17.04.2015 Views

Chapter 8: Alkynes - Science Learning Center

Chapter 8: Alkynes - Science Learning Center

Chapter 8: Alkynes - Science Learning Center

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Alkynes</strong><br />

<strong>Alkynes</strong>-hydrocarbons with a carbon-carbon triple bond.<br />

The carbon-carbon triple bond results from the interaction of two sp hybridized carbon<br />

atoms. 180 degree angle. Linear.<br />

The carbon-carbon triple bond is the shortest and strongest known<br />

carbon-carbon bond. Why? It has the highest percentage of s character.<br />

Type Hybridization % s character % p character<br />

Alkane sp 3 25 75<br />

Alkene sp 2 33 67<br />

Alkyne sp 50 50<br />

Nomenclature<br />

<strong>Alkynes</strong> are named like alkenes with the following adjustments: 1) Number the carbons<br />

on the chain so that the triple bonded carbons receive the lowest possible numbers, 2)<br />

Indicate the location of the triple bond by writing the number of the lowest numbered<br />

carbon making up the triple bond in front of the name of the parent chain. 3) Change the<br />

ending from –ene to –yne.<br />

Reactions to Know<br />

Preparation of <strong>Alkynes</strong><br />

Synthesis of <strong>Alkynes</strong>:<br />

1. Dehydrohalogenation of vicinal dihalides:<br />

Br<br />

R<br />

H<br />

C<br />

Br<br />

C<br />

H<br />

R<br />

2 Alc. KOH<br />

R<br />

C C R<br />

Note: vic-dihalides are prepared from alkenes. Thus, in effect, this is a conversion of<br />

alkene to alkyne.


Reactions of <strong>Alkynes</strong><br />

1. Hydrohalogenation:<br />

X<br />

H<br />

R<br />

C<br />

C<br />

R<br />

2 HX<br />

R<br />

C<br />

C<br />

R<br />

X<br />

H<br />

(Geminal Dihalide)<br />

2. Mercury (II)-Catalyzed Hydration:<br />

R<br />

C<br />

C<br />

H<br />

OH<br />

H 2 O, H 2 SO 4<br />

HgSO 4<br />

R C C<br />

(Ketone)<br />

The enol is an intermediate in the reaction. However, it immediately rearranges to form<br />

the a ketone through a process called keto-enol tautomerism.<br />

3. Hydroboration-Oxidation: (Internal alkynes will give a ketone; terminal alkynes<br />

will give an aldehyde).<br />

Enol<br />

H<br />

H<br />

R<br />

C<br />

H 2<br />

O<br />

C<br />

CH3<br />

OH<br />

O<br />

R C C R<br />

1) BH 3<br />

2) H 2 O 2 , OH<br />

R C C<br />

H<br />

R<br />

R<br />

C<br />

C<br />

H 2<br />

R<br />

Enol<br />

(Ketone)


As in the mercury-catalyzed reaction, the enol is an intermediate which quickly<br />

undergoes keto-enol tautomerism to form the ketone.<br />

H<br />

BR<br />

1) BH 2<br />

3<br />

R C C R C C<br />

2) H 2 O 2 , OH R C C<br />

R<br />

R<br />

H<br />

Enol<br />

OH<br />

R<br />

Examples:<br />

a) Internal alkyne to ketone<br />

OH<br />

1) BH 3<br />

H 3 C C C CH 3<br />

2) H 2 O 2 , OH<br />

H 3 C C C CH 3<br />

b) Terminal alkyne to aldehyde<br />

OH<br />

H<br />

Enol<br />

1) BH 3<br />

H C C CH 3<br />

2) H 2 O 2 , OH<br />

H C C CH 3<br />

4. Hydrogenation:<br />

H<br />

Enol<br />

R<br />

O<br />

C<br />

C<br />

H 2<br />

O<br />

R<br />

H 3 C C C CH 3<br />

H 2<br />

O<br />

H C C CH 3<br />

H 2<br />

R<br />

C<br />

C<br />

R<br />

2 H 2 / Pd<br />

R<br />

H<br />

C<br />

H<br />

C<br />

R<br />

(Alkane)<br />

H<br />

H<br />

5. Hydrogenation Using Lindlar Catalyst:<br />

H<br />

H<br />

R<br />

C<br />

C<br />

R<br />

H 2<br />

C C<br />

Lindlar's cat.<br />

R<br />

R<br />

(Cis Alkene)


