. 2001).<br />

z<strong>of</strong>f et al. 2001). Importantly, Kuz<strong>of</strong>f et al. (2001) found that<br />

all ovaries in Lithophragma are derived <strong>from</strong> an appendicularepigynous<br />

ground plan and <strong>the</strong>re are no truly superior ovaries<br />

in <strong>the</strong> genus. Those species that possess flowers with ovaries<br />

that appear superior are actually inferior, representing pseudosuperior<br />

ovaries (fig. 4; Kuz<strong>of</strong>f et al. 2001).<br />

Kuz<strong>of</strong>f et al. (2001) also compared developmental patterns<br />

among Lithophragma species through static and ontogenetic<br />

allometry and scanning electron microscopy. These comparisons<br />

revealed that <strong>the</strong> diversity <strong>of</strong> ovary positions in this small<br />

genus resulted <strong>from</strong> shifts among species in <strong>the</strong> rate <strong>of</strong> growth<br />

between superior and inferior regions during floral development<br />

(fig. 4). Greater relative growth in <strong>the</strong> superior region<br />

results, at an<strong>the</strong>sis, in an ovary that appears superior or nearly<br />

superior (a pseudosuperior ovary), whereas greater relative<br />

growth in <strong>the</strong> inferior region results in a completely inferior<br />

ovary. When growth is nearly equal in <strong>the</strong> two regions, a halfinferior<br />

ovary is produced (fig. 4). Hence, <strong>the</strong> wide range <strong>of</strong><br />

variation in ovary position in Lithophragma results <strong>from</strong> simple<br />

allometric shifts in relative growth above and below <strong>the</strong><br />

position where <strong>the</strong> perianth and androecium are inserted. Allometric<br />

changes have been shown to be an important component<br />

in o<strong>the</strong>r aspects <strong>of</strong> floral <strong>evolution</strong> (Lord 1981; Guerrant<br />

1982; Diggle 1992; Niklas 1994). Our results reinforce<br />

<strong>the</strong> suggestion <strong>of</strong> Simpson (1998) that allometric changes are<br />

important in ovary position diversification.<br />

Additional studies (Soltis and Hufford 2002) indicate that<br />

<strong>the</strong> pattern and mechanism <strong>of</strong> ovary position <strong>evolution</strong> elucidated<br />

in Lithophragma are directly applicable to <strong>the</strong> entire<br />

Saxifragaceae. SEM studies <strong>of</strong> floral ontogeny across a diverse<br />

array <strong>of</strong> taxa in Saxifragaceae indicate that many species reported<br />

previously to have superior ovaries actually have an<br />

appendicular-epigynous ground plan. Thus, <strong>the</strong>se ovaries are<br />

not “truly superior” but again represent pseudosuperior ovaries<br />

(fig. 4). These pseudosuperior ovaries should not be considered<br />

homologous with truly superior ovaries derived <strong>from</strong><br />

a hypogynous ground plan. There is also evidence suggesting<br />

that true reversals to hypogynous development may have occurred<br />

on rare occasions (e.g., Saxifraga nipponica) in Saxifragaceae<br />

(fig. 5).<br />

Thus, developmental studies demonstrate that nearly all ovaries<br />

in Saxifragaceae are technically inferior (Kuz<strong>of</strong>f et al.<br />

2001; Soltis and Hufford 2002), although in <strong>the</strong> literature,<br />

<strong>the</strong>y are described as ranging <strong>from</strong> superior to inferior. Differences<br />

in mature ovary position throughout Saxifragaceae<br />

may typically be <strong>the</strong> direct result <strong>of</strong> allometric shifts in <strong>the</strong><br />

growth proportions <strong>of</strong> <strong>the</strong>se regions <strong>of</strong> <strong>the</strong> ovary (fig. 4; Kuz<strong>of</strong>f<br />

et al. 2001). These findings also have important implications<br />

for phylogeny reconstruction and floral <strong>evolution</strong> across <strong>the</strong><br />

angiosperms, indicating that not all ovaries described as superior<br />

are homologous.<br />

Saxifragales<br />

Phylogenetic <strong>data</strong> (fig. 2) indicated several reversals <strong>from</strong><br />

inferior to superior ovaries within Saxifragales. Ontogenetic<br />

<strong>data</strong> provide critical, additional insights into ovary position<br />

diversification within <strong>the</strong> clade. Studies <strong>of</strong> floral ontogeny (M.<br />

<strong>Fishbein</strong>, L. Hufford, and D. E. Soltis, unpublished manuscript)<br />

reveal that appendicular <strong>epigyny</strong> typifies most Saxifragales<br />

and is ancestral for most <strong>of</strong> or possibly <strong>the</strong> entire clade<br />

(fig. 5). Significantly, reversals to a superior ovary have occurred<br />

in Crassulaceae, Tetracarpaea, and perhaps also in<br />

Daphiniphyllum (fig. 5). Cercidiphyllum is actually a special


SOLTIS ET AL.—EVOLUTION OF EPIGYNY S257<br />

Fig. 5 Maximum likelihood tree for Saxifragales (<strong>from</strong> <strong>Fishbein</strong> et al. 2001) that also shows diversification in <strong>the</strong> modes <strong>of</strong> early floral<br />

meristem development. Darker branches are well supported and insensitive to <strong>data</strong> combination and method <strong>of</strong> phylogenetic analysis (see <strong>Fishbein</strong><br />

et al. 2001). Vertical bars indicate derived floral ontogenies affecting ovary position. 1, Derivation <strong>of</strong> pseudosuperior ovary <strong>from</strong> appendicularepigynous<br />

ground plan; 2, ground plan in which carpels initiate on a flattened meristem, producing superior ovaries; 3, hypogynous pattern; 4,<br />

anomolous ground plan associated with nearly superior ovaries, which is currently under fur<strong>the</strong>r investigation. SEM photographs (Soltis and<br />

Hufford 2002; M. <strong>Fishbein</strong> et al., unpublished manuscript) <strong>of</strong> Saxifraga nipponica (Saxifragaceae), Itea japonica (Iteaceae), Kalanchoe blossfeldiana<br />

(Crassulaceae), Tetracarpaea tasmanica (Tetracarpaeaceae), Penthorum sedoides (Penthoraceae), Paeonia daurica (Paeoniaceae), and<br />

Daphniphyllum sp. (Daphniphyllaceae) depict early stages <strong>of</strong> floral development. The ancestral state for <strong>the</strong> clade is equivocal. The dashed bar<br />

indicates that <strong>the</strong>re is uncertainty in <strong>the</strong> phylogenetic position <strong>of</strong> Daphniphyllum, and this makes determination <strong>of</strong> <strong>the</strong> phylogenetic homology<br />

