19.04.2015 Views

Chiral Structure in Baryon Magnetic Moments

Chiral Structure in Baryon Magnetic Moments

Chiral Structure in Baryon Magnetic Moments

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong><br />

<strong>Moments</strong><br />

Ross Young,<br />

Derek Le<strong>in</strong>weber, Tony Thomas<br />

CSSM, University of Adelaide<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.1/18


Introduction<br />

<strong>Chiral</strong> extrapolation for lattice QCD<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.2/18


Introduction<br />

<strong>Chiral</strong> extrapolation for lattice QCD<br />

Nontrivial problem due to nonanalytic behaviour<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.2/18


Introduction<br />

<strong>Chiral</strong> extrapolation for lattice QCD<br />

Nontrivial problem due to nonanalytic behaviour<br />

Highlight nucleon mass extrapolation<br />

Reliable extrapolation with FRR χPT<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.2/18


Introduction<br />

<strong>Chiral</strong> extrapolation for lattice QCD<br />

Nontrivial problem due to nonanalytic behaviour<br />

Highlight nucleon mass extrapolation<br />

Reliable extrapolation with FRR χPT<br />

<strong>Magnetic</strong> moments p and ∆<br />

Observation of quenched chiral behaviour<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.2/18


Expansion of Nucleon Mass<br />

General expansion about chiral limit (m q = 0)<br />

M N = {Analytic terms} + {<strong>Chiral</strong> loop corrections}<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.3/18


Expansion of Nucleon Mass<br />

General expansion about chiral limit (m q = 0)<br />

M N = {Analytic terms} + {<strong>Chiral</strong> loop corrections}<br />

M N = {a 0 + a 2 m 2 π + a 4 m 4 π + a 6 m 6 π + ..}<br />

+{ χ π I π (m π ) + χ π∆ I π∆ (m π ) + ..}<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.3/18


Expansion of Nucleon Mass<br />

General expansion about chiral limit (m q = 0)<br />

M N = {a 0 + a 2 m 2 π + a 4 m 4 π + a 6 m 6 π + ..}<br />

+{ χ π I π (m π ) + χ π∆ I π∆ (m π ) + ..}<br />

I π =<br />

I π∆ =<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.3/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0 0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

A: a 0 + a 2 m 2 π<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

B: a 0 + a 2 m 2 π + χ π I π<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

C: a 0 + a 2 m 2 π + a 4 m 4 π + χ π I π<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

D: a 0 + a 2 m 2 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

E: a 0 + a 2 m 2 π + a 4 m 4 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

F: a 0 + a 2 m 2 π + a 4 m 4 π + a 5 m 5 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Lattice QCD and Dim Reg χPT<br />

Lattice data: Ali Khan et al. PRD 65,054505 (2002)<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

G: a 0 + a 2 m 2 π + a 4 m 4 π + a 6 m 6 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.4/18


Convergence of Dim Reg χPT<br />

Extrapolated m N , different chiral expansions<br />

1.2<br />

1.0<br />

mN GeV<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

A B C D E F G<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.5/18


Lattice QCD and FRR χPT<br />

Dipole Regularisation<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

A: a 0 + a 2 m 2 π<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.6/18


Lattice QCD and FRR χPT<br />

Dipole Regularisation<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

B: a 0 + a 2 m 2 π + χ π I π<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.6/18


Lattice QCD and FRR χPT<br />

Dipole Regularisation<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

C: a 0 + a 2 m 2 π + a 4 m 4 π + χ π I π<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.6/18


Lattice QCD and FRR χPT<br />

Dipole Regularisation<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

D: a 0 + a 2 m 2 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.6/18


Lattice QCD and FRR χPT<br />

Dipole Regularisation<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

E: a 0 + a 2 m 2 π + a 4 m 4 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.6/18


Lattice QCD and FRR χPT<br />

Dipole Regularisation<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

F: a 0 + a 2 m 2 π + a 4 m 4 π + a 5 m 5 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.6/18


