12.05.2015 Views

Lecture 1 Introduction to Digital Image Processing

Lecture 1 Introduction to Digital Image Processing

Lecture 1 Introduction to Digital Image Processing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Lecture</strong> 1<br />

<strong>Introduction</strong> <strong>to</strong> <strong>Digital</strong><br />

<strong>Image</strong> <strong>Processing</strong><br />

Assisst.Prof.Dr. Umut ARIÖZ<br />

Fall 2014


<strong>Introduction</strong> <strong>to</strong> the course<br />

<strong>Lecture</strong> Hours:<br />

• Thursday 13:30 - 16:20<br />

Textbook:<br />

• <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>, 2. Edition, R.C.<br />

Gonzalez, R.E. Woods, Prentice Hall 2002.<br />

Assesstment Methods:<br />

• Participation 5%<br />

• Project 20%<br />

• Midterm Exam 35%<br />

• Final Exam 40%<br />

2


Contact Info<br />

• Room 116<br />

• Phone: + 90 312 582 3116<br />

• E-mail: umut.arioz@gazi.edu.tr<br />

• Web-site: http://ceng.gazi.edu.tr/~uarioz/bm471_2015.html<br />

Syllabus<br />

All lecture notes<br />

Project details<br />

announcements<br />

2014 Fall


Projects<br />

• Web-based application<br />

• http://ceng.gazi.edu.tr/dsp/default.aspx similar content<br />

• <strong>Lecture</strong> assistant will follow<br />

• 4-5 persons per group<br />

2014 Fall


Syllabus<br />

1. Week<br />

<strong>Introduction</strong> <strong>to</strong> <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

• Origins of DIP<br />

• Example Applications<br />

• Fundamental Steps in DIP<br />

• Components of DIP<br />

2. Week<br />

<strong>Digital</strong> <strong>Image</strong> Fundamentals<br />

• Visual Perception<br />

• Light and EM Spectrum<br />

• Sensing and Acquisition<br />

3. Week<br />

4. Week<br />

5. Week<br />

<strong>Digital</strong> <strong>Image</strong> Fundamentals<br />

• Sampling and Quantization<br />

• Relationships between pixels<br />

<strong>Image</strong> Enhancement in The Spatial Domain<br />

• Gray Level Transformations<br />

• His<strong>to</strong>gram <strong>Processing</strong><br />

<strong>Image</strong> Enhancement in The Spatial Domain<br />

• Enhancement using logic operations<br />

• Spatial filtering<br />

2014 Fall


Syllabus<br />

6. Week<br />

7. Week<br />

<strong>Image</strong> Enhancement in The Frequency Domain<br />

• FT and Frequency Domain<br />

• Frequency Domain Filters<br />

<strong>Image</strong> Enhancement in The Frequency Domain<br />

• Homomorphing Filtering<br />

8. Week Midterm Exam<br />

9. Week<br />

10. Week<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

• Noise models<br />

• Res<strong>to</strong>ration in the presence of noise<br />

• Degradations<br />

• Inverse Filtering<br />

Color <strong>Image</strong> <strong>Processing</strong><br />

• Color models<br />

• Color transformations<br />

• Color segmentation<br />

• Noise in color images<br />

2014 Fall<br />

11. Week<br />

<strong>Image</strong> Compression Techniques<br />

• Compression models<br />

• Error-free compression<br />

• Lossy compression


Syllabus<br />

12. Week<br />

13. Week<br />

Morphological <strong>Image</strong> <strong>Processing</strong><br />

• Dilation and erosion<br />

• Opening and closing<br />

• Some algorithms<br />

• Gray scale processing<br />

<strong>Image</strong> Segmentation<br />

• Detection of discontinuities<br />

• Boundary detection<br />

• Thresholding<br />

• Region-based segmentation<br />

• Morphological watersheds<br />

14. Week Project Presentations (4 goups)<br />

15. Week Project Presentations (4 goups)<br />

16. Week Final Exam<br />

2014 Fall


This lecture will cover<br />

What is a digital image?<br />

What is digital image processing?<br />

His<strong>to</strong>ry of digital image processing<br />

State of the art examples of digital image processing<br />

Key stages in digital image processing


2014 Fall


What is <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>?<br />

•<strong>Digital</strong> image processing focuses on two major tasks<br />

Improvement of pic<strong>to</strong>rial information for human interpretation<br />

