24.04.2015 Views

nondestructive characterization of fatigue processes in cyclically ...

nondestructive characterization of fatigue processes in cyclically ...

nondestructive characterization of fatigue processes in cyclically ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 1<br />

NONDESTRUCTIVE CHARACTERIZATION<br />

OF FATIGUE PROCESSES IN CYCLICALLY<br />

LOADED WELDED JOINTS BY THE<br />

BARKHAUSEN NOISE METHOD<br />

C. Lachmann, Th. Nitschke-Pagel, H. Wohlfahrt<br />

Institute <strong>of</strong> Weld<strong>in</strong>g Technology,<br />

Technical University <strong>of</strong> Braunschweig<br />

ABSTRACT<br />

The <strong>fatigue</strong> behaviour <strong>of</strong> welded jo<strong>in</strong>ts is dependent on the weld geometry, its microstructure,<br />

the cyclic material properties <strong>of</strong> the different weld zones and residual<br />

stresses <strong>in</strong> the weldment. In this <strong>in</strong>vestigation, a new <strong>nondestructive</strong> test<strong>in</strong>g method<br />

is presented for a <strong>in</strong>-situ characterisation <strong>of</strong> <strong>fatigue</strong> damage <strong>in</strong> <strong>cyclically</strong> loaded<br />

welded jo<strong>in</strong>ts. This micromagnetic method is based on the Barkhausen-Noise effect<br />

and with a new multi-parameter test<strong>in</strong>g system, microstructure- and stress-sensitive<br />

parameters can be measured. The system is mobile, computer-controlled, has a high<br />

spatial resolution and needs no shield<strong>in</strong>g, what makes it especially suited for diagnostics<br />

at exist<strong>in</strong>g steel constructions, e.g. build<strong>in</strong>gs, steel bridges, cranes, steel parts<br />

<strong>of</strong> airplanes, etc.. Fatigue tests were performed on GTA-welds as s<strong>in</strong>gle-step tests<br />

for a evaluation <strong>of</strong> the feasibility <strong>of</strong> the new method for characteris<strong>in</strong>g <strong>fatigue</strong> <strong>processes</strong>.<br />

Local plastic deformations <strong>in</strong> s<strong>of</strong>tened zones <strong>of</strong> the weld caus<strong>in</strong>g material<br />

damage were identified by a significant change <strong>of</strong> the micromagnetic parameters.<br />

Additionally, the static and cyclic mechanical deformation behaviour for the welded<br />

jo<strong>in</strong>ts was studied by local stra<strong>in</strong> measurements and FEM-calculations. The results<br />

<strong>of</strong> the present <strong>in</strong>vestigations <strong>in</strong>dicate that material damage caused by microstructural<br />

changes and microcrack growth is strongly connected with the micromagnetic parameters<br />

and can be correlated to the mechanical behaviour and the <strong>fatigue</strong> life <strong>of</strong><br />

welded jo<strong>in</strong>ts. Furthermore, the micromagnetic test<strong>in</strong>g method can be used for the<br />

identification <strong>of</strong> the different stages <strong>of</strong> the <strong>fatigue</strong> process <strong>in</strong> the material before<br />

failure <strong>of</strong> the weldment.<br />

1 INTRODUCTION<br />

Nondestructive techniques for the assessment <strong>of</strong> <strong>fatigue</strong>-related damage become<br />

<strong>in</strong>creas<strong>in</strong>gly important s<strong>in</strong>ce many structural components, e.g. bridges, aircraft<br />

structures or <strong>of</strong>fshore platforms, need to be <strong>in</strong>spected periodically to prevent major<br />

damage or even failure. For <strong>in</strong>spection <strong>in</strong> the field or on large constructions, small,<br />

mobile and easy to handle devices are essential. Additionally, cost m<strong>in</strong>imiz<strong>in</strong>g requires<br />

short measur<strong>in</strong>g times without time-consum<strong>in</strong>g preparation <strong>of</strong> the part prior to<br />

the test. The Barkhausen noise method is well-suited for this task and is already established<br />

<strong>in</strong> controll<strong>in</strong>g wear <strong>of</strong> bear<strong>in</strong>g parts, the <strong>in</strong>dentification <strong>of</strong> gr<strong>in</strong>d<strong>in</strong>g burn,<br />

the measurement <strong>of</strong> hardness, case harden<strong>in</strong>g depth and residual stresses, and the


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 2<br />

control <strong>of</strong> mach<strong>in</strong><strong>in</strong>g, heat treatment <strong>processes</strong> and material characteristics with<strong>in</strong><br />

the production l<strong>in</strong>e [1, 2].<br />

An especially complex task is the identification <strong>of</strong> <strong>fatigue</strong> damage <strong>in</strong> welded jo<strong>in</strong>ts<br />

with the aim <strong>of</strong> a <strong>fatigue</strong> life estimation for that part. The reason for this is that<br />

welded jo<strong>in</strong>ts consist <strong>of</strong> different zones with different material properties, e. g. yield<br />

strength, ductility, hardness, gra<strong>in</strong> structure, chemical composition etc., and residual<br />

stresses [3]. In general, these zones <strong>of</strong> a weld can be divided <strong>in</strong>to the formerly molten<br />

weld bead, the heat affected zone (HAZ) which was not molten and the unaffected<br />

base material. Besides the material properties, the <strong>fatigue</strong> life <strong>of</strong> a weld is<br />