Lattice QCD and FRR χPT<br />

Dipole Regularisation<br />

mN GeV<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

G: a 0 + a 2 m 2 π + a 4 m 4 π + a 6 m 6 π + χ π I π + χ π∆ I π∆<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.6/18


Convergence of FRR χPT (Dipole)<br />

Comparison: dipole vs. dim reg<br />

1.2<br />

1.0<br />

mN GeV<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

A B C D E F G<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.7/18


Regulator Dependence<br />

Best fit to lattice data, hep-lat/0302020<br />

1.8<br />

1.6<br />

mN GeV<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

Dipole<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.8/18


Regulator Dependence<br />

Best fit to lattice data, hep-lat/0302020<br />

1.8<br />

1.6<br />

mN GeV<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

Monopole<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.8/18


Regulator Dependence<br />

Best fit to lattice data, hep-lat/0302020<br />

1.8<br />

1.6<br />

mN GeV<br />

1.4<br />

1.2<br />

1<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

Gaussian<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.8/18


Regulator Dependence<br />

Best fit to lattice data, hep-lat/0302020<br />

1.8<br />

1.6<br />

mN GeV<br />

1.4<br />

1.2<br />

1<br />

Sharp Cut-off<br />

0.2 0.4 0.6 0.8 1<br />

m Π 2 GeV 2 <br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.8/18


LECs, Extrapolated<br />

Best fits to lattice data<br />

FRR a 0 c 0 a 2 c 2<br />

Sharp cutoff 1.06 0.892 1.06 3.16<br />

Monopole 1.38 0.914 0.950 2.63<br />

Dipole 1.15 0.910 0.998 2.72<br />

Gaussian 1.11 0.906 1.02 2.79<br />

Le<strong>in</strong>weber, Thomas & Young, hep-lat/0302020<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.9/18


Statistical Errors<br />

Error bounds (dipole)<br />

1.8<br />

1.6<br />

MN GeV<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

m 2 Π GeV 2 <br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.10/18


<strong>Magnetic</strong> <strong>Moments</strong><br />

Consider extrapolation of nucleon magnetic moments<br />

from lattice QCD<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.11/18


<strong>Magnetic</strong> <strong>Moments</strong><br />

Consider extrapolation of nucleon magnetic moments<br />

from lattice QCD<br />

Many one-loop graphs to be considered<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.11/18


<strong>Magnetic</strong> <strong>Moments</strong><br />

Consider extrapolation of nucleon magnetic moments<br />

from lattice QCD<br />

Many one-loop graphs to be considered<br />

Additional lattice complication<br />

→ The quenched approximation<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.11/18


<strong>Chiral</strong> Expansion<br />

Mass expansion<br />

M N = {a 0 + a 2 m 2 π + a 4 m 4 π + a 6 m 6 π + ..}<br />

+{ χ π I π (m π ) + χ π∆ I π∆ (m π ) + ..}<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.12/18


<strong>Chiral</strong> Expansion<br />

Mass expansion<br />

M N = {a 0 + a 2 m 2 π + a 4 m 4 π + a 6 m 6 π + ..}<br />

+{ χ π I π (m π ) + χ π∆ I π∆ (m π ) + ..}<br />

Similarly, the magnetic moment expansion<br />

µ p = β 0 + β 2 m 2 π + β 4 m 4 π + β 6 m 6 π + ...<br />

+ ∑ α<br />

χ α I µ α<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.12/18


One-loop Contributions<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.13/18


Nonanalytic <strong>Structure</strong><br />

Lead<strong>in</strong>g nonanalytic contribution<br />

(a)<br />

(b)<br />

(c)<br />

m π<br />

m 2 π ln m π<br />

µ<br />

m 2 π ln m π<br />

µ<br />

(d) m 4 π ln m π<br />

µ<br />

(e) m 3 π +<br />

4π∆ 3 π ln m π<br />

µ<br />

(f) m 3 π<br />

(g) m 4 π ln m π<br />

µ<br />

(h)<br />

(i)<br />

m 2 π ln m π<br />

µ<br />

m 2 π ln m π<br />

µ<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.14/18


Quenched Approximation<br />

Virtual q¯q-pair creation <strong>in</strong> vacuum neglected — pure<br />

glue<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.15/18


Quenched Approximation<br />

Virtual q¯q-pair creation <strong>in</strong> vacuum neglected — pure<br />

glue<br />

<strong>Chiral</strong> loops modified <strong>in</strong> absence of sea quarks<br />

