16.11.2012 Views

Formulation and Implementation of a Methodology for Aircraft - Pace

Formulation and Implementation of a Methodology for Aircraft - Pace

Formulation and Implementation of a Methodology for Aircraft - Pace

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Formulation</strong> <strong>and</strong> <strong>Implementation</strong> <strong>of</strong> a<br />

<strong>Methodology</strong> <strong>for</strong> <strong>Aircraft</strong><br />

Subsystem Architecture Selection<br />

External Advisory Board Presentation<br />

April 29, 2009<br />

Neal Patel<br />

Turab Zaidi<br />

José Bernardo<br />

Peng Chen<br />

David Jackson<br />

Sehwan Oh<br />

Edward Tsai<br />

Aerospace System Design Laboratory<br />

Georgia Institute <strong>of</strong> Technology


“Engineering has has taken taken us us to to a a stage stage where where we we are are beginning to to rationalize <strong>and</strong> <strong>and</strong><br />

reintegrate things things that that we we have have spent spent many many decades separating <strong>and</strong> <strong>and</strong> ‘optimizing.’<br />

Now, Now, the the potential <strong>of</strong> <strong>of</strong> science can can enable enable us us to to take take the the next next step step in in this this journey.”<br />

2<br />

Lester Faleiro<br />

Project Manager, Power Optimized <strong>Aircraft</strong>


The EOASys<br />

Initiative<br />

The Installation<br />

Problem<br />

Outline<br />

Architecture<br />

Selection<br />

<strong>Methodology</strong><br />

3<br />

The Pro<strong>of</strong><br />

<strong>of</strong> Concept<br />

Pro<strong>of</strong> <strong>of</strong><br />

Concept Demo<br />

Concluding<br />

Remarks


Dr. Dr. Dimitri DimitriMavris Mavris<br />

Faculty<br />

Faculty<br />

Sponsor<br />

Sponsor<br />

José JoséBernardo Bernardo<br />

Program Organization<br />

Neal Neal Patel Patel<br />

Project<br />

Project<br />

Manager<br />

Manager<br />

Dr. Dr. Elena Elena Garcia Garcia<br />

Project<br />

Project<br />

Advisor<br />

Advisor<br />

Turab TurabZaidi Zaidi<br />

Chief<br />

Chief<br />

Engineer<br />

Engineer<br />

4<br />

Dr. Dr. Neil Neil Weston Weston<br />

Project<br />

Project<br />

Advisor<br />

Advisor<br />

Mathias Mathias Emeneth Emeneth<br />

PACE<br />

PACE<br />

Consultant<br />

Consultant<br />

Peng Chen David Jackson Sehwan Oh Oh Edward Tsai Tsai


The EOASys<br />

Initiative<br />

The EOASys Initiative<br />

The Installation<br />

Problem<br />

Architecture<br />

Selection<br />

<strong>Methodology</strong><br />

5<br />

The Pro<strong>of</strong><br />

<strong>of</strong> Concept<br />

Pro<strong>of</strong> <strong>of</strong><br />

Concept Demo<br />

Concluding<br />

Remarks


• What is an energy optimized aircraft?<br />

Energy Optimized <strong>Aircraft</strong> Initiative<br />

– One that manages energy flows to achieve the most reduction in peak<br />

nonpropulsive power usage, while obtaining the best compromise in<br />

fuel consumption <strong>and</strong> equipment weight<br />

• Major Obstacles<br />

– <strong>Aircraft</strong> <strong>of</strong> the future must adapt to changing power requirements 1<br />

– Rising power dem<strong>and</strong>s have led to greater system complexity<br />

– Increasing fuel costs <strong>and</strong> environmental concern<br />

• AIAA EOASys Program Committee<br />

– Seeks comprehension <strong>of</strong> technical issues facing <strong>Aircraft</strong> Equipment Systems (AES) 1<br />

– AES are the systems “hidden under the floor, inside wings, <strong>and</strong> behind panels” 1<br />

– This includes avionics, hydraulic actuators, electric cables, etc.<br />

6<br />

Boeing 787 will<br />

require 1 MW <strong>of</strong><br />

electric power


• Current ef<strong>for</strong>ts emphasize developing more<br />

electric technologies<br />

– Components optimized individually by vendors<br />

• Majority <strong>of</strong> issues arise during system integration<br />

– New technologies <strong>of</strong>ten physically swapped in<br />

– Organization <strong>of</strong> AES affects overall subsystem efficiency<br />