<strong>in</strong>fluenced by the size and sharpness <strong>of</strong> notches especially at the weld toe where<br />

certa<strong>in</strong> weld<strong>in</strong>g <strong>processes</strong> can produce undercutt<strong>in</strong>g or high re<strong>in</strong>forcement angles<br />

reduc<strong>in</strong>g the <strong>fatigue</strong> strength. Additionally, so-called metallurgical notches at the<br />

<strong>in</strong>tersections <strong>of</strong> two microstructures with significantly different material properties,<br />

can lead to local stress concentrations reduc<strong>in</strong>g the <strong>fatigue</strong> life, too.<br />

To assess the <strong>fatigue</strong> behaviour <strong>of</strong> the entire welded jo<strong>in</strong>t it is essential to characterize<br />

the microstructural <strong>processes</strong> and their <strong>in</strong>fluence on the residual stresses <strong>in</strong> each<br />

zone <strong>of</strong> the weld dur<strong>in</strong>g cyclic load<strong>in</strong>g. Changes <strong>in</strong> microstructure and residual<br />

stresses can be observed both <strong>in</strong> the period before crack <strong>in</strong>itiation and dur<strong>in</strong>g the<br />

micro- and macrocrack growth period [4]. Additionally, it is well known that residual<br />

stresses can <strong>in</strong>fluence the <strong>fatigue</strong> life <strong>of</strong> welded jo<strong>in</strong>ts significantly [5]. Therefore,<br />

an observed change <strong>in</strong> microstructural parameters and residual stresses could<br />

be used to characterize the actual stage <strong>of</strong> <strong>fatigue</strong> <strong>of</strong> a loaded weldment. A major<br />

drawback <strong>of</strong> nearly all <strong>nondestructive</strong> techniques for characteris<strong>in</strong>g microstructural<br />

changes and residual stresses is the limitation to near-surface regions. The analys<strong>in</strong>g<br />

depths vary from a few microns us<strong>in</strong>g common X-ray diffraction to approximately 1<br />

mm with micromagnetic or eddy current devices. Only neutron diffraction enables a<br />

<strong>nondestructive</strong> <strong>in</strong>vestigation <strong>of</strong> residual stresses up to a few centimeters below the<br />

surface. But s<strong>in</strong>ce a nuclear reactor and extensive shield<strong>in</strong>g is necessary for this<br />

method, it is limited to small parts on a laboratory scale. For a further <strong>in</strong>terpretation<br />

<strong>of</strong> microstructural changes <strong>in</strong> near-surface regions, a study <strong>of</strong> the deformation behaviour<br />

and the relaxation or build-up <strong>of</strong> residual stresses <strong>in</strong> the entire weld volume<br />

by a FEM-simulation is essential. The present paper presents <strong>in</strong>vestigations on the<br />

<strong>fatigue</strong> <strong>of</strong> <strong>cyclically</strong> loaded welds by the <strong>nondestructive</strong> test<strong>in</strong>g methods us<strong>in</strong>g micromagnetic<br />

Barkhausen noise analysis and X-ray diffraction with the further aim <strong>of</strong><br />

a <strong>fatigue</strong> life prediction.<br />

2 EXPERIMENTAL SETUP AND EVALUATION PROCEDURE<br />

The <strong>in</strong>vestigations were carried out us<strong>in</strong>g flat specimens <strong>of</strong> the structural steel<br />

S355J2G3 with transverse butt welds accord<strong>in</strong>g to Fig. 1. The pulsed gas-tungsten-<br />

F m + F a·s<strong>in</strong>(t)<br />

Stra<strong>in</strong> Gauges<br />

BNA and X-Ray<br />

Measurements<br />

thickness 10 mm<br />

Fig. 1<br />

Specimen geometry and location <strong>of</strong> stra<strong>in</strong> gauges


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 3<br />

arc (GTA-) weld<strong>in</strong>g process was applied to generate test welds with a high reproducibility<br />

and bead quality.<br />

Fig. 2 shows a micrograph <strong>of</strong> a transverse section <strong>of</strong> the weld bead and the adjacent<br />

zones HAZ and base material. Additionally, a hardness distribution <strong>of</strong> the transverse<br />

section was measured by an automated hardness test<strong>in</strong>g system [6] and is displayed<br />

<strong>in</strong> Fig. 2. The cyclic tests (pure pulsat<strong>in</strong>g tension and tension-compression) were<br />

