28.04.2015 Views

The CKM matrix and CP Violation

The CKM matrix and CP Violation

The CKM matrix and CP Violation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>CKM</strong> <strong>matrix</strong> <strong>and</strong> <strong>CP</strong> <strong>Violation</strong><br />

(in the continuum approximation)<br />

Zoltan Ligeti<br />

Lawrence Berkeley Lab<br />

Lattice 2005, Dublin<br />

July 24–30, 2005


Plan of the talk<br />

• Introduction<br />

Why you might care<br />

• <strong>CP</strong> violation — present status<br />

β: from b → c <strong>and</strong> b → s modes<br />

α & γ: interesting results last year<br />

Implications for NP in B − B mixing<br />

• <strong>The</strong>ory developments: semileptonic<br />

<strong>and</strong> nonleptonic decays in SCET<br />

Semileptonic form factors<br />

Nonleptonic decays<br />

• Future / Conclusions<br />

Z. Ligeti — p. 1


Plan of the talk<br />

• Introduction<br />

Why you might care<br />

• <strong>CP</strong> violation — present status<br />

β: from b → c <strong>and</strong> b → s modes<br />

α & γ: interesting results last year<br />

Implications for NP in B − B mixing<br />

• <strong>The</strong>ory developments: semileptonic<br />

<strong>and</strong> nonleptonic decays in SCET<br />

Semileptonic form factors<br />

Nonleptonic decays<br />

Precision test of <strong>CKM</strong>; search for NP<br />

Best present α, γ methods are new<br />

First significant constraints<br />

Few applications, connections between<br />

semileptonic <strong>and</strong> nonleptonic<br />

• Future / Conclusions<br />

Z. Ligeti — p. 1


Why is flavor physics <strong>and</strong> <strong>CP</strong>V interesting?<br />

– Sensitive to very high scales<br />

2<br />

(s ¯d)<br />

ɛ K :<br />

Λ 2 ⇒ Λ NP<br />

> ∼ 10 4 TeV, B d mixing:<br />

NP<br />

(b ¯d)<br />

2<br />

Λ 2 NP<br />

⇒ Λ NP<br />

> ∼ 10 3 TeV<br />

– Almost all extensions of the SM contain new sources of <strong>CP</strong> <strong>and</strong> flavor violation<br />

(e.g., 43 new <strong>CP</strong>V phases in SUSY [must see superpartners to discover it])<br />

– A major constraint for model building<br />

(flavor structure: universality, heavy squarks, squark-quark alignment, ...)<br />

– May help to distinguish between different models<br />

(mechanism of SUSY breaking: gauge-, gravity-, anomaly-mediation, ...)<br />

– <strong>The</strong> observed baryon asymmetry of the Universe requires <strong>CP</strong>V beyond the SM<br />

(not necessarily in flavor changing processes in the quark sector)<br />

Z. Ligeti — p. 2


How to test the flavor sector?<br />

• Only Yukawa couplings distinguish between generations; pattern of masses <strong>and</strong><br />

mixings inherited from interaction with something unknown (couplings to Higgs)<br />

• Flavor changing processes mediated by O(100) nonrenormalizable operators<br />

⇒ intricate correlations between different decays of s, c, b, t quarks<br />

Deviations from <strong>CKM</strong> paradigm may result in:<br />

– Subtle (or not so subtle) changes in correlations, e.g., B <strong>and</strong> K constraints<br />

inconsistent or S ψKS ≠ S φKS<br />

– Enhanced or suppressed <strong>CP</strong> violation, e.g., sizable S Bs →ψφ or A sγ<br />

– FCNC’s at unexpected level, e.g., B → l + l − or B s mixing incompatible w/ SM<br />

• Question: does the SM (i.e., virtual W , Z, <strong>and</strong> quarks interacting through <strong>CKM</strong><br />

<strong>matrix</strong> in tree <strong>and</strong> loop diagrams) explain all flavor changing interactions?<br />

Z. Ligeti — p. 3


<strong>CKM</strong> <strong>matrix</strong> <strong>and</strong> unitarity triangle<br />

• Convenient to exhibit hierarchical structure (λ = sin θ C ≃ 0.22)<br />

⎛<br />

⎞ ⎛<br />

⎞<br />

V ud V us V ub<br />

1 − 1 2<br />

⎜<br />

⎟ ⎜<br />

λ2 λ Aλ 3 (ρ − iη)<br />

V = ⎝ V cd V cs V cb ⎠ = ⎝ −λ 1 − 1 2 λ2 Aλ 2 ⎟<br />

⎠ + O(λ 4 )<br />

V td V ts V tb Aλ 3 (1 − ρ − iη) −Aλ 2 1<br />

• A “language” to compare overconstraining measurements<br />

V ud V ub<br />

*<br />

V Vcb * cd<br />

(ρ,η)<br />

α<br />

V td V*<br />

tb<br />

V cd Vcb *<br />

V ud V ∗ ub + V cd V ∗<br />

cb + V td V ∗<br />

tb = 0<br />

Goal: “redundant” measurements sensitive<br />

to different short distance physics<br />

(0,0)<br />

γ<br />

<strong>CP</strong>V in SM ∝ Area<br />

β<br />

(1,0)<br />

E.g.: B d mixing <strong>and</strong> b → dγ given by different<br />

op’s in H, but both ∝V tb V ∗<br />

td<br />

in SM<br />

Z. Ligeti — p. 4


Tests of the flavor sector<br />

• For 35 years, until 1999, the only unambiguous measurement of <strong>CP</strong>V was ɛ K<br />

1.5<br />

excluded area has CL > 0.95<br />

γ<br />

∆m d<br />

η _<br />

1<br />

1<br />

sin 2β<br />

0.9<br />

0.8<br />

0.5<br />

∆m s<br />

& ∆m d<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

η<br />

0<br />

ε K<br />

|V ub<br />

/V cb<br />

|<br />

γ<br />

α<br />

β<br />

α<br />

0.3<br />

0.2<br />

-0.5<br />

0.1<br />

0<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

(BABAR Physics Book, 1998)<br />

ρ _<br />

-1<br />

α<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

γ<br />

ε K<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

Z. Ligeti — p. 5


Tests of the flavor sector<br />

• For 35 years, until 1999, the only unambiguous measurement of <strong>CP</strong>V was ɛ K<br />

1.5<br />

excluded area has CL > 0.95<br />

η _<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

(BABAR Physics Book, 1998)<br />

ρ _<br />

η<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

ε K<br />

sin 2β<br />

|V ub<br />

/V cb<br />

|<br />

α<br />

γ<br />

γ<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

α<br />

∆m d<br />

∆m s<br />

& ∆m d<br />

• sin 2β = 0.687 ± 0.032, order of magnitude smaller error than first measurements<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

ε K<br />

Z. Ligeti — p. 5


What are we after?<br />

• Flavor <strong>and</strong> <strong>CP</strong> violation are excellent probes of New Physics<br />

– Absence of K L → µµ predicted charm<br />

– ɛ K predicted 3rd generation<br />

– ∆m K predicted charm mass<br />

– ∆m B predicted heavy top<br />

If there is NP at the TEV scale, it must have a very special flavor / <strong>CP</strong> structure<br />

• What does the new B factory data tell us?<br />

Z. Ligeti — p. 6


SM tests with K <strong>and</strong> D mesons<br />

• <strong>CP</strong>V in K system is at the right level (ɛ K accommodated with O(1) <strong>CKM</strong> phase)<br />

• Hadronic uncertainties preclude precision tests (ɛ ′ K notoriously hard to calculate)<br />

• K → πνν: <strong>The</strong>oretically clean, but rates small ∼ 10 −10 (K ± ), 10 −11 (K L )<br />

Observation (3 events): B(K + → π + ν¯ν) = (1.5 +1.3<br />

−0.9 ) × 10−10 — need more data<br />

• D system complementary to K, B:<br />

Only meson where mixing is generated by down type quarks (SUSY: up squarks)<br />

<strong>CP</strong>V & FCNC both GIM <strong>and</strong> <strong>CKM</strong> suppressed ⇒ tiny in SM <strong>and</strong> not yet observed<br />

y <strong>CP</strong> =<br />

Γ(<strong>CP</strong> even) − Γ(<strong>CP</strong> odd)<br />

Γ(<strong>CP</strong> even) + Γ(<strong>CP</strong> odd)<br />

= (0.9 ± 0.4)%<br />

• At present level of sensitivity, <strong>CP</strong>V would be the only clean signal of NP<br />

Can lattice help to underst<strong>and</strong> SM prediction for ∆m D , ∆Γ D ? (SD part for sure)<br />

Z. Ligeti — p. 7


<strong>CP</strong> <strong>Violation</strong>


<strong>CP</strong>V in decay<br />

• Simplest, count events; amplitudes with different weak (φ k ) & strong (δ k ) phases<br />

|A f<br />

/A f | ≠ 1: A f = 〈f|H|B〉 = ∑ A k e iδ k e iφ k, A f<br />

= 〈f|H|B〉 = ∑ A k e iδ k e −iφ k<br />

• Unambiguously established by ɛ ′ K<br />

≠ 0, last year also in B decays:<br />

A K − π + ≡ Γ(B → K− π + ) − Γ(B → K + π − )<br />

Γ(B → K − π + ) + Γ(B → K + π − )<br />

= −0.115 ± 0.018<br />

– After “K-superweak”, also “B-superweak” excluded: <strong>CP</strong>V is not only in mixing<br />

– <strong>The</strong>re are large strong phases (also in B → ψK ∗ ); challenge to some models<br />

• Current theoretical underst<strong>and</strong>ing insufficient for both ɛ ′ K <strong>and</strong> A K − π +<br />

prove or to rule out that NP contributes<br />

to either<br />

Sensitive to NP when SM prediction is model independently small (e.g., A b→sγ )<br />

Z. Ligeti — p. 8


<strong>CP</strong>V in interference between decay <strong>and</strong> mixing<br />

• Can get theoretically clean information in some<br />

cases when B 0 <strong>and</strong> B 0 decay to same final state B0<br />

|B L,H 〉 = p|B 0 〉 ± q|B 0 〉 λ f<strong>CP</strong> = q A f<strong>CP</strong><br />

p A f<strong>CP</strong><br />

q/p<br />

A<br />

B 0<br />

A<br />

f <strong>CP</strong><br />

Time dependent <strong>CP</strong> asymmetry:<br />

a f<strong>CP</strong> = Γ[B0 (t) → f] − Γ[B 0 (t) → f]<br />

Γ[B 0 (t) → f] + Γ[B 0 (t) → f] = 2 Im λ f<br />

1 + |λ f |<br />

} {{ 2 sin(∆m t) − 1 − |λ f| 2<br />

1 + |λ<br />

}<br />

f |<br />

} {{ 2<br />

}<br />

S f C f (−A f )<br />

cos(∆m t)<br />

• If amplitudes with one weak phase dominate, hadronic physics drops out from λ f ,<br />

<strong>and</strong> a f<strong>CP</strong> measures a phase in the Lagrangian theoretically cleanly:<br />

a f<strong>CP</strong> = Im λ f sin(∆m t)<br />

arg λ f = phase difference between decay paths<br />

Z. Ligeti — p. 9


<strong>The</strong> cleanest case: B → J/ψ K S<br />

• Interference between B → ψK 0 (b → c¯cs) <strong>and</strong> B → B → ψK 0 (¯b → c¯c¯s)<br />