<strong>Processing</strong> of image data for s<strong>to</strong>rage, transmission and<br />

representation for au<strong>to</strong>nomous machine perception


What is <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>?<br />

<strong>Digital</strong> <strong>Image</strong><br />

— a two-dimensional function x and y are spatial coordinates<br />

The amplitude of f is called intensity or gray level at the point (x, y)<br />

Pixel<br />

— the elements of a digital image<br />

f ( x, y)<br />

11


What is <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>?<br />

•There are three levels from image processing <strong>to</strong> computer<br />

vision.<br />

Low Level Process<br />

Input: <strong>Image</strong><br />

Output: <strong>Image</strong><br />

Examples: Noise<br />

removal, image<br />

sharpening<br />

Mid Level Process<br />

Input: <strong>Image</strong><br />

Output: Attributes<br />

Examples: Object<br />

recognition,<br />

segmentation<br />

High Level Process<br />

Input: Attributes<br />

Output: Understanding<br />

Examples: Scene<br />

understanding,<br />

au<strong>to</strong>nomous navigation<br />

In this course we will<br />

s<strong>to</strong>p here


<strong>Image</strong> <strong>Processing</strong><br />

• manipulation of multidimensional signals<br />

image (pho<strong>to</strong>)<br />

video<br />

f<br />

f<br />

( x,<br />

y)<br />

( x,<br />

y,<br />

t)<br />

CT, MRI<br />

f ( x,<br />

y,<br />

z,<br />

t)


FROM ANALOG TO DIGITAL<br />

Imaging<br />

systems<br />

Sample and<br />

quantize<br />

<strong>Digital</strong><br />

s<strong>to</strong>rage<br />

(disk)<br />

<strong>Digital</strong><br />

computer<br />

Display<br />

output<br />

object<br />

observe<br />

digitize<br />

s<strong>to</strong>re<br />

process


What is a <strong>Digital</strong> <strong>Image</strong>?<br />

•A digital image is a representation of a two-dimensional<br />

image as a finite set of digital values, called picture<br />

elements or pixels


What is a <strong>Digital</strong> <strong>Image</strong>? (cont…)<br />

•Pixel values typically represent gray levels, colours, heights, opacities<br />

etc<br />

•Remember digitization implies that a digital image is an<br />

approximation of a real scene<br />

1 pixel


What is a <strong>Digital</strong> <strong>Image</strong>? (cont…)<br />

•Common image formats include:<br />

1 sample per point (B&W or Grayscale)<br />

3 samples per point (Red, Green, and Blue)<br />

4 samples per point (Red, Green, Blue, and Opacity)<br />

5 samples per point (Red, Green, Blue, Opacity and Depth)<br />

Binary ( 0, 1) Grayscale (0, 255) Color (3*(0, 255))


<strong>Digital</strong> <strong>Image</strong><br />

a grid of squares, each of which<br />

contains a single color<br />

Color images have 3 values per<br />

pixel; monochrome images have<br />

1 value per pixel.<br />

18


Color <strong>Image</strong>s<br />

l<br />

l<br />

l<br />

Are constructed from three<br />

intensity maps.<br />

Each intensity map is projected<br />

through a color filter (e.g., red,<br />

green, or blue, or cyan, magenta,<br />

or yellow) <strong>to</strong> create a<br />

monochrome image.<br />

The intensity maps are overlaid<br />

<strong>to</strong> create a color image.<br />

19<br />

25 September 2014


Color Sensing / Color Perception<br />

luminance hue saturation<br />

The eye has 3 types of pho<strong>to</strong>recep<strong>to</strong>rs:<br />

sensitive <strong>to</strong> red, green, or blue light.<br />

The brain transforms RGB in<strong>to</strong> separate<br />

brightness and color channels (e.g., LHS).<br />

brain<br />

pho<strong>to</strong> recep<strong>to</strong>rs<br />

20<br />

25 September 2014


His<strong>to</strong>ry of <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

