26.04.2015 Views

Bounds on the undetected error probabilities of linear ... - IEEE Xplore

Bounds on the undetected error probabilities of linear ... - IEEE Xplore

Bounds on the undetected error probabilities of linear ... - IEEE Xplore

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IEEE</strong> TRANSACTIONS ON INFORMATION THEORY, VOL.. 36, NO. 5, SEPTEMBER 1990 1139<br />

[XI<br />

[9]<br />

[IO]<br />

[Ill<br />

R. M. Gray, "Time-invariant trellis encoding <strong>of</strong> ergodic discrete-time<br />

sources with a fidelity criteri<strong>on</strong>," <strong>IEEE</strong> Truns. Inform. Theory, vol.<br />

IT-23, pp. 71-83, Jan. 1977.<br />

A. C. Goris and J. D. Gibs<strong>on</strong>, "Incremental tree coding <strong>of</strong> speech,"<br />

<strong>IEEE</strong> Truns. Inform. Theory, vol. IT-27, pp. 511-516, July 1981.<br />

A. M. Mood and F. A. Graybill, Inrroducti<strong>on</strong> to <strong>the</strong> Theop <strong>of</strong> Statistics,<br />

sec<strong>on</strong>d ed. New York: McGraw-Hill, 1963.<br />

S. Mohan, D. Kryskowski, and C.-M. Lin, "Stack algorithm speech<br />

encoding with fixed and variable symbol release rules," <strong>IEEE</strong> Trans.<br />

Commun., vol. COM-33, pp. 1015-1018, Sept. 1985.<br />

<str<strong>on</strong>g>Bounds</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Undetected Error Probabilities <strong>of</strong><br />

Linear Codes for Both Error Correcti<strong>on</strong><br />

and Detecti<strong>on</strong><br />

MAO-CHAO LIN<br />

Abstract -The (n, k, d 2 2t + 1) binary <strong>linear</strong> codes are studied, which<br />

are used for correcting <strong>error</strong> patterns <strong>of</strong> weight at most t and detecting<br />

o<strong>the</strong>r <strong>error</strong> patterns over a binary symmetric channel. In particular, for<br />

t = 1, it is shown that <strong>the</strong>re exists <strong>on</strong>e code whose probability <strong>of</strong> <strong>undetected</strong><br />

<strong>error</strong>s is upper bounded by (n + 1]2"-k - n]-l when used <strong>on</strong> a<br />

binary symmetric channel with transiti<strong>on</strong> probability less than 2/n.<br />

I. INTRODUCTION<br />

In pure ARQ systems, <strong>linear</strong> codes are used solely for detecting<br />

<strong>error</strong>s. Suppose that we apply <strong>linear</strong> codes to a binary<br />

symmetric channel (BSC) with transiti<strong>on</strong> probability p. It 11, pp.<br />

78-79] has been proved that for each p with 0 I p I 1, <strong>the</strong>re<br />

exists an (n,k) binary <strong>linear</strong> code whose probability <strong>of</strong> <strong>undetected</strong><br />

<strong>error</strong>s (PUDE) is upper bounded by 2-(n-k). Hamming<br />

codes and double <strong>error</strong> correcting primitive BCH codes [2],[3]<br />

have been proved to satisfy <strong>the</strong> inequality if <strong>the</strong> transiti<strong>on</strong><br />

probability p is no greater than 1/2.<br />

Pure ARQ systems have <strong>the</strong> problem <strong>of</strong> low throughput if <strong>the</strong><br />

transiti<strong>on</strong> probability in <strong>the</strong> BSC is high. Therefore, in hybrid<br />

ARQ systems [l] especially in type-I hybrid ARQ systems, <strong>linear</strong><br />

codes are used for correcting some low weight <strong>error</strong> patterns<br />

and detecting many o<strong>the</strong>r <strong>error</strong> patterns. Therefore, it is interesting<br />

to study <strong>the</strong> probability <strong>of</strong> <strong>undetected</strong> <strong>error</strong>s for <strong>linear</strong><br />

codes that are used for both <strong>error</strong> correcti<strong>on</strong> and <strong>error</strong> detecti<strong>on</strong><br />

over <strong>the</strong> BSC. In this corresp<strong>on</strong>dence, our study is divided<br />

into two parts. In <strong>the</strong> first part, we study <strong>the</strong> class <strong>of</strong> (n, k, d 2 3)<br />

systematic <strong>linear</strong> codes that can be used for correcting every<br />

single <strong>error</strong> and detecting o<strong>the</strong>r <strong>error</strong> patterns. We show that<br />