Penguins with different than tree weak phase are suppressed<br />

[<strong>CKM</strong> unitarity: V tb V ∗<br />

ts + V cb V ∗<br />

cs + V ub V ∗ us = 0]<br />

A ψKS = V cb V ∗<br />

cs } {{ }<br />

O(λ 2 )<br />

T + V ub V ∗ us } {{ }<br />

O(λ 4 )<br />

First term ≫ second term ⇒ theoretically very clean<br />

P<br />

B<br />

d<br />

¥¡¥ ¦¡¦<br />

¥¡¥ ¦¡¦<br />

¦¡¦ ¥¡¥<br />

¦¡¦ ¥¡¥<br />

¦¡¦ ¥¡¥<br />

b<br />

d<br />

b<br />

W<br />

d<br />

¡¡<br />

¢¡¢¡¢¡¢<br />

¢¡¢¡¢¡¢<br />

g<br />

¡¡<br />

¢¡¢¡¢¡¢<br />

¢¡¢¡¢¡¢<br />

¢¡¢¡¢¡¢<br />

£¡£¡£<br />

£¡£¡£<br />

¤¡¤¡¤<br />

¤¡¤¡¤<br />

¡¡<br />

¢¡¢¡¢¡¢<br />

¢¡¢¡¢¡¢<br />

¢¡¢¡¢¡¢<br />

£¡£¡£<br />

£¡£¡£<br />

£¡£¡£<br />

¤¡¤¡¤<br />

¤¡¤¡¤<br />

¤¡¤¡¤<br />

c<br />

£¡£ ¤¡¤<br />

£¡£ ¤¡¤<br />

¤¡¤ £¡£<br />

¤¡¤ £¡£<br />

¤¡¤ £¡£<br />

c<br />

s<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

§¡§ ¨¡¨<br />

c §¡§ ¨¡¨<br />

¨¡¨ §¡§<br />

¨¡¨ §¡§<br />

¨¡¨ §¡§ c<br />

ψ<br />

K<br />

ψ<br />

S<br />

arg λ ψKS = (B-mix = 2β) + (decay = 0) + (K-mix = 0)<br />

B<br />

d<br />

©¡© ¡<br />

©¡© ¡<br />

¡ ©¡©<br />

¡ ©¡©<br />

¡ ©¡©<br />

d<br />

W<br />

¡¡<br />

¢¡¢¡¢¡¢<br />

£¡£¡£<br />

¤¡¤¡¤<br />

¤¡¤¡¤<br />

£¡£¡£<br />

u,c,t<br />

s<br />

⇒ a ψKS (t) = sin 2β sin(∆m t) with < ∼ 1% accuracy<br />

d<br />

¥¡¥ ¦¡¦<br />

¥¡¥ ¦¡¦<br />

¦¡¦ ¥¡¥<br />

¦¡¦ ¥¡¥<br />

¦¡¦ ¥¡¥<br />

K<br />

S<br />

• World average: sin 2β = 0.687 ± 0.032 — a 5% measurement!<br />

Z. Ligeti — p. 10


S ψK : a precision game<br />

St<strong>and</strong>ard model fit without S ψK<br />

1.5<br />

excluded area has CL > 0.95<br />

1<br />

∆m d<br />

∆m s<br />

& ∆m d<br />

0.5<br />

η<br />

0<br />

ε K<br />

|V ub<br />

/V cb<br />

|<br />

γ<br />

α<br />

β<br />

-0.5<br />

ε K<br />

-1<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

Z. Ligeti — p. 11


S ψK : a precision game<br />

St<strong>and</strong>ard model fit including S ψK<br />

First precise test of the <strong>CKM</strong> picture<br />

1.5<br />

excluded area has CL > 0.95<br />

Error of S ψK near |V cb | (only |V us | better)<br />

1<br />

sin 2β<br />

∆m d<br />

∆m s<br />

& ∆m d<br />

Without V ub 4 sol’s; ψK ∗ <strong>and</strong> D 0 K 0 data<br />

show cos 2β > 0, removing non-SM ray<br />

η<br />

0.5<br />

0<br />

ε K<br />

γ<br />

α<br />

β<br />

Approximate <strong>CP</strong> (in the sense that all<br />

<strong>CP</strong>V phases are small) excluded<br />

|V ub<br />

/V cb<br />

|<br />

-0.5<br />

sin 2β is only the beginning<br />

-1<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

ε K<br />

Paradigm change: look for corrections,<br />

rather than alternatives to <strong>CKM</strong><br />

⇒ Need detailed tests<br />

⇒ <strong>The</strong>oretical cleanliness essential<br />

Z. Ligeti — p. 11


<strong>CP</strong>V in b → s mediated decays<br />

• Measuring same angle in decays sensitive to different short distance physics may<br />

give best sensitivity to NP (φK S , η ′ K S , etc.)<br />

Amplitudes with one weak phase expected to dominate:<br />

A = V cb V ∗<br />

cs } {{ }<br />

O(λ 2 )<br />

[P c − P t + T c ] + V ub V<br />

} {{ us<br />

∗ [P<br />

} u − P t + T u ]<br />

O(λ 4 )<br />

B<br />

d<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

b<br />

d<br />

W<br />

u, c, t<br />

g<br />

s<br />

£¡£ ¤¡¤<br />

¤¡¤ £¡£<br />

¤¡¤ £¡£<br />

¤¡¤ £¡£<br />

s<br />

s<br />

¤¡¤ £¡£<br />

φ<br />

SM: expect: S φKS − S ψK <strong>and</strong> C φKS<br />

< ∼ 0.05<br />

d<br />

¦¡¦ ¥¡¥<br />

¥¡¥ ¦¡¦<br />

¦¡¦ ¥¡¥<br />

¥¡¥ ¦¡¦<br />

¦¡¦ ¥¡¥<br />

K<br />

S<br />

NP: S φKS ≠ S ψK possible<br />

NP: Expect different S f for each b → s mode<br />

NP: Depend on size & phase of SM <strong>and</strong> NP amplitude<br />

B d<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

b<br />

¡<br />

¡<br />

¡<br />

¡<br />

d<br />

s<br />

<br />

<br />

<br />

q<br />

©¡©<br />

©¡©<br />

©¡©<br />

©¡©<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

©¡©<br />

q<br />

£¡£<br />

£¡£<br />

£¡£<br />

£¡£<br />

¤¡¤<br />

¤¡¤<br />

¤¡¤<br />

¤¡¤<br />

¤¡¤<br />

£¡£<br />

Κ<br />

π<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¥¡¥<br />

¥¡¥<br />

¥¡¥<br />

¥¡¥<br />

¦¡¦<br />

¦¡¦<br />

¦¡¦<br />

¦¡¦<br />

¦¡¦<br />

¥¡¥<br />

q<br />

q<br />

s<br />

d<br />

s<br />

s<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¨¡¨<br />

¨¡¨<br />

§¡§<br />

§¡§<br />

§¡§<br />

§¡§<br />

¨¡¨<br />

¨¡¨<br />

¨¡¨<br />

§¡§<br />

φ<br />

K S<br />

NP could enter S ψK mainly in mixing, while S φKS through both mixing <strong>and</strong> decay<br />

• Interesting to pursue independent of present results — there is room left for NP<br />

Z. Ligeti — p. 12


Status of sin 2β eff measurements<br />

b→ccs<br />

η′ K 0<br />

π 0 K S<br />

K + K - K 0<br />

φ K 0<br />

f 0<br />

K S<br />

ω K S<br />

K S<br />

K S<br />

K S<br />

sin(2β eff )/sin(2φ e 1 ff )<br />

HFAG<br />

HFAG<br />

HFAG<br />

LP 2005<br />

LP 2005<br />

HFAG<br />

LP 2005<br />

LP HFAG 2005<br />

World Average 0.69 ± 0.03<br />

BaBar 0.50 ± 0.25 + 0.<br />

07<br />

-0.<br />

04<br />

Belle 0.44 ± 0.27 ± 0.05<br />

Average 0.47 ± 0.19<br />

BaBar 0.30 ± 0.14 ± 0.02<br />

Belle 0.62 ± 0.12 ± 0.04<br />

Average 0.48 ± 0.09<br />

BaBar 0.95 + 0.<br />

23<br />

-0.<br />

32 ± 0.10<br />

Belle 0.47 ± 0.36 ± 0.08<br />

Average 0.75 ± 0.24<br />

BaBar 0.35 + 0.<br />

30<br />

-0.<br />

33 ± 0.04<br />

Belle 0.22 ± 0.47 ± 0.08<br />

Average 0.31 ± 0.26<br />

BaBar 0.50 + 0.<br />

34<br />

-0.<br />

38 ± 0.02<br />

HFAG<br />

HFAG<br />

LP 2005<br />

HFAG<br />

-1 0 1 2<br />

LP 2005<br />

LP 2005<br />

LP 2005<br />

H F A G H F A G<br />

LP 2005<br />

PRELIMINARY<br />

Belle 0.95 ± 0.53 + -<br />

0.<br />

12<br />

0.<br />

15<br />

Average 0.63 ± 0.30<br />

BaBar 0.41 ± 0.18 ± 0.07 ± 0.11<br />

Belle 0.60 ± 0.18 ± 0.04 + 0.<br />

19<br />

-0.<br />

12<br />

Average 0.51 ± 0.14 + - 0 0 . . 1 0 1 8<br />

BaBar 0.63 + 0.<br />

28<br />

-0.<br />

32 ± 0.04<br />

Belle 0.58 ± 0.36 ± 0.08<br />

Average 0.61 ± 0.23<br />

φ K 0<br />

f 0<br />

K S<br />

ω K S<br />

K S<br />

K S<br />

K S<br />

η′ K 0<br />

π 0 K S<br />

K + K - K 0<br />

HFAG<br />

C f<br />

= -A f<br />

BaBar 0.00 ± 0.23 ± 0.05<br />

Belle -0.14 ± 0.17 ± 0.07<br />

HFAG<br />

LP 2005<br />

HFAG<br />

LP 2005<br />

LP 2005<br />

Average -0.09 ± 0.14<br />

BaBar -0.21 ± 0.10 ± 0.02<br />

HFAG<br />

LP 2005<br />

Belle 0.04 ± 0.08 ± 0.06<br />

Average -0.08 ± 0.07<br />

BaBar -0.24 ± 0.31 ± 0.15<br />

HFAG<br />

Belle 0.23 ± 0.23 ± 0.13<br />

Average 0.06 ± 0.21<br />

BaBar 0.06 ± 0.18 ± 0.03<br />

HFAG<br />

LP 2005<br />

Belle -0.11 ± 0.18 ± 0.08<br />

Average -0.02 ± 0.13<br />

BaBar -0.56 + - 0 0 . . 2 2 9 7 ± 0.03<br />

Belle -0.19 ± 0.39 ± 0.13<br />

Average -0.44 ± 0.23<br />

BaBar 0.23 ± 0.12 ± 0.07<br />

LP 2005<br />

HFAG<br />

LP 2005<br />

H F A G H F A G<br />

LP 2005<br />

PRELIMINARY<br />

Belle 0.06 ± 0.11 ± 0.07<br />

Average 0.14 ± 0.10<br />

BaBar -0.10 ± 0.25 ± 0.05<br />

Belle -0.50 ± 0.23 ± 0.06<br />

Average -0.31 ± 0.17<br />

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2<br />

• Largest hint of deviations from SM: S η ′ K S<br />

(2σ) <strong>and</strong> S ψK −〈S b→s 〉 = 0.18±0.06 (3σ)<br />

(Averaging somewhat questionable; although in QCDF the mode-dependent shifts are mostly up)<br />