• Interactions <strong>and</strong> constraints between<br />

components must be captured<br />

– In<strong>for</strong>mation should be leveraged to develop strategic<br />

AES installation<br />

– No environment exists to evaluate these types <strong>of</strong><br />

trade<strong>of</strong>fs during conceptual design<br />

Motivation<br />

7<br />

Old Components More Electric Components


The EOASys<br />

Initiative<br />

The Installation Problem<br />

The Installation<br />

Problem<br />

Architecture<br />

Selection<br />

<strong>Methodology</strong><br />

8<br />

The Pro<strong>of</strong><br />

<strong>of</strong> Concept<br />

Pro<strong>of</strong> <strong>of</strong><br />

Concept Demo<br />

Concluding<br />

Remarks


The Focused Problem: Installation<br />

• Full potential <strong>of</strong> new components may not be achieved<br />

in future aircraft<br />

• Current configurations may benefit from holistic re-<br />

integration/evaluation<br />

• Potential gains:<br />

– Minimizing system weight - Adding/removing cabling or<br />

hydraulic lines<br />

– Minimizing exergy loss - Maximum amount <strong>of</strong> available work<br />

– Managing energy flows - Efficiency fluctuation due to<br />

thermal effects<br />

9<br />

Minimizing Weight<br />

Minimizing Exergy Loss<br />

Investigation <strong>of</strong> new installation architectures is necessary<br />

Managing Energy Flow


What is an Installation Architecture?<br />

B<br />

Architecture 1 Architecture 2<br />

A<br />

C<br />

D<br />

Same components<br />

Different placement<br />

10<br />

B<br />

C<br />

A<br />

D


Program Objectives<br />

1. Formulate a generic methodology that allows designers to optimally install <strong>Aircraft</strong> Equipment Systems into an aircraft<br />

– <strong>Methodology</strong> facilitates installation <strong>of</strong> any subsystem or component<br />

2. Demonstrate methodology through a Pro<strong>of</strong> Of Concept (POC)<br />

– POC makes enabling assumptions to facilitate project scope<br />

– POC shows how the methodology can be used to improve component placement <strong>and</strong> realize aircraft level gains<br />

<strong>Methodology</strong> Pro<strong>of</strong> <strong>of</strong> Concept Program Results<br />

Enabling<br />

Assumptions<br />

11<br />

Architecture<br />

Selection


Architecture Selection <strong>Methodology</strong><br />

The EOASys<br />

Initiative<br />

The Installation<br />

Problem<br />

Architecture<br />

Selection<br />

<strong>Methodology</strong><br />

12<br />

The Pro<strong>of</strong><br />

<strong>of</strong> Concept<br />

Pro<strong>of</strong> <strong>of</strong><br />

Concept Demo<br />

Concluding<br />

Remarks


Step 1<br />

The Architecture Selection <strong>Methodology</strong><br />

Component Component Component Library<br />

Library<br />

Library<br />

Creation<br />

Creation<br />

Creation<br />

Step 2<br />

Sizing/Synthesis Sizing/Synthesis Sizing/Synthesis Sizing/Synthesis &<br />

&<br />

&<br />

&<br />

<strong>Aircraft</strong> <strong>Aircraft</strong> <strong>Aircraft</strong> <strong>Aircraft</strong> Zoning<br />

Zoning<br />

Zoning<br />

Zoning<br />

Step 3<br />

Step 4<br />

Component Component Placement<br />

Placement<br />

Placement<br />

Requirements<br />

Requirements<br />

Flow-down<br />

Flow-down<br />

Flow-down<br />

Flow-down<br />

Flow down down down<br />

Initial Initial Architecture<br />

Architecture<br />

Generation<br />

Generation<br />

13<br />

Step 5<br />

Step 6<br />

Investigate Investigate Investigate Competing<br />

Competing<br />

Competing<br />

Architectures<br />

Architectures<br />

Architectures<br />

Measures Measures Measures Measures <strong>of</strong> <strong>of</strong> <strong>of</strong> <strong>of</strong> Merit<br />