<strong>of</strong> <strong>the</strong> superior ovary in this species and <strong>the</strong> ancestral state <strong>of</strong> <strong>the</strong> clade uncertain (<strong>from</strong> M. <strong>Fishbein</strong>, L. Hufford, and D. E. Soltis, unpublished<br />

manuscript).<br />

case in that <strong>the</strong> flowers are unisexual and each female flower<br />

is essentially no more than a carpel; hence, <strong>the</strong> terms “superior<br />

ovary” and “inferior ovary” are not truly applicable. In Crassulaceae,<br />

<strong>the</strong> floral meristem is raised on a central platform<br />

with a reversal to a superior ovary also associated with derived<br />

apocarpy (fig. 5). In Tetracarpaea, <strong>the</strong> floral apex remains convex<br />

throughout organogenesis, so it would seem appropriate<br />

to refer to this as a hypogynous ground plan. Thus, Tetracarpaea<br />

represents a true reversal <strong>from</strong> an appendicular-epigynous<br />

ground plan to a hypogynous ground plan (M. <strong>Fishbein</strong> et al.,<br />

unpublished manuscript). However, in Crassulaceae, as noted<br />

in “Complexities and Caveats,” <strong>the</strong> underlying ground plan<br />

is less clear.<br />

O<strong>the</strong>r Relevant Angiosperm Lineages<br />

The same developmental processes occurring in Saxifagaceae<br />

may also occur in o<strong>the</strong>r eudicot families exhibiting variation<br />

in ovary position. Studies <strong>of</strong> ovary development in Vochysiaceae<br />

similarly reveal that despite considerable ovary position<br />

variation, all taxa examined possess an appendicularepigynous<br />

ground plan and, hence, are technically inferior (Litt<br />

1999; A. Litt and D. W. Stevenson, unpublished manuscript).<br />

Although studies <strong>of</strong> allometry were not conducted, we hypo<strong>the</strong>size<br />

that this variation in ovary position is again <strong>the</strong><br />

consequence <strong>of</strong> <strong>the</strong> relative amount <strong>of</strong> vertical extension <strong>of</strong><br />

inferior versus superior region <strong>of</strong> <strong>the</strong> ovary (fig. 4).<br />

Similar allometric shifts in development may explain <strong>the</strong><br />

transition to a superficially superior ovary observed in Gaertnera<br />

(Rubiaceae). All Rubiaceae possess ovaries that are inferior,<br />

and ontogenetic studies indicate appendicular <strong>epigyny</strong><br />

as <strong>the</strong> underlying developmental ground plan (Igersheim et al.<br />

1994). Igersheim et al. (1994) refer to <strong>the</strong> ovary <strong>of</strong> Gaertnera<br />

as “secondarily superior”; on <strong>the</strong> basis <strong>of</strong> ontogenetic studies,<br />

<strong>the</strong>y conclude that <strong>the</strong> “superior” ovary is achieved in this


S258 INTERNATIONAL JOURNAL OF PLANT SCIENCES<br />

taxon via increased growth or development in <strong>the</strong> superior<br />

region <strong>of</strong> <strong>the</strong> ovary, a process that <strong>the</strong>y state follows <strong>the</strong> principle<br />

<strong>of</strong> variable proportions.<br />

We suggest that modifications <strong>of</strong> appendicular-epigynous<br />

ground plans have yielded a diverse array <strong>of</strong> ovary positions<br />

not only in <strong>the</strong> clades and families we have emphasized here<br />

(Saxifragaceae and o<strong>the</strong>r Saxifragales) but many o<strong>the</strong>r families<br />

as well. This process may be responsible for <strong>the</strong> diversity <strong>of</strong><br />

ovary positions observed in Melastomataceae. In addition,<br />

Vochysiaceae, Rhamnacae, and Rhizophoracae have considerable<br />

ovary position variation, and developmental studies <strong>of</strong><br />

one or a few taxa suggest that an appendicular-epigynous<br />

ground plan may be present in <strong>the</strong>se families (Sattler 1973;<br />

Juncosa 1988; Medan 1988; Litt 1999). However, establishing<br />

<strong>the</strong> underlying mechanism in <strong>the</strong>se and o<strong>the</strong>r families will require<br />

additional detailed investigation <strong>of</strong> floral ontogeny.<br />

Syn<strong>the</strong>sis: The Evolution <strong>of</strong> Epigyny<br />

To summarize <strong>the</strong> emerging picture, <strong>the</strong> patterns <strong>of</strong> ovary<br />

position diversity in <strong>the</strong> context <strong>of</strong> phylogenetic <strong>data</strong> reveal<br />

that ovary position <strong>evolution</strong> is not unidirectional. At both<br />

higher levels across <strong>the</strong> angiosperms and even within individual<br />

families and genera, a more dynamic picture <strong>of</strong> ovary position<br />

diversification has emerged with several examples <strong>of</strong> transitions<br />

<strong>from</strong> deeply inferior ovaries to those that are ei<strong>the</strong>r shallowly<br />

inferior or truly superior. Ovary position lability is not<br />

evenly distributed, however, across <strong>the</strong> angiosperms. Some<br />

clades such as Saxifragales, Myrtales, and Goodeniaceae appear<br />

to have more developmental flexibility in terms <strong>of</strong> ovary<br />

position <strong>evolution</strong> than do o<strong>the</strong>r clades (Gustafsson and Albert<br />

1999).<br />

The two basic underlying ground plans <strong>of</strong> floral development,<br />

hypogynous and appendicular-epigynous ground plans,<br />

yield superior and inferior ovaries, respectively. There are developmental<br />

complexities, however, as noted in more detail in<br />

“Complexities and Caveats.” Fur<strong>the</strong>rmore, modifications <strong>of</strong><br />

both underlying ground plans are possible, providing greater<br />

flexibility in terms <strong>of</strong> floral morphologies. Thus, receptacular<br />

<strong>epigyny</strong> represents a modification <strong>of</strong> a hypogynous ground<br />

plan that ultimately results in an inferior ovary. These inferior<br />

ovaries are not homologous with those derived <strong>from</strong> an<br />

appendicular-epigynous ground plan. This modification appears<br />

rare, however, occurring only in Cactaceae and Aizoaceae<br />

(Boke 1963, 1964; Kaplan 1967). Virtually all inferior<br />

ovaries occur in flowers having an appendicular-epigynous<br />

ground plan. However, this ground plan can also be modified<br />

through allometric shifts in development (figs. 1, 4) to produce<br />

a diverse array <strong>of</strong> ovary positions ranging <strong>from</strong> completely<br />

inferior to varying degrees <strong>of</strong> inferiority to ovaries that appear<br />

completely superior (pseudosuperior ovaries following our terminology).<br />

Adding fur<strong>the</strong>r to <strong>the</strong> dynamic nature <strong>of</strong> ovary<br />

position <strong>evolution</strong> is <strong>the</strong> recent discovery that reversals <strong>from</strong><br />

an appendicular-epigynous to a hypogynous floral ground plan<br />

can occur.<br />

Complexities and Caveats<br />

Although recent studies have greatly improved our understanding<br />

<strong>of</strong> <strong>the</strong> <strong>evolution</strong> <strong>of</strong> <strong>epigyny</strong>, new complexities have<br />