<strong>the</strong>re exists <strong>on</strong>e code whose PUDE is upper bounded by (n + 1)<br />

.[2n-k- n]-l when <strong>the</strong> transiti<strong>on</strong> probability is less than 2/n.<br />

In <strong>the</strong> sec<strong>on</strong>d part, we study <strong>the</strong> (n,k) systematic <strong>linear</strong> codes<br />

that are used for correcting some low weight-<strong>error</strong> patterns and<br />

detecting o<strong>the</strong>r <strong>error</strong> patterns. Suppose that 1 - R > H(2A). We<br />

show that <strong>the</strong>re exists an (n, Rn,d 2 2An + 1) <strong>linear</strong> code whose<br />

PUDE is closely upper bounded by 2-['-R-H'A)]n as n approaches<br />

infinity and <strong>the</strong> transiti<strong>on</strong> probability is less than A (if<br />

it is used to correct all <strong>the</strong> <strong>error</strong> patterns <strong>of</strong> weight at most An<br />

and to detect o<strong>the</strong>r <strong>error</strong> patterns).<br />

11. CODES FOR ERROR DETECTION<br />

SINGLE-ERROR CORRECTION<br />

AND<br />

C<strong>on</strong>sider <strong>the</strong> ensemble r <strong>of</strong> all systematic (n, k, d 2 3) binary<br />

<strong>linear</strong> codes. The generator matrix <strong>of</strong> an (n, k) systematic <strong>linear</strong><br />

code V is <strong>of</strong> <strong>the</strong> form G = [ I PI, where I is <strong>the</strong> k X k identity<br />

matrix and P is some k(n - k) matrix. A necessary and sufficient<br />

c<strong>on</strong>diti<strong>on</strong> for V to have minimum distance <strong>of</strong> at least 3 is<br />

that no two rows <strong>of</strong> P are identical and each row in P must<br />

have weight <strong>of</strong> at least 2. Therefore, <strong>the</strong> cardinality <strong>of</strong> r is<br />

iri = [ 2" - k - 1 - ( - k)] . [ 2" -k - 1 - (. - k ) - 11<br />

. . . [2"-k - 1 -(n - k) -(k - l)]<br />

[ 2" - - 1 - ( n - k )] !<br />

- .<br />

[2n4- 1 - n]!<br />

We denote <strong>the</strong> codes in r by VI, V,;. .,Tr,. Let Al., be <strong>the</strong><br />

number <strong>of</strong> weight-w codewords in v, where I = 1,2; .., Irl, and<br />

w = 0,3,4,. . . , n. Suppose v is used to correct every single <strong>error</strong><br />

and detect o<strong>the</strong>r <strong>error</strong> patterns over a BSC with transiti<strong>on</strong><br />

probability p, its PUDE is<br />

n<br />

JTEIv) = c [(w + l).A,,,+I + AI,, +(n - w + l ).~,,w-l]<br />

w=2<br />

(1)<br />

.PW(1 - p)"- W. (2)<br />

If <strong>the</strong> probability <strong>of</strong> choosing each code in r is equally likely,<br />

<strong>the</strong> average PUDE over all <strong>the</strong> codes in r is<br />

Note that each n<strong>on</strong>zero n-tuple appears in at most Ir'l codes in<br />

r, where<br />

ir'i I [2n-k- I-(~<br />

- k)] -I-(~- k)-i]<br />

. . . [2n-k - 1 - (n - k ) - ( k -2)]<br />

12n-k - 1 -(n - k)l !<br />

(4)<br />

Manuscript received February 8, 1989; revised December 1, 1989. This<br />

work was presented at <strong>the</strong> <strong>IEEE</strong> 1990 Internati<strong>on</strong>al Symposium <strong>on</strong> Informati<strong>on</strong><br />

Theory, San Diego, CA, January 14-19, 1990. This work was supported<br />

by <strong>the</strong> Nati<strong>on</strong>al Science Council <strong>of</strong> <strong>the</strong> Republic <strong>of</strong> China under grant NSC<br />

78-0404-E002-05.<br />

M.-C. Lin is with <strong>the</strong> Department <strong>of</strong> Electrical Engineering, Nati<strong>on</strong>al<br />