carried out us<strong>in</strong>g a 400 kNservohydraulic<br />

material test<strong>in</strong>g<br />

system. For an evaluation <strong>of</strong><br />

the static deformation behaviour,<br />

a 2D-FEM-simulation<br />

was conducted. Fig. 3 shows<br />

the different zones <strong>of</strong> the FEmesh<br />

<strong>of</strong> the <strong>in</strong>vestigated GTAweld,<br />

developed on the basis <strong>of</strong><br />

the micrograph and hardness<br />

distribution depicted <strong>in</strong> Fig. 2.<br />

Each zone <strong>of</strong> the welded jo<strong>in</strong>t<br />

(weld meaterial <strong>of</strong> cap and<br />

f<strong>in</strong>al pass, 2 HAZ’s and base<br />

material) were assigned mechanical<br />

characteristics deriv<strong>in</strong>g<br />

from tensile tests and<br />

weld<strong>in</strong>g-TTT-diagrams [7]. In<br />

these TTT-diagrams, mechanical<br />

properties and hardness<br />

values are correlated with the<br />

cool<strong>in</strong>g rate and chemical<br />

composition <strong>of</strong> a weld zone.<br />

The results were compared to<br />

local stra<strong>in</strong> measurements <strong>in</strong><br />

the weld, the weld toe and the<br />

Depth [mm]<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

F<strong>in</strong>al Pass<br />

Cap Pass<br />

Hardness Distibution, GTA-DV-Weld<br />

-10 -8 -6 -4 -2 0 2 4 6 8 10<br />

Distance from weld centerl<strong>in</strong>e[mm]<br />

Vickers<br />

Hardness HV1<br />

330.0 -- 350.0<br />

310.0 -- 330.0<br />

290.0 -- 310.0<br />

270.0 -- 290.0<br />

250.0 -- 270.0<br />

230.0 -- 250.0<br />

210.0 -- 230.0<br />

190.0 -- 210.0<br />

170.0 -- 190.0<br />

150.0 -- 170.0<br />

Fig. 2 Transverse section <strong>of</strong> the weld bead <strong>of</strong> a 6-layer GTA-<br />

DV-weld <strong>in</strong> the steel S355 and correspond<strong>in</strong>g Vickers hardness<br />

distribution<br />

1<br />

1000<br />

1 - Weld material f<strong>in</strong>al pass<br />

2 - HAZ 1 <strong>of</strong> f<strong>in</strong>al pass and weld material <strong>of</strong> cap pass<br />

3 - HAZ 2<br />

4 - Base material<br />

2<br />

4 3<br />

4<br />

True stress [MPa]<br />

800<br />

600<br />

2<br />

400<br />

0 0.02 0.04 0.06 0.08 0.1<br />

Logarithmic plastic stra<strong>in</strong> [-]<br />

Fig. 3 FE-Mesh and material data <strong>of</strong> the <strong>in</strong>vestigated GTA-weld-zones; 1. weld material <strong>of</strong> f<strong>in</strong>al pass; 2.<br />

weld material <strong>of</strong> cap pass; HAZ <strong>of</strong> f<strong>in</strong>al pass; 3. HAZ <strong>of</strong> cap pass; 4. base material


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 4<br />

base material determ<strong>in</strong>ed by stra<strong>in</strong> gauges. After each decade <strong>of</strong> load<strong>in</strong>g, the <strong>nondestructive</strong><br />

parameters from X-ray residual stress determ<strong>in</strong>ation [8] and micromagnetics<br />

were measured on a l<strong>in</strong>e transverse to the weld (see Fig. 1). In the present work,<br />

variations <strong>of</strong> the <strong>in</strong>ternal stresses along the load<strong>in</strong>g axis <strong>of</strong> <strong>cyclically</strong> loaded welded<br />

jo<strong>in</strong>ts were studied by the use <strong>of</strong> the micromagnetic Barkhausen noise method [9].<br />

Fig. 4 schematically shows the design <strong>of</strong> a micromagnetic sensor. A U-shaped yoke<br />

is excited by a coil connected to a bipolar power-supply unit. By the orientation <strong>of</strong><br />

the poles, the direction <strong>of</strong> the result<strong>in</strong>g alternat<strong>in</strong>g magnetic field is def<strong>in</strong>ed and thus<br />

the correspond<strong>in</strong>g stress component can be measured. The Barkhausen noise is detected<br />

by a small air coil whereas the tangential field strength is measured by a Hall<br />

probe. Both signals are amplified, filtered and evaluated <strong>in</strong> the micromagnetic test<strong>in</strong>g<br />

system.<br />

A basic requirement for perform<strong>in</strong>g the micromagnetic analysis is a ferromagnetic<br />

material that also has to be magnetostrictive. In general, the ferromagnetic properties<br />

<strong>of</strong> the <strong>in</strong>vestigated material are dependent on the microstrucure, the hardness and<br />

residual stresses s<strong>in</strong>ce theses these material characteristics <strong>in</strong>teract with the magnetic<br />

doma<strong>in</strong> structure <strong>in</strong> the material. The magnetic doma<strong>in</strong>s are seperated by so-called<br />

Bloch walls which can be trapped by Lattice faults like foreign atoms, vacancies or<br />

dislocations. With a further <strong>in</strong>crease <strong>of</strong> the magnetic field strength they can overcome<br />

these faults which <strong>in</strong>duces small electrical pulses <strong>in</strong> the micromagnetic sensor<br />

