21.05.2015 Views

Spike-timing dependent plasticity in balanced random networks

Spike-timing dependent plasticity in balanced random networks

Spike-timing dependent plasticity in balanced random networks

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Spike</strong>-<strong>tim<strong>in</strong>g</strong> <strong>dependent</strong> <strong>plasticity</strong> <strong>in</strong><br />

<strong>balanced</strong> <strong>random</strong> <strong>networks</strong><br />

M. Diesmann 1,2<br />

1 Computational Neurophysics, Institute of Biology III, Albert-Ludwigs-University<br />

2 Bernste<strong>in</strong> Center for Computational Neuroscience, Albert-Ludwigs-University<br />

Computational Approaches to Cortical Functions<br />

Banbury Center, 2-5 April 2006<br />

freiburg


Thanks<br />

◮ Abigail Morrison<br />

◮ Ad Aertsen<br />

◮ Guo-qiang Bi<br />

(for provid<strong>in</strong>g orig<strong>in</strong>al data)<br />

◮ NEST Initiative<br />

A. Morrison, A. Aertsen, & M. Diesmann (2005)<br />

<strong>Spike</strong>-<strong>tim<strong>in</strong>g</strong> <strong>dependent</strong> <strong>plasticity</strong> <strong>in</strong> <strong>balanced</strong> <strong>random</strong> <strong>networks</strong><br />

Neural Computation, under review<br />

freiburg


Consistency of cortical network model<br />

model<br />

data<br />

ν ext<br />

J<br />

E<br />

J<br />

X<br />

ν ext<br />

J<br />

J<br />

I<br />

−gJ<br />

−gJ<br />

(Brunel, 2000)<br />

(Bi & Poo, 1998)<br />

Is the network model compatible with the data?<br />

freiburg


Outl<strong>in</strong>e<br />

Choice of STDP model<br />

Plastic Networks<br />

Development of structure<br />

Robustness<br />

Synchronous stimulation<br />

freiburg


Outl<strong>in</strong>e<br />

Choice of STDP model<br />

Plastic Networks<br />

Development of structure<br />

Robustness<br />

Synchronous stimulation<br />

freiburg


Outl<strong>in</strong>e<br />

Choice of STDP model<br />

Plastic Networks<br />

Development of structure<br />

Robustness<br />

Synchronous stimulation<br />

freiburg


Outl<strong>in</strong>e<br />

Choice of STDP model<br />

Plastic Networks<br />

Development of structure<br />

Robustness<br />

Synchronous stimulation<br />

freiburg


Outl<strong>in</strong>e<br />

Choice of STDP model<br />

Plastic Networks<br />

Development of structure<br />

Robustness<br />

Synchronous stimulation<br />

freiburg


Choice of STDP model<br />

◮ Additive, multiplicative, . . . ?<br />

◮ All to all, nearest neighbor, . . . ?<br />

Can the existent experimental data help to reduce the plethora<br />

of possible models?<br />

freiburg


Back to the orig<strong>in</strong>al data<br />

(Bi & Poo, 1998)<br />

What, if anyth<strong>in</strong>g, does this tell us about the weight<br />

dependency of the STDP update?<br />

freiburg


Weight dependency of STDP<br />

A<br />

PSC change [pA]<br />

300<br />

100<br />

30<br />

10<br />

3<br />

0<br />

−3<br />

−10<br />

−30<br />

−100<br />

−300<br />

30 100 300 1000 3000<br />

Initial PSC [pA]<br />

B<br />

PSC change [%]<br />

100<br />

◮ pale gray additive<br />

◮ dark gray multiplicative<br />

50<br />

◮ power law with µ = 0.4<br />

◮ depression multiplicative<br />

0<br />

−50<br />

−100 −50 0 50 100<br />

<strong>Spike</strong> <strong>tim<strong>in</strong>g</strong> [ms]<br />

freiburg


Weight dependency of STDP<br />

B<br />

PSC change [%]<br />

100<br />

50<br />

0<br />

◮ darker for higher <strong>in</strong>itial w<br />

◮ variability may result from<br />

different <strong>in</strong>itial w<br />

◮ depression multiplicative<br />

→ no dependence on w<br />

−50<br />

000 −100 −50 0 50 100<br />

<strong>Spike</strong> <strong>tim<strong>in</strong>g</strong> [ms]<br />

freiburg


Weight dependency of STDP<br />

change <strong>in</strong> PSC amplitude<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 20 40 60 80 100<br />

<strong>in</strong>itial PSC amplitude [pA]<br />

additive (Song, Miller, & Abbott)<br />

multiplicative (Rub<strong>in</strong>, Lee, & Sompol<strong>in</strong>sky)<br />

