21.04.2015 Views

Integration by Parts - Bruce E. Shapiro

Integration by Parts - Bruce E. Shapiro

Integration by Parts - Bruce E. Shapiro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Topic 6<br />

<strong>Integration</strong> <strong>by</strong> <strong>Parts</strong><br />

<strong>Integration</strong> <strong>by</strong> parts turns the product rule into a rule for integration. Recall<br />

that from the product rule we had:<br />

(uv) ′ = uv ′ + u ′ v (6.1)<br />

Rearranging and writing this in the Leibniz notation<br />

u dv<br />

dx = d(uv)<br />

dx<br />

− v du<br />

dx<br />

Multiply both sides <strong>by</strong> the differential dx gives:<br />

Cancelling the dx everywhere,<br />

(6.2)<br />

u dv d(uv)<br />

dx =<br />

dx dx<br />

dx − v du dx (6.3)<br />

dx<br />

udv = d(uv) − vdu (6.4)<br />

Integrate both sides of the equation:<br />

∫ ∫ ∫<br />

udv = d(uv) −<br />

vdu (6.5)<br />

The first term is the integral of an exact differential, so we arrive at the<br />

following result.<br />

<strong>Integration</strong> <strong>by</strong> <strong>Parts</strong> Formula<br />

∫<br />

∫<br />

udv = uv −<br />

vdu (6.6)<br />

« 2012. Last revised: February 26, 2013 Page 15


Math 150A TOPIC 6. INTEGRATION BY PARTS<br />

∫<br />

Example 6.1<br />

x sin x dx<br />

Let<br />

u = x =⇒ dv = dx (6.7a)<br />

∫<br />

dv = sin x =⇒ v = sin xdx = − cos x (6.7b)<br />

Then<br />

∫<br />

∫<br />

x sin x dx = uv − v du<br />

∫<br />

= (x)(− cos x) −<br />

(6.8a)<br />

(− cos x)dx (6.8b)<br />

= −x cos x + sin x + C (6.8c)<br />

∫<br />

An analogous formula holds for x cos x:<br />

∫<br />

x cos x dx = cos x + x sin x + C (6.9)<br />

∫<br />

Example 6.2 xe x dx<br />

Let<br />

Then<br />

u = x =⇒ du = dx (6.10a)<br />

dv = e x dx =⇒ v = e x (6.10b)<br />

∫<br />

∫<br />

xe x dx = (x)(e x ) − (e x )dx (6.11a)<br />

∫<br />

Example 6.3<br />

Let<br />

ln x dx<br />

= xe x − e x + C (6.11b)<br />

Then<br />

∫<br />

u = ln x<br />

=⇒ du = dx x<br />

(6.12a)<br />

dv = dx =⇒ v = x (6.12b)<br />

∫<br />

ln x dx = x ln x −<br />

( ) dx<br />

x = x ln x − x + C (6.13)<br />

x<br />

Page 16 « 2012. Last revised: February 26, 2013


TOPIC 6. INTEGRATION BY PARTS Math 150A<br />

When there are limits of integration we apply them at each step of the<br />

formula.<br />

Example 6.4<br />

∫ 2<br />

1<br />

x ln x dx Let<br />

u = ln x<br />

=⇒ du = dx x<br />

(6.14a)<br />

dv = xdx =⇒ v = 1 2 x2 (6.14b)<br />

Then<br />

∫ 2<br />

1<br />

( )∣ 1 ∣∣∣<br />

2<br />

x ln x dx = (ln x)<br />

x x2<br />

= 2 ln 2 − 1 2<br />

∫ 2<br />

1<br />

= ln 2 2 − 1 4 x2 ∣ ∣∣∣<br />

2<br />

1<br />

1<br />

−<br />

xdx<br />

∫ 2<br />

1<br />

( 1<br />

2 x2 ) ( dx<br />

x<br />

= ln 4 − 1 4 × 4 + 1 4 × 1 = ln 4 − 3 4<br />

)<br />

(6.15a)<br />

(6.15b)<br />

(6.15c)<br />

(6.15d)<br />

Sometimes integration <strong>by</strong> parts will return the original function to be integration,<br />

but reversed in sign, or multiplied <strong>by</strong> a constant. When this<br />

happens, one can write an algebraic equation for the result, as illustrated<br />

in the following example.<br />

∫<br />

Example 6.5 e x sin x dx Let<br />

u = e x =⇒ du = e x dx (6.16a)<br />

dv = sin x dx =⇒ v = − cos x (6.16b)<br />

Then<br />

∫<br />

uv− ∫ vdu<br />

{ }} ∫ {<br />

e x sin x dx = −e x cos x + e x cos x dx (6.17)<br />

The second integral on the right doesn’t look any better than what we<br />

started with; nevertheless, we can continue, integrating <strong>by</strong> parts a second<br />