(air coil) and can be recorded as the<br />

so-called Barkhausen noise. In<br />

many technical steels <strong>in</strong>vestigated<br />

so far with coercivities greater than<br />

5 A/cm, the Barkhausen noise corresponds<br />

to the coercive field<br />

strength H c (see Fig. 5). The microstructural<br />

parameter H cm is derived<br />

from the coercive field strength at<br />

the maximum Barkhausen noise<br />

level M max [11]. S<strong>in</strong>ce stack<strong>in</strong>g<br />

faults h<strong>in</strong>der the magnetization <strong>of</strong> a<br />

ferromagnetic material, they lead to<br />

a broaden<strong>in</strong>g <strong>of</strong> the magnetic hysteresis<br />

and hence to an <strong>in</strong>crease <strong>of</strong><br />

the coercivity H cm . Analogous to this<br />

effect, these faults with<strong>in</strong> the lattice<br />

lead also to a higher hardness due to<br />

their <strong>in</strong>teraction with dislocation<br />

movement. Therefore, a close relationship<br />

between the coercivity H cm<br />

and the hardness <strong>of</strong> the material can<br />

be expected. Additionally, the magnetic<br />

properties <strong>of</strong> a ferromagnetic<br />

material are <strong>in</strong>fluenced by <strong>in</strong>ternal or<br />

residual stresses. The Barkhausen<br />

noise <strong>in</strong>tensity <strong>in</strong>creases with tensile<br />

stresses due to a higher density <strong>of</strong><br />

Air coil and Hall probe<br />

Bipolar power<br />

supply and with<br />

control device<br />

Amplifier<br />

and filter<br />

Signal<br />

process<strong>in</strong>g<br />

Fig. 4 Schematic diagram <strong>of</strong> the Barkhausen noise<br />

sensor [9]<br />

Fig. 5 Magnetic hysteresis loop with Barkhausen<br />

noise and derived parameters


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 5<br />

1 - Coercivity HC<br />

2 - Max. magnetic Barkhausen noise<br />

3 - Max. acoustic Barkhausen noise<br />

4 - Max. <strong>in</strong>cremental permeability, µ<br />

∆<br />

5 - Ht-field value at 50% <strong>of</strong> µ<br />

∆max<br />

6 - Ht-field value at 75% <strong>of</strong> µ<br />

∆max<br />

7 - Max. <strong>of</strong> λL <strong>in</strong> between |H<br />

max| and HC<br />

8 - Max. <strong>of</strong> λL <strong>in</strong> between H<br />

Cand |H<br />

max|<br />

9 - H-field at λL<br />

= 0<br />

10 - H-field at maximum dynamic λL<br />

11 - Maximum dynamic λL<br />

12 - H-field at m<strong>in</strong>imum dynamic λL<br />

13 - M<strong>in</strong>imum dynamic λL<br />

14 - Dynamic λ at 200 A/cm<br />

180°-Bloch wall movements. On the contrary, compressive stresses lead to a decrease<br />

<strong>of</strong> the noise <strong>in</strong>tensity because <strong>of</strong> a higher density <strong>of</strong> 90°-Bloch walls <strong>in</strong> the<br />

magnetiz<strong>in</strong>g direction. Hence, M max correlates with the magnitude <strong>of</strong> the residual<br />

stresses <strong>in</strong> the <strong>in</strong>vestigated material volume. However, due to the high gradients <strong>in</strong><br />

the microstructure and the distribution <strong>of</strong> residual stresses <strong>in</strong> a weld, a clear separation<br />

<strong>of</strong> microstructural and stress-related magnetic phenomena followed by quantitative<br />

approach has not been successful <strong>in</strong> the past [9].<br />

Newer approaches us<strong>in</strong>g neural networks and multiparameter least squares analysis<br />

can be applied to f<strong>in</strong>d the best correlation between micromagnetic paramters and<br />

material properties if multi-parameter test<strong>in</strong>g systems are used. As an example, Fig.<br />

6 shows that different micromagnetic parameters derived from Barkhausen noise<br />

and <strong>in</strong>cremental permeability measurements have different capabilities to measure<br />

hardness [1].<br />

3MA Ferrotest Dur III<br />

L<br />

Fig. 6 Significance <strong>of</strong> micromagnetic parameters for<br />

hardness evaluation [1]<br />

max<br />

1<br />

2 3 4 5 6<br />

Raw Data<br />

Control<br />

36<br />

PC with evaluat<strong>in</strong>g<br />

S<strong>of</strong>tware<br />

30<br />

Evaluat<strong>in</strong>g<br />

Micromagnetic<br />

Parameters<br />

Fig. 7 3MA-test<strong>in</strong>g system and Sensor


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 6<br />

The analys<strong>in</strong>g frequency <strong>of</strong> the evaluat<strong>in</strong>g unit <strong>in</strong> the 3MA-system directly <strong>in</strong>fluences<br />

the depth to where the micromagnetic signals can be detected, the so-called<br />

<strong>in</strong>teraction depth. The excitation frequency <strong>of</strong> the power supply could be varied<br />

between 1 and 160 Hz and also has to be adapted to the maximum field strength and<br />

the material properties. From former parameter studies, an excitation frequency <strong>of</strong><br />

100 Hz and an analys<strong>in</strong>g frequency <strong>of</strong> 0.4 MHz was found to be at an optimum<br />

lead<strong>in</strong>g to a <strong>in</strong>teraction depth <strong>of</strong> ≈10 µm, which is similar to the penetration depth <strong>of</strong><br />

the X-rays used <strong>in</strong> the residual stress measurements.<br />

The commercial 3MA-test<strong>in</strong>g system used here is shown <strong>in</strong> Fig. 7 The raw data<br />

from the 3MA device could be transferred <strong>in</strong>to a computer for further data evaluation.<br />

