01.05.2015 Views

Thermoelectric properties of quasicrystals

Thermoelectric properties of quasicrystals

Thermoelectric properties of quasicrystals

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THERMOELECTRIC<br />

PROPERTIES OF<br />

QUASICRYSTALS<br />

Ante Bilušić<br />

University <strong>of</strong> Split, Croatia


Outline<br />

General introduction to <strong>quasicrystals</strong><br />

Transport in<br />

icosahedral quasicrystal<br />

decagonal quasicrystal<br />

approximant<br />

Figure <strong>of</strong> merit<br />

Conclusions


A general intro to <strong>quasicrystals</strong><br />

Daniel Shechtman, April 8, 1984:<br />

„There can be no such creature.”


A general intro to <strong>quasicrystals</strong><br />

„Hard”, intermetallic <strong>quasicrystals</strong><br />

binary and ternary intermetallics


A general intro to <strong>quasicrystals</strong><br />

Mathematical QC structures<br />

Penrose tiling<br />

Arab artists (13th – 15th century)


A general intro to <strong>quasicrystals</strong><br />

Fibbonacci series


A general intro to <strong>quasicrystals</strong><br />

Fibbonacci chain


Crystallography <strong>of</strong> <strong>quasicrystals</strong><br />

Two ways <strong>of</strong> QC structure description<br />

tiling („quasilattice”) approach<br />

e.g., decagonal d-Al-Co-Ni


Crystallography <strong>of</strong> <strong>quasicrystals</strong><br />

Two ways <strong>of</strong> QC structure description<br />

higher-dimensional approach<br />

• Fibonacci chain (1D QC)<br />

• decagonal QC:<br />

projection <strong>of</strong> 5D hypercube<br />

on 3D real space


Crystallography <strong>of</strong> <strong>quasicrystals</strong><br />

Two ways <strong>of</strong> QC structure description<br />

higher-dimensional approach<br />

• Fibonacci chain (1D QC)<br />

• 1D approximant


Motivation<br />

What makes a main influence on transport in a<br />

quasicrystal: quasiperiodicity or complex local<br />

atomic structure?<br />

The role <strong>of</strong> electronic structure <strong>of</strong> <strong>quasicrystals</strong><br />

to electronic transport?


Anisotropy in transport:<br />

icosahedral <strong>quasicrystals</strong><br />

<br />

<br />

<br />

<br />

Icosahedron: 20 triangular faces, 30 edges, 12 vertices<br />

C 2 axes: perpendicular to tw<strong>of</strong>old planes and mutually<br />

Cartesian axes<br />

C 3 and C 5 : three- and five-fold axes<br />

E.g.: electrical conductivity tensor (rank two)<br />

<br />

<br />

<br />

C 2 axes in x, y, and z directions<br />

<strong>of</strong>f-diagonal elements are zero<br />

x,y, and z axes are related by C 3 symmetry ops.<br />

diagonal elements are equal<br />

No anisotropy


Anisotropy in transport:<br />

decagonal <strong>quasicrystals</strong> (d-Al-Co-<br />

Ni)<br />

Quasiperiodic plane is perpendicular to<br />

periodic [00001] 10-fold axes<br />

Two sets <strong>of</strong> ten 2-fold axes (2 and 2’)<br />

<br />

mutually rotated by 18°<br />

two emphasized ones are perpendicular<br />

Axes:<br />

x: axis 2<br />

y: axis 2’<br />

z: axis [00001]<br />

<br />

Anisotropy between quasiperiodic and periodic axes.


