10.05.2015 Views

Fuzzy Cognitive Map for Health Assessment of IEC 61850 ... - aceps

Fuzzy Cognitive Map for Health Assessment of IEC 61850 ... - aceps

Fuzzy Cognitive Map for Health Assessment of IEC 61850 ... - aceps

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fuzzy</strong> <strong>Cognitive</strong> <strong>Map</strong> <strong>for</strong> <strong>Health</strong> <strong>Assessment</strong> <strong>of</strong> <strong>IEC</strong><br />

<strong>61850</strong> Based Devices and Functions<br />

Salman Mohagheghi<br />

ABB Inc., US Corporate Research Center, Raleigh, NC, USA<br />

© ABB Group<br />

March 3, 2011 | Slide 1


Contents<br />

Introduction<br />

Communication within the Substation<br />

Overview <strong>of</strong> <strong>IEC</strong> <strong>61850</strong><br />

Communication Services<br />

Data Model<br />

<strong>Health</strong> State <strong>of</strong> Devices and Functions<br />

<strong>Cognitive</strong> <strong>Map</strong>s<br />

Historical Approach<br />

<strong>Fuzzy</strong> Logic<br />

<strong>Fuzzy</strong> <strong>Cognitive</strong> <strong>Map</strong>s<br />

Case Studies<br />

Concluding Remarks<br />

© ABB Group<br />

March 3, 2011 | Slide 2


Introduction<br />

Smart Grid<br />

Communication and metering infrastructure<br />

Self-healing mechanisms<br />

Desired power quality level<br />

Advanced monitoring systems<br />

Efficient demand responsive programs<br />

Future pro<strong>of</strong> design<br />

Interoperable infrastructure<br />

© ABB Group<br />

March 3, 2011 | Slide 3


Communication within the Substations<br />

<strong>IEC</strong> <strong>61850</strong> Overview<br />

<strong>IEC</strong> <strong>61850</strong> is a standard specifically designed <strong>for</strong> implementing<br />

substation automation (SA) systems.<br />

The main features <strong>of</strong> the standard are:<br />

Data Modeling- Object oriented plat<strong>for</strong>m-independent<br />

modeling <strong>of</strong> all the functions.<br />

Fast Transfer <strong>of</strong> Events and Messages- GOOSE and<br />

GSSE <strong>for</strong> the peer-to-peer communication mode.<br />

Setting Groups- Control blocks allow the user to switch<br />

from any active group <strong>of</strong> setting values to another.<br />

Sampled Values- Transfer <strong>of</strong> sampled values from modern<br />

switchgear and nonconventional CT/VTs.<br />

Data Storage and Representation- Configured data <strong>of</strong> the<br />

substation is stored in XML <strong>for</strong>mat using the Substation<br />

Configuration Language (SCL).<br />

© ABB Group<br />

March 3, 2011 | Slide 4


Communication within the Substations<br />

<strong>IEC</strong> <strong>61850</strong> Substation Automation Topology<br />

© ABB Group<br />

March 3, 2011 | Slide 5


Communication within the Substations<br />

Services<br />

© ABB Group<br />

March 3, 2011 | Slide 6


Communication within the Substations<br />

Logical Node<br />

<br />

<br />

<br />

<br />

Virtual Units: objects defined in<br />

the object oriented context <strong>of</strong><br />

the standard.<br />

LN is a collection <strong>of</strong> data<br />

objects, data-set objects,<br />

descriptive attributes, report<br />

control objects, log-control<br />

objects and a list <strong>of</strong> sampled<br />

values.<br />

The type <strong>of</strong> data contained in a<br />

LN can be operational (e.g.<br />

measurement values, position<br />

status) or configuration data<br />

(e.g. IED self descriptive).<br />

The substation automation<br />

functions are broken down into<br />

LNs.<br />

© ABB Group<br />

March 3, 2011 | Slide 7


Communication within the Substations<br />

<strong>IEC</strong> <strong>61850</strong> Data Models<br />

© ABB Group<br />

March 3, 2011 | Slide 8


Communication within the Substations<br />

<strong>Health</strong> State in <strong>IEC</strong> <strong>61850</strong><br />