Z. Ligeti — p. 13


Status of sin 2β eff measurements<br />

Dominant<br />

SM allowed range of ∗<br />

process<br />

f <strong>CP</strong> |− ηf<strong>CP</strong> S<br />

sin 2β eff C f<br />

f<strong>CP</strong> − sin 2β|<br />

b → c¯cs ψK S < 0.01 +0.687 ± 0.032 +0.016 ± 0.046<br />

b → c¯cd ψπ 0 ∼ 0.2 +0.69 ± 0.25 −0.11 ± 0.20<br />

D ∗+ D ∗− ∼ 0.2 +0.67 ± 0.25 +0.09 ± 0.12<br />

D + D − ∼ 0.2 +0.29 ± 0.63 +0.11 ± 0.36<br />

b → s¯qq φK 0 < 0.05 +0.47 ± 0.19 −0.09 ± 0.14<br />

η ′ K 0 < 0.05 +0.48 ± 0.09 −0.08 ± 0.07<br />

K + K − K S ∼ 0.15 +0.51 ± 0.17 +0.15 ± 0.09<br />

K S K S K S ∼ 0.15 +0.61 ± 0.23 −0.31 ± 0.17<br />

π 0 K S ∼ 0.15 +0.31 ± 0.26 −0.02 ± 0.13<br />

f 0 K S ∼ 0.25 +0.75 ± 0.24 +0.06 ± 0.21<br />

ωK S ∼ 0.25 +0.63 ± 0.30 −0.44 ± 0.23<br />

∗ My estimates of reasonable limits (strict bounds worse, model calculations better [Buchalla, Hiller, Nir, Raz; Beneke])<br />

• No significant deviation from SM, still there is a lot to learn from more precise data<br />

In SM, both |S ψK − S η ′ K S<br />

| <strong>and</strong> |S ψK − S φKS | < 0.05 [model estimates O(0.02)]<br />

Z. Ligeti — p. 13


Model building more interesting<br />

• <strong>The</strong> present S η ′ K S<br />

<strong>and</strong> S φKS central values can be reasonably accommodated<br />

with NP (unlike an O(1) deviation from S ψKS two years ago)<br />

s<br />

R,L<br />

b<br />

R<br />

d<br />

(δ 23<br />

) RR<br />

~ ~<br />

b<br />

s R<br />

R<br />

~<br />

s<br />

R<br />

_<br />

s<br />

s<br />

R,L<br />

R<br />

• Other constraints: B(B → X s γ) = (3.5±0.3)×10 −6<br />

mainly constrains LR mass insertions<br />

Now also B(B → X s l + l − ) = (4.5 ± 1.0) × 10 −6<br />

agrees with the SM at 20% level<br />

⇒ new constraints on RR & LL mass insertions<br />

b<br />

R<br />

d<br />

(δ 23<br />

) RR<br />

~ ~<br />

b<br />

s R<br />

R<br />

Z<br />

~<br />

s<br />

R<br />

l<br />

_<br />

l<br />

s<br />

R<br />

• Models must satisfy growing number of constraints simultaneously<br />

Z. Ligeti — p. 14


New last year: α <strong>and</strong> γ<br />

[γ = arg(V ∗ ub ) , α ≡ π − β − γ]<br />

α measurements in B → ππ, ρρ, <strong>and</strong> ρπ<br />

γ in B → DK: tree level, independent of NP<br />

[<strong>The</strong> presently best α <strong>and</strong> γ measurements were not talked about before 2003]


α from B → ππ<br />

• Until ∼ ’97 the hope was to determine α from:<br />

Γ(B 0 (t) → π + π − ) − Γ(B 0 (t) → π + π − )<br />

Γ(B 0 (t) → π + π − ) + Γ(B 0 (t) → π + π − )<br />

= S sin(∆m t) − C cos(∆m t)<br />

arg λ π + π− = (B-mix = 2β) + (A/A = 2γ + . . .) ⇒ gives sin 2α if P/T were small<br />

[expectation was P/T ∼ O(α s /4π)]<br />

Kπ <strong>and</strong> ππ rates ⇒ comparable amplitudes in B → ππ with different weak phases<br />

• Isospin analysis: 6 measurements determine<br />

5 hadronic parameters + weak phase<br />

[Gronau, London]<br />

§ £©<br />

<br />

Bose statistics ⇒ ππ in I = 0, 2<br />

¡¡<br />

Triangle relations between B + , B 0 (B − , B 0 )<br />

decay amplitudes<br />

<br />

¤ ¢£© § ¡¡<br />

¢¡¤£¦¥ §¨¡©<br />

Z. Ligeti — p. 15


α from B → ππ: Isospin analysis<br />

• Tagged B → π 0 π 0 rates are the hardest input<br />

B(B → π 0 π 0 ) = (1.45 ± 0.29) × 10 −6<br />

1.2<br />

1<br />

C K M<br />

f i t t e r<br />

Moriond 05<br />

B → ππ (S/C +–<br />

from BABAR)<br />

B → ππ (S/A +–<br />

from Belle)<br />

Combined no C/A 00<br />

Γ(B → π 0 π 0 ) − Γ(B → π 0 π 0 )<br />

Γ(B → π 0 π 0 ) + Γ(B → π 0 π 0 )<br />

= 0.28 ± 0.39<br />

1 – CL<br />

0.8<br />

0.6<br />

Need lot more data to pin down ∆α from<br />

isospin analysis... current bound:<br />

0.4<br />

0.2<br />

<strong>CKM</strong> fit<br />

no α meas. in fit<br />

|∆α| < 39 ◦ (90% CL)<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

α (deg)<br />

• Constraint on α weak (measurements 2.3σ apart):<br />

B → π + π − S π + π − C π + π −<br />

BABAR (227m) −0.30 ± 0.17 −0.09 ± 0.15<br />

BELLE (275m) −0.67 ± 0.17 −0.56 ± 0.13<br />

average −0.50 ± 0.12 −0.37 ± 0.11<br />

Z. Ligeti — p. 16


B → ρρ: the best α at present<br />

• Lucky 2 : longitudinal polarization dominates (<strong>CP</strong> -even; could be even/odd mixed)<br />

Isospin analysis applies for each L, or in transversity basis for each σ (= 0, ‖, ⊥)<br />

• Small rate: B(B → ρ 0 ρ 0 ) < 1.1 × 10 −6 (90% CL) ⇒ small penguin pollution<br />

B(B→π 0 π 0 )<br />

B(B→π + π 0 ) = 0.26 ± 0.06 vs. B(B→ρ 0 ρ 0 )<br />

B(B→ρ + ρ 0 )<br />

< 0.04 (90% CL)<br />

α – α eff<br />

(deg)<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

C K M<br />

f i t t e r<br />

ICHEP 2004<br />

exp. upper<br />

limit at CL=0.9<br />

B → ρρ isospin analysis<br />

-30<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3<br />

x 10 -5<br />

BR(B → ρ 0 ρ 0 )<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Isospin bound:<br />

|∆α| < 11 ◦<br />

S ρ + ρ− yields: α = (96 ± 13)◦<br />

Ultimately, more complicated than ππ,<br />

I = 1 possible due to finite Γ ρ , giving<br />

O(Γ 2 ρ/m 2 ρ) effects [can be constrained]<br />

[Falk, ZL, Nir, Quinn]<br />

Z. Ligeti — p. 17


B → ρπ: Dalitz plot analysis<br />

• Two-body B → ρ ± π ∓ : two pentagon relations<br />

from isospin; would need rates <strong>and</strong> <strong>CP</strong>V in all<br />

ρ + π − , ρ − π + , ρ 0 π 0 modes to get α — hard!<br />

{<br />

Aπ<br />

Direct <strong>CP</strong>V:<br />

− ρ + = −0.47+0.13 −0.14<br />

A π + ρ− = −0.15 ± 0.09<br />

3.4σ from 0, challenges some models<br />

-1<br />

Interpretation for α model dependent<br />

1<br />

• Last year: Dalitz plot analysis of the interference<br />

regions in B → π + π − π 0<br />

0.6<br />

0.8<br />

Result: α = (113 +27<br />

−17 ± 6)◦ 0.4<br />

C.L.<br />

A + –<br />

ρπ<br />

0.2<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

0<br />

-0.25<br />

-0.5<br />

-0.75<br />

1σ<br />

2σ<br />

3σ<br />

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1<br />

BABAR<br />

preliminary<br />

A – +<br />

ρπ<br />

H F A G<br />

ICHEP 2004<br />

0<br />

0 30 60 90 120 150 180<br />

α<br />

(deg)<br />

Z. Ligeti — p. 18


Combined α measurements<br />

• Sensitivity mainly from S ρ + ρ− <strong>and</strong> ρπ Dalitz, ππ has small effect<br />

Combined result: α = (99 +12<br />

−9 )◦ — better than indirect fit 92 ± 15 ◦ (w/o α <strong>and</strong> γ)<br />

1 – CL<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

B → ππ<br />

B → ρπ<br />

B → ρρ<br />

WA<br />

Combined<br />

<strong>CKM</strong> fit<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

sin 2β<br />

<strong>CKM</strong> fit<br />

no α meas. in fit<br />

γ<br />

α<br />

β<br />

1 – CL<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

α (deg)<br />

-1<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

α from B → ππ, πρ, ρρ<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

0.2<br />

0.1<br />

0<br />

Z. Ligeti — p. 19


γ from B ± → DK ±<br />

• Tree level: interfere b → c (B − → D 0 K − ) <strong>and</strong> b → u (B − → D 0 K − )<br />

Need D 0 , D 0 → same final state; determine B <strong>and</strong> D decay amplitudes from data<br />

Many variants depending on D decay: D <strong>CP</strong> [GLW], DCS/CA [ADS], CS/CS [GLS]<br />

Sensitivity crucially depends on: r B = |A(B − → D 0 K − )/A(B − → D 0 K − )|<br />

— ↓<br />

• Best measurement now: D 0 , D 0 → K S π + π −<br />

Both amplitudes Cabibbo allowed; can integrate<br />

over regions in m Kπ + − m Kπ − Dalitz plot<br />

γ = ( 68 +14<br />

−15 ± 13 ± 11) ◦<br />

[BELLE, 275 m]<br />

γ = (67 ± 28 ± 13 ± 11) ◦ [BABAR, 227 m]<br />

σ(γ) degree<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

BABAR<br />

Monte Carlo study<br />

10<br />

↑ ↑<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3<br />

r B<br />

BABAR<br />

• Need more data to determine γ more precisely (<strong>and</strong> settle value of r B )<br />

BELLE<br />

Z. Ligeti — p. 20


Overconstraining the <strong>CKM</strong> <strong>matrix</strong><br />

• SM fit: α, β determine ρ, η nearly as precisely as all data combined<br />

η<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

sin 2β<br />

γ<br />

α<br />

α<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

η<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

sin 2β<br />

∆m d<br />

ε K<br />

γ<br />

α<br />

∆m s<br />

& ∆m d<br />

ε K<br />

α<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

0.1<br />

γ<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

ρ<br />

0.1 |V ub<br />

/V cb<br />

|<br />

γ<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

ρ<br />

• New era: constraints from angles surpass the rest; will scale with statistics<br />