Taiwan University, Taipei 10764, Taiwan, ROC.<br />

<strong>IEEE</strong> Log Number 9036388.<br />

0018-9448/90/0900-1139$01.00 01990 <strong>IEEE</strong>


1140 <strong>IEEE</strong> TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5, SEPTEMBER 1990<br />

with<br />

codes in rD, <strong>the</strong>n<br />

Combining (4)-(7) we have<br />

ir'i<br />

iri<br />

P(E) I - (n+l)<br />

n+l<br />

I 2"-k.<br />

It follows from (8) that, for each p, <strong>the</strong>re exists a code in r<br />

whose PUDE is at most n + 1/2"-k - n. Note that <strong>the</strong> term<br />

~"'(1- is an increasing functi<strong>on</strong> <strong>of</strong> p if p I w/n. Hence,<br />

PI"-"<br />

for each code y in I', P(EIy) is an increasing functi<strong>on</strong> <strong>of</strong> p if<br />

p I 2/n. Therefore, we see that <strong>the</strong>re exists at least <strong>on</strong>e code in<br />

r such that its PUDE is upper bounded by<br />

(8)<br />

f m<br />

= 2 c ,e(;)(:)(;:)<br />

w=Dm=Oi=O<br />

.PW<br />

+m - 2r<br />

(1 - p )n -w -m +2i<br />

111. CODES FOR ERROR DETECTION AND<br />

MULTIPLE-ERROR CORREC~ION<br />

The ensemble <strong>of</strong> all <strong>the</strong> systematic (n, k) <strong>linear</strong> codes c<strong>on</strong>tains<br />

2k(n-k) distinct codes while at most<br />

= w 5 =Dm=O i (;)E(:)(:) i=O<br />

<strong>of</strong> <strong>the</strong>m c<strong>on</strong>tain n<strong>on</strong>zero codewords <strong>of</strong> weight less than d. Thus,<br />

<strong>the</strong> ensemble <strong>of</strong> all <strong>the</strong> systematic (n,k,d 2 D) <strong>linear</strong> codes rD<br />

c<strong>on</strong>tains<br />

distinct codes. Let V, be a code in r,, and let A/,,, be <strong>the</strong><br />

number <strong>of</strong> codewords <strong>of</strong> weight w in 5, where 1 = 1,2; . ., lrDl.<br />

Assume D = 2t + 1. If V, is used for correcting all <strong>the</strong> <strong>error</strong><br />

patterns <strong>of</strong> weight no more than t and detecting o<strong>the</strong>r <strong>error</strong><br />

patterns, <strong>the</strong>n its PUDE [4] is<br />

n I min(t-i,n-w)<br />

P(EIV,)= c 4 . w c c<br />

w=D i=O j=O<br />

(3<br />

If we define as zero for i > n or i < 0, <strong>the</strong>n we can replace<br />

<strong>the</strong> index term <strong>of</strong> min(t - i, n - w) in (10) by t - i. If each code<br />

in rD is selected equally likely, by taking <strong>the</strong> average <strong>of</strong> (10) over<br />

Thus<br />

I<br />

= c (;).<br />

m=O<br />

I<br />

lf'l m=O (2<br />

(y)<br />

~(E)I- (;)< D-l . (14)<br />

IrDl m = 0<br />

2"-k-<br />

This shows <strong>the</strong> existence <strong>of</strong> a code in rD with PUDE upper<br />

bounded by (14) for p I (t + l)/n. If we take D to be 3, (14)<br />

does not reduce to (8), since here we use a looser bound in<br />

estimating <strong>the</strong> size <strong>of</strong> <strong>the</strong> ensemble <strong>of</strong> codes. Note that <strong>the</strong><br />

requirement <strong>of</strong> 2"-k - n > 0 in (8) is a necessary and sufficient<br />

c<strong>on</strong>diti<strong>on</strong> for <strong>the</strong> existence <strong>of</strong> (n,k) binary <strong>linear</strong> codes <strong>of</strong><br />

distance <strong>of</strong> at least 3, while <strong>the</strong> requirement <strong>of</strong><br />

D-I<br />

i=O<br />

i=O


<strong>IEEE</strong> TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5, SEPTEMBER 1990<br />

I141<br />

in (14) is <strong>on</strong>ly a sufficient c<strong>on</strong>diti<strong>on</strong> for <strong>the</strong> existence <strong>of</strong> (n, k)<br />

binary <strong>linear</strong> codes <strong>of</strong> distance at least D. From (14), we note<br />

that if<br />

is substantially smaller than 2“-& <strong>the</strong>n <strong>the</strong>re exists an (n, k)<br />

code in r, whose PUDE is closely upper bounded by<br />

This result agrees with our intuiti<strong>on</strong>, since this PUDE is <strong>the</strong><br />

probability <strong>of</strong> <strong>error</strong> patterns which bel<strong>on</strong>g to i) cosets <strong>of</strong><br />