Merit<br />

Merit<br />

Merit<br />

Identification<br />

Identification<br />

Identification<br />

Identification


Step 1 – Component Library Creation<br />

• Method <strong>of</strong> library creation leveraged from previous<br />

Gr<strong>and</strong> Challenge Teams<br />

1.1 Select a primary function<br />

1.2 Identify induced functions<br />

1.3 Create matrix <strong>of</strong> alternatives <strong>of</strong> components<br />

1.4 Define basic connections between components<br />

1.5 Verify specific functions are met<br />

Output <strong>of</strong> Step 1<br />

A fixed list <strong>of</strong> components <strong>and</strong> basic<br />

connections to be installed<br />

14<br />

Primary Function<br />

Generate light<br />

Component List<br />

Induced Functions<br />

Provide electricity or ignite light source<br />

Component List


2.1 Select an aircraft geometry<br />

Step 2 – Sizing/Synthesis & <strong>Aircraft</strong> Zoning<br />

2.2 Acquire sizing <strong>and</strong> synthesis in<strong>for</strong>mation<br />

2.3 Zone the aircraft<br />

– Assists with capturing component placement constraints<br />

2.4 Specify possible connection routes<br />

Output <strong>of</strong> Step 2<br />

A fully defined <strong>and</strong> zoned aircraft geometry<br />

15


Step 3 – Placement Requirements Flow-down<br />

3.1 Find applicable system level constraints<br />

– FAA Federal Aviation Regulations (FAR)<br />

– Stability Limits<br />

– Volume Limits<br />

– Ease <strong>of</strong> maintenance<br />

3.2 Define applicable component level requirements<br />

– Temperature ranges, Electrical power <strong>and</strong> ratings,<br />

EMI control, System grounding, etc. 2<br />

3.3 Formulate zonal placement requirements<br />

Output <strong>of</strong> Step 3<br />

Constraints <strong>and</strong> requirements on component placement<br />

16<br />

Component<br />

Constraints Functional<br />

Requirements<br />

Component<br />

Placement<br />

Requirements


Step 4 – Initial Architecture Generation<br />

4.1 Select location <strong>of</strong> components<br />

within feasible zones<br />

– Use historical data when available<br />

4.2 Verify all requirements are met<br />

– Change component location when<br />

needed<br />

Output <strong>of</strong> Step 4<br />

Step 1<br />

Hydraulic<br />

Mechanic<br />

Electric<br />

Components<br />

Baseline aircraft with components<br />

placed to meet requirements<br />

17<br />

Sized <strong>Aircraft</strong><br />

Initial Configuration<br />

Step 2<br />

FAR<br />

Step 3<br />

Volume<br />

Power<br />

Zone<br />

Requirements


Step 5 – Measures <strong>of</strong> Merit Identification<br />

5.1 Identify relevant system level metrics<br />

– Metrics should be related to costs <strong>and</strong><br />

benefits<br />

5.2 Relate system level metrics to<br />

applicable installation metrics<br />

– Metrics have to be quantifiable<br />

5.3 Benchmark the initial architecture<br />

Output <strong>of</strong> Step 5<br />

Potential<br />

Architectures<br />

Metrics <strong>for</strong> comparison <strong>of</strong> different architectures<br />

18<br />

Installation<br />

Metrics<br />

Architecture C<br />

`<br />

Architecture B<br />

Architecture A<br />

System Level<br />

Metric Target


Step 6 – Investigating Competing Architectures<br />

6.1 Choose method to explore design space<br />

6.2 Implement exploration method<br />

– Requires development <strong>of</strong> modeling <strong>and</strong> simulation environment<br />

6.3 Per<strong>for</strong>m architecture trades<br />

– Based on weighting preferences on measures <strong>of</strong> merit<br />

Output <strong>of</strong> Step 6<br />

An optimized architecture based on<br />

customer preferences<br />

19


The EOASys<br />

Initiative<br />

The Pro<strong>of</strong> <strong>of</strong> Concept<br />

The Installation<br />

Problem<br />

Architecture<br />

Selection<br />

<strong>Methodology</strong><br />

20<br />

The Pro<strong>of</strong><br />

<strong>of</strong> Concept<br />

Pro<strong>of</strong> <strong>of</strong><br />

Concept Demo<br />

Concluding<br />

Remarks


• Need a plat<strong>for</strong>m to implement a methodology<br />

• No existing environment which captures<br />

component interactions<br />

• Several s<strong>of</strong>tware plat<strong>for</strong>ms were considered to create<br />

the design environment <strong>for</strong> the pro<strong>of</strong> <strong>of</strong> concept<br />

• Plat<strong>for</strong>m requirements:<br />

1. Provide a 3-D visual representation <strong>of</strong> component placement <strong>for</strong><br />

each architecture<br />

2. Easily populate components <strong>and</strong> connections into model<br />

3. Quickly generate multiple installation architectures<br />

4. Dynamically evaluate component characteristics <strong>and</strong> interactions<br />

5. Interact with other s<strong>of</strong>tware to incorporate existing codes<br />

6. Facilitate analysis <strong>and</strong> trades between architectures<br />

7. Provide direct links to s<strong>of</strong>tware support personnel<br />

• <strong>Pace</strong>lab APD was selected as best compromise<br />

Plat<strong>for</strong>m Selection<br />

21<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

ADEN CATIA Dymola Easy5 Excel JMP <strong>Pace</strong>lab APD Simulink<br />

Meets requirement<br />

Potentially meets requirement<br />

Did not meet requirement


Modeling & Simulation Environment<br />

• M&S environment was created in <strong>Pace</strong>lab<br />

<strong>Aircraft</strong> Preliminary Design (<strong>Pace</strong>lab APD)<br />