(By the time ∆m s is measured, α may be competitive for |V td | side)<br />

• ɛ K , ∆m d , ∆m s , |V ub |, etc., can be used to overconstrain the SM <strong>and</strong> test NP<br />

Let’s see how it works...<br />

Z. Ligeti — p. 21


<strong>The</strong> “new” <strong>CKM</strong> fit<br />

• Include measurements that give meaningful constraints <strong>and</strong> NOT theory limited<br />

• α from B → ρρ <strong>and</strong> ρπ Dalitz • γ from B → DK (with D Dalitz)<br />

• 2β + γ from B → D (∗)± π ∓<br />

• cos 2β from ψK ∗ <strong>and</strong> A SL (for NP)<br />

1.5<br />

excluded area has CL > 0.95<br />

1.5<br />

excluded area has CL > 0.95<br />

∆m d<br />

γ<br />

∆m d<br />

1<br />

sin 2β<br />

1<br />

sin 2β<br />

∆m s<br />

& ∆m d<br />

∆m s<br />

& ∆m d<br />

0.5<br />

0.5<br />

η<br />

0<br />

ε K<br />

|V ub<br />

/V cb<br />

|<br />

γ<br />

α<br />

β<br />

η<br />

0<br />

ε K<br />

|V ub<br />

/V cb<br />

|<br />

γ<br />

α<br />

β<br />

α<br />

-0.5<br />

-0.5<br />

ε K<br />

α<br />

ε K<br />

-1<br />

-1<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

∆m s = (17.9 +10.5<br />

−1.7<br />

Fit with “traditional” inputs<br />

ρ<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

γ<br />

Fit with above included<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

[+20.0]<br />

[−2.8] ) ps−1 at 1σ [2σ] ∆m s = (17.9 +3.6<br />

−1.4<br />

ρ<br />

[+8.6]<br />

[−2.4] ) ps−1<br />

Z. Ligeti — p. 22


Constraining NP in mixing: ρ − η view<br />

• NP in mixing amplitude only, 3 × 3 unitarity preserved: M 12 = M (SM)<br />

12 rd 2 e2iθ d<br />

⇒ ∆m B = rd 2∆m(SM)<br />

B<br />

, S ψK = sin(2β+2θ d ), S ρρ = sin(2α−2θ d ), γ(DK) unaffected<br />

Constraints with |V ub |, ∆m d , S ψK<br />

1.5<br />

1 – CL<br />

1<br />

Add: α, γ, 2β + γ, cos 2β<br />

1.5<br />

1 – CL<br />

1<br />

1<br />

SM <strong>CKM</strong> Fit<br />

0.8<br />

1<br />

SM <strong>CKM</strong> Fit<br />

0.8<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

C K M<br />

f i t t e r<br />

Lattice 05<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

New Physics in B 0 B 0 mixing<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

C K M<br />

f i t t e r<br />

Lattice 05<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

Only the SM region left even in the presence of NP in mixing<br />

γ<br />

ρ<br />

β<br />

First determinations of<br />

(ρ, η) from “effectively”<br />

tree level processes<br />

New Physics in B 0 B 0 mixing<br />

0.6<br />

0.4<br />

0.2<br />

[Similar fits also by UTfit]<br />

0<br />

Z. Ligeti — p. 23


Constraining NP in mixing: ρ − η view<br />

• NP in mixing amplitude only, 3 × 3 unitarity preserved: M 12 = M (SM)<br />

12 rd 2 e2iθ d<br />

⇒ ∆m B = rd 2∆m(SM)<br />

B<br />

, S ψK = sin(2β+2θ d ), S ρρ = sin(2α−2θ d ), γ(DK) unaffected<br />

Constraints with |V ub |, ∆m d , S ψK<br />

1.5<br />

1 – CL<br />

1<br />

Add: α, γ, 2β + γ, cos 2β <strong>and</strong> A SL<br />

1.5<br />

1 – CL<br />

1<br />

1<br />

SM <strong>CKM</strong> Fit<br />

0.8<br />

1<br />

SM <strong>CKM</strong> Fit<br />

0.8<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

C K M<br />

f i t t e r<br />

Lattice 05<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

New Physics in B 0 B 0 mixing<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

η<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

C K M<br />

f i t t e r<br />

Lattice 05<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

• Only the SM region left even in the presence of NP in mixing<br />

γ<br />

ρ<br />

β<br />

First determinations of<br />

(ρ, η) from “effectively”<br />

tree level processes<br />

New Physics in B 0 B 0 mixing<br />

0.6<br />

0.4<br />

0.2<br />

[Similar fits also by UTfit]<br />

0<br />

Z. Ligeti — p. 23


Constraining NP in mixing: r 2 d − θ d view<br />

• NP in mixing amplitude only, 3 × 3 unitarity preserved: M 12 = M (SM)<br />

12 rd 2 e2iθ d<br />

⇒ ∆m B = rd 2∆m(SM)<br />

B<br />

, S ψK = sin(2β+2θ d ), S ρρ = sin(2α−2θ d ), γ(DK) unaffected<br />

Constraints with |V ub |, ∆m d , S ψK<br />

150<br />

100<br />

C K M<br />

f i t t e r<br />

Lattice 05<br />

1 – CL<br />

1<br />

0.8<br />

150<br />

100<br />

Add: α, γ, 2β + γ, cos 2β <strong>and</strong> A SL<br />

C K M<br />

f i t t e r<br />

Lattice 05<br />

1 – CL<br />

1<br />

0.8<br />

2θ d<br />

(deg)<br />

50<br />

0<br />

-50<br />

SM<br />

0.6<br />

0.4<br />

2θ d<br />

(deg)<br />

50<br />

0<br />

-50<br />

SM<br />

0.6<br />

0.4<br />

-100<br />

-150<br />

New Physics in B 0 B 0 mixing<br />

0.2<br />

-100<br />

-150<br />

0<br />

0 1 2 3 4 5 6 7<br />

0 1 2 3 4 5 6 7<br />

r d<br />

2<br />

New Physics in B 0 B 0 mixing<br />

• New data restrict r 2 d , θ d significantly for the first time — still plenty of room left<br />

r d<br />

2<br />

0.2<br />

0<br />

Z. Ligeti — p. 24


NP in mixing: h d − σ d view<br />

• Previous fits: |M 12 /M SM<br />

12 | can only differ significantly from 1 if arg(M 12 /M SM<br />

12 ) ∼ 0<br />

More transparent parameterization: M 12 = M (SM)<br />

12 r 2 d e2iθ d ≡ M (SM)<br />

12 (1 + h d e 2iσ d)<br />

Modest NP contribution can still have arbitrary phase<br />

[Agashe, Papucci, Perez, Pirjol, to appear]<br />

2θ d<br />

(deg)<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

SM<br />

New Physics in B 0 B 0 mixing<br />

0 1 2 3 4 5 6 7<br />

r d<br />

2<br />

C K M<br />

f i t t e r<br />

Lattice 05<br />

1 – CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

σ d<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

h d<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

• For |h d |< 0.2, the phase σ d is unconstrained; if |h d |< 0.4, σ d can take half of (0, π)<br />

Z. Ligeti — p. 25


Intermediate summary<br />

• sin 2β = 0.687 ± 0.032<br />

⇒ good overall consistency of SM, δ <strong>CKM</strong> is probably the dominant source of <strong>CP</strong>V<br />

⇒ in flavor changing processes<br />

• S ψK − S η ′ K S<br />

= 0.21 ± 0.10 <strong>and</strong> S ψK − 〈S b→s 〉 = 0.18 ± 0.06<br />

⇒ Decreasing deviations from SM (same values with 5σ would still signal NP)<br />

• A K − π + = −0.12 ± 0.02<br />

⇒ “B-superweak” excluded, sizable strong phases<br />

• Measurements of α = ( 99 +12 ) ◦ ( )<br />

−9 <strong>and</strong> γ = 64<br />

+16 ◦<br />

−13<br />

⇒ Angles start to give tightest constraints<br />

⇒ First serious bounds on NP in B–B mixing; ∼30% contributions still allowed<br />

Z. Ligeti — p. 26


<strong>The</strong>oretical developments<br />

Significant steps toward a model independent theory of<br />

certain exclusive decays in the m B ≫ Λ QCD limit<br />

Factorization for B → M form factors for q 2 ≪ m 2 B<br />

<strong>and</strong> certain B → M 1 M 2 nonleptonic decays


Determinations of |V cb | <strong>and</strong> |V ub |<br />

• Inclusive <strong>and</strong> exclusive |V cb | <strong>and</strong> |V ub | determinations rely on<br />

heavy quark expansions; theoretically cleanest is |V cb | incl<br />

Γ(B → X c l¯ν) = G2 F |V cb| 2<br />

192π 3<br />

(<br />

mΥ<br />

[ ( ) ( Λ1S<br />

Λ1S<br />

1 − 0.22<br />

−0.011<br />

500 MeV<br />

500 MeV<br />

2<br />

) 5<br />

(0.534)×<br />

( ) ( )<br />

λ1 Λ<br />

− 0.006 1S<br />

λ2 Λ<br />

(500 MeV) 3 + 0.011 1S<br />

(500 MeV) 3<br />

(<br />

(<br />

+ 0.011<br />

)<br />

T 1<br />

(500 MeV) 3 + 0.002<br />

) 2 ) (<br />

)<br />

λ<br />

− 0.052(<br />

1<br />

λ<br />

(500 MeV) 2 − 0.071 2<br />

(500 MeV) 2<br />

(<br />

) (<br />

)<br />

ρ<br />

− 0.006 1<br />

ρ<br />

(500 MeV) 3 + 0.008 2<br />

(500 MeV) 3<br />

)<br />

T 2<br />

(500 MeV) 3 − 0.017<br />

+ 0.096ɛ − 0.030ɛ 2 ( ) Λ1S<br />

BLM + 0.015ɛ + . . .<br />

500 MeV<br />

]<br />

(<br />

)<br />

T 3<br />

(500 MeV) 3 − 0.008<br />

(<br />

)<br />

T 4<br />

(500 MeV) 3<br />

Corrections: O(Λ/m): ∼ 20%, O(Λ 2 /m 2 ): ∼ 5%, O(Λ 3 /m 3 ): ∼ 1 − 2%,<br />

O(α s ): ∼ 10%, Unknown terms: < few %<br />

Matrix elements determined from fits to many shape variables<br />

ν<br />

• Error of |V cb | incl ∼2%! New small parameters complicate expansions for |V ub | incl<br />

Z. Ligeti — p. 27


Exclusive b → u decays<br />

• In the h<strong>and</strong>s of LQCD, less constraints from heavy quark symmetry than in b → c<br />

– B → l¯ν: measures f B × |V ub | — need f B from lattice<br />

– B → πl¯ν: useful dispersive bounds on form factors<br />

– Ratios = 1 in heavy quark or chiral symmetry limit (+ study corrections)<br />

• Deviations of “Grinstein-type double ratios” from unity are more suppressed:<br />