<br />

<strong>IEC</strong> <strong>61850</strong> defines health attributes <strong>for</strong> the logical nodes and<br />

the external devices connected to them. These include:<br />

<br />

<br />

<br />

<strong>Health</strong>: state <strong>of</strong> the logical node related to hardware or<br />

s<strong>of</strong>tware. Mandatory data with three states:<br />

<br />

<br />

<br />

Ok (green): no problems, normal operation<br />

Warning (yellow): minor problems, but in safe operation<br />

mode<br />

Alarm (red): severe problem, no operation possible<br />

EE<strong>Health</strong>: state <strong>of</strong> the external equipment, <strong>for</strong> example a<br />

circuit breaker controlled by the logical node XCBR.<br />

Optional data with the above three states.<br />

Phy<strong>Health</strong>: Mandatory attribute that refers to the health<br />

state <strong>of</strong> the physical device.<br />

© ABB Group<br />

March 3, 2011 | Slide 9


<strong>Cognitive</strong> <strong>Map</strong>s<br />

Historical Approach<br />

Introduced in 1970s <strong>for</strong> representing social scientific<br />

knowledge.<br />

Signed digraphs where a positive link from vertex A to vertex<br />

B indicates that A causally increases B, whereas a negative<br />

link from A to B means that should A happen, the chances <strong>of</strong><br />

B happening are reduced.<br />

Indirect Effect <strong>of</strong> A on B over the path pi is negative if the<br />

number <strong>of</strong> negative signs (<strong>of</strong> the edges) is odd, and<br />

positive otherwise.<br />

Total Effect <strong>of</strong> A on B would then be derived from the<br />

indirect effects over all possible paths: the total effect <strong>of</strong><br />

A on B is negative if all the indirect effects are negative,<br />

is positive if all the indirect effects are positive, and<br />

indeterminate otherwise.<br />

© ABB Group<br />

March 3, 2011 | Slide 10


<strong>Cognitive</strong> <strong>Map</strong>s<br />

Weighted Approach<br />

Alternative Solution: creating a weighted digraph<br />

removes the uncertainty related to the sign calculations<br />

requires higher level <strong>of</strong> granularity in defining the<br />

dependencies <strong>of</strong> causes on one another<br />

w<br />

AB p<br />

= wA<br />

, j<br />

× w<br />

j , j<br />

× L w<br />

j , B<br />

,<br />

×<br />

i<br />

1 1 2<br />

w<br />

AB<br />

wAB,<br />

p<br />

= ∑<br />

i<br />

i<br />

n<br />

© ABB Group<br />

March 3, 2011 | Slide 11


<strong>Cognitive</strong> <strong>Map</strong>s<br />

<strong>Fuzzy</strong> Logic<br />

Causality is fuzzy<br />

<strong>Fuzzy</strong> logic can deal with imprecise and vague in<strong>for</strong>mation. It<br />

enables representation <strong>of</strong> human knowledge with<br />

approximate terms and values<br />

© ABB Group<br />

March 3, 2011 | Slide 12


<strong>Fuzzy</strong> <strong>Cognitive</strong> <strong>Map</strong>s<br />

Qualitative Approach<br />

FCM provides a qualitative output (not a crisp number)<br />

w<br />

w<br />

AB<br />

AB<br />

= min { wA,<br />

j<br />

, w<br />

j , j<br />

, L,<br />

j ,<br />

, p<br />

w<br />

i 1 1 2<br />

n B<br />

m<br />

= max { wAB<br />

p<br />

, L,<br />

wAB,<br />

, 1 pm<br />

}<br />

}<br />

In other words:<br />

Indirect Effect: weakest causal link in a path<br />

Total Effect: Strongest <strong>of</strong> the weakest links<br />

© ABB Group<br />

March 3, 2011 | Slide 13


Case Study<br />

Trans<strong>for</strong>mer Bay<br />

Trans<strong>for</strong>mer bay with protection/control functions:<br />

line distance protection, tap changing functions with related protection<br />

functions, interlocking and reclosing functions, general monitoring<br />

functions, and a generic control function <strong>for</strong> regulating the trans<strong>for</strong>mer<br />