• Displays a 3D representation <strong>of</strong> the model<br />

• Unique s<strong>of</strong>tware plat<strong>for</strong>m focused on<br />

Knowledge Based Engineering<br />

• Allows mathematical definition <strong>of</strong> an aircraft<br />

<strong>and</strong> its internal structure<br />

• Acquisition <strong>of</strong> <strong>Pace</strong>lab APD was a key<br />

breakthrough <strong>for</strong> our design environment<br />

22


Step 1 – Component Library Creation<br />

• Only one primary function was demonstrated to limit the scope<br />

– Deliver electrical power to loads in the avionics bay<br />

• Function further limits the scope by reducing the number <strong>of</strong><br />

components modeled<br />

• The component list was created from the Maintenance Facility<br />

Planning (MFP) document <strong>and</strong> in<strong>for</strong>mation from Airbus component<br />

suppliers<br />

• Schematics in the MFP were used to define basic connections<br />

23<br />

IDG<br />

IDG<br />

AC AC Bus Bus 1<br />

1<br />

AC AC Essential Essential Bus<br />

Bus<br />

Avionics<br />

Avionics<br />

Loads<br />

Loads<br />

Other<br />

Other<br />

Electric<br />

Electric<br />

Components<br />

Components


Step 2 – Sizing/Synthesis & <strong>Aircraft</strong> Zoning<br />

• A320 chosen as the aircraft geometry <strong>for</strong> POC<br />

• Flight deck, passenger cabin, & cargo holds modeled in<br />

simulation environment<br />

• Feasible aircraft areas divided into five zones<br />

– Zones based on possible locations <strong>for</strong> components in library<br />

– Includes knowledge gained from Delta 737 overhaul<br />

• Feasible wiring route pathways generated <strong>for</strong> potential<br />

component connections<br />

24


Step 3 – Placement Requirements Flow-down<br />

• Requirements come from aircraft<br />

documentation <strong>and</strong> FAR<br />

– Operating Temperature<br />

– Required Power<br />

– Center <strong>of</strong> Gravity<br />

Operating<br />

Temperature<br />

<strong>Aircraft</strong> Documents Requirements<br />

B<br />

A<br />

C<br />

25<br />

Required<br />

Power<br />

B<br />

Center <strong>of</strong><br />

Gravity<br />

A<br />

C


Step 3 – Placement Requirements Flow-down<br />

• Requirements come from aircraft<br />

documentation <strong>and</strong> FAR<br />

– Operating Temperature<br />

– Required Power<br />

– Center <strong>of</strong> Gravity<br />

– Volume<br />

– Zones<br />

– Wire Routes<br />

Volume Zones<br />

Wire Routes<br />

26<br />

Fire Zone<br />

Cabin/Cargo Compartment<br />

A320 Cross Section<br />

General<br />

Wire Paths


Step 4 – Initial Architecture Generation<br />

• Comparing architectures <strong>and</strong> per<strong>for</strong>ming<br />

trades fundamentally requires a baseline<br />

– Initial configuration used <strong>for</strong> comparison to<br />

all other architectures<br />

• Initial placements <strong>and</strong> connections<br />

determined from Airbus documentation<br />

• Initial architecture input into<br />

<strong>Pace</strong>lab APD using Excel file<br />

27<br />

Initial Configuration


• Payload Capacity<br />

Step 5 – Measures <strong>of</strong> Merit Identification<br />

– Wire weight reduction allows a payload increase<br />

– Results in an increase in revenue<br />

• Fuel Weight<br />

– Varies depending on decrease in power drop<br />

due to temperature, wire length, efficiency<br />

– Results in decrease in operating fuel cost<br />

• Center <strong>of</strong> Gravity<br />

– Locations <strong>of</strong> components affect stability<br />

Method <strong>of</strong><br />

Calculation<br />

B<br />

B<br />

Locations <strong>of</strong> Components<br />

28<br />

A<br />

C<br />

A<br />

Wire Weight<br />

Power Extraction from engines<br />

B<br />

C<br />

POC<br />

Evaluator<br />

Payload Capacity<br />

Related<br />

System<br />

Level Metric<br />

$/RPM<br />

Fuel Weight Fuel Cost<br />

C.G.<br />

Stability


Step 6 – Investigating Competing Architectures<br />

• Many methods to identify competing architectures<br />

– Optimization methods<br />

– Design Space Exploration methods<br />

• Selected a Monte Carlo simulation combined with data<br />

post-processing<br />

• Investigation consists <strong>of</strong> three phases:<br />

– Pre-processing: Generating architectures<br />

– Processing: Running the modeling <strong>and</strong> simulation environment<br />