⇒ f B<br />

⇒<br />

⇒<br />

f B s<br />

× f Ds<br />

f D<br />

— lattice: double ratio = 1 within few % [Grinstein]<br />

B(B → l¯ν)<br />

B(B s → l + l − ) × B(D s → l¯ν)<br />

B(D → l¯ν)<br />

— very clean... after 2010?<br />

f (B→ρl¯ν)<br />

f (B→K∗ l + l − × f (D→K∗ l¯ν)<br />

or q 2 spectra — accessible soon?<br />

) f (D→ρl¯ν) [ZL, Wise; Grinstein, Pirjol]<br />

New CLEO-C D → ρl¯ν data still consistent w/ no SU(3) breaking in form factors [ZL, Stewart, Wise]<br />

Could lattice do more to pin down the corrections?<br />

Z. Ligeti — p. 28


One-page introduction to SCET<br />

• Effective theory for processes involving energetic hadrons, E ≫ Λ<br />

[Bauer, Fleming, Luke, Pirjol, Stewart, + . . . ]<br />

Introduce distinct fields for relevant degrees of freedom, power counting in λ<br />

modes fields p = (+, −, ⊥) p 2<br />

SCET I : λ = √ Λ/E — jets (m∼ΛE)<br />

collinear ξ n,p , A µ n,q<br />

E(λ 2 , 1, λ) E 2 λ 2<br />

soft q q , A µ s<br />

E(λ, λ, λ) E 2 λ 2<br />

SCET II : λ = Λ/E — hadrons (m∼Λ)<br />

Match QCD → SCET I → SCET II<br />

• Can decouple ultrasoft gluons from collinear Lagrangian at leading order in λ<br />

ξ n,p = Y n ξ n,p (0) A n,q = Y n A (0)<br />

n,q Y n<br />

† Y n = P exp [ ig ∫ x<br />

−∞ ds n · A us(ns) ]<br />

Nonperturbative usoft effects made explicit through factors of Y n in operators<br />

New symmetries: collinear / soft gauge invariance<br />

• Simplified / new (B → Dπ, πl¯ν) proofs of factorization theorems<br />

[Bauer, Pirjol, Stewart]<br />

Z. Ligeti — p. 29


Semileptonic B → π, ρ form factors<br />

• Issues: endpoint singularities, Sudakov effects, etc.<br />

p 2 ~ Q 2<br />

At leading order in Λ/Q, to all orders in α s , form factors<br />

for q 2 ≪ m 2 B written as (Q = E, m b; omit µ-dep’s)<br />

[Beneke & Feldmann; Bauer, Pirjol, Stewart; Becher, Hill, Lange, Neubert]<br />

F (Q) = C k (Q) ζ k (Q) + m Bf B f M<br />

4E 2<br />

∫<br />

B<br />

p 2<br />

~ Λ2<br />

p 2 ~ QΛ<br />

dzdxdr + T (z, Q) J(z, x, r + , Q) φ M (x)φ B (r + )<br />

M<br />

p 2<br />

~<br />

2<br />

Λ<br />

Matrix elements of distinct ∫ d 4 x T [ J (n) (0) L (m)<br />

ξq (x)] terms (turn spectator q us → ξ)<br />

• Symmetries ⇒ nonfactorizable (1st) term obey form factor relations<br />

[Charles et al.]<br />

Symmetries ⇒ 3 B → P <strong>and</strong> 7 B → V form factors related to 3 universal functions<br />

• Relative size? SCET: 1st ∼ 2nd QCDF: 2nd ∼ α s ×(1st) PQCD: 1st ∼ 0<br />

Some relations between semileptonic <strong>and</strong> nonleptonic decays can be insensitive<br />

to this, while other predictions may be sensitive (e.g., A FB = 0 in B → K ∗ l + l − ?)<br />

Z. Ligeti — p. 30


|V ub | from B → πl¯ν<br />

• Lattice is under control for large q 2 (small |⃗p π |),<br />

experiment loses a lot of statistics<br />

dΓ(B 0 → π + l¯ν)<br />

dq 2 = G2 F |⃗p π| 3<br />

24π 3 |V ub | 2 |f + (q 2 )| 2<br />

Best would be to use the q 2 -dependent data <strong>and</strong><br />

its correlation (both lattice <strong>and</strong> experiment) to get<br />

|V ub |, reducing role of model-dependent fits<br />

• Dispersion relation <strong>and</strong> a few points for f + (q 2 )<br />

give strong constraints on shape [Boyd, Grinstein, Lebed]<br />

0.8<br />

( 1- q 2 ) f (q2)<br />

B → ππ using factorization constrains |V ub |f + (0)<br />

[Bauer et al.]<br />

• Can combine dispersive bounds with lattice <strong>and</strong><br />

possibly B → ππ<br />

[Fukunaga, Onogi; Arnesen et al.]<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0<br />

5<br />

10<br />

15<br />

f =f +<br />

f =f 0<br />

20 25<br />

q 2<br />

Z. Ligeti — p. 31


Tension between sin 2β <strong>and</strong> |V ub |?<br />

• SM fit favors slightly smaller |V ub | than inclusive determination, or larger sin 2β<br />

Inclusive average (error underestimated?)<br />

|V ub | (HFAG)<br />

incl<br />

= (4.38 ± 0.19 ± 0.27) × 10 −3<br />

Lattice πlν average [HPQCD & FNAL from Stewart @ LP’05]<br />

|V ub | = (4.1 ± 0.3 +0.7<br />

−0.4 ) × 10−3<br />

Depends on whether only q 2 > 16 GeV 2 is used<br />

1 – CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1σ<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

<strong>CKM</strong> fit<br />

(sin2β)<br />

Inclusive<br />

average<br />

0<br />

Light-cone SR [Ball, Zwicky; Braun et al., Colangelo, Khodjamirian]<br />

|V ub | = (3.3 ± 0.3 +0.5<br />

−0.4 ) × 10−3<br />

2σ<br />

0.3 0.35 0.4<br />

|V ub<br />

|<br />

0.45 0.5<br />

x 10 -2<br />

Statistical fluctuations? Problem with inclusive? New physics?<br />

Precise |V ub | crucial to be sensitive to small NP entering sin 2β via mixing<br />

• To sort this out, need precise <strong>and</strong> model independent f B <strong>and</strong> B → π form factor<br />

Z. Ligeti — p. 32


Chasing |V td /V ts |: B → ργ vs. B → K ∗ γ<br />

• Factorization formula: 〈V γ|H|B〉 = T I i F V + ∫ dx dk T II<br />

i (x, k) φ B(k) φ V (x) + . . .<br />

[Bosch, Buchalla; Beneke, Feldman, Seidel; Ali, Lunghi, Parkhomenko]<br />

B(B 0 → ρ 0 γ)<br />

B(B 0 → K ∗0 γ) = 1 2<br />

∣ V td∣∣∣<br />

2<br />

∣ ξ −2 (1 + tiny)<br />

V ts<br />

No weak annihilation in B 0 , cleaner than B ±<br />

SU(3) breaking: ξ = 1.2 ± 0.1 (<strong>CKM</strong> ’05)<br />

[Ball, Zwicky; Becirevic; Mescia]<br />

Conservative? ξ − 1 is model dependent<br />

σ(ξ) = 0.2 doubles error estimate<br />

Could LQCD help more?<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

[New Belle observation + Babar bound]<br />

<strong>CKM</strong> fit<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

γ<br />

σ(ξ) = 0.2<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

β<br />

BR(B 0 → ρ 0 γ) / BR(B 0 → K* 0 γ)<br />

• Mild indication that ∆m s might not be right at the current lower limit?<br />

ρ<br />

1 – CL<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Z. Ligeti — p. 33


B → τ ν might also precede ∆m s<br />

• ∆m s is not the only way to eliminate the f B<br />

error in ∆m d ; f B cancels in Γ(B → τν)/∆m d<br />

If no exp. errors: determine |V ub /V td | independent<br />

of f B (left with B d ; ellipse for fixed V cb , V ts )<br />

If f B is known: get two circles that intersect at<br />

α ∼ 100 ◦ ⇒ powerful constraints<br />

Shown are 1 <strong>and</strong> 2σ contours with<br />

f B = 216 ± 9 ± 21 MeV [HPQCD]<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

excluded area has CL > 0.95<br />

B + → τ + ν<br />

<strong>CKM</strong> fit<br />

γ<br />

α<br />

β<br />

∆m d<br />

• Nailing down f B will remain essential<br />

-0.5<br />

R u<br />

/ R t<br />

= const<br />

Recall: ∆m s remains important to constrain NP<br />

entering B s <strong>and</strong> B d mixing differently (not just<br />

to determine |V td /V ts |)<br />

-1<br />

C K M<br />

f i t t e r<br />

Lattice 2005<br />

Constraint from B + → τ + ν τ<br />

<strong>and</strong> ∆m d<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

(B → τν usually quoted as upper bounds)<br />

ρ<br />

• Error of Γ(B → τν) will improve incrementally (precise only at a super B factory)<br />

∆m s will be instantly accurate when measured<br />

Z. Ligeti — p. 34


¢¤£¦¥§£¤¨<br />

©<br />

<br />

¡<br />

Photon polarization in B → K ∗ γ<br />

• SM predicts B(B → X s γ) correctly to ∼10%; rate does not distinguish b → sγ L,R<br />

SM: O 7 ∼ ¯s σ µν F µν (m b P R +m s P L )b , therefore mainly b → s L<br />

Photon must be left-h<strong>and</strong>ed to conserve J z along decay axis<br />

Inclusive B → X s γ<br />

Exclusive B → K ∗ γ<br />

γ<br />

b<br />

s<br />

γ<br />

B K *<br />

Assumption: 2-body decay<br />

Does not apply for b → sγg<br />

... quark model (s L implies J K∗<br />

z = −1)<br />

... higher K ∗ Fock states<br />

• Only measurement so far; had been expected to give S K ∗ γ = −2 (m s /m b ) sin 2β<br />

[Atwood, Gronau, Soni]<br />

Γ[B 0 (t) → K ∗ γ] − Γ[B 0 (t) → K ∗ γ]<br />

Γ[B 0 (t) → K ∗ γ] + Γ[B 0 (t) → K ∗ γ] = S K ∗ γ sin(∆m t) − C K ∗ γ cos(∆m t)<br />

• What is the SM prediction? What limits the sensitivity to new physics?<br />

Z. Ligeti — p. 35


Right-h<strong>and</strong>ed photons in the SM<br />

• Dominant source of “wrong-helicity” photons in the SM is O 2<br />

Equal b → sγ L , sγ R rates at O(α s ); calculated to O(α 2 sβ 0 )<br />

Inclusively only rates are calculable: Γ (brem)<br />

22 /Γ 0 ≃ 0.025<br />

Suggests: A(b → sγ R )/A(b → sγ L ) ∼ √ 0.025/2 = 0.11<br />

[Grinstein, Grossman, ZL, Pirjol]<br />

γ<br />

c<br />

b s<br />

O 2<br />

g<br />

• Exclusive B → K ∗ γ: factorizable part contains an operator that could contribute<br />

at leading order in Λ QCD /m b , but its B → K ∗ γ <strong>matrix</strong> element vanishes<br />

Subleading order: several contributions to B 0 → K 0∗ γ R , no complete study yet<br />