<strong>the</strong> standard array for a <strong>linear</strong> code as p = 1/2.<br />

Now we want to examine <strong>the</strong> behavior <strong>of</strong> PUDE when n<br />

approaches infinity. Let t = An, k = Rn, where 0 < A < 1/4.<br />

Then, D - 1 = 2An. It [5] can be shown that<br />

and<br />

New Results <strong>on</strong> Self-Orthog<strong>on</strong>al Unequal Error<br />

Protecti<strong>on</strong> Codes<br />

ZHI CHEN, PINGZHI FAN, AND FAN JIN<br />

Abstract -A lower bound <strong>on</strong> <strong>the</strong> length <strong>of</strong> binary self-orthog<strong>on</strong>al<br />

unequal <strong>error</strong> protecti<strong>on</strong> (UEP) codes is derived, and two design _. procedures<br />

for c<strong>on</strong>structing optimal self-orthog<strong>on</strong>al UEP codes are proposed.<br />

Using this bound, we comment <strong>on</strong> some known codes.<br />

I. INTRODUCTION<br />

In data transmissi<strong>on</strong> and processing, <strong>error</strong>-correcting codes<br />

can provide efficient <strong>error</strong> protecti<strong>on</strong>. But in many applicati<strong>on</strong>s,<br />

not all digits are equally important, and <strong>error</strong>s in more important<br />

digits are more serious than those in less important digits.<br />

Thus, it is appropriate to use codes with unequal <strong>error</strong> protecti<strong>on</strong><br />

capability.<br />

Since such codes were first introduced by Masnick and Wolf<br />

[l], many results have been achieved [2], [3]. Usually, a decoding<br />

algorithm for such a code is complicated, so it is necessary to<br />

design UEP codes which can be implemented easily. Selforthog<strong>on</strong>al<br />

UEP codes are <strong>the</strong>refore introduced. We first derive<br />

a lower bound for such codes, and <strong>the</strong>n propose hvo procedures<br />

for c<strong>on</strong>structing codes that are optimal am<strong>on</strong>g <strong>the</strong> systematic<br />

self-orthog<strong>on</strong>al UEP codes. Comparis<strong>on</strong> with known codes [4] is<br />

also given.<br />

where H(A)= -Alog,A -(l-A)Iog,(l-A). Thus<br />

2H(A)n<br />

2(1-R)n -2H(ZA)n ’<br />

If H(2A) < 1 - R, as n approaches infinity, (17) becomes<br />

(17)<br />

11. LOWER BOUND FOR SELF-ORTHOGONAL UEP CODES<br />

Definiti<strong>on</strong> 1: For a <strong>linear</strong> [n,k] code C over <strong>the</strong> alphabet<br />

GF(q), <strong>the</strong> separati<strong>on</strong> vector S(G) = (S(G),, S(G),; . .,S(G),)<br />

<strong>of</strong> length k, with respect to a generator matrix G <strong>of</strong> C, is<br />

defined by<br />

Hence, we show that for <strong>the</strong> ensemble <strong>of</strong> <strong>linear</strong> codes <strong>of</strong> length<br />

n, which are used for correcting all <strong>the</strong> <strong>error</strong> patterns <strong>of</strong> weight<br />

no more than An and detecting o<strong>the</strong>r <strong>error</strong> patterns, <strong>the</strong>re exists<br />

at least <strong>on</strong>e code such that its PUDE is upper bounded by<br />

2-[1-R-H(A)1n as n approaches infinity, if 1 - R > H(2A) and<br />

p I A. It is interesting to see that for each transmissi<strong>on</strong> <strong>of</strong> such a<br />

code, <strong>the</strong> probability <strong>of</strong> acceptance by <strong>the</strong> receiver is<br />