– Post-Processing: Analysis <strong>of</strong> the saved measures <strong>of</strong> merits<br />

29<br />

Run 1: Component 1: X1, Y1, Z1<br />

Component 2: X2, Y2, Z2<br />

Component 3: X3, Y3, Z3<br />

...<br />

Run 2: Component 1: X1, Y1, Z1<br />

Component 2: X2, Y2, Z2<br />

Component 3: X3, Y3, Z3<br />

...<br />

…<br />

Pre-processing:<br />

Pre-processing:<br />

Processing:<br />

Processing:<br />

Post-processing:<br />

Post-processing:<br />

Run 1: Results 1<br />

Results 2<br />

...<br />

Run 2: Results 1<br />

Results 2<br />

...<br />


The EOASys<br />

Initiative<br />

Pro<strong>of</strong> <strong>of</strong> Concept Demo<br />

The Installation<br />

Problem<br />

Architecture<br />

Selection<br />

<strong>Methodology</strong><br />

30<br />

The Pro<strong>of</strong><br />

<strong>of</strong> Concept<br />

Pro<strong>of</strong> <strong>of</strong><br />

Concept Demo<br />

Concluding<br />

Remarks


The EOASys<br />

Initiative<br />

Concluding Remarks<br />

The Installation<br />

Problem<br />

Architecture<br />

Selection<br />

<strong>Methodology</strong><br />

31<br />

The Pro<strong>of</strong><br />

<strong>of</strong> Concept<br />

Pro<strong>of</strong> <strong>of</strong><br />

Concept Demo<br />

Concluding<br />

Remarks


Conclusions<br />

• POC tool applies generic methodology to focused problem<br />

– Provides capability to dynamically <strong>and</strong> visually trade architectures<br />

– ‘Best’ design demonstrates fuel savings <strong>and</strong> increase in payload capacity <strong>for</strong><br />

small fraction <strong>of</strong> the AES<br />

• POC enables not only study <strong>of</strong> fixed aircraft <strong>and</strong> components:<br />

– Ability to create architectures with entirely new <strong>and</strong> varying component lists<br />

– New technologies can be input <strong>and</strong> explored early in design<br />

– With appropriate in<strong>for</strong>mation <strong>and</strong> knowledge base, entire AES can be studied<br />

This study serves as a stepping stone <strong>for</strong> future<br />

integration <strong>of</strong> energy optimized aircraft<br />

32<br />

New<br />

Technologies<br />

New Installation<br />

Architectures<br />

Holistic<br />

Integration<br />

<strong>of</strong> AES


Future Work<br />

• Modeling <strong>of</strong> more components <strong>and</strong> systems to realize a more complete perspective <strong>of</strong> the installation design space<br />

– Replacing hydraulic <strong>and</strong> pneumatic systems<br />

• Incorporate <strong>Pace</strong>lab APD’s sizing <strong>and</strong> synthesis<br />

– If aircraft could be scaled geometrically as in sizing <strong>and</strong> synthesis, benefits would be magnified<br />

• Requirements added to include different flight modes <strong>and</strong> failure modes<br />

• Exp<strong>and</strong> knowledge base with more accurate industry in<strong>for</strong>mation<br />

– Requirements <strong>and</strong> experience utilized <strong>for</strong> installation must be captured as rules <strong>and</strong> input<br />

– More comprehensive set <strong>of</strong> evaluators can be considered<br />

33


– Dr. Dimitri Mavris<br />

– Dr. Elena Garcia<br />

– Dr. Neil Weston<br />

– Michael Armstrong<br />

– Latessa Bortner<br />

– Bjorn Cole<br />

ASDL<br />

Acknowledgements<br />

– Cyril de Tenorio<br />

– Andrew Dunbeck<br />

– Kelly Griendling<br />

– Eric Hendricks<br />

– Hern<strong>and</strong>o Jimenez<br />

– Leon Phan<br />

34<br />

Delta<br />

– Livia Carneiro<br />

– Brian Duff<br />

– Charles Harkey<br />

PACE<br />

– Mathias Emeneth<br />

– Glenn Reis<br />

– Alex<strong>and</strong>er<br />

Schneegans

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!