We estimate:<br />

A(B 0 → K 0∗ ( )<br />

γ R )<br />

A(B 0 → K 0∗ γ L ) = O C2 Λ QCD<br />

3C 7 m b<br />

∼ 0.1<br />

• Data: S K ∗ γ = −0.13±0.32 — both the measurement <strong>and</strong> the theory can progress<br />

Z. Ligeti — p. 36


Nonleptonic decays


Some motivations<br />

• Two hadrons in the final state are also a headache for us, just like for you<br />

Lot at stake, even if precision is worse<br />

Many observables sensitive to NP — can we disentangle from hadronic physics?<br />

– B → ππ, Kπ branching ratios <strong>and</strong> <strong>CP</strong> asymmetries (related to α, γ in SM)<br />

– Polarization in charmless B → V V decays<br />

• First derive correct expansion in m b ≫ Λ QCD limit, then worry about predictions<br />

– Need to test accuracy of expansion (even in B → ππ, |⃗p q | ∼ 1 GeV)<br />

– Sometimes model dependent additional inputs needed<br />

Z. Ligeti — p. 37


B → D (∗) π decays in SCET<br />

• Decays to π ± : proven that A ∝ F B→D f π is the leading order prediction<br />

Also holds in large N c , works at 5–10% level, need precise data to test mechanism<br />

B 0 → D + π − B − → D 0 π − B 0 → D + π −<br />

B − → D 0 π − B 0 → D 0 π 0 B 0 → D 0 π 0<br />

SCET: O(1) O(Λ QCD /Q) O(Λ QCD /Q) Q = {E π , m b,c }<br />

• Predictions:<br />

Predictions:<br />

B(B − → D (∗)0 π − )<br />

B(B 0 → D (∗)+ π − ) = 1 + O(Λ QCD/Q) ,<br />

B(B 0 → D 0 π 0 )<br />

B(B 0 → D ∗0 π 0 ) = 1 + O(Λ QCD/Q) ,<br />

data: ∼ 1.8 ± 0.2 (also for ρ)<br />

⇒ O(30%) power corrections<br />

[Beneke, Buchalla, Neubert, Sachrajda; Bauer, Pirjol, Stewart]<br />

data: ∼ 1.1 ± 0.25<br />

Unforeseen before SCET<br />

[Mantry, Pirjol, Stewart]<br />

Z. Ligeti — p. 38


Color suppressed B → D (∗)0 π 0 decays<br />

• Single class of power suppressed SCET I<br />

operators: T { O (0) , L (1)<br />

ξq , }<br />

L(1) ξq<br />

A(D (∗)0 M 0 ) = N M 0<br />

∫<br />

[Mantry, Pirjol, Stewart]<br />

(a)<br />

b<br />

d<br />

dz dx dk + 1 dk+ 2 T (i) (z) J (i) (z, x, k + 1 , k+ 2 ) S(i) (k +<br />

} {{<br />

1 , k+ 2<br />

}<br />

) φ M (x) + . . .<br />

complex − nonpert. strong phase<br />

c<br />

u<br />

d<br />

d<br />

( s )<br />

(b)<br />

b<br />

d<br />

u<br />

c<br />

u ( s )<br />

u ( s )<br />

Z. Ligeti — p. 39


Color suppressed B → D (∗)0 π 0 decays<br />

• Single class of power suppressed SCET I<br />

operators: T { O (0) , L (1)<br />

ξq , }<br />

L(1) ξq<br />

A(D (∗)0 M 0 ) = N M 0<br />

∫<br />

[Mantry, Pirjol, Stewart]<br />

(a)<br />

b<br />

d<br />

dz dx dk + 1 dk+ 2 T (i) (z) J (i) (z, x, k + 1 , k+ 2 ) S(i) (k +<br />

} {{<br />

1 , k+ 2<br />

}<br />

) φ M (x) + . . .<br />

complex − nonpert. strong phase<br />

c<br />

u<br />

d<br />

d<br />

( s )<br />

(b)<br />

b<br />

d<br />

u<br />

c<br />

u ( s )<br />

u ( s )<br />

• Not your garden variety factorization formula... S (i) (k + 1 , k+ 2<br />

) know about n<br />

〈D 0 (v ′ )|(¯h (c)<br />

S (0) (k + 1 , k+ 2 ) = v ′ S) n/P L (S † h (b)<br />

v<br />

)( ¯dS) k<br />

+ n/P L (S † u)<br />

1<br />

k<br />

+ | ¯B 0 (v)〉<br />

2<br />

√<br />

mB m D<br />

Separates scales, allows to use HQS without E π /m c = O(1) corrections<br />

(i = 0, 8 above)<br />

Z. Ligeti — p. 39


Color suppressed B → D (∗)0 π 0 decays<br />

• Single class of power suppressed SCET I<br />

operators: T { O (0) , L (1)<br />

ξq , }<br />

L(1) ξq<br />

A(D (∗)0 M 0 ) = N M 0<br />

∫<br />

[Mantry, Pirjol, Stewart]<br />

(a)<br />

b<br />

d<br />

dz dx dk + 1 dk+ 2 T (i) (z) J (i) (z, x, k + 1 , k+ 2 ) S(i) (k +<br />

} {{<br />

1 , k+ 2<br />

}<br />

) φ M (x) + . . .<br />

complex − nonpert. strong phase<br />

c<br />

u<br />

d<br />

d<br />

( s )<br />

(b)<br />

b<br />

d<br />

u<br />

c<br />

u ( s )<br />

u ( s )<br />

• Ratios: the △ = 1 relations follow from naive<br />

factorization <strong>and</strong> heavy quark symmetry<br />

A(D*M)<br />

A(D M)<br />

D 0 π 0 D<br />

0 η<br />

0 0<br />

D K<br />

<strong>The</strong> • = 1 relations do not — a prediction of<br />

SCET not foreseen by model calculations<br />

1.0<br />

π -<br />

D<br />

Also predict equal strong phases between<br />

+ π -D0 D + Ḏ0 Κ<br />

-<br />

Κ D + ρ - D 0 ρ -<br />

0.5<br />

amplitudes to D (∗) π in I = 1/2 <strong>and</strong> 3/2<br />

SCET prediction<br />

Data: δ(Dπ) = (30 ± 5) ◦ , δ(D ∗ π) = (31 ± 5) ◦ 0.0<br />

2.0<br />

1.5<br />

color allowed<br />

color suppressed<br />

* ω + ω<br />

[Blechman, Mantry, Stewart]<br />

’<br />

D 0<br />

η<br />

D 0 ρ 0<br />

D 0<br />

ω<br />

*<br />

Z. Ligeti — p. 39


Λ b <strong>and</strong> B s decays<br />

• CDF measured in 2003: Γ(Λ b → Λ + c π − )/Γ(B 0 → D + π − ) ≈ 2<br />

Factorization does not follow from large N c , but holds at<br />

leading order in Λ QCD /Q<br />

Γ(Λ b → Λ c π − (<br />

)<br />

ζ(w<br />

Λ<br />

Γ(B 0 → D (∗)+ π − ) ≃ 1.8 max ) ) 2<br />

ξ(wmax D(∗) )<br />

[Leibovich, ZL, Stewart, Wise]<br />

Isgur-Wise functions may be expected to be comparable<br />

Lattice could nail this<br />

• B s → D s π is pure tree, can help to determine relative size of E vs. C<br />

[CDF ’03: B(B s → D − s π+ )/B(B 0 → D − π + ) ≃ 1.35 ± 0.43 (using f s /f d = 0.26 ± 0.03)]<br />

Lattice could help: Factorization relates tree amplitudes, need SU(3) breaking in<br />

B s → D s l¯ν vs. B → Dl¯ν form factors from exp. or lattice<br />

Z. Ligeti — p. 40


More complicated: Λ b → Σ c π<br />

• Recall quantum numbers:<br />

Σ c = Σ c (2455), Σ ∗ c = Σ c(2520)<br />

multiplets s l I(J P )<br />

Λ c 0 0( 1 2+ )<br />

Σ c , Σ ∗ c 1 1( 1 2+ ), 1(<br />

3<br />

2<br />

+ )<br />

• Can’t address<br />

in naive factorization,<br />

since<br />

Λ b → Σ c form factor<br />

vanishes by isospin<br />

[Leibovich, ZL, Stewart, Wise]<br />

O(Λ QCD /Q) O(Λ QCD /Q) O(Λ 2 QCD /Q2 )<br />

• Prediction:<br />

Γ(Λ b → Σ ∗ cπ)<br />

Γ(Λ b → Σ c π) = 2 + O[ Λ QCD /Q , α s (Q) ] = Γ(Λ b → Σ ∗0<br />

c ρ 0 )<br />

Γ(Λ b → Σ 0 cρ 0 )<br />

Can avoid π 0 ’s from Λ b → Σ (∗)0<br />

c<br />

π 0 → Λ c π − π 0 or Λ b → Σ (∗)+<br />

c π − → Λ c π 0 π −<br />

Z. Ligeti — p. 41


Charmless B → M 1 M 2 decays<br />

• Limited consensus about implications of the heavy quark limit<br />

A = A c¯c + N<br />

[Bauer, Pirjol, Rothstein, Stewart; Chay, Kim; Beneke, Buchalla, Neubert, Sachrajda]<br />

[ ∫<br />

f M2 ζ BM 1<br />

du T 2ζ (u) φ M2 (u)<br />

A = A c¯c + N + f M2<br />

∫<br />

dzdu T 2J (u, z) ζ BM 1<br />

J<br />

(z) φ M2 (u) + (1 ↔ 2)<br />

• ζ BM 1<br />

J<br />

] B M<br />

p 2<br />

~ Λ2<br />

M’<br />

p 2<br />

~<br />

2<br />

Λ<br />

p 2 ~ Q 2<br />

p 2 ~ QΛ<br />

= ∫ dxdk + J(z, x, k + ) φ M1 (x) φ B (k + ) also appears in B → M 1 form factors<br />

⇒ Relations to semileptonic decays do not require expansion in α s ( √ ΛQ)<br />

• Charm penguins: suppression of long distance part argued, not proven<br />

Lore: “long distance charm loops”, “charming penguins”, “DD rescattering” are<br />

the same (unknown) term; may yield strong phases <strong>and</strong> other surprises<br />

p 2<br />

~<br />

2<br />

Λ<br />

• SCET: fit both ζ’s <strong>and</strong> ζ J ’s, calculate T ’s;<br />

QCDF: fit ζ’s, calculate factorizable<br />

(1st) terms perturbatively; PQCD: 1st line dominates <strong>and</strong> depends on k ⊥<br />

Z. Ligeti — p. 42


¤ ¢£© § ¡¡<br />

B → ππ amplitudes<br />

A +− = −λ u (T + P u ) − λ c P c − λ t P t = e −iγ T ππ − P ππ<br />

√<br />

2A00 = λ u (−C+P u )+λ c P c +λ t P t = e −iγ C ππ + P ππ<br />

[many, many authors, sorry!]<br />

<br />

√<br />

2A−0 = −λ u (T + C) = e −iγ (T ππ + C ππ )<br />

¡¡<br />

§ £©<br />

<br />

Alternatively, eliminate λ t terms, then e iβ P ππ<br />

′<br />

Diagrammatic language can be justified in SCET at leading order<br />

• We know: arg(T/C) = O(α s , Λ/m b ), P u is calculable (small),<br />

¢¡¤£¦¥ §¨¡©<br />

– P t : “chirally enhanced” power correction in QCDF (treated like others by BPRS)<br />