emerged. We know, for example, that <strong>the</strong>re are developmental<br />

complexities present in Rosaceae, where species <strong>of</strong> Physocarpus<br />

and Oemlera have flowers that exhibit a concave floral<br />

apex before gynoecial initiation yet have clearly superior ovaries<br />

at maturity (Evans and Dickinson 1999a, 1999b). However,<br />

o<strong>the</strong>r Rosaceae such as Fragaria appear to have a convex<br />

floral apex throughout organogenesis (Sattler 1973), as would<br />

be expected with a hypogynous ground plan. The anomalous<br />

situation in <strong>the</strong> Rosaceae clearly indicates <strong>the</strong> need for additional<br />

investigation <strong>of</strong> development in a phylogenetic context<br />

in o<strong>the</strong>r lineages. Kuz<strong>of</strong>f et al. (2001) speculated that <strong>the</strong> remarkable<br />

pattern <strong>of</strong> growth <strong>of</strong> some rosaceous species may,<br />

for example, be <strong>the</strong> result <strong>of</strong> precocious toral upgrowth around<br />

<strong>the</strong> periphery <strong>of</strong> <strong>the</strong> floral apex associated with <strong>the</strong> pronounced<br />

hypanthium in this family.<br />

As noted briefly, a caveat associated with <strong>the</strong> reversals <strong>from</strong><br />

inferior to superior ovaries in Saxifragales (fig. 5) involves<br />

whe<strong>the</strong>r <strong>the</strong> developmental ground plan involved is best<br />

termed a hypogynous ground plan. In Crassulaceae, <strong>the</strong> floral<br />

apex appears flat throughout organogenesis ra<strong>the</strong>r than convex<br />

(fig. 5). Is this a hypogynous ground plan <strong>of</strong> floral development?<br />

Perhaps because <strong>the</strong> Saxifragales are developmentally<br />

labile, <strong>the</strong>re are several distinct mechanisms by which reversals<br />

to superior ovaries may occur, and <strong>the</strong> underlying patterns <strong>of</strong><br />

development associated with <strong>the</strong>se reversals are not identical.<br />

Evolutionary Implications<br />

The relative ease with which allometric shifts may occur in<br />

<strong>the</strong> course <strong>of</strong> <strong>evolution</strong> readily explains <strong>the</strong> wide range <strong>of</strong> ovary<br />

positions in Saxifragaceae as well as <strong>the</strong> numerous reversals<br />

that have occurred in <strong>the</strong> group. Our <strong>data</strong> also indicate that<br />

gynoecial <strong>evolution</strong> in Saxifragaceae may be more rapid than<br />

generally inferred for angiosperms. Ongoing studies suggest<br />

that a similar highly dynamic picture <strong>of</strong> ovary position <strong>evolution</strong><br />

also characterizes Melastomataceae (D. Penneys, M.<br />

Hils, and D. E. Soltis, unpublished manuscript) and perhaps<br />

o<strong>the</strong>r families characterized by considerable variation in ovary<br />

position (e.g., Rhamnaceae, Rhizophoraceae).<br />

Although our developmental studies provide a process by<br />

which a wide range <strong>of</strong> ovary positions may be produced, it is<br />

not clear what selective forces may be driving this diversification.<br />

Perhaps <strong>the</strong> most commonly proposed selective force<br />

has been protection <strong>from</strong> herbivorous birds or insects with<br />

biting mouth parts, with <strong>epigyny</strong> resulting in <strong>the</strong> increased<br />

protection <strong>of</strong> ovules (Grant 1950; Stebbins 1974). Ano<strong>the</strong>r<br />

possible cause for <strong>the</strong> <strong>evolution</strong> <strong>of</strong> <strong>epigyny</strong> would be selection<br />

mediated by pollinators. J. Thompson (personal communication)<br />

has suggested that <strong>the</strong> diverse array <strong>of</strong> ovary position<br />

observed may be <strong>the</strong> result <strong>of</strong> co<strong>evolution</strong>ary interactions with<br />

pollinators. Greya moths, which are close relatives <strong>of</strong> yucca<br />

moths, are <strong>the</strong> major pollinators and, in some cases, <strong>the</strong> only<br />

major herbivores <strong>of</strong> <strong>the</strong>ir Lithophragma host plants (Thompson<br />

and Cunningham 2002). In some species and populations,<br />

<strong>the</strong> pollination services <strong>of</strong> Greya can be swamped by a small<br />

number <strong>of</strong> copollinator species (Thompson and Pellmyr 1992;<br />

Thompson 1994), making <strong>the</strong> outcome <strong>of</strong> <strong>the</strong> interaction between<br />

<strong>the</strong> moths antagonistic in some environments and mutualistic<br />

in o<strong>the</strong>rs (Thompson and Cunningham 2002). Since<br />

some <strong>of</strong> <strong>the</strong>se Greya species lay <strong>the</strong>ir eggs in Lithophragma


flowers, <strong>the</strong>y may pose important selection pressures on Lithophragma<br />

flowers both as mutualists and antagonists. Additional<br />

research is needed to identify <strong>the</strong> nature and outcome<br />

<strong>of</strong> such mutualisms (Thompson 1994).<br />

Summary and Future Studies<br />

Recent documentation <strong>of</strong> gynoecial development in several<br />

lineages <strong>of</strong> eudicots has broad implications for understanding<br />

floral diversity in <strong>the</strong> angiosperms. An exciting recent discovery<br />

is that a diverse array <strong>of</strong> ovary positions ranging <strong>from</strong> completely<br />

inferior to what superficially appear to be superior ovaries,<br />

as well as <strong>the</strong> entire range <strong>of</strong> intermediate ovary positions,<br />

can all be produced via an appendicular-epigynous ground<br />

plan <strong>of</strong> development. This wide range <strong>of</strong> ovary positions may<br />

be produced via allometric shifts in development in several<br />

investigated species and perhaps in many more as well (fig. 5).<br />

We have termed those ovaries that are produced via appendicular<br />

<strong>epigyny</strong> and appear to be superior “pseudosuperior.”<br />

Such ovaries are not homologous with truly superior ovaries<br />

produced via a hypogynous ground plan.<br />

Most <strong>of</strong> <strong>the</strong> recent work summarized here is in Saxifragales.<br />

Saxifragales appear to occupy a critical phylogenetic position<br />

in <strong>the</strong> core eudicots, perhaps as sister to <strong>the</strong> large eurosid clade<br />

(Soltis et al. 2000). Importantly, within <strong>the</strong> eurosids, several<br />

families and small clades <strong>of</strong> families similarly exhibit extensive<br />

variation in ovary position ranging <strong>from</strong> superior to inferior.<br />

Examples include Melastomataceae, Memecylcaceae, Vochysiaceae,<br />

Flacourtiaceae, Dichapetalaceae, and Rhizophoraceae.<br />

Recent studies demonstrate that not all ovaries that<br />

appear superficially to be superior are homologous. We predict<br />

that ovaries described as superior in o<strong>the</strong>r groups, such as <strong>the</strong><br />

eurosid families noted, may not be homologous with truly<br />

superior ovaries derived <strong>from</strong> a hypogynous floral ground plan<br />