Us<strong>in</strong>g a specially designed s<strong>of</strong>tware, the shape <strong>of</strong> the Barkhausen noise curve<br />

and the time signal <strong>of</strong> the tangential field strength could be analysed to derive further<br />

parameters [1, 10, 11].<br />

3 SIMULATION OF THE DEFORMATION BEHAVIOUR OF<br />

THE WELDED JOINT<br />

Depend<strong>in</strong>g on the load stress, <strong>of</strong>ten the greatest magnitude <strong>of</strong> local plastic derformations<br />

and correspond<strong>in</strong>g residual stress relaxation <strong>in</strong> a welded jo<strong>in</strong>t can be detected<br />

after the first load cycle and thus determ<strong>in</strong>es the further <strong>fatigue</strong> process to a<br />

great extent. For this reason, it is essential to <strong>in</strong>vestigate this static load step for an<br />

assessment <strong>of</strong> the <strong>fatigue</strong> behaviour. Fig. 8 shows the calculated distribution <strong>of</strong> the<br />

total residual stra<strong>in</strong>s after load<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g the elastic stra<strong>in</strong>s result<strong>in</strong>g from residual<br />

stresses at the surface <strong>of</strong> the weld for different maximum nom<strong>in</strong>al load<strong>in</strong>g stresses.<br />

Accord<strong>in</strong>g to the material properties (see Fig. 2 and 3), the hard weld bead <strong>of</strong> the<br />

f<strong>in</strong>al pass exhibits very small plastic deformations <strong>in</strong> comparison to the s<strong>of</strong>t base<br />

material. At the weld toe, the geometrical notch at the transition from weld material<br />

to HAZ leads to a local stress concentration and thus high local (plastic) stra<strong>in</strong>s. A<br />

similar effect can be observed at the transition zone from HAZ to base material. The<br />

400 MPa<br />

500 MPa<br />

550 MPa<br />

400 MPa<br />

500 MPa<br />

550 MPa<br />

Base Mat. HAZ Weld<br />

Base Mat. HAZ Weld<br />

Fig. 8 Calculated stra<strong>in</strong>s (elastic and plastic) after different load<strong>in</strong>g stresses across the surface <strong>of</strong> the<br />

weld FEM-model (left: f<strong>in</strong>al pass, right: cap pass)


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 7<br />

stra<strong>in</strong> gradient from hard weld bead to s<strong>of</strong>t base material is much less severe <strong>in</strong> the<br />

s<strong>of</strong>ter cap pass where no geometrical notch is present, the weld bead <strong>of</strong> the cap pass<br />

plastically deforms proportional with grow<strong>in</strong>g nom<strong>in</strong>al stress with a magnitude approximately<br />

half <strong>of</strong> that <strong>of</strong> the base material.<br />

4 BEHAVIOUR OF NONDESTRUCTIVE PARAMETERS IN<br />

CYCLICALLY LOADED WELDED JOINTS<br />

Fig. 9 shows the distributions <strong>of</strong><br />

the tranverse residual stresses and<br />

the micromagnetic parameters<br />

coercivity H cm and the Barkhausen<br />

noise amplitude M max across<br />

the weld determ<strong>in</strong>ed after different<br />

decades <strong>of</strong> pure pulsat<strong>in</strong>g tension<br />

load<strong>in</strong>g with an upper stress<br />

<strong>of</strong> 400 MPa. The <strong>in</strong>vestigated 6-<br />

layer GTA double vee weldment<br />

was welded with a filler metal <strong>of</strong><br />

a higher strength than the base<br />

material (see hardness distribution<br />

<strong>in</strong> Fig. 2). Despite the fact that<br />

compressive residual stresses are<br />

found <strong>in</strong> the weld seam and the<br />

load stress is <strong>of</strong> a pure tension<br />

type, a relaxation <strong>of</strong> these compressive<br />

residual stresses can be<br />

observed. This relaxation <strong>in</strong>dicates<br />

local plastic deformation <strong>in</strong><br />

the weld seam, which is <strong>in</strong><br />

agreement with the result <strong>of</strong> the<br />

FEM-simulation <strong>in</strong> Fig. 8. Until<br />

10 5 load cycles, the compressive<br />

residual stresses further relax but<br />

beg<strong>in</strong> to <strong>in</strong>crease aga<strong>in</strong> after<br />

σ RS t [MPa]<br />

Mmax [V]<br />

Hcm [A/cm]<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

S 355,<br />

GTA-DV-Weld,<br />

Cap Pass,<br />

σ o = 400 MPa,<br />

N = 10 5 until fracture. On the<br />

Distance from weld centerl<strong>in</strong>e [mm]<br />

other side, <strong>in</strong> the base material,<br />

tensile residual stresses up to<br />

200 MPa cont<strong>in</strong>ously arise dur<strong>in</strong>g<br />

<strong>fatigue</strong> load<strong>in</strong>g. Analogous to the<br />

behaviour <strong>of</strong> the residual stresses,<br />

both micromagnetic parameters<br />

change significantly after the first<br />

load cycle. Additionally, a cont<strong>in</strong>ous change <strong>of</strong> H cm and M max throughout the <strong>fatigue</strong><br />

process can be observed. The Barkhausen noise amplitude M max cont<strong>in</strong>uously <strong>in</strong>creases<br />

across the whole weld area until 10 5 load cycles and decreases to an <strong>in</strong>termediate<br />

level at fracture <strong>of</strong> the specimen. In opposite to the behaviour <strong>of</strong> M max , the<br />

coercivity decreases <strong>in</strong> the weld seam and the HAZ until shortly before fracture.<br />