P(A) 2 1 -<br />

w=An+l<br />

(;).pyl-p)n-W.<br />

Using <strong>the</strong> inequality (A.6) in [6], (19) yields<br />

P( A) 2 1 - (( p/A)’[( 1 - A)/(l- p)]I-*]”, for p < A.<br />

REFERENCES<br />

S. Lin and D. J. Costello, Jr., “Error C<strong>on</strong>trol Coding: Fundamentals and<br />

Applicari<strong>on</strong>s. Englewood Cliffs, NJ: Prentice-Hall.<br />

S. K. hung-Yan-Che<strong>on</strong>g and M. E. Hellman, “C<strong>on</strong>cerning a hound <strong>on</strong><br />

<strong>undetected</strong> <strong>error</strong> probability,” <strong>IEEE</strong> Trans. Inform. Theory, vol. IT-22,<br />

pp. 235-237, 1976.<br />

S. K. Lung-Yan-Che<strong>on</strong>g, E. R. Barnes, and D. U. Friedman, “On some<br />

properties <strong>of</strong> <strong>the</strong> <strong>undetected</strong> <strong>error</strong> <strong>probabilities</strong> <strong>of</strong> <strong>linear</strong> codes,” <strong>IEEE</strong><br />

Trans. Inform. Theory, vol. IT-25, pp. 110-112, Jan. 1979.<br />

R. H. Deng and D. J. Costello, Jr., “Reliability and throughput analysis<br />

<strong>of</strong> a c<strong>on</strong>catenated coding scheme,” <strong>IEEE</strong> Trans. Commun., vol. COM-35,<br />

pp. 698-705, July 1987.<br />

F. J. MacWilliams and N. J. A. Sloane, “The Theory <strong>of</strong> Error-Correcting<br />

Codes. New York: North-Holland.<br />

W. W. Peters<strong>on</strong> and E. J. Weld<strong>on</strong>, Jr., Error-Cotrecting Codes, 2nd ed.<br />

Cambridge, MA: MIT Press, 1972.<br />

(18) S(G), = min(wt(mG)lm EGF(q)k,m, # O}, i = 1,2;..,k.<br />

0018-9448/90/0900-1141$01.00 01990 <strong>IEEE</strong><br />

The parameters <strong>of</strong> such a code are usually written as [n, k, S(G)]<br />

and, in general, depend <strong>on</strong> <strong>the</strong> particular choice <strong>of</strong> <strong>the</strong> generator<br />

matrix G as well as <strong>on</strong> C.<br />

Given a binary [n, k] code, if <strong>the</strong> parity check rules are chosen<br />

such that no two codeword digits appear toge<strong>the</strong>r in more than<br />

<strong>on</strong>e parity-check equati<strong>on</strong>, <strong>the</strong>n <strong>the</strong> code is said to be selforthog<strong>on</strong>al<br />

(in this corresp<strong>on</strong>dence, we examine self-orthog<strong>on</strong>al<br />

codes in this sense, see also Massey [5]). In additi<strong>on</strong>, if <strong>the</strong><br />

message digit m, in such a code is checked by at least J, parity<br />

check digits, <strong>the</strong>n <strong>the</strong> comp<strong>on</strong>ent s, <strong>of</strong> <strong>the</strong> separati<strong>on</strong> vector <strong>of</strong><br />

<strong>the</strong> code is at least J, +l. For a self-orthog<strong>on</strong>al UEP code, <strong>the</strong><br />

message digit m, can be protected against LJ, /2] <strong>error</strong>s with <strong>the</strong><br />

majority logic decoding algorithm.<br />

In many practical applicati<strong>on</strong>s, it is more c<strong>on</strong>venient to use<br />

<strong>the</strong> following definiti<strong>on</strong> to describe UEP codes.<br />

Definiti<strong>on</strong> 2: R = (rl, r,,. . ., rr and D = (d 1, d,, .. ., d,) are<br />

called <strong>the</strong> code rate vector and distance vector respectively,<br />

where dl;..,dl are distinct, and (d,;..,d,}=(S(G),=s,lj=<br />

1,2;..,k). Let k, be <strong>the</strong> number <strong>of</strong> message digits with <strong>the</strong><br />

same d,, and let r, = k, / n be <strong>the</strong> part code rate, for i =<br />

Manuscript received November 18, 1988; revised January 10, 1990. This<br />

work was supported in part by <strong>the</strong> Nati<strong>on</strong>al Natural Science Foundati<strong>on</strong> <strong>of</strong><br />

China under Grant 6873017.<br />

The authors are with <strong>the</strong> Department <strong>of</strong> Computer Science and Engineering,<br />

Southwest Jiaot<strong>on</strong>g University, Emei, Sichuan 614202, PRC.<br />

<strong>IEEE</strong> Log Number 9035997.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!