SOLTIS ET AL.—EVOLUTION OF EPIGYNY S259<br />

Appendix<br />

Table A1<br />

but are also derived <strong>from</strong> within an appendicular-epigynous<br />

ground plan. As one avenue <strong>of</strong> future investigation, it will be<br />

important to conduct ontogenetic studies in o<strong>the</strong>r groups in<br />

an effort to differentiate between truly superior ovaries (derived<br />

via a hypogynous ground plan) and pseudosuperior ovaries<br />

(derived <strong>from</strong> an appendicular-epigynous ground plan).<br />

Ano<strong>the</strong>r question, closely related to that posed earlier, will be<br />

to determine whe<strong>the</strong>r allometric shifts in development similarly<br />

account for <strong>the</strong> diverse array <strong>of</strong> ovary positions observed in<br />

o<strong>the</strong>r families.<br />

Undoubtedly, future developmental studies will illustrate additional<br />

complexities in gynoecial development. For example,<br />

<strong>the</strong> recognition <strong>of</strong> two basic ground plans, appendicularepigynous<br />

and hypogynous, may be an oversimplification. In<br />

addition, comparisons <strong>of</strong> transitions among floral ground<br />

plans are needed because dissimilar mechanisms may be responsible<br />

for changes in different lineages.<br />

The underlying genetic factors that result in hypogynous<br />

versus appendicular-epigynous floral ground plans are unknown,<br />

as are <strong>the</strong> underlying genetic causes for <strong>the</strong> developmental<br />

changes that occur just within appendicular <strong>epigyny</strong><br />

and generate substantial ovary position variation. Hence, ano<strong>the</strong>r<br />

important area <strong>of</strong> future research involves developmental<br />

genetic investigations to identify <strong>the</strong> genes controlling ovary<br />

position.<br />

Acknowledgments<br />

This research was supported by DEB 9726225 to D. Soltis<br />

and L. Hufford and a Fulbright Award to D. Soltis and P.<br />

Soltis. The authors thank L. Hufford and P. Endress for helpful<br />

discussions and R. Evans and an anonymous reviewer for helpful<br />

comments on <strong>the</strong> manuscript.<br />

Partial Listing <strong>of</strong> Families <strong>of</strong> Angiosperms for Which Ontogenetic Data Are Available<br />

Family<br />

Ground<br />

plan Reference<br />

Basal lineages:<br />

Monocots:<br />

Acorales:<br />

Acorus calamus Acoraceae HGP Sattler 1973; Buzgo and Endress 2000<br />

Alismatales:<br />

Asimina triviale Alismataceae HGP Sattler 1973<br />

Butomus umbellatus Butomaceae HGP Sattler 1973<br />

Liliales:<br />

Scilla violacea Liliaceae HGP Sattler 1973<br />

Asparagales:<br />

Ruscus hypoglossum Ruscaceae HGP Sattler 1973<br />

Allium sp. Alliaceae HGP Sattler 1973<br />

Habenaria clavellata Orchidaceae AGP? Sattler 1973<br />

Poales:<br />

Hordeum vulgare Poaceae HGP Sattler 1973<br />

Sparganium eurycarpum Sparganiaceae HGP Sattler 1973<br />

Scirpus validus Cyperaceae HGP Sattler 1973


Family<br />

Table A1<br />

(Continued)<br />

S260<br />

Ground<br />

plan Reference<br />

Commelinales:<br />

Tradescantia sp. Commelinaceae HGP Hardy and Stevenson 2000<br />

Callisia navicularis<br />

O<strong>the</strong>r basal lineages:<br />

Nymphaeales:<br />

Commelinaceae HGP Hardy and Stevenson 2000<br />

Cabomba caroliniana Nymphaeaceae HGP Tucker 1999<br />

Cabomba furcata Nymphaeaceae HGP Endress 2001<br />

Nuphar advena Nymphaeaceae HGP Endress 2001<br />

Victoria cruziana Nymphaeaceae HGP Endress 2001<br />

Nymphaea alba<br />

Austrobaileyales:<br />

Nymphaeaceae HGP Ronse Decraene and Smets 1993<br />

Austrobaileya scandens Austrobaileyaceae HGP Endress 2001<br />

Trimenia papuana Trimeniaceae HGP Endress 2001<br />

Schisandra glabra Schisandraceae HGP Tucker 1999<br />

Schisandra chinensis Schisandraceae HGP Endress 2001<br />

Illicium anisatum Illiciaceae HGP Endress 2001<br />

Illicium henryi<br />

Piperales:<br />

Illiciaceae HGP Ronse Decraene and Smets 1993<br />

Peperomia caperata Piperaceae HGP Sattler 1973<br />

Saruma henryi<br />

Winterales:<br />

Aristolochiaceae AGP Tucker 1999<br />

Drimys winteri<br />

Magnoliales:<br />

Winteraceae HGP Doust 2001<br />

Magnolia denu<strong>data</strong><br />

Laurales:<br />

Magnoliaceae HGP Erbar and Leins 1983<br />

Laurus nobilis<br />

Eudicots:<br />

Early-branching eudicots:<br />

Ranunculales:<br />

Lauraceae HGP Ronse Decraene and Smets 1993<br />

Chelidonium majus Papaveraceae HGP Sattler 1973<br />

Ranunculus acris Ranunculaceae HGP Sattler 1973<br />

Cocculus laurifolius Menispermaceae HGP Ronse Decraene and Smets 1993<br />

Papaver somniferum Papaveraceae HGP Ronse Decraene and Smets 1993<br />

Decaisnea fargesii<br />

Proteales:<br />

Lardizabalaceae HGP Ronse Decraene and Smets 1993<br />

Persoonia myrtilloides Proteaceaea HGP Douglas and Tucker 1996a<br />

Bellendena montana Proteaceae a<br />

HGP Douglas and Tucker 1996a<br />

Placospermum corianum Proteaceae a<br />

HGP Douglas and Tucker 1996a<br />

Lambertia inermis Proteaceae a<br />

HGP Douglas and Tucker 1996b<br />

Nelumbo nucifera<br />

Core eudicots:<br />

Saxifragales:<br />

Nelumbonaceeae HGP Hayes et al. 2000<br />

Lithophragma sp. Saxifragaceaea AGP Kuz<strong>of</strong>f et al. 2001<br />

Boykinia sp. Saxifragaceaea AGP Soltis and Hufford 2002<br />

Suksdorfia sp. Saxifragaceae a<br />

AGP Soltis and Hufford 2002<br />

Micran<strong>the</strong>s sp. Saxifragaceae a<br />

AGP Soltis and Hufford 2002<br />

Saxifraga sp. Saxifragaceaea AGP Soltis and Hufford 2002<br />

AGP Klopfer 1970<br />

Tellima grandiflora Saxifragaceaea AGP Klopfer 1968; Kuz<strong>of</strong>f et al. 2001<br />