7.5<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

4<br />

9.5<br />

9<br />

8.5<br />

8<br />

7.5<br />

7<br />

Weld toe<br />

Weld HAZ Base Mat.<br />

Weld HAZ Base Mat.<br />

0 5 10 15 20<br />

N = 0<br />

N = 1<br />

N = 1000<br />

N = 100000<br />

N = 102234<br />

(cracked)<br />

Fig. 9 Distribution <strong>of</strong> the transverse residual stresses and<br />

the micromagnetic parameters H cm and M max at different<br />

load cycles until fracture (steel S355, pure tension load<strong>in</strong>g<br />

with maximum stress <strong>of</strong> 400 MPa)


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 8<br />

Between N = 10 5 and failure <strong>of</strong> the specimen, however, the coercivity <strong>in</strong> the weld<br />

seam rema<strong>in</strong>s relatively constant, whereas a remarkable <strong>in</strong>crease <strong>of</strong> H cm <strong>in</strong> the HAZ<br />

can be found.<br />

To assess the cycle-dependent behaviour, the <strong>nondestructive</strong> measur<strong>in</strong>g quantities<br />

are plotted versus the number <strong>of</strong> load cycles <strong>in</strong> Fig. 10. The transverse residual<br />

stresses and the micromagnetic parameters Barkhausen noise amplitude M max and<br />

coercivity H cm were determ<strong>in</strong>ed <strong>in</strong> the weld center after each decade dur<strong>in</strong>g cyclic<br />

load<strong>in</strong>g with four different maximum load stresses. After the first load cycle, the<br />

residual stresses <strong>in</strong> the weld seam relax significantly dependent on the load stress.<br />

The magnitude <strong>of</strong> this stress relaxation <strong>in</strong>creases with a higher load stress, accompanied<br />

by stronger plastic deformations (see also Fig. 8). The results <strong>of</strong> the micromagnetic<br />

measurements also <strong>in</strong>dicate microstructural changes caused by the <strong>fatigue</strong> process.<br />

Depend<strong>in</strong>g on the load stress, after a certa<strong>in</strong> number <strong>of</strong> load cycles, <strong>in</strong> Fig. 10<br />

the Barkhausen noise amplitude and the coercivity beg<strong>in</strong> to change significantly,<br />

M max beg<strong>in</strong>s to <strong>in</strong>crease whereas H cm drops constantly until shortly before fracture.<br />

The magnitude <strong>of</strong> this drop <strong>in</strong> H cm is dependent on the load stress and the correspond<strong>in</strong>g<br />

degree <strong>of</strong> plastic deformation <strong>in</strong> the specimen. The lowest cyclic load<br />

stress <strong>of</strong> 350 MPa, lead<strong>in</strong>g to an <strong>in</strong>crease <strong>of</strong> the <strong>fatigue</strong> life <strong>of</strong> 50 % with respect to<br />

the 400 MPa load, causes no relevant changes <strong>in</strong> both micromagnetic parameters;<br />

just before fracture, H cm shows a moderate decrease which can be <strong>in</strong>terpreted by the<br />

beg<strong>in</strong>n<strong>in</strong>g formation <strong>of</strong> microcracks.<br />

Parallel to the <strong>in</strong>vestigation <strong>of</strong> the <strong>fatigue</strong> behaviour <strong>of</strong> welds under pulsat<strong>in</strong>g tension<br />

load<strong>in</strong>g (R = 0), experiments with alternat<strong>in</strong>g load (tension-compression,<br />

R = -1) were conducted. Fig. 11<br />

shows the result for a load amplitude<br />

<strong>of</strong> 300 MPa. The<br />

changes <strong>in</strong> the micromagnetic<br />

parameters maximum Barkhausen<br />

noise amplitude and coercivity<br />

at dist<strong>in</strong>ctive locations <strong>of</strong><br />

the <strong>fatigue</strong>d weld are compared<br />

to the local cyclic stra<strong>in</strong> behaviour<br />

measured by stra<strong>in</strong> gauges.<br />

Firstly, the <strong>in</strong>itial values <strong>of</strong> H cm<br />

correspond to the hardness <strong>in</strong><br />

the <strong>in</strong>spected zones (see Fig.<br />

2). Until a number <strong>of</strong> 100 load<br />

cycles, Barkhausen noise amplitude<br />

and coercivity change<br />

only gradually – for all locations,<br />

M max decreases slightly,<br />

whereas H cm <strong>in</strong>creases slightly<br />

<strong>in</strong> the weld seam and at the<br />

weld toe and decreases <strong>in</strong> the<br />

base material. Between 100 and<br />

1000 load cycles, however, the<br />

plastic stra<strong>in</strong> amplitude <strong>in</strong>creases<br />

significantly <strong>in</strong> all<br />

σ RS t [MPa]<br />

Mmax [V]<br />

Hcm [A/cm]<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

7.5<br />

6.5<br />

5.5<br />

4.5<br />

3.5<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6<br />

Load Cycles<br />

S355,<br />

Cap Pass,<br />

Weld Center<br />

350 MPa<br />

400 MPa<br />

500 MPa<br />

550 MPa<br />

Fracture<br />

Fig. 10 Distribution <strong>of</strong> the parameters determ<strong>in</strong>ed by X-ray<br />

diffraction and micromagnetic test<strong>in</strong>g <strong>in</strong> the cap pass (5 th pass)<br />