tap positions<br />

© ABB Group<br />

March 3, 2011 | Slide 14


Case Study<br />

<strong>Fuzzy</strong> <strong>Cognitive</strong> <strong>Map</strong><br />

© ABB Group<br />

March 3, 2011 | Slide 15


Case Study<br />

Voltage Trans<strong>for</strong>mer<br />

© ABB Group<br />

March 3, 2011 | Slide 16<br />

TVTR1: “Alarm” state <strong>for</strong> health.<br />

The impact <strong>of</strong> this health status on the IHMI (at the operator<br />

desk):<br />

TVTR1 → MMXU → IHMI<br />

TVTR1 → PTOV → AVCO → GAPC → IHMI<br />

TVTR1 → CPOW → GAPC → IHMI<br />

TVTR1 → MMXN → GAPC → IHMI<br />

TVTR1 → PDIS → RREC → IHMI<br />

The total effect <strong>of</strong> the Alarm health status <strong>of</strong> the TVTR1 on the<br />

IHMI is determined as:<br />

max{ min(V.H, V.H) + min(H, M, H, M) + min(L, H, M)<br />

+ min(H, M, M) + min(V.H, V.H, V.H) }<br />

= Very High


Case Study<br />

Circuit Breaker<br />

CB controlled by XCBR: “Warning” state <strong>for</strong> health (i.e. Warning<br />

state <strong>for</strong> the EE<strong>Health</strong> data <strong>of</strong> XCBR)<br />

The impact <strong>of</strong> this health status on the per<strong>for</strong>mance <strong>of</strong> the<br />

generic GAPC control function:<br />

XCBR → GAPC<br />

XCBR → CILO (Bay) → CILO (Station) → GAPC<br />

XCBR → CSWI → CILO (Bay) → CILO (St.) → GAPC<br />

The total effect <strong>of</strong> the Warning health status <strong>of</strong> the CB on the<br />

GAPC is determined as:<br />

max{ min(M) + min(V.H, M, M) + min(V.H, V.H, M, M) }<br />

= Medium<br />

© ABB Group<br />

March 3, 2011 | Slide 17


Case Study<br />

Tap Changer<br />

YLTC: “Alarm” state <strong>for</strong> health<br />

The impact <strong>of</strong> this health status on the per<strong>for</strong>mance <strong>of</strong> the<br />

ATCC logical node:<br />

YLTC → ATCC<br />

YLTC → AVCO → GAPC → ATCC<br />

The total effect <strong>of</strong> the Alarm health status <strong>of</strong> YLTC on the<br />

ATCC is determined as:<br />

max{ min(V.H) + min(H, H, V.H) } = Very High<br />

© ABB Group<br />

March 3, 2011 | Slide 18


Concluding Remarks<br />

<br />

<br />

<br />

<br />

<br />

<strong>IEC</strong> <strong>61850</strong> standard defines a data attribute indicating the health<br />

status <strong>of</strong> logical nodes (i.e., basic functions) and physical devices.<br />

This attribute tags the data points traveling across the system.<br />

While this identifier attribute can be easily interpreted and utilized<br />

in the device immediately connected to the source <strong>of</strong> the data, it is<br />

<strong>of</strong>ten not easy to find the impact <strong>of</strong> a non-ideal health status in a<br />

web <strong>of</strong> multiple control and protection functions.<br />

A fuzzy cognitive map (FCM) is proposed <strong>for</strong> evaluating the impact<br />

<strong>of</strong> non-ideal health status <strong>of</strong> logical nodes and physical devices in<br />

an interconnected network on the per<strong>for</strong>mance <strong>of</strong> the rest <strong>of</strong> the<br />

system functions.<br />

FCM can monitor the devices and functions with a predefined<br />

frequency to raise flags upon detecting non-ideal health.<br />

Expert knowledge can be used to determine the weights <strong>of</strong> the<br />

interdependences <strong>of</strong> logical nodes on one another.<br />

© ABB Group<br />

March 3, 2011 | Slide 19


© ABB Group<br />

March 3, 2011 | Slide 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!