Rhodoleia championii Hamamelidaceae AGP Bogle 1989<br />

Daphniphyllum sp. Daphniphyllaceae Anom M. <strong>Fishbein</strong>, L. Hufford, and D. E.<br />

Soltis, unpublished manuscript<br />

Kalenchoe blossfeldiana Crassulaceae Anom M. <strong>Fishbein</strong>, L. Hufford, and D. E.<br />

Soltis, unpublished manuscript<br />

Tetracarpaea tasmanica Tetracarpaeaceae HGP M. <strong>Fishbein</strong>, L. Hufford, and D. E.<br />

Soltis, unpublished manuscript<br />

Penthorum sedoides Penthoraceae AGP M. <strong>Fishbein</strong>, L. Hufford, and D. E.<br />

Soltis, unpublished manuscript<br />

Itea japonica Iteaceae AGP M. <strong>Fishbein</strong>, L. Hufford, and D. E.<br />

Soltis, unpublished manuscript


Family<br />

Table A1<br />

(Continued)<br />

S261<br />

Ground<br />

plan Reference<br />

Aphanopetalum resinosum<br />

Caryophyllales:<br />

Haloragaceae AGP M. <strong>Fishbein</strong>, L. Hufford, and D. E.<br />

Soltis, unpublished manuscript<br />

Pereskia aculeata Cactaceae RGP Boke 1963, 1964<br />

Chenopodium album Chenopodiaceae HGP Sattler 1973<br />

Fagopyrum sagittatum Chenopodiaceae HGP Sattler 1973<br />

Silene cucubalus Caryophyllaceaea HGP Sattler 1973<br />

Scleranthus perennis Caryophyllaceaea HGP Ronse Decraene and Smets 1993<br />

Gypsophila paniculata Caryophyllaceaea HGP Ronse Decraene and Smets 1993<br />

Silene colorata Caryophyllaceae a<br />

Asterids:<br />

Ericales:<br />

HGP Ronse Decraene et al. 1998<br />

Lysimachia nummularia<br />

Gentianales:<br />

Primulaceae Anom Sattler 1973<br />

Gaertnera sp. Rubiaceae AGP Igersheim et al. 1994<br />

Asclepias syriaca<br />

Lamiales:<br />

Apocynaceae APG Sattler 1973<br />

Syringa vulgaris<br />

Solanales:<br />

Oleaceae APG Sattler 1973<br />

Solanum dulcamara Solanaceae HGP Sattler 1973, 1977<br />

Sphenoclea zeylanica<br />

Apiales:<br />

Sphenocleaceae AGP Erbar 1995<br />

Levisticum vulgaris Apiaceae AGP Leins and Erbar 1985<br />

Astrantia major Apiaceae AGP Leins and Erbar 1985<br />

Hydrocotyle vulgaris Araliaceae AGP Erbar and Leins 1985<br />

Aralia elata<br />

Asterales:<br />

Araliaceae AGP Erbar and Leins 1988<br />

Bellis perennis Asteraceae AGP Erbar and Leins 1988<br />

Tragopogon pratensis Asteraceae AGP Sattler 1973<br />

Tagetes patula Asteraceae AGP Sattler 1973<br />

Acicarpha tribuloides Calyceraceae AGP Erbar 1993<br />

Campanula rotundifolia Campanulaceae AGP Erbar and Leins 1988<br />

Lobelia erinus Campanulaceae AGP Erbar and Leins 1988<br />

Downingia bacigalupii Campanulaceae AGP Kaplan 1967<br />

Selliera radicans Goodeniaceae AGP Erbar 1988; Leins and Erbar 1989<br />

Stylidium adnatum<br />

Dipsacales:<br />

Stylidaceae AGP Sattler 1973; Erbar 1992<br />

Valeriana <strong>of</strong>ficinalis<br />

Rosids:<br />

Valerianaceae AGP Sattler 1973<br />

Ampelopsis brevipedunculata Vitaceae HGP Gerrath and Posluszny 1988<br />

Fagonia cretica Zygophyllaceae HGP Ronse Decraene and Smets 1993<br />

Peganum harmala<br />

Cucurbitales:<br />

Zygophyllaceae HGP Ronse Decraene and Smets 1993<br />

Begonia dregei Begoniaceae Anom Gauthier 1950; Charpentier et al. 1989<br />

Hillebrandia sandwicensis<br />

Fabales:<br />

Begoniaceae Anom Charpentier et al. 1989<br />

Ceratonia siliqua Fabaceaea HGP Tucker 1992<br />

Bauhinia malabarica Fabaceaea HGP Tucker 1988a<br />

Neptunia pubescens Fabaceaea HGP Tucker 1988b<br />

Crudia choussyana Fabaceaea HGP Tucker 2001<br />

Albizia lophanta Fabaceae a<br />

HGP Sattler 1973<br />

Pisum sativum Fabaceaea HGP Sattler 1973<br />

Securidaca longepedunculata<br />

Rosales:<br />

Polygalaceae HGP Krüger and Robbertse 1988<br />

Rhamnus cathartica Rhamnaceae AGP? Sattler 1973<br />

Noltea africana Rhamnaceae AGP? Medan 1988<br />

Laportea canadensis Urticaceae HGP Sattler 1973<br />

Fragaria vesca Rosaceae HGP Sattler 1973<br />

Prunus virginiana Rosaceae HGP Evans and Dickinson 1999a<br />

Exochorda racemosa Rosaceae HGP Evans and Dickinson 1999a


S262 INTERNATIONAL JOURNAL OF PLANT SCIENCES<br />

Family<br />

Table A1<br />

(Continued)<br />

Ground<br />

plan Reference<br />

Oemleria cerasiformis Rosaceae Anom Evans and Dickinson 1999a<br />

Physocarpus opulifolius Rosaceae HGP Evans and Dickinson 1999b<br />

Spiraea trilobata Rosaceae HGP Evans and Dickinson 1999b<br />

Sorbaria sorbifolia Rosaceae HGP Evans and Dickinson 1999b<br />

Fagales:<br />

Myrica gale Myricaceae HGP Sattler 1973<br />

Ostrya virginiana Betulaceae AGP Sattler 1973<br />

Quercus rubra Fagaceae AGP Sattler 1973<br />

Malpighiales:<br />

Carallia sp. Rhizophoraceae AGP? Juncosa 1988<br />

Euphorbia splendens Euphorbiaceae HGP Sattler 1973<br />

Hypericum perforatum Clusiaceae HGP Sattler 1973<br />

Geraniales:<br />

Pelargonium zonale Geraniaceae HGP Sattler 1973<br />

Geranium endressii Geraniaceae HGP Ronse Decraene and Smets 1993<br />

Brassicales:<br />

Cheiranthus cheiri Brassicaceae HGP Sattler 1973<br />

Iberis sempervirens Brassicaceae HGP Ronse Decraene and Smets 1993<br />

Sapindales:<br />

Schinus terebinthifolia Anacardiaceae HGP Ronse Decraene and Smets 1993<br />

Rhus typhina Anacardiaceae HGP Sattler 1973<br />

Melicope ternata Rutaceae HGP Ronse Decraene and Smets 1993<br />

Malvales:<br />

Malva neglecta Malvaceae HGP Sattler 1973<br />

Althaea rosea Malvaceae HGP Sattler 1973<br />