6. Hydrogenation Using Lithium and Ammonia (Na can be used instead of Li):<br />

H<br />

R<br />

R<br />

C<br />

C<br />

R<br />

Li, NH 3<br />

C C<br />

(Trans Alkene)<br />

R<br />

H<br />

7. Cleavage of Internal <strong>Alkynes</strong>:<br />

R<br />

C<br />

C<br />

R'<br />

KMnO 4 or<br />

O 3<br />

O<br />

O<br />

R C OH + R' C OH<br />

(Carboxylic Acid)<br />

8. Cleavage of Terminal <strong>Alkynes</strong>:<br />

R<br />

C<br />

C<br />

H<br />

KMnO 4 or<br />

O 3<br />

O<br />

R C OH + CO 2<br />

(Carboxylic Acid and CO 2 )<br />

9. Alkylation Using Acetylide Ions:<br />

R<br />

C<br />

C<br />

H<br />

1) NaNH 2 , NH 3<br />

2) R'CH 2 Br<br />

R<br />

C<br />

C<br />

CH 2 R'


Practice Problems:<br />

1) What are the products of the following reaction:<br />

a)<br />

H 3 C C C CH 2 CH 3 ?<br />

Li, NH 3<br />

b)<br />

H 3 C C C H<br />

c)<br />

KMnO 4 or<br />

O 3<br />

1) BH 3<br />

H C C CH 2 CH 3<br />

2) H 2 O 2 , OH<br />

?<br />

Answer<br />

Answer<br />

Answer<br />

Alkyne Acidity: Forming Acetylide Anions<br />

Terminal alkynes are weakly acidic.<br />

Acidity of simple hydrocarbons:<br />

<strong>Alkynes</strong> > Alkenes> Alkanes<br />

Why are terminal alkynes more acidic than alkenes or alkanes? Acidity depends upon the<br />

stability of the conjugate base. Why are acetylide anions more stable than vinylic or alkyl<br />

anions?<br />

1) Hybridization of the negatively charged carbon atom:<br />

a. Acetylide anion has an sp hybridized carbon. Therefore,<br />

the negative charge resides in an orbital that has 50% s<br />

characteristic.<br />

b. Vinylic anion ' sp2 hybridized. 33% s character.<br />

c. Alkyl anion ' sp3 hybridized. 25% s character.<br />

Since s orbitals are nearer the positive nucleus and are lower in energy than p orbitals, the<br />

negative charge is stabilized to a greater extent.<br />

1. Formation of Acetylide Anions<br />

RC C H NH 2 Na + RC C Na + NH 3<br />

Acetylide anion<br />

Acetylide Anions are important to organic synthesis because they can be used to make a<br />

carbon chain longer.


2. Alkylation of Acetylide Anions<br />

RC C + 1° RX ! RC CR<br />

You’ll learn the mechanism for this reaction in a later chapter.<br />

Practice Synthesis Problem:<br />

H 3 CH 2 C<br />

CH 3<br />

H from H 3 CH 2 CC<br />

C<br />

C<br />

2) How could you prepare<br />

needed reagents?<br />

H<br />

CH and any<br />

Answer


Answer<br />

1) What are the products of the following reaction:<br />

a)<br />

H 3 C C C CH 2 CH 3 ?<br />

Li, NH 3<br />

H 3 C C C CH 2 CH 3 C C<br />

Li, NH 3<br />

H<br />

CH 2 CH 3<br />

H 3 C<br />

H<br />

Return to Problem


Answer<br />

1) What are the products of the following reaction:<br />

b)<br />

H 3 C C C H<br />

KMnO 4 or<br />

H 3 C C C H<br />

O 3<br />

KMnO 4 or<br />

O 3<br />

H 3 C C OH<br />

O<br />

CO 2<br />

Return to Problem


Answer<br />

1) What are the products of the following reaction:<br />

c)<br />

1) BH 3<br />

H C C CH 2 CH 3<br />

2) H 2 O 2 , OH<br />

?<br />

H C C CH 2 CH 3<br />

1) BH 3<br />

2) H 2 O 2 , OH<br />

HC CH2 CH 2 CH 3<br />

Return to Problem<br />

O


Answer:<br />

H 3 CH 2 C<br />

CH 3<br />

H from H 3 CH 2 CC<br />

C<br />

C<br />

2) How could you prepare<br />

needed reagents?<br />

H<br />

CH and any<br />

H 3 CH 2 CC<br />

CH<br />

NaNH 2<br />

H 3 CH 2 CC<br />

C<br />

BrCH 3<br />

H 3 CH 2 C<br />

H<br />

C<br />

C<br />

CH 3<br />

H 2<br />

H Lindlar's Catalyst<br />

H 3 CH 2 CC CCH 3<br />

Return to Problem

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!