26.04.2015 Views

Linearized Analysis of the Synchronous Machine for PSS Chapter 6 ...

Linearized Analysis of the Synchronous Machine for PSS Chapter 6 ...

Linearized Analysis of the Synchronous Machine for PSS Chapter 6 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ΔE&<br />

'<br />

q<br />

⎛ 1<br />

= −<br />

⎜<br />

⎝ K<br />

3τ<br />

'<br />

⎛ K<br />

ω ⎜<br />

−<br />

Δ & =<br />

⎝ τ<br />

j<br />

Δ & δ =<br />

2<br />

( Δω ) ω<br />

B<br />

do<br />

⎞<br />

⎟ΔE'<br />

⎠<br />

⎞<br />

⎟ΔE'<br />

⎠<br />

q<br />

q<br />

⎛ K<br />

−⎜<br />

⎝ τ<br />

j<br />

⎛ K<br />

−<br />

⎜<br />

⎝τ<br />

'<br />

1<br />

4<br />

do<br />

⎞ ⎛ 1<br />

⎟Δδ<br />

+<br />

⎜<br />

⎠ ⎝τ<br />

'<br />

⎞ ⎛ ⎞<br />

⎟ δ ⎜<br />

1<br />

Δ + ⎟ΔT<br />

τ<br />

⎠ ⎝ j ⎠<br />

do<br />

m<br />

⎞<br />

⎟ΔE<br />

⎠<br />

FD<br />

(6.79)<br />

The LaPlace trans<strong>for</strong>m <strong>of</strong> <strong>the</strong> above equations results in <strong>the</strong><br />

following relations:<br />

K<br />

3<br />

K<br />

3K<br />

4<br />

ΔE'<br />

q<br />

=<br />

ΔE<br />

FD<br />

−<br />

Δδ<br />

1 + K<br />

3τ<br />

'<br />

d 0<br />

s 1 + K<br />

3τ<br />

'<br />

d 0<br />

s<br />

1<br />

Δω<br />

= ( ΔTm<br />

− ΔTe<br />

)<br />

sτ<br />

j<br />

(*)<br />

1<br />

Δδ<br />

= Δω<br />

s<br />

where <strong>the</strong> variables ΔE’ q , Δω, and Δδ represent LaPlace trans<strong>for</strong>ms<br />

<strong>of</strong> <strong>the</strong>ir corresponding time-domain functions. Two additional<br />

relations may be obtained as well, according to <strong>the</strong> following:<br />

ΔT<br />

e<br />

ΔV<br />

t<br />

=<br />

=<br />

K<br />

K<br />

1<br />

5<br />

Δδ<br />

+<br />

Δδ<br />

+<br />

K<br />

K<br />

2<br />

6<br />

ΔE'<br />

q<br />

ΔE'<br />

q<br />

+ DΔω<br />

(**)<br />

Finally, we note that E FD , <strong>the</strong> stator EMF produced by <strong>the</strong> field<br />

current and corresponding to <strong>the</strong> field voltage v F , is a function <strong>of</strong><br />

<strong>the</strong> voltage regulator. Under linearized conditions, <strong>the</strong> change in<br />

E FD is proportional to <strong>the</strong> difference between changes in <strong>the</strong><br />

reference voltage and changes in <strong>the</strong> terminal voltage, i.e.,<br />

Δ EFD<br />

= G<br />

e(<br />

s )( ΔVref<br />

− ΔVt<br />

) (***)<br />

where G e (s) is <strong>the</strong> transfer function <strong>of</strong> <strong>the</strong> voltage regulator.<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!