Helicteres isora Malvaceae HGP Jenny 1988<br />

Myrtales:<br />

Lythrum salicaria Lythraceae AGP? Sattler 1973<br />

Vochysia Vochysiaceae AGP Litt 1999; A. Litt and D. W.<br />

Stevenson, unpublished manuscript<br />

Fuchsia hybrida Onagraceae AGP Sattler 1973<br />

Santalales:<br />

Comandra umbellata Santalaceae AGP Sattler 1973<br />

Dilleniales:<br />

Hibbertia scandens Dilleniaceae HGP Sattler 1973<br />

Hibbertia huegelii Dilleniaceae HGP Tucker 1999<br />

Note. This is by no means a comprehensive compilation, but it illustrates <strong>the</strong> diversity <strong>of</strong> gyneocial development <strong>from</strong> a phylogenetic<br />

standpoint. The table indicates <strong>the</strong> presence <strong>of</strong> a hypogynous ground plan (HGP), receptacular-epigynous ground plan (RGP), or<br />

appendicular-epigynous ground plan (AGP). The abbreviation “Anom” indicates anomalous, which refers to unusual developmental<br />

programs that do not clearly fit into ei<strong>the</strong>r HGP or AGP (see text). A question mark indicates that <strong>the</strong> ground plan is uncertain on <strong>the</strong><br />

basis <strong>of</strong> evidence available—more research is needed (<strong>of</strong>ten <strong>the</strong> critical early stages <strong>of</strong> development are missing or not clearly illustrated).<br />

Order names follow APG II (2003); note that some families (Vitaceae) are still unassigned to order because <strong>of</strong> uncertainty regarding<br />

<strong>the</strong>ir phylogenetic position.<br />

a Families for which numerous representatives have been examined; only a fraction are indicated here.<br />

Angiosperm Phylogeny Group (APG II) 2003 An updated classification<br />

<strong>of</strong> <strong>the</strong> angiosperms. Bot J Linn Soc 141:399–436.<br />

Bessey CE 1915 The phylogenetic taxonomy <strong>of</strong> vascular plants. Ann<br />

Mo Bot Gard 2:109–164.<br />

Bogle AL 1989 The floral morphology, vascular anatomy, and ontogeny<br />

<strong>of</strong> <strong>the</strong> Rhodoleioideae (Hamamelidaceae) and <strong>the</strong>ir significance<br />

in relation to <strong>the</strong> “lower” hamamelids. Pages 201–226 in PR<br />

Crane, S Blackmore, eds. Evolution, systematics and fossil history<br />

<strong>of</strong> <strong>the</strong> Hamamelidae. Vol 1. Introduction and “lower” Hamamelidae.<br />

Clarendon, Oxford.<br />

Literature Cited<br />

Boke NH 1963 Anatomy and development <strong>of</strong> <strong>the</strong> flower and fruit <strong>of</strong><br />

Pereskia pititache. Am J Bot 50:843–858.<br />

——— 1964 The cactus gynoecium: a new interpretation. Am J Bot<br />

51:598–610.<br />

Buzgo M, PK Endress 2000 Floral structure and development <strong>of</strong><br />

Acoraceae and its systematic relationships with basal angiosperms.<br />

Int J Plant Sci 161:23–41.<br />

Charpentier A, L Brouillet, D Barabe 1989 Organogénese de la fleur<br />

pistillée du Begonia dregei et de l’Hillebrandia sandwicensis (Begoniaceae).<br />

Can J Bot 67:3625–3639.


Chase MW, DE Soltis, RG Olmstead, D Morgan, DH Les, BD Mishler,<br />

MR Duvall, et al 1993 Phylogenetics <strong>of</strong> seed plants: an analysis <strong>of</strong><br />

nucleotide sequences <strong>from</strong> <strong>the</strong> plastid gene rbcL. Ann Mo Bot Gard<br />

80:528–580.<br />

Cronquist A 1988 The <strong>evolution</strong> and classification <strong>of</strong> flowering<br />

plants. 2d ed. New York Botanical Garden, New York.<br />

Diggle P 1992 Development and <strong>the</strong> <strong>evolution</strong> <strong>of</strong> plant reproductive<br />

characters. Pages 326–355 in R Wyatt, ed. Ecology and <strong>evolution</strong><br />

<strong>of</strong> plant reproduction: new approaches. Chapman & Hall, New<br />

York.<br />

Douglas AW, SC Tucker 1996a Comparative floral ontogenies among<br />

Persoonioideae including Bellendena (Proteaceae). Am J Bot 83:<br />

1528–1555.<br />

——— 1996b Inflorescence ontogeny and floral organogenesis in<br />

Grevilleoideae (Proteaceae), with emphasis on <strong>the</strong> nature <strong>of</strong> <strong>the</strong><br />

flower parts. Int J Plant Sci 157:341–372.<br />

Doust AN 2001 The developmental basis <strong>of</strong> floral variation in Drimys<br />

winteri (Winteraceae). Int J Plant Sci 162:697–717.<br />

Endress PK 1994 Diversity and <strong>evolution</strong>ary biology <strong>of</strong> tropical flowers.<br />

Cambridge University Press, Cambridge.<br />

——— 2001 The flowers in extant basal angiosperms and inferences<br />

on ancestral flowers. Int J Plant Sci 162:1111–1140.<br />

Erbar C 1992 Floral development <strong>of</strong> two species <strong>of</strong> Stylidium (Stylidaceae)<br />

and some remarks on <strong>the</strong> systematic position <strong>of</strong> <strong>the</strong> family<br />

Stylidiaceae. Can J Bot 70:258–271.<br />

——— 1993 Studies on <strong>the</strong> floral development and pollen presentation<br />

in Acicarpha tribuloides with a discussion <strong>of</strong> <strong>the</strong> systematic<br />

position <strong>of</strong> <strong>the</strong> family Calyceraceae. Bot Jahrb Syst 115:325–350.<br />

——— 1995 On <strong>the</strong> floral development <strong>of</strong> Sphenoclea zeylanica<br />