•Early 1920s: One of the first applications of digital imaging<br />

was in the news-paper industry<br />

The Bartlane cable picture transmission service<br />

<strong>Image</strong>s were transferred by submarine cable between London<br />

and New York<br />

Pictures were coded for cable transfer and reconstructed at the<br />

receiving end on a telegraph printer


His<strong>to</strong>ry of <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

22<br />

Sent by submarine cable<br />

between London and New<br />

York, the transportation time<br />

was reduced <strong>to</strong> less than<br />

three hours from more than a<br />

week


His<strong>to</strong>ry of DIP (cont…)<br />

•Mid <strong>to</strong> late 1920s: Improvements <strong>to</strong> the Bartlane system<br />

resulted in higher quality images<br />

New reproduction processes based on pho<strong>to</strong>graphic techniques<br />

Increased number of <strong>to</strong>nes in reproduced images<br />

Improved digital<br />

image<br />

Early 15 <strong>to</strong>ne digital<br />

image


His<strong>to</strong>ry of DIP (cont…)<br />

•1960s: Improvements in computing technology and the<br />

onset of the space race led <strong>to</strong> a surge of work in digital<br />

image processing<br />

1964: Computers used <strong>to</strong> improve the quality of images of the<br />

moon taken by the Ranger 7 probe<br />

Such techniques were used in other space missions including<br />

the Apollo landings


His<strong>to</strong>ry of DIP (cont…)<br />

25


His<strong>to</strong>ry of DIP (cont…)<br />

•1970s: <strong>Digital</strong> image processing begins <strong>to</strong> be used in<br />

medical applications<br />

1979: Sir Godfrey N.<br />

Hounsfield & Prof. Allan M.<br />

Cormack share the Nobel<br />

Prize in medicine for the<br />

invention of <strong>to</strong>mography,<br />

the technology behind<br />

Computerised Axial<br />

Tomography (CAT) scans<br />

Typical head slice CAT image


His<strong>to</strong>ry of DIP (cont…)<br />

•1980s - Today: The use of digital image processing<br />

techniques has exploded and they are now used for all<br />

kinds of tasks in all kinds of areas<br />

<strong>Image</strong> enhancement/res<strong>to</strong>ration<br />

Artistic effects<br />

Medical visualisation<br />

Industrial inspection<br />

Law enforcement<br />

Human computer interfaces


Sources for <strong>Image</strong>s<br />

One of the simplest ways <strong>to</strong> develop a basic understanding of the extent<br />

of image processing applications is categorization according <strong>to</strong> sources.<br />

• Electromagnetic (EM) energy spectrum<br />

• Synthetic images produced by computer<br />

• Acoustic<br />

• Ultrasonic<br />

• Electronic<br />

28


Electromagnetic (EM) energy spectrum<br />

• <strong>Image</strong>s based on radiation from the EM spectrum are the most familiar <strong>to</strong> us.<br />

• If bands are grouped according <strong>to</strong> energy per pho<strong>to</strong>n, we obtain the spectrum<br />

• Em spectrum are not distinct but rather transition smoothly one <strong>to</strong> other.<br />

Major uses<br />

Gamma-ray imaging (highest energy): nuclear medicine and astronomical observations<br />

X-rays: medical diagnostics, industry, and astronomy, etc.<br />

Ultraviolet: industrial inspection, microscopy, lasers, biological imaging, and astronomical observations<br />

Visible and infrared bands: light microscopy, astronomy, remote sensing, industry, and law enforcement<br />

Microwave band: radar<br />

Radio band (lowest energy) : medicine (such as MRI) and astronomy<br />

29


Examples: Gama-Ray Imaging<br />

• The approach is <strong>to</strong> inject a patient with a radioactive iso<strong>to</strong>pe that emits<br />

gamma rays as it decays.<br />

• <strong>Image</strong>s are produced from the emissions collected by gamma ray detec<strong>to</strong>rs.<br />