– P c : treated as O(1) in SCET (argued to be small by BBNS)<br />

• Isospin analysis: 6 observables determine weak phase + 5 hadronic parameters<br />

B(B → π 0 π 0 ) is large, so ∆α can be large, but C π 0 π0 is hard to measure<br />

• Can we use the theory constraint to determine α without C π 0 π 0?<br />

Z. Ligeti — p. 43


Phenomenology of B → ππ<br />

• Imposing a constraint on either ɛ ≡ Im(C ππ /T ππ ) or τ ≡ arg[T ππ /(C ππ + T ππ )]<br />

mixes “tree” <strong>and</strong> “penguin” amplitudes [expect ɛ, τ = O(α s , Λ/m b )]<br />

[Bauer, Rothstein, Stewart]<br />

• <strong>CKM</strong> fit ⇒ unexpectedly large τ (2σ)<br />

– large power corrections to T, C?<br />

– large up penguins?<br />

– large weak annihilation?<br />

1 – CL<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

[Höcker, Grossman, ZL, Pirjol]<br />

isospin analysis<br />

without C 00<br />

τ (t) = 0 <strong>and</strong> w/o C 00<br />

|τ (t) | < 5 o , 10 o , 20 o <strong>and</strong> w/o C 00<br />

τ (t) = 0 <strong>and</strong> with C 00<br />

<strong>CKM</strong> fit<br />

no α in fit<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

1 – CL<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

α<br />

(deg)<br />

20 o<br />

10 o<br />

5 o<br />

t-convention<br />

c-convention<br />

For α ∼ 90 ◦ ,<br />

ɛ ∼ 0.2 ↔ τ ∼ 5 ◦<br />

ɛ ∼ 0.4 ↔ τ ∼ 10 ◦<br />

For a given τ, theo <strong>and</strong> exp<br />

errors highly correlated<br />

t-convention<br />

fit without using C 00<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1 – CL<br />

1.2<br />

t-convention<br />

c-convention<br />

May be more applicable to B → ρρ 0<br />

-60 -40 -20 0 20 40 60<br />

τ (deg)<br />

-60 -40 -20 0 20 40 60<br />

τ (deg)<br />

Z. Ligeti — p. 44


Few comments<br />

• More work & data needed to underst<strong>and</strong> the expansions<br />

Why some predictions work at < ∼ 10% level, while others receive ∼30% corrections<br />

Clarify role of charming penguins, chirally enhanced terms, annihilation, etc.<br />

We have the tools to try to address the questions<br />

• Where can lattice help?<br />

– Semileptonic form factors (precision, include ρ <strong>and</strong> K ∗ , larger recoil)<br />

– Light cone distribution functions of heavy <strong>and</strong> light mesons<br />

– SU(3) breaking in form factors <strong>and</strong> distribution functions<br />

– Probably more remote: nonleptonic decays, nonlocal <strong>matrix</strong> elements<br />

– e.g., large B → π 0 π 0 rate in SCET accommodated by 〈k −1<br />

+ 〉 B = ∫ dk + φ B (k + )/k +<br />

Z. Ligeti — p. 45


<strong>The</strong> future


<strong>The</strong>oretical limitations (continuum methods)<br />

• Many interesting decay modes will not be theory limited for a long time<br />

Measurement (in SM) <strong>The</strong>oretical limit Present error<br />

B → ψK S (β) ∼ 0.2 ◦ 1.6 ◦<br />

B → φK S , η (′) K S , ... (β) ∼ 2 ◦ ∼ 10 ◦<br />

B → ππ, ρρ, ρπ (α) ∼ 1 ◦ ∼ 15 ◦<br />

B → DK (γ) ≪ 1 ◦ ∼ 25 ◦<br />

B s → ψφ (β s ) ∼ 0.2 ◦ —<br />

B s → D s K (γ − 2β s ) ≪ 1 ◦ —<br />

|V cb | ∼ 1% ∼ 3%<br />

|V ub | ∼ 5% ∼ 15%<br />

B → Xl + l − ∼ 5% ∼ 20%<br />

B → K (∗) ν ¯ν ∼ 5% —<br />

K + → π + ν ¯ν ∼ 5% ∼ 70%<br />

K L → π 0 ν ¯ν < 1% —<br />

It would require breakthroughs to go significantly below these theory limits<br />

Z. Ligeti — p. 46


Outlook<br />

• If there are new particles at TeV scale, new flavor physics could show up any time<br />

Belle & Babar data sets continue to double every ∼2 years, will reach ∼1000 fb −1<br />

each in a few years; B → J/ψK S was a well-defined target<br />

• Goal for further flavor physics experiments:<br />

If NP is seen in flavor physics: study it in as many different operators as possible<br />

If NP is not seen in flavor physics: achieve what’s theoretically possible<br />

Even in latter case, powerful constraints on model building in the LHC era<br />

• <strong>The</strong> program as a whole is a lot more interesting than any single measurement<br />

Z. Ligeti — p. 47


Conclusions<br />

• Much more is known about the flavor sector <strong>and</strong> <strong>CP</strong>V than few years ago<br />

<strong>CKM</strong> phase is probably the dominant source of <strong>CP</strong>V in flavor changing processes<br />

• Deviations from SM in B d mixing, b → s <strong>and</strong> even in b → d decays are constrained<br />

• New era: new set of measurements are becoming more precise than old ones;<br />

existing data could have shown NP, lot more is needed to achieve theoretical limits<br />

• <strong>The</strong> point is not just to measure magnitudes <strong>and</strong> phases of <strong>CKM</strong> elements (or ρ, η<br />

<strong>and</strong> α, β, γ), but to probe the flavor sector by overconstraining it in as many ways<br />

as possible (rare decays, correlations)<br />

• Many processes give clean information on short distance physics, <strong>and</strong> there is<br />

progress toward model independently underst<strong>and</strong>ing more observables<br />

Lattice QCD is important; in some cases the only way to make progress<br />

Z. Ligeti — p. 48


Thanks<br />

• To the organizers for the invitation, <strong>and</strong> for looking after our needs<br />

⇒<br />

• To A. Höcker, H. Lacker, Y. Nir, G. Perez, <strong>and</strong> I. Stewart for helpful discussions


Additional l Topics


Further interesting <strong>CP</strong>V modes


B → ρρ vs. ππ isospin analysis<br />

• Due to Γ ρ ≠ 0, ρρ in I = 1 possible, even for σ = 0<br />

[Falk, ZL, Nir, Quinn]<br />

Can have antisymmetric dependence on both the two ρ mesons’ masses <strong>and</strong> on<br />

their isospin indices ⇒ I = 1 (m i = mass of a pion pair; B = Breit-Wigner)<br />

A ∼ B(m 1 )B(m 2 ) 1 [<br />

f(m1 , m 2 ) ρ + (m 1 )ρ − (m 2 ) + f(m 2 , m 1 ) ρ + (m 2 )ρ − (m 1 ) ]<br />

2<br />

= B(m 1 )B(m 2 ) 1 { [f(m1<br />

, m 2 ) + f(m 2 , m 1 ) ][ ρ + (m 1 )ρ − (m 2 ) + ρ + (m 2 )ρ − (m 1 ) ]<br />

4<br />

} {{ }<br />

I=0,2<br />

+ [ f(m 1 , m 2 ) − f(m 2 , m 1 ) ][ ρ + (m 1 )ρ − (m 2 ) − ρ + (m 2 )ρ − (m 1 ) ] }<br />

} {{ }<br />

I=1<br />

If Γ ρ vanished, then m 1 = m 2 <strong>and</strong> I = 1 part is absent<br />

E.g., no symmetry in factorization: f(m ρ −, m ρ +) ∼ f ρ (m ρ +) F B→ρ (m ρ −)<br />

• Cannot rule out O(Γ ρ /m ρ ) contributions; no interference ⇒ O(Γ 2 ρ/m 2 ρ) effects<br />

Can ultimately constrain these using data<br />

Z. Ligeti — p. i


<strong>CP</strong>V in neutral meson mixing<br />

• <strong>CP</strong>V in mixing <strong>and</strong> decay: typically sizable hadronic uncertainties<br />

Flavor eigenstates: |B 0 〉 = |b d〉, |B 0 〉 = |b d〉<br />

i d ( |B 0 )<br />

(t)〉<br />

dt |B 0 =<br />

(t)〉<br />

(<br />

M − i 2 Γ )( |B 0 (t)〉<br />

|B 0 (t)〉<br />

)<br />

b<br />

d<br />

W<br />

t<br />

t<br />

W<br />

d<br />

b<br />

b<br />

d<br />

t<br />

W<br />

W<br />

t<br />

d<br />

b<br />

Mass eigenstates: |B L,H 〉 = p|B 0 〉 ± q|B 0 〉<br />

• <strong>CP</strong>V in mixing: Mass eigenstates ≠ <strong>CP</strong> eigenstates (|q/p| ≠ 1 <strong>and</strong> 〈B H |B L 〉 ≠ 0)<br />

Best limit from semileptonic asymmetry (4Re ɛ)<br />

[NLO: Beneke et al.; Ciuchini et al.]<br />

A SL = Γ[B0 (t) → l + X] − Γ[B 0 (t) → l − X]<br />

Γ[B 0 (t) → l + X] + Γ[B 0 (t) → l − X] = 1 − |q/p|4 = (−0.0026 ± 0.0067)<br />

1 + |q/p|<br />

4<br />

⇒ |q/p| = 1.0013 ± 0.0034<br />

Allowed range ≫ than SM region, but already sensitive to NP<br />

[dominated by BELLE]<br />

[Laplace, ZL, Nir, Perez]<br />

Z. Ligeti — p. ii


B s → ψφ <strong>and</strong> B s → ψη (′)<br />

• Analog of B → ψK S in B s decay — determines the phase between B s mixing<br />

<strong>and</strong> b → c¯cs decay, β s , as cleanly as sin 2β from ψK S<br />

β s is a small O(λ 2 ) angle in one of the<br />

“squashed” unitarity triangles<br />

1<br />

0.8<br />

[update of Laplace, ZL, Nir, Perez]<br />

C K M<br />

f i t t e r<br />

LP 2005<br />

sin 2β s = 0.0346 +0.0026<br />

−0.0020<br />

ψφ is a VV state, so the asymmetry is<br />

diluted by the <strong>CP</strong> -odd component<br />

ψη (′) , however, is pure <strong>CP</strong> -even<br />

1 – CL<br />

0.6<br />

0.4<br />

0.2<br />

1σ<br />

2σ<br />

0<br />

0.025 0.03 0.035 0.04 0.045<br />

sin(2β s<br />

)<br />

• Large asymmetry (sin 2β s > 0.05) would be clear sign of new physics<br />

Z. Ligeti — p. iii


B s → D ± s K∓ <strong>and</strong> B 0 → D (∗)± π ∓<br />

• Single weak phase in each B s , B s → D ± s K ∓ decay ⇒ the 4 time dependent rates<br />

determine 2 amplitudes, strong, <strong>and</strong> weak phase (clean, although |f〉 ≠ |f <strong>CP</strong> 〉)<br />