(Sphenocleaceae, Campanulales): SEM-investigations on herbarium<br />

material. Bot Jahrb Syst 117:469–483.<br />

Erbar C, P Leins 1983 Zur Sequenz von Blütenorganen bei einigen<br />

Magnoliiden. Bot Jahrb Syst 103:433–449.<br />

——— 1985 Studien zur Organsequenz in Apiaceen-Bluten. Bot<br />

Jahrb Syst 105:379–400.<br />

——— 1988 Blütenentwicklungsgeschichtliche Studien an Aralia and<br />

Hedera (Araliaceae). Flora 180:391–406.<br />

Evans RC, TA Dickinson 1999a Floral ontogeny and morphology in<br />

subfamily Amygdaloideae T. & G. (Rosaceae). Int J Plant Sci 160:<br />

955–979.<br />

——— 1999b Floral ontogeny and morphology in subfamily Spiraeoideae<br />

Endl. (Rosaceae). Int J Plant Sci 160:981–1012.<br />

Eyde RH, CC Tseng 1969 Flower <strong>of</strong> Tetraplasandra gymnocarpa: hypogyny<br />

with epigynous ancestry. Science 166:506–507.<br />

<strong>Fishbein</strong> M, C Hibsch-Jetter, DE Soltis, L Hufford 2001 Phylogeny<br />

<strong>of</strong> Saxifragales (angiosperms, eudicots): analysis <strong>of</strong> a rapid, ancient<br />

radiation. Syst Biol 50:817–847.<br />

Gauthier R 1950 The nature <strong>of</strong> <strong>the</strong> inferior ovary in <strong>the</strong> genus Begonia.<br />

Contrib Inst Bot Univ Montreal 66:1–93.<br />

Gerrath JM, U Posluszny 1988 Comparative floral development in<br />

some members <strong>of</strong> <strong>the</strong> Vitaceae. Pages 121–131 in P Leins, SC Tucker,<br />

PK Endress, eds. Aspects <strong>of</strong> floral development. J Cramer, Berlin.<br />

Grant V 1950 The protection <strong>of</strong> <strong>the</strong> ovules in flowering plants. Evolution<br />

4:179–201.<br />

Guerrant EO 1982 Neotenic <strong>evolution</strong> <strong>of</strong> Delphinium nudicaule (Ranunculaceae):<br />

a hummingbird pollinated larkspur. Evolution 36:<br />

699–712.<br />

Gustafsson MHG, VA Albert 1999 Inferior ovaries and angiosperm<br />

diversification. Pages 403–431 in PM Hollingsworth, RM Batemna,<br />

RJ Gornall, eds. Molecular systematics and plant <strong>evolution</strong>. Taylor<br />

& Francis, London.<br />

Hardy CR, DW Stevenson 2000 Floral organogenesis in some species<br />

<strong>of</strong> Tradescantia and Callisia (Commelinaceae). Int J Plant Sci 161:<br />

551–562.<br />

Hayes V, EL Schneider, S Carlquist 2000 Floral development <strong>of</strong> Ne-<br />

SOLTIS ET AL.—EVOLUTION OF EPIGYNY S263<br />

lumbo nucifera (Nelumbonaceae). Int J Plant Sci 161(suppl):S183–<br />

S191.<br />

Igersheim AC, C Puff, P Leins, C Erbar 1994 Gynoecial development<br />

<strong>of</strong> Gaertnera Lam. and <strong>of</strong> presumably allied taxa <strong>of</strong> Psychotrieae<br />

(Rubiaceae): secondarily “superior” vs. inferior ovaries. Bot Jahrb<br />

Syst 116:401–414.<br />

Jenny M 1988 Different gynoecium types in Sterculiaceae: ontogeny<br />

and functional aspects. Pages 225–236 in P Leins, SC Tucker, PK<br />

Endress, eds. Aspects <strong>of</strong> floral development. J Cramer, Berlin.<br />

Judd WS, CS Campbell, EA Kellogg, PF Stevens 2002 Plant systematics:<br />

a phylogenetic approach. Sinauer, Sunderland, Mass.<br />

Juncosa A 1988 Floral development and character <strong>evolution</strong> in Rhizophoraceae.<br />

Pages 83–101 in P Leins, SC Tucker, PK Endress, eds.<br />

Aspects <strong>of</strong> floral development. J Cramer, Berlin.<br />

Kaplan DR 1967 Floral morphology, organogenesis and interpretation<br />

<strong>of</strong> <strong>the</strong> inferior ovary in Downingia bacigalupii. Am J Bot 54:<br />

1274–1290.<br />

Klopfer K 1968 Beiträge zur floralen Morphogenese und Histogenese<br />

der Saxifragaceae. 2. Die Blütenentwicklung von Tellima grandiflora.<br />

Flora Abt B 158:S1–S21.<br />

——— 1970 Beiträge zur floralen Morphogenese und Histogenese<br />

der Saxifragaceae. 4. Die Blütenentwicklung einiger Saxifraga Arten.<br />

Flora 159:347–365.<br />

Krüger H, PJ Robbertse 1988 Floral ontogeny <strong>of</strong> Securidaca longepedunculata<br />

Fresen. (Polygalaceae), including inflorescence morphology.<br />

Pages 159–167 in P Leins, SC Tucker, PK Endress, eds.<br />

Aspects <strong>of</strong> floral development. J Cramer, Berlin.<br />

Kuz<strong>of</strong>f RK, CS Gasser 2000 Recent progress in reconstructing angiosperm<br />

phylogeny. Trends Plant Sci 5:330–336.<br />

Kuz<strong>of</strong>f RK, L Hufford, DE Soltis 2001 Structural homology and developmental<br />

transformations associated with ovary diversification<br />

in Lithophragma (Saxifragaceae). Am J Bot 88:196–205.<br />

Kuz<strong>of</strong>f RK, DE Soltis, L Hufford, PS Soltis 1999 Phylogenetic relationships<br />

within Lithophragma (Saxifragaceae): hybridization, allopolyploidy,<br />

and ovary diversification. Syst Bot 24:598–615.<br />

Leins P 1972 Das Karpell im ober- und unterstandigen Gynoeceum.<br />

Ber Dtsch Bot Ges 85:291–294.<br />

Leins P, C Erbar 1985 Zur frühen Entwicklungsgeschichte des<br />

Apiaceen-Gynoeceums. Bot Jahrb Syst 106:53–60.<br />

——— 1987 Studien zur Blütenwicklung an Compositen. Bot Jahrb<br />

Syst 108:381–401.<br />

——— 1989 Zur Blütenentwicklung und sekundären Pollenpräsentation<br />

bei Selliera radicans Cav. (Goodeniaceae). Flora 182:43–56.<br />

Litt A 1999 Floral morphology and phylogeny <strong>of</strong> Vochysiaceae. PhD<br />

<strong>the</strong>sis. New York Botanical Garden.<br />

Lord EM 1981 Cleistogamy: a tool for <strong>the</strong> study <strong>of</strong> floral morphogenesis,<br />

function, and <strong>evolution</strong>. Bot Rev 47:421–449.<br />

Maddison WP, DR Maddison 1992 MacClade, version 3.03. Sinauer,<br />

Sunderland, Mass.<br />

Magin N 1977 Das Gynoeceum der Apiaceae: model und ontogenie.<br />

Ber Dtsch Bot Ges 90:S53–S66.<br />

Medan D 1988 Gynoecium ontogenesis in <strong>the</strong> Rhamnaceae: a comparative<br />

study. Pages 133–141 in P Leins, SC Tucker, PK Endress,<br />

eds. Aspects <strong>of</strong> floral development. J Cramer, Berlin.<br />

Mort ME, DE Soltis 1999 Phylogenetic relationships and <strong>the</strong> <strong>evolution</strong><br />