• Positron Emission Tomography (PET)<br />

30


Examples: X-Ray Imaging<br />

• Oldest sources of EM radiation used for<br />

imaging.<br />

• Not ony for medical diagnositics, also used for<br />

astronomy, electronics and security.<br />

• Two ways for digital imaging in radiography:<br />

digitizing x-ray films<br />

Capturing by a light sensitive digitizing system from<br />

phosphor screen that converts x-rays <strong>to</strong> light.<br />

• <strong>Image</strong> Guided Surgery<br />

Angiogram: catheter is threaded in<strong>to</strong> the<br />

blood vessel and guided <strong>to</strong> the area <strong>to</strong> be<br />

studied.<br />

31<br />

Weeks 1 & 2


Examples: Ultraviolet Imaging<br />

• Usage areas:<br />

<br />

<br />

<br />

<br />

<br />

Industrial inspection<br />

Microscopy<br />

Lasers<br />

Biological imaging<br />

Astronomical observations<br />

• Fluorescenes microscopy is an excellent<br />

method for studying materials for<br />

determining the natural form.<br />

Normal corn<br />

Infected corn<br />

32


Examples: Light Microscopy Imaging<br />

• Applications in the visual band<br />

<br />

<br />

<br />

<br />

<br />

Light microscope<br />

Astronomy<br />

Remote sensing<br />

Industry<br />

Law enforcement<br />

33<br />

Weeks 1 & 2


Examples: Visual and Infrared Imaging<br />

2014 Fall


Examples: Visual and Infrared Imaging<br />

Multispectral Imaging: one image for different spectral infrared bands<br />

<br />

<br />

Different views of buildings, roads, rivers<br />

Different purposes for each band (population growth, pollution, environment)<br />

35


Examples: Infrared Satellite Imaging<br />

• Nighttime lights of the world<br />

• Provides global inven<strong>to</strong>ry of human settlements<br />

36


Examples: Visual and Infrared Imaging<br />

• To inspect for missing parts<br />

<br />

<br />

Missing part: Black square on <strong>to</strong>p<br />

Missing pills<br />

• For controlling<br />

<br />

<br />

Level of bottle<br />

Air pockets in plastic<br />

37<br />

Weeks 1 & 2


Examples: Visual and Infrared Imaging<br />

Law Enforcement<br />

•<strong>Image</strong> processing techniques<br />

are used extensively by law<br />

enforcers<br />

Number plate recognition for<br />

speed cameras/au<strong>to</strong>mated <strong>to</strong>ll<br />

systems<br />

Fingerprint recognition<br />

Enhancement of CCTV images


Example: Microwave Band (Radar <strong>Image</strong>)<br />

39


Examples: Radio Band (MRI)<br />

40


Examples: Radio Band (MRI)


Examples: Ultrasound Imaging<br />

42


Some <strong>Image</strong> <strong>Processing</strong> Applications<br />

2014 Fall


Examples: The Hubble Telescope<br />

•Launched in 1990 the Hubble<br />

telescope can take images of<br />

very distant objects<br />

•However, an incorrect mirror<br />

made many of Hubble’s<br />

images useless<br />

•<strong>Image</strong> processing<br />

techniques were<br />

used <strong>to</strong> fix this


Examples: Artistic Effects<br />

•Artistic effects are used <strong>to</strong><br />

make images more visually<br />

appealing, <strong>to</strong> add special<br />

effects and <strong>to</strong> make composite<br />

images


Examples: HCI<br />

•Try <strong>to</strong> make human computer<br />

interfaces more natural<br />

Face recognition<br />

Gesture recognition


2014 Fall


2014 Fall


2014 Fall


2014 Fall


2014 Fall


2014 Fall


2014 Fall


2014 Fall


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Mid-level<br />

Segmentation<br />

Low-level<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Acquisition<br />

• First step of DIP<br />

• Shows the origin of the images<br />

Topics:<br />

• Basic digital image concepts<br />

• Preprocessing stages<br />

• Visual perception<br />

• Sampling<br />

• Quantization<br />

• Pixel operations<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Enhancement<br />