Different nonanalytic contributions alter extrapolation<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.15/18


Quenched Approximation<br />

Virtual q¯q-pair creation <strong>in</strong> vacuum neglected — pure<br />

glue<br />

<strong>Chiral</strong> loops modified <strong>in</strong> absence of sea quarks<br />

Different nonanalytic contributions alter extrapolation<br />

The η ′ a new light degree of freedom<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.15/18


Quenched Diagrams<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.16/18


Quenched QCD<br />

Proton magnetic moment<br />

3<br />

2.5<br />

Μ p ΜN<br />

2<br />

1.5<br />

1<br />

0 0.2 0.4 0.6 0.8<br />

m 2 Π GeV 2 <br />

Lattice data: Prelim<strong>in</strong>ary CSSM results Zanotti et al.<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.17/18


Quenched QCD<br />

Proton magnetic moment<br />

3<br />

2.5<br />

Μ p ΜN<br />

2<br />

1.5<br />

1<br />

0 0.2 0.4 0.6 0.8<br />

m 2 Π GeV 2 <br />

Quenched fit: β 0 + β 2 m 2 π + Loops<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.17/18


Quenched QCD<br />

∆ ++ magnetic moment<br />

4<br />

3.5<br />

Μ <br />

ΜN<br />

3<br />

2.5<br />

2<br />

0 0.2 0.4 0.6 0.8<br />

m 2 Π GeV 2 <br />

Quenched simulation<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.17/18


Quenched QCD<br />

∆ ++ magnetic moment<br />

4<br />

3.5<br />

Μ <br />

ΜN<br />

3<br />

2.5<br />

2<br />

0 0.2 0.4 0.6 0.8<br />

m 2 Π GeV 2 <br />

Quenched fit: β 0 + β 2 m 2 π + Loops<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.17/18


Quenched QCD<br />

∆ ++ magnetic moment<br />

4<br />

3.5<br />

Μ <br />

ΜN<br />

3<br />

2.5<br />

2<br />

0 0.2 0.4 0.6 0.8<br />

m 2 Π GeV 2 <br />

Flip sign on chiral loop<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.17/18


Quenched QCD<br />

∆ + -Proton magnetic moment<br />

2.4<br />

2.2<br />

2<br />

Μ B ΜN<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0 0.2 0.4 0.6 0.8<br />

m 2 Π GeV 2 <br />

Quenched simulation<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.17/18


Quenched QCD<br />

∆ + -Proton magnetic moment<br />

2.4<br />

2.2<br />

2<br />

Μ B ΜN<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0 0.2 0.4 0.6 0.8<br />

m 2 Π GeV 2 <br />

Quenched fits<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.17/18


Conclusions<br />

F<strong>in</strong>ite-range regulator (FRR) improves the<br />

convergence properties of χ’al EFT<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.18/18


Conclusions<br />

F<strong>in</strong>ite-range regulator (FRR) improves the<br />

convergence properties of χ’al EFT<br />

Provides accurate chiral extrapolation for lattice<br />

simulations<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.18/18


Conclusions<br />

F<strong>in</strong>ite-range regulator (FRR) improves the<br />

convergence properties of χ’al EFT<br />

Provides accurate chiral extrapolation for lattice<br />

simulations<br />

Application of FRR to magnetic moments<br />

Quenched FRR-χPT to assist understand<strong>in</strong>g<br />

simulation results<br />

<strong>Chiral</strong> <strong>Structure</strong> <strong>in</strong> <strong>Baryon</strong> <strong>Magnetic</strong> <strong>Moments</strong> – p.18/18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!