<strong>of</strong> ovary position in Saxifraga section Micran<strong>the</strong>s. Syst Bot 24:<br />

139–147.<br />

Niklas KJ 1994 Plant allometry: <strong>the</strong> scaling <strong>of</strong> form and process. University<br />

<strong>of</strong> Chicago Press, Chicago.<br />

Ronse Decraene LP, EF Smets 1993 The distribution and systematic<br />

relevance <strong>of</strong> <strong>the</strong> androecial character polymery. Bot J Linn Soc 113:<br />

285–350.<br />

Ronse Decraene LP, EF Smets, P Vanvinckenroye 1998 Pseudodiplostemony,<br />

and its implications for <strong>the</strong> <strong>evolution</strong> <strong>of</strong> <strong>the</strong> androecium<br />

in <strong>the</strong> Caryophyllaceae. J Plant Res 111:25–43.


S264 INTERNATIONAL JOURNAL OF PLANT SCIENCES<br />

Sattler R 1973 Organogenesis <strong>of</strong> flowers: a photographic text-atlas.<br />

University <strong>of</strong> Toronto Press, Toronto.<br />

——— 1977 Kronröhrenenstehung bei Solanum dulcamara L. and<br />

“kongenitale Verwachsung.” Ber Dtsch Bot Ges 90:29–38.<br />

Simpson MG 1998 Reversal in ovary position <strong>from</strong> inferior to superior<br />

in <strong>the</strong> Haemodoraceae: evidence <strong>from</strong> floral ontogeny. Int J<br />

Plant Sci 159:466–479.<br />

Soltis DE, L Hufford 2002 Ovary position diversity in Saxifragaceae:<br />

clarifying <strong>the</strong> homology <strong>of</strong> <strong>epigyny</strong>. Int J Plant Sci 163:277–293.<br />

Soltis DE, LA Johnson, C Looney 1996a Discordance between ITS<br />

and chloroplast topologies in <strong>the</strong> Boykinia group (Saxifragaceae).<br />

Syst Bot 21:169–185.<br />

Soltis DE, RK Kuz<strong>of</strong>f 1995 Discordance between nuclear and chloroplast<br />

phylogenies in <strong>the</strong> Heuchera group (Saxifragaceae). Evolution<br />

49:727–742.<br />

Soltis DE, RK Kuz<strong>of</strong>f, R Gornall, K Ferguson 1996b matK and rbcL<br />

gene sequence <strong>data</strong> indicate that Saxifraga (Saxifragaceae) is polyphyletic.<br />

Am J Bot 83:371–382.<br />

Soltis DE, RK Kuz<strong>of</strong>f, ME Mort, M Zanis, M <strong>Fishbein</strong>, L Hufford<br />

2001a Elucidating deep-level phylogenetic relationships in<br />

Saxifragaceae using sequences for six chloroplastic and nuclear<br />

DNA regions. Ann Mo Bot Gard 88:669–693.<br />

Soltis DE, DR Morgan, A Grable, PS Soltis, RK Kuz<strong>of</strong>f 1993<br />

Molecular systematics <strong>of</strong> Saxifragaceae sensu stricto. Am J Bot 80:<br />

1056–1081.<br />

Soltis DE, PS Soltis, MW Chase, ME Mort, DC Albach, M Zanis, V<br />

Savolainen, et al 2000 Angiosperm phylogeny inferred <strong>from</strong> a combined<br />

<strong>data</strong> set <strong>of</strong> 18S rDNA, rbcL and atpB sequences. Bot J Linn<br />

Soc 133:381–461.<br />

Soltis DE, M Tago-Nakazawa, QY Xiang, S Kawano, J Murat, M<br />

Wakabayashi 2001b Phylogenetic relationships and <strong>evolution</strong> in<br />

Chrysosplenium (Saxifragaceae) based on matK sequence <strong>data</strong>. Am<br />

J Bot 88:883–893.<br />

Stebbins GL 1974 Flowering plants: <strong>evolution</strong> above <strong>the</strong> species level.<br />

Harvard University Press, Cambridge, Mass.<br />

Takhtajan A 1991 Evolutionary trends in flowering plants. Columbia<br />

University Press, New York.<br />

Taylor RL 1965 The genus Lithophragma (Saxifragaceae). Univ Calif<br />

Publ Bot, vol 37.<br />

Thompson JN 1994 The co<strong>evolution</strong>ary process. University <strong>of</strong> Chicago<br />

Press, Chicago.<br />

Thompson JN, BM Cunningham 2002 Geographic structure and dynamics<br />

<strong>of</strong> co<strong>evolution</strong>ary selection. Nature 417:735–738.<br />

Thompson JN, O Pellmyr 1992 Mutualism with pollinating seed parasites<br />

amid co-pollinators: constraints on specialization. Ecology 73:<br />

1780–1791.<br />

Tucker SC 1987 Floral initiation and development in legumes. Pages<br />

183–239 in CH Stirton, ed. Advances in legume systematics. Vol 3.<br />

Royal Botanic Garden, Kew.<br />

——— 1992 The developmental basis for sexual expression in Ceratonia<br />

siliqua (Leguminosae: Caesalpinioideae: Cassieae). Am J Bot<br />

79:318–327.<br />

——— 1998a Dioecy in Bauhinia resulting <strong>from</strong> organ suppression.<br />

Am J Bot 75:1584–1597.<br />

——— 1998b Heteromorphic flower development in Neptunia pubescens,<br />

a mimosoid legume. Am J Bot 75:205–224.<br />

——— 1999 Evolutionary lability <strong>of</strong> symmetry in early floral development.<br />

Int J Plant Sci 160(suppl): S25–S39.<br />

——— 2001 The ontogenetic basis for missing petals in Crudia (Leguminosae:<br />

Caesalpinoideae: Detarieae). Int J Plant Sci 162:83–89.<br />

Tucker SC, OL Stein, KS Derstine 1985 Floral development in Caesalpinia<br />

(Leguminoseae: Caesalpinioideae). Am J Bot 72:1424–1434.<br />

van Heel WA 1981 An S.E.M.-investigation on <strong>the</strong> development <strong>of</strong><br />

free carpels. Blumea 27:499–522.<br />

——— 1983 The ascidiform early development <strong>of</strong> free carpels, an<br />

S.E.M.-investigation. Blumea 28:231–270.<br />

——— 1984 Variation in <strong>the</strong> development <strong>of</strong> ascidiform carpels, an<br />

S.E.M.-investigation. Blumea 29:443–452.<br />

Weberling F 1992 Morphology <strong>of</strong> flowers and inflorescences. Cambridge<br />

University Press, Cambridge.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!