<strong>of</strong> the weld versus the number <strong>of</strong> load cycles


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999 9<br />

zones, <strong>in</strong>dicat<strong>in</strong>g a beg<strong>in</strong>n<strong>in</strong>g s<strong>of</strong>ten<strong>in</strong>g. These microstructural <strong>processes</strong> also affect<br />

the magnitude <strong>of</strong> Barkhausen noise amplitude and coercivity. M max <strong>in</strong>creases slightly<br />

<strong>in</strong> all observed zones, whereas H cm<br />

exhibits a significant drop <strong>in</strong> the weld<br />

seam and the weld toe and an <strong>in</strong>crease<br />

<strong>of</strong> this parameter <strong>in</strong> the base material.<br />

Dur<strong>in</strong>g further load<strong>in</strong>g until fracture,<br />

another characteristic behaviour <strong>of</strong><br />

both parameters can be observed. Especially<br />

<strong>in</strong> the weld center but also <strong>in</strong><br />

the weld toe and <strong>in</strong> the base material,<br />

a significant <strong>in</strong>crease followed by a<br />

remarkable drop <strong>of</strong> M max shortly before<br />

fracture <strong>of</strong> the specimen can be<br />

observed. Analogous, <strong>in</strong> the weld<br />

center and at the weld toe, the coercivity<br />

firstly <strong>in</strong>creases and then, after<br />

a slight decrease, H cm grows rapidly<br />

with a magnitude <strong>of</strong> ≈30 %. This behaviour<br />

<strong>of</strong> M max and H cm after a former<br />

cyclic s<strong>of</strong>ten<strong>in</strong>g process can be<br />

expla<strong>in</strong>ed by the formation <strong>of</strong> microcracks<br />

shortly before failure <strong>of</strong> the<br />

specimen. Obviously, the small gaps<br />

<strong>in</strong> the material <strong>in</strong>troduced by the<br />

cracks lead to a relaxation <strong>of</strong> residual<br />

stresses, <strong>in</strong>dicated by the drop <strong>of</strong><br />

M max , but also <strong>in</strong>fluence the coercivity<br />

due to a grow <strong>of</strong> microstructural defects<br />

and an <strong>in</strong>crease <strong>of</strong> the dislocation<br />

density.<br />

Mmax [V]<br />

Hcm [A/cm]<br />

2ε p l [10 -3 ]<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1 10 100 1000 10000<br />

Load Cycles<br />

S 355,<br />

GTA-DV-Weld,<br />

Pure Tension-<br />

Compression<br />

Load<strong>in</strong>g<br />

σ a = 300 MPa<br />

Weld Seam<br />

Weld Toe<br />

Base Material<br />

Fig. 11 Comparison between Barkhausen noise amplitude,<br />

coercitivity and plastic stra<strong>in</strong> amplitude <strong>of</strong> a<br />

GTA-weld under pure tension-compression load<strong>in</strong>g<br />

5 SUMMARY AND CONCLUSIONS<br />

The present <strong>in</strong>vestigations show that the characteristic changes <strong>of</strong> macro-residual<br />

stresses, micromagnetic parameters and plastic stra<strong>in</strong>s under cyclic load<strong>in</strong>g are<br />

strongly connected to each other. In certa<strong>in</strong> cases, however, a def<strong>in</strong>ite relationship<br />

between the micromagnetic parameters Barkhausen noise amplitude M max and coercivity<br />

H cm and those result<strong>in</strong>g from X-ray diffraction cannot be derived. The basic<br />

problem is that the <strong>in</strong>vestigated micromagnetic parameters react on both residual<br />

stresses and microstructural changes.<br />

Under cyclic load<strong>in</strong>g, the residual stresses with<strong>in</strong> a weld can relax due to local plastic<br />

deformation. In the weld seam <strong>of</strong> the <strong>in</strong>vestigated structural steel S355, such a<br />

relaxation took place <strong>in</strong> corresponence with the magnitude <strong>of</strong> the calculated stra<strong>in</strong>s<br />

<strong>in</strong> the FEM-simulation. This change <strong>of</strong> the residual stress level leads to a significant<br />

<strong>in</strong>crease <strong>of</strong> the Barkhausen noise amplitude that is especially sensible to residual<br />

stresses. In the base material where the lower yield strength leads to a higher degree


2 nd International Workshop on Structural Health Monitor<strong>in</strong>g, Stanford University, 1999<br />

10<br />

<strong>of</strong> plastic deformation and thus to an <strong>in</strong>crease <strong>of</strong> the dislocation desity, a build-up <strong>of</strong><br />

tensile residual stresses <strong>in</strong> connection with an <strong>in</strong>creas<strong>in</strong>g Barkhausen noise amplitude<br />

can be detected. The <strong>in</strong>itial values <strong>of</strong> the coercivity H cm on the other side correlate<br />

very clearly with the hardness <strong>in</strong> the weld seam, the HAZ and the base material.<br />