•Simplest and most attractive area of DIP<br />

•Idea is <strong>to</strong> bring out the details that is obscured or hide<br />

and <strong>to</strong> highlight certain features of interest in an image<br />

<strong>Image</strong> Enhancement<br />

•Final words should be «it looks better»<br />

•So very subjective area, it can change according <strong>to</strong><br />

everyone<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Enhancement<br />

•Enhancement in the spatial domain<br />

•Point processing<br />

Log transformation<br />

Power law transformation<br />

<strong>Image</strong> Enhancement<br />

•His<strong>to</strong>grams<br />

What is an image his<strong>to</strong>gram?<br />

His<strong>to</strong>gram equalisation<br />

•Spatial filtering process<br />

<strong>Image</strong> Acquisition<br />

Problem Domain<br />

•Smoothing filters


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Enhancement<br />

•Frequency Domain Filtering<br />

The Fourier transform<br />

• Importance of the inverse Fourier transform<br />

<strong>Image</strong> Enhancement<br />

filtering in the frequency domain<br />

Low pass filters - High pass filters<br />

• Ideal low pass filter<br />

• Butterworth low pass filter<br />

• Gaussian low pass filter<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Enhancement<br />

Original <strong>Image</strong><br />

Fourier Transform<br />

Amplitude Phase<br />

•This is the example of FT<br />

• An image can be represented as an amplitude and phase in<br />

frequency domain.


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Enhancement<br />

Original <strong>Image</strong><br />

High Pass Filtering


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Enhancement<br />

2014 Fall


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Enhancement<br />

•One of the most common uses of DIP techniques:<br />

improve quality, remove noise etc


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

•Deals with improving the appearence of image<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

• difference from enhancement is being objective<br />

•Based on mathematical or probabilistic models<br />

•Enhancement is based on human preferences<br />

<strong>Image</strong> Enhancement<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Dis<strong>to</strong>rtion due <strong>to</strong> Camera Misfocus<br />

Original image<br />

Dis<strong>to</strong>rted image


Dis<strong>to</strong>rtion due <strong>to</strong> Camera Misfocus<br />

Camera lens


Dis<strong>to</strong>rtion due <strong>to</strong> motion<br />

Camera lens


Dis<strong>to</strong>rtion due <strong>to</strong> Random Noise<br />

Original image<br />

Dis<strong>to</strong>rted image


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

•noise removal<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

•noise models<br />

Common noise models<br />

• Gaussian<br />

• Rayleigh<br />

• Erlang<br />

•Filtering <strong>to</strong> remove noise<br />

Simple mean filter<br />

Other mean filters<br />

• Exponential<br />

• Uniform<br />

• Impulse (salt & pepper)<br />

<strong>Image</strong> Enhancement<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

•Order statistics filters<br />

Median filter<br />

Max and min filter<br />

Midpoint filter<br />

Alpha trimmed mean filter<br />

•Removing noise in the frequency domain<br />

Particularly good for removing periodic noise<br />

Band reject filters<br />

• Ideal band reject filter<br />

• Butterworth band reject filter<br />

• Gaussian band reject filter<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

<strong>Image</strong> Enhancement<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Dis<strong>to</strong>rted <strong>Image</strong><br />

Res<strong>to</strong>red <strong>Image</strong>


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Morphological <strong>Image</strong> <strong>Processing</strong><br />

•Used for extracting image components that are<br />

useful in the representation and description of<br />

shape<br />

Morphological<br />

<strong>Processing</strong><br />

•Basic morphological concepts and operations<br />

Hitting, fitting and missing<br />

Erosion and dilation<br />

Opening and closing<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

<strong>Image</strong> Enhancement<br />

•Morphological algorithms<br />

Boundary extraction<br />

Region filling<br />

<strong>Image</strong> Acquisition<br />

• Extensions <strong>to</strong> gray-scale images<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

