09.05.2015 Views

Example 1 - Materials Computation Center - University of Illinois at ...

Example 1 - Materials Computation Center - University of Illinois at ...

Example 1 - Materials Computation Center - University of Illinois at ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

<strong>Example</strong> 1<br />

Bulk silicon


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Instructions (I)<br />

• Have a look <strong>at</strong> the input file (silicon.fdf)<br />

• Run siesta:<br />

siesta < silicon.fdf | tee silicon.out<br />

• Check output file (silicon.out):<br />

• System type<br />

• Mesh cut<strong>of</strong>f<br />

• SCF steps<br />

• Forces & stress tensor<br />

• Find eigen-energies file (silicon.EIG)


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

• SystemName silicon<br />

• SystemLabel silicon<br />

• NumberOfAtoms 2<br />

• NumberOfSpecies 1<br />

silicon.fdf<br />

• %block ChemicalSpeciesLabel<br />

• 1 14 Si<br />

• %endblock ChemicalSpeciesLabel<br />

• L<strong>at</strong>ticeConstant 5.430 Ang<br />

• %block L<strong>at</strong>ticeVectors<br />

• 0.500 0.500 0.000<br />

• 0.500 0.000 0.500<br />

• 0.000 0.500 0.500<br />

• %endblock L<strong>at</strong>ticeVectors<br />

• AtomicCoordin<strong>at</strong>esForm<strong>at</strong> ScaledCartesian<br />

• %block AtomicCoordin<strong>at</strong>esAndAtomicSpecies<br />

• 0.000 0.000 0.000 1 Si<br />

• 0.250 0.250 0.250 1 Si<br />

• %endblock AtomicCoordin<strong>at</strong>esAndAtomicSpecies


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Instructions (II)<br />

• Check silicon.long.fdf<br />

• Run silicon.long.fdf :<br />

• Plot band structure.<br />

• Use gnubands<br />

• Plot bands.d<strong>at</strong><br />

• xmgrace bands.d<strong>at</strong> &<br />

• Select correct range <strong>of</strong> energies<br />

siesta < silicon.long.fdf | tee silicon.out<br />

gnubands


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Plot bandstructure


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Instructions (III)<br />

• See in the output file, or using silicon.WFS, the<br />

contributions <strong>of</strong> each orbitals to the bands <strong>at</strong> Γ:<br />

• Open “input.wfs”<br />

• Execute readwf<br />

readwf < input.wfs<br />

• The ouput is in silicon.wfs.d<strong>at</strong>


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Instructions (IV)<br />

• Plot the Density Of St<strong>at</strong>es (DOS)<br />

• Modify the silicon.EIG file<br />

• Use the eig2dos utility<br />

• Plot the d<strong>at</strong>a<br />

eig2dos < silicon.EIG | tee dos,d<strong>at</strong><br />

• xmgrace dos.d<strong>at</strong> &<br />

• Select the range <strong>of</strong> energies


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

silicon.EIG<br />

# bands<br />

Fermi level<br />

# k-points<br />

add: “eta”, “ne”, “emin”, “emax”<br />

# Spin<br />

components<br />

K-point, e 1<br />

, e 2<br />

, …, e n


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Instructions (IV)<br />

• Plot the Density Of St<strong>at</strong>es (DOS)<br />

• Modify the silicon.EIG file<br />

• Use the eig2dos utility<br />

• Plot the d<strong>at</strong>a<br />

eig2dos < silicon.EIG | tee dos,d<strong>at</strong><br />

• xmgrace dos.d<strong>at</strong> &<br />

• Select the range <strong>of</strong> energies


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Instructions (V)<br />

• Write down the energy.<br />

• Repe<strong>at</strong> the siesta run with different grids:<br />

• Edit the fdf, changing MeshCut<strong>of</strong>f to 40, 50, 80,<br />

100, 120, 180 and 260 Ry. Write down the total<br />

energies.<br />

• Check in the output file the real value <strong>of</strong> the<br />

MeshCut<strong>of</strong>f used in each calcul<strong>at</strong>ion.<br />

• Plot the Energy vs. MeshCut<strong>of</strong>f, to see the<br />

convergence


SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> Urbana-Champaign, June 13-23, 2005<br />

Instructions (VI)<br />

• Write down the energy.<br />

• Repe<strong>at</strong> the siesta run with different kgrid_cut<strong>of</strong>f:<br />

• Edit the fdf, changing kgrid_cut<strong>of</strong>f to 5, 10, 15, 20,<br />

25, 30 , 35, 40 and 45 bohr. Write down the total<br />

energies.<br />

• Check in the output file the number <strong>of</strong> k-points used<br />

in each calcul<strong>at</strong>ion.<br />

• Plot the Energy vs. # k-points, to see the convergence

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!