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Ag 42 In 42 Yb 16<br />

<br />

Electrical resistivity<br />

Four-probe, dc method<br />

r 2 , r 3 , and r 5 : measured along<br />

2-, 3-, and 5-fold axes<br />

When normalized, no anisotropy is<br />

observed, unles for 5-fold axis direction,<br />

probably due to enhanced concentration<br />

<strong>of</strong> defects<br />

Bobnar et al., PRB 84 134205


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Ag 42 In 42 Yb 16<br />

<br />

<strong>Thermoelectric</strong> power<br />

Steady-state method<br />

S 2 , S 3 , S 5 coincide.<br />

<br />

Thermal conductivity<br />

Steady-state method<br />

Anisotropy is small and comparable<br />

to measuremnts uncertainity<br />

Bobnar et al., PRB 84 134205


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Al 64 Cu 23 Fe 13<br />

<br />

Kubo-Greenwood formalism:<br />

Dolinšek et al., PRB 76 054201


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Al 64 Cu 23 Fe 13<br />

<br />

Kubo-Greenwood formalism:<br />

<br />

H. Solbrig, C.V. Landauro<br />

Dolinšek et al., PRB 76 054201


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Al 64 Cu 23 Fe 13<br />

<br />

Kubo-Greenwood formalism:<br />

<br />

H. Solbrig, C.V. Landauro<br />

Dolinšek et al., PRB 76 054201<br />

Tunneling spectra (differential conductivity)<br />

<strong>of</strong> <strong>quasicrystals</strong> and approximant phases.<br />

Davydov et al., PRL 77 3173


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Al 64 Cu 23 Fe 13<br />

<br />

Thermal conductivity: electronic + quasilattice<br />

<br />

electron thermal conductivity???<br />

Drude theory (Wiedemann-Franz law)<br />

Kubo-Greenwood formalism<br />

Dolinšek et al., PRB 76 054201


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Al 64 Cu 23 Fe 13<br />

<br />

Thermal conductivity: electronic + quasilattice<br />

<br />

quasilattice thermal conductivity<br />

<br />

Debye contribution (long-wavelength phonons only)<br />

(Matthiesen’s rule)<br />

Vibration spectrum<br />

<strong>of</strong> Fibonacci chain<br />

Kalugin et al., PRB 536 14145<br />

Dolinšek et al., PRB 76 054201


Icosahedral <strong>quasicrystals</strong>:<br />

example <strong>of</strong> i-Al 64 Cu 23 Fe 13<br />

<br />

Thermal conductivity: electronic + quasilattice<br />

<br />

quasilattice thermal conductivity<br />

<br />

Contribution <strong>of</strong> inter-cluster hopping<br />

<strong>of</strong> localized vibrations:<br />

<br />

Total thermal conductivity<br />

Dolinšek et al., PRB 76 054201


Bobnar et al, PRB 85 02420<br />

Decagonal <strong>quasicrystals</strong>:<br />

example <strong>of</strong> d-Al 69.7 Co 10.0 Ni 20.3


Bobnar et al, PRB 85 02420<br />

Decagonal <strong>quasicrystals</strong>:<br />

example <strong>of</strong> d-Al 69.7 Co 10.0 Ni 20.3


Approximant phase:<br />

Dolinšek et al., PRB 76 17420<br />

o-Al 80 Cr 15 Fe 5<br />

a-direction corresponds to<br />

periodic one in d-QC while<br />

b and c to quasiperiodic directions


<strong>Thermoelectric</strong> figure <strong>of</strong> merit:<br />

example <strong>of</strong> i-AlPdRe<br />

An ideal thermoelectric material: phonon glass<br />

– electron crystal<br />

Seebeck effect<br />

cold<br />

warm<br />

Peltier effect<br />

<strong>Thermoelectric</strong> device<br />

heating<br />

cooling


<strong>Thermoelectric</strong> figure <strong>of</strong> merit:<br />

example <strong>of</strong> i-AlPdRe<br />

An ideal thermoelectric material: phonon glass<br />

– electron crystal<br />

has to create as less as possible Joule heat<br />

(small resistance)<br />

has to transfer electricity to heat as better as<br />

possible<br />

(large thermoelectric power)<br />

has to be as poorer as possible heat conductor<br />

thermoelectric figure <strong>of</strong> merit<br />

(the good one: ZT > 3 or 4):


<strong>Thermoelectric</strong> figure <strong>of</strong> merit:<br />

example <strong>of</strong> i-AlPdRe<br />

3<br />

2<br />

1<br />

0


Conclusions<br />

Quasiperidicity does not have a key-role in<br />

transport; the complex atomic order defines it.<br />

Pseudogap in vicinity <strong>of</strong> Fermi level is important<br />

for electronic transport in i-QC.<br />

No transport anisotropy for i-QC; anisotropy<br />

between periodic and quasiperiodic directions in<br />

d-QC.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!