Segmentation<br />

Segmentation<br />

•Generally provides an image in<strong>to</strong> its<br />

constituent parts or objects<br />

Morphological<br />

<strong>Processing</strong><br />

•One of the most difficult tasks in DIP<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

•Simple algorithms get failure at most times<br />

<strong>Image</strong> Enhancement<br />

•More accurate segmentation means more<br />

<strong>Image</strong> Acquisition<br />

accurate recognition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

Segmentation<br />

Main <strong>to</strong>pics:<br />

Segmentation<br />

•The segmentation problem<br />

Morphological<br />

<strong>Processing</strong><br />

•Importance of good thresholding<br />

•Problems that can arise with thresholding<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

•The basic global thresholding algorithm<br />

•Point- edge detection<br />

<strong>Image</strong> Enhancement<br />

•Region-based segmentation<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

Segmentation<br />

•Take slice from MRI scan of dog heart, and find boundaries between<br />

types of tissue<br />

<strong>Image</strong> with gray levels representing tissue density<br />

Use a suitable filter <strong>to</strong> highlight edges<br />

Original MRI <strong>Image</strong> of a Dog Heart<br />

Edge Detection <strong>Image</strong>


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

Object Recognition<br />

Segmentation<br />

• Basically, it assigns a label<br />

(vehicle, human, …) <strong>to</strong> an<br />

object on its descrip<strong>to</strong>rs<br />

Morphological<br />

<strong>Processing</strong><br />

Object Recognition<br />

Topics:<br />

• Pattern classes<br />

• Structural methods<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

<strong>Image</strong> Enhancement<br />

<strong>Image</strong> Acquisition<br />

Problem Domain


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

Representation & Description<br />

• Always follow the output of<br />

segmentation stage<br />

• Description is also called<br />

feature selection<br />

Morphological<br />

<strong>Processing</strong><br />

Segmentation<br />

Object Recognition<br />

• Deals with extracting attributes<br />

Topics:<br />

• Chain codes<br />

• Skele<strong>to</strong>ns<br />

• Boundary descrip<strong>to</strong>rs<br />

• Regional descrip<strong>to</strong>rs<br />

• texture<br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

<strong>Image</strong> Enhancement<br />

<strong>Image</strong> Acquisition<br />

Problem Domain<br />

Representation &<br />

Description


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

<strong>Image</strong> Compression<br />

Segmentation<br />

• For reducing the s<strong>to</strong>rage required<br />

<strong>to</strong> save an image or bandwidth<br />

required <strong>to</strong> transmit it.<br />

• Most popular – jpeg<br />

Topics:<br />

• Coding redundancy<br />

• <strong>Image</strong> compression models<br />

• Error-free compression<br />

• Lossy compression<br />

• <strong>Image</strong> compression standards<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

<strong>Image</strong> Enhancement<br />

<strong>Image</strong> Acquisition<br />

Problem Domain<br />

Object Recognition<br />

Representation &<br />

Description<br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Enhancement<br />

Segmentation<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Problem Domain<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

<strong>Image</strong> Compression


Key Stages in <strong>Digital</strong> <strong>Image</strong> <strong>Processing</strong>:<br />

Colour <strong>Image</strong> <strong>Processing</strong><br />

Segmentation<br />

Topics:<br />

• Color fundamentals<br />

• Color models<br />

• Color transformations<br />

• Smoothing and sharpening<br />

• Color segmentation<br />

• Noise in color images<br />

Morphological<br />

<strong>Processing</strong><br />

<strong>Image</strong> Res<strong>to</strong>ration<br />

<strong>Image</strong> Enhancement<br />

<strong>Image</strong> Acquisition<br />

Object Recognition<br />

Representation &<br />

Description<br />

Colour <strong>Image</strong><br />

<strong>Processing</strong><br />

Problem Domain


Color Pho<strong>to</strong> Enhancement<br />

2014 Fall


Next lecture will cover<br />

Elements of Visual Perception<br />

Light and EM<br />

<strong>Image</strong> Sensing and Acquisi<strong>to</strong>n<br />

Sampling and Quantization<br />

Relationships between pixels<br />

2014 Fall

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!