A<br />

Four amplitudes: B<br />

1<br />

s → D s + K − A<br />

(b → cus) , B<br />

2<br />

s → K + Ds<br />

−<br />

(b → ucs)<br />

A<br />

Four amplitudes: B<br />

1<br />

s → Ds − K + A<br />

(b → cus) , B<br />

2<br />

s → K − D s<br />

+ (b → ucs)<br />

A D<br />

+ s K −<br />

= A (<br />

1 Vcb V ∗ )<br />

A<br />

us<br />

D<br />

−<br />

A D<br />

+ s K − A 2 Vub ∗ V ,<br />

s K +<br />

= A (<br />

2 Vub V ∗ )<br />

cs<br />

cs A D<br />

− s K + A 1 V ∗<br />

cb V us<br />

Magnitudes <strong>and</strong> relative strong phase of A 1 <strong>and</strong> A 2 drop out if four time dependent<br />

rates are measured ⇒ no hadronic uncertainty:<br />

( ) V<br />

∗ 2 (<br />

λ D<br />

+ s K − λ D<br />

− s K + = tb<br />

V ts Vcb V ∗ )(<br />

us Vub V ∗ )<br />

cs<br />

V tb Vts<br />

∗ Vub ∗ V cs Vcb ∗V<br />

= e −2i(γ−2β s−β K )<br />

us<br />

• Similarly, B d → D (∗)± π ∓ determines γ + 2β, since λ D + π − λ D − π + = e−2i(γ+2β)<br />

... ratio of amplitudes O(λ 2 ) ⇒ small asymmetries (<strong>and</strong> tag side interference)<br />

Z. Ligeti — p. iv


A near future (& personal) best buy list<br />

• β: reduce error in B → φK S , η ′ K S , K + K − K S (<strong>and</strong> D (∗) D (∗) ) modes<br />

• α: refine ρρ (search for ρ 0 ρ 0 ); ππ (improve C 00 ); ρπ Dalitz<br />

• γ: pursue all approaches, impressive start<br />

• β s : is <strong>CP</strong>V in B s → ψφ small?<br />

• |V td /V ts |: B s mixing (Tevatron may still have a chance)<br />

• Rare decays: B → X s γ near theory limited; B → X s l + l − is becoming comparably<br />

precise<br />

• |V ub |: reaching < ∼ 10% will be very significant (a Babar/Belle measurement that<br />

may survive LHCB)<br />

• Pursue B → lν, search for “null observables”, a <strong>CP</strong> (b → sγ), etc., for enhancement<br />

of B (s) → l + l − , etc.<br />

(apologies if your favorite decay omitted!)<br />

Z. Ligeti — p. v


More slides removed


£<br />

¥<br />

£<br />

¦<br />

¢<br />

¤ £<br />

¡<br />

£<br />

<br />

©<br />

¨¨<br />

<br />

¨¨<br />

© £<br />

<br />

£<br />

¡<br />

£<br />

£<br />

¦<br />

¢<br />

∆m K , ɛ K are built in NP models since 70’s<br />

• If tree-level exchange of a heavy gauge boson was responsible for a significant<br />

fraction of the measured value of ɛ K<br />

§ § § § § §<br />

¤ ¥<br />

|ɛ K | ∼<br />

∣ Im M 12∣∣∣<br />

∣ ∼<br />

∆m K<br />

g 2 Λ 3 QCD<br />

∣MX 2 ∆m ∣ ⇒ M X ∼ g × 6 · 10 4 TeV<br />

K<br />

Similarly, from B 0 − B 0 mixing: M X ∼ g × 3 · 10 2 TeV<br />

• New particles at TeV scale can have large contributions in loops [g ∼ O(10 −2 )]<br />

Pattern of deviations/agreements with SM may distinguish between models<br />

Z. Ligeti — p. vi


K 0 − K 0 mixing <strong>and</strong> supersymmetry<br />

• (∆m K) SUSY<br />

(∆m K ) EXP<br />

( ) 2 ( ) 1 TeV ∆ ˜m<br />

2 2 ∼ 12<br />

104 ˜m ˜m 2 Re [ (KL) d 12 (KR) d ]<br />

12<br />

KL(R) d : mixing in gluino couplings to left-(right-)h<strong>and</strong>ed down quarks <strong>and</strong> squarks<br />

Constraint from ɛ K : replace 10 4 Re [ (KL d) 12(KR d ) 12]<br />

with ∼ 10 6 Im [ (KL d) 12(KR d ) ]<br />

12<br />

• Solutions to supersymmetric flavor problems:<br />

(i) Heavy squarks: ˜m ≫ 1 TeV<br />

(ii) Universality: ∆m 2˜Q, ˜D<br />

≪ ˜m 2<br />

(GMSB)<br />

(iii) Alignment: |(K d L,R ) 12| ≪ 1 (Horizontal symmetry)<br />

<strong>The</strong> <strong>CP</strong> problems (ɛ (′)<br />

K<br />

, EDM’s) are alleviated if relevant <strong>CP</strong>V phases ≪ 1<br />

• With many measurements, we can try to distinguish between models<br />

Z. Ligeti — p. vii


Precision tests with Kaons<br />

• <strong>CP</strong>V in K system is at the right level (ɛ K accommodated with O(1) <strong>CKM</strong> phase)<br />

Hadronic uncertainties preclude precision tests (ɛ ′ K<br />

notoriously hard to calculate)<br />

• K → πνν: <strong>The</strong>oretically clean, but rates small B ∼ 10 −10 (K ± ), 10 −11 (K L )<br />

⎧<br />

⎪⎨ (λ 5 m 2 t) + i(λ 5 m 2 ¡<br />

t) t : <strong>CKM</strong> suppressed<br />

A ∝ (λ m 2 c) + i(λ 5 m 2 c) c : GIM<br />

¤¦¥¨§©¥<br />

suppressed<br />

⎪⎩<br />

(λ Λ 2 QCD ) u : GIM suppressed<br />

£ ¦¨©<br />

¢<br />

<br />

<br />

<br />

So far three events observed: B(K + → π + ν¯ν) = (1.47 +1.30<br />

−0.89 ) × 10−10<br />

• Need much higher statistics to make definitive tests<br />

Z. Ligeti — p. viii


<strong>The</strong> D meson system<br />

• Complementary to K, B: <strong>CP</strong>V, FCNC both GIM & <strong>CKM</strong> suppressed ⇒ tiny in SM<br />

– Only meson where mixing is generated by down type quarks (SUSY: up squarks)<br />

– D mixing expected to be small in the SM, since it is DCS <strong>and</strong> vanishes in the<br />

flavor SU(3) symmetry limit<br />

– Involves only the first two generations: <strong>CP</strong>V > 10 −3 would be unambiguously<br />

new physics<br />

– Only neutral meson where mixing has not been observed; possible hint:<br />

y <strong>CP</strong> =<br />

Γ(<strong>CP</strong> even) − Γ(<strong>CP</strong> odd)<br />

Γ(<strong>CP</strong> even) + Γ(<strong>CP</strong> odd)<br />

= (0.9 ± 0.4)% [Babar, Belle, Cleo, Focus, E791]<br />

• At the present level of sensitivity, <strong>CP</strong>V would be the only clean signal of NP<br />

Can lattice help to underst<strong>and</strong> the SM prediction for D − D mixing?<br />

Z. Ligeti — p. ix


Polarization in charmless B → V V<br />

B decay<br />

Longitudinal polarization fraction<br />

BELLE<br />

BABAR<br />

ρ − ρ + 0.98 +0.02<br />

−0.03<br />

ρ 0 ρ + 0.95 ± 0.11 0.97 +0.05<br />

−0.08<br />

ωρ + 8 +0.12<br />

−0.15<br />

ρ 0 K ∗+ 0.96 +0.06<br />

−0.16<br />

ρ − K ∗0 0.43<br />

−0.11 +0.12 0.79 ± 0.09<br />

φK ∗0 0.45 ± 0.05 0.52 ± 0.05<br />

φK ∗+ 0.52 ± 0.09 0.46 ± 0.12<br />

s<br />

Chiral structure of SM <strong>and</strong><br />

HQ limit claimed to imply<br />

b<br />

f L = 1 − O(1/m 2 b ) [Kagan]<br />

s<br />

(s b) V-A (s s) V-A<br />

φK ∗ : penguin dominated — NP reduces f L ?<br />

s<br />

d<br />

Proposed explanations:<br />

b<br />

d,s<br />

c<br />

....<br />

α s(mv)<br />

α s ( )<br />

c<br />

q µ<br />

q<br />

q<br />

d<br />

(d b) S-P (s d) S+P<br />

b<br />

s<br />

s<br />

s<br />

d<br />

B<br />

✲<br />

D (∗)<br />

s<br />

✒<br />

<br />

❅<br />

❘ ❅❅❅<br />

D (∗)<br />

✈ ✲<br />

D s<br />

(∗)<br />

✻<br />

✈<br />

✲<br />

φ<br />

K ∗<br />

¢¡¢<br />

¢¡¢<br />

¢¡¢<br />

K* T s<br />

g* T<br />

b<br />

φ T<br />

O(1) O(1/m 2 b<br />

) × large (model) (model)<br />

c penguin [Bauer et al.]; penguin annihilation [Kagan]; rescattering [Colangelo et al.]; g fragment. [Hou, Nagashima]<br />

• Can it be made a clean signal of NP?<br />

q<br />

¢¡¢<br />

Z. Ligeti — p. x


B → πK rates <strong>and</strong> <strong>CP</strong> asymmetries<br />

Sensitive to interference<br />

between b → s penguin<br />

<strong>and</strong> b → u tree (<strong>and</strong><br />

possible NP)<br />

Decay mode <strong>CP</strong> averaged B [×10 −6 ] A <strong>CP</strong><br />

B 0 → π + K − 18.2 ± 0.8 −0.11 ± 0.02<br />

B − → π 0 K − 12.1 ± 0.8 +0.04 ± 0.04<br />

B − → π − K 0 24.1 ± 1.3 −0.02 ± 0.03<br />

B 0 → π 0 K 0 11.5 ± 1.0 +0.00 ± 0.16<br />

[Fleischer & Mannel, Neubert & Rosner; Lipkin; Buras & Fleischer; Yoshikawa; Gronau & Rosner; Buras et al.; ...]<br />

R c ≡ 2 B(B+ → π 0 K + ) + B(B − → π 0 K − )<br />

B(B + → π + K 0 ) + B(B − → π − K 0 )<br />

= 1.00 ± 0.08<br />

R n ≡ 1 2<br />

B(B 0 → π − K + ) + B(B 0 → π + K − )<br />

B(B 0 → π 0 K 0 ) + B(B 0 → π 0 K 0 )<br />

= 0.79 ± 0.08<br />

R ≡ B(B0 → π − K + ) + B(B 0 → π + K − )<br />

B(B + → π + K 0 ) + B(B − → π − K 0 )<br />

τ B ±<br />

τ B 0<br />

= 0.82 ± 0.06 ⇒ FM bound : γ < 75 ◦ (95% CL)<br />

R L ≡ 2 ¯Γ(B − → π 0 K − ) + ¯Γ(B 0 → π 0 K 0 )<br />

¯Γ(B − → π − K 0 ) + ¯Γ(B 0 → π + K − )<br />

= 1.12 ± 0.07<br />

• Pattern quite different than until 2004: R c closer to 1, while R further from 1<br />

No strong motivation for NP contribution to EW penguin, will be exciting to sort out<br />

Z. Ligeti — p. xi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!