After a significant change after the first load cycle, the residual stresses rema<strong>in</strong> relatively<br />

constant <strong>in</strong> the course <strong>of</strong> further load<strong>in</strong>g until fracture. In contrast to this, the<br />

micromagnetic parameters exhibit a greater sensivity to microstructural changes,<br />

even at early stages <strong>of</strong> the <strong>fatigue</strong> process. A relatively cont<strong>in</strong>ous drop <strong>of</strong> H cm until<br />

fracture was observed under pure pulsat<strong>in</strong>g tension load<strong>in</strong>g. Additionally, the Barkhausen<br />

noise amplitude M max shows a characteristic behaviour before the formation<br />

<strong>of</strong> cracks <strong>in</strong> the material. Under pure alternat<strong>in</strong>g load, a change <strong>in</strong> the magnitude <strong>of</strong><br />

the coercivity is strongly connected with the <strong>in</strong>crease <strong>of</strong> the plastic stra<strong>in</strong> amplitude.<br />

In nearly all <strong>in</strong>vestigated examples, the visible appearance <strong>of</strong> cracks leads to a relatively<br />

strong alteration <strong>of</strong> both micromagnetic parameters.<br />

The presented results <strong>in</strong> this first overview illustrate the potential use <strong>of</strong> the micromagnetic<br />

test<strong>in</strong>g system for the assessment on <strong>fatigue</strong> <strong>processes</strong> <strong>in</strong> <strong>cyclically</strong> loaded<br />

weldments. Both micromagnetic parameters show a good sensivity with respect to<br />

microstructural changes dur<strong>in</strong>g <strong>fatigue</strong> and thus this <strong>nondestructive</strong> method can be<br />

used to characterize the stages <strong>of</strong> <strong>fatigue</strong> <strong>in</strong> a fast and easy way. Further <strong>in</strong>vestigations<br />

will be carried out with<strong>in</strong> an ongo<strong>in</strong>g project with the aim <strong>of</strong> a <strong>fatigue</strong> life prediction<br />

for welded steel constructions.<br />

The authors would like to thank the Deutsche Forschungsgeme<strong>in</strong>schaft (DFG) for<br />

the support <strong>of</strong> the <strong>in</strong>vestigations.<br />

REFERENCES<br />

1. The<strong>in</strong>er, W. A.: Physical Basis <strong>of</strong> Micromagnetic Methods and Sensor Systems and their Application<br />

Areas, Proceed<strong>in</strong>gs <strong>of</strong> the 1 st International Conference on Barkhausen noise and Micromagnetic<br />

Test<strong>in</strong>g, Hannover, 1998, 197-218<br />

1. Karpuschewski, B.: Introduction to Micromagnetic Techniques, Proceed<strong>in</strong>gs <strong>of</strong> the 1 st International<br />

Conference on Barkhausen noise and Micromagnetic Test<strong>in</strong>g, Hannover, 1998, 85-100<br />

3. Nitschke, T., Wohlfahrt, H.: The Generation <strong>of</strong> Residual Stresses due to Jo<strong>in</strong><strong>in</strong>g Processes, <strong>in</strong>:<br />

Residual Stresses - Measurement, Calculation, Evaluation, DGM Informationsgesellschaft,<br />

1991, 121-134<br />

4. Christ, H.-J.: Wechselverformung von Metallen, Werkst<strong>of</strong>forschung und -technik, Spr<strong>in</strong>ger,<br />

1991<br />

5. Nitschke-Pagel, T.: Eigenspannungen und Schw<strong>in</strong>gfestigkeitsverhalten geschweißter Fe<strong>in</strong>kornstähle,<br />

Diss. TU Braunschweig, 1994<br />

6. König., J., Weiler, W., W<strong>in</strong>ckler, I.: Das UCI-Verfahren – e<strong>in</strong> automatisiertes Härteprüfverfahen<br />

nach Vickers unter Prüfkraft, Materialprüfung, Heft 10 (1972), 265-276<br />

7. Seyffarth, P.: Großer Atlas Schweiß-ZTU-Schaubilder, DVS-Verlag, 1992<br />

8. Hauk, V., Macherauch, E.: Die Zweckmäßige Durchführung röntgenographischer Spannungsermittlungen<br />

(RSE), <strong>in</strong>: HTM-Beiheft: Eigenspannungen und Lastspannungen, hrsg. v. V.<br />

Hauk und E. Macherauch, Hanser, 1982, 1-19<br />

9. The<strong>in</strong>er, W., Höller, P.: Magnetische Verfahren zu Spannungsermittlung, <strong>in</strong>: HTM-Beiheft:<br />

Eigenspannungen und Lastspannungen, hrsg. v. V. Hauk und E. Macherauch, Hanser, 1982,<br />

156-163<br />

10. Tönsh<strong>of</strong>f, H. K., Karpuschewski, B.: Magnetisches Verfahren zur Prozeßnahen Überwachung<br />

des Eigenspannungszustandes nach dem Schleifen, HTM 50 (1995) 3, 145-150<br />

11. Altpeter, I., The<strong>in</strong>er, W. A.: Micromagnetic Measurement <strong>of</strong> Residual Stresses <strong>in</strong> Components,<br />

<strong>in</strong>: Residual Stresses: Measurement, Calculation, Evaluation, DGM Informatiosgesellschaft,<br />

1991, 33-36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!