time, with:<br />

u = e x =⇒ du = e x dx (6.18a)<br />

dv = cos x dx =⇒ v = sin x (6.18b)<br />

« 2012. Last revised: February 26, 2013 Page 17


Math 150A TOPIC 6. INTEGRATION BY PARTS<br />

Then<br />

∫<br />

uv− ∫ vdu<br />

{(<br />

∫}} ){<br />

e x sin x dx = −e x cos x + e x sin x − e x sin x dx<br />

(6.19)<br />

∫<br />

The term with e x sin x dx appears on both sides of the equation, but<br />

with different signs. We can add this to both sides of the equation and<br />

divide <strong>by</strong> two to get the following:<br />

∫<br />

e x sin x dx = 1 2 ex (sin x − cos x) (6.20)<br />

A common trick is to combine the method of “u-substitution” with the<br />

method of integration <strong>by</strong> parts, as in the following example.<br />

∫<br />

Example 6.6 cos √ x dx We first make the substitution z = √ x, so that<br />

dz =<br />

dx<br />

2 √ x . Then since dx = 2√ xdz = 2zdz, we have<br />

∫<br />

cos √ ∫<br />

x dx = 2 z cos z dz<br />

Example 6.7<br />

(6.21a)<br />

= 2 (cos z + z sin z) + C <strong>by</strong> equation 6.9 (6.21b)<br />

= 2 cos √ x + 2 √ x sin √ x + C (6.21c)<br />

∫ √ π<br />

0<br />

∫ √ π<br />

0<br />

x 3 sin(x 2 )dx First substitute z = x 2 , so that<br />

x 3 sin(x 2 )dx =<br />

= 1 2<br />

∫ π<br />

0<br />

∫ π<br />

0<br />

z 3/2 sin z<br />

z sin z dz<br />

dz<br />

2 √ z<br />

The last integral is exactly like the integral in example 6.1, so that<br />

(6.22a)<br />

(6.22b)<br />

∫ √ π<br />

x 3 sin(x 2 )dx = 1 ∣ ∣∣∣<br />

π<br />

2 (−z cos z + sin z) = π 2<br />

0<br />

0<br />

(6.22c)<br />

Page 18 « 2012. Last revised: February 26, 2013


TOPIC 6. INTEGRATION BY PARTS Math 150A<br />

Some of the formulas that we have derived using integration <strong>by</strong> parts in this<br />

section arise so frequently that it is helpful to jot them down in a separate<br />

table. (Some of these formulas are derived in the exercises.)<br />

∫<br />

1. x sin x dx = sin x − x cos x<br />

∫<br />

2. x cos x dx = cos x + x sin x<br />

∫<br />

3. xe x dx = e x (x − 1)<br />

∫<br />

4. x 2 e x dx = e x (2 − 2x + x 2 )<br />

∫<br />

5. ln x dx = x ln x − x<br />

6.<br />

7.<br />

8.<br />

9.<br />

∫<br />

∫<br />

∫<br />

∫<br />

x ln x dx = x2<br />

2<br />

(<br />

ln x − 1 )<br />

2<br />

sin −1 x dx = √ 1 − x 2 + x sin −1 x<br />

cos −1 x dx = − √ 1 − x 2 + x cos −1 x<br />

tan −1 x dx = x tan −1 x − ln √ 1 + x 2<br />

« 2012. Last revised: February 26, 2013 Page 19


Math 150A TOPIC 6. INTEGRATION BY PARTS<br />

Exercises.<br />

Use integration <strong>by</strong> parts to solve the following integrals.<br />

∫<br />

6.1. tan −1 x dx<br />

∫<br />

6.2. x tan −1 x dx<br />

∫<br />

6.3. sin −1 (3x) dx<br />

∫<br />

6.4. t 2 e t dt<br />

6.5.<br />

6.6.<br />

6.7.<br />

6.8.<br />

6.9.<br />

6.10.<br />

6.11.<br />

∫ ln x<br />

√ x<br />

dx<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

∫<br />

e x cos x dx<br />

x2 x dx<br />

x ln(2x) dx<br />

x 2 ln(5x) dx<br />

x 3 (x 2 + 7) 3/2 dx<br />

x 5<br />

√<br />

x3 + 5 dx<br />

Make a substitution then use integration <strong>by</strong> parts to solve the following<br />

integrals.<br />

∫<br />

6.12. (ln(3x)) 2 dx)<br />

∫<br />

6.13. ln √ x dx<br />

∫<br />

6.14. cos ln x dx<br />

∫<br />

6.15. e x sin −1 e x dx<br />

Page 20 « 2012. Last revised: February 26, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!