<strong>in</strong> between (Gütig, Aharonov et al.)<br />

∆w − (w, t) = −λαw µ K (t, θ post)<br />

∆w + (w, t) = λ (1 − w) µ K (t, θ pre)<br />

∑<br />

−(T −tx)/τ<br />

K (T, θ x) =<br />

e<br />

power law<br />

t x∈θ x:t x


<strong>Spike</strong> pair<strong>in</strong>g scheme<br />

A<br />

48<br />

nearest neighbor<br />

A<br />

48<br />

B<br />

45.6<br />

B<br />

45.6<br />

all to all<br />

weight [pA]<br />

47<br />

46<br />

45<br />

44<br />

weight [pA]<br />

47<br />

45.55 45.55<br />

46<br />

45.5 45.5<br />

45<br />

45.45 45.45<br />

44<br />

45.4 45.4<br />

0 100 0 100 200 300 200 300 0 1000 200 100 300 200 300<br />

time [s] time [s]<br />

time [s] time [s]<br />

◮ self-consistent rate necessary for stability<br />

◮ nearest neighbor scheme amplifies rate disparity<br />

◮ all to all spike scheme counteracts rate disparity<br />

freiburg


Weight distribution <strong>in</strong> a fully plastic network<br />

A<br />

area diff. [%]<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

B<br />

frac. synapses<br />

0.1<br />

0.05<br />

C<br />

C(τ)<br />

0<br />

0 500 1000 1500 2000<br />

time [s]<br />

4<br />

2<br />

0<br />

−2<br />

6 x 10−4<br />

−75 −50 −25 0 25 50 75<br />

D<br />

0<br />

4<br />

2<br />

0<br />

−2<br />

6 x 10−4<br />

35 45 55<br />

weight [pA]<br />

Given a desired w ∗ of a static BRN, α p can be calculated.<br />

◮ α = 1.057α p to compensates for correlation<br />

◮ weight distribution settles to Gaussian with<strong>in</strong> 200 s<br />

−75 −50 −25 0 25 50 75<br />

freiburg


a<br />

0.2<br />

fr<br />

Activity <strong>in</strong> a fully plastic network<br />

0<br />

0 500 1000 1500 2000<br />

time [s]<br />

0<br />

35 45 55<br />

weight [pA]<br />

C<br />

6 x 10−4 τ [ms]<br />

4<br />

D<br />

6 x 10−4 τ [ms]<br />

4<br />

C(τ)<br />

2<br />

2<br />

0<br />

0<br />

−2<br />

−2<br />

−75 −50 −25 0 25 50 75<br />

−75 −50 −25 0 25 50 75<br />

◮ AI dynamics<br />

◮ rate slightly higher (8.8 Hz) than <strong>in</strong> static network (7.7 Hz)<br />

◮ similar Fano factor and coefficient of variation<br />

freiburg


Individual weight trajectories<br />

56<br />

54<br />

52<br />

50<br />

weight [pA]<br />

48<br />

46<br />

44<br />

42<br />

40<br />

38<br />

0 100 200 300 400 500<br />

time [s]<br />

◮ weight distribution settles fairly quickly ...<br />

◮ ... but <strong>in</strong>dividual weight trajectories rema<strong>in</strong> dynamic<br />

◮ neither spontaneous development of structure nor<br />

wither<strong>in</strong>g<br />

freiburg


Survival time of strong synapses<br />

10 6 survival time [s]<br />

10 5<br />

10 4<br />

synapses<br />

10 3<br />

10 2<br />

10 1<br />

10 0<br />

0 200 400 600 800 1000<br />

◮ exponential decay with τ ≈ 55s of top 10%<br />

◮ time shift <strong>in</strong>variant statistics, steps of 200s shown<br />

◮ no development of structure<br />

freiburg


Sensitivity to scal<strong>in</strong>g of depression<br />

C(τ)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

x 10 −4<br />

3<br />

0<br />

−3<br />

−50 0 50<br />

◮ at higher α (stronger<br />

depression), here 2%, a<br />

new stable state emerges<br />

at a lower rate<br />

◮ but, if α chosen 2% too<br />

low, the network explodes<br />

6 x 10−4 τ [ms]<br />

−2<br />

−75 −50 −25 0 25 50 75<br />

◮ new regime displays<br />

strongly patterned activity<br />

<strong>in</strong>terspersed with silence<br />

freiburg


Sensitivity to scal<strong>in</strong>g of depression<br />

frac. synapses<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

rate [Hz]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

5 15 25<br />

time [s]<br />

◮ at higher α (stronger<br />

depression), here 2%, a<br />

new stable state emerges<br />

at a lower rate<br />

◮ but, if α chosen 2% too<br />

low, the network explodes<br />

0<br />

0 50 100 150 200 250 300<br />

weight [pA]<br />

◮ new regime displays<br />

strongly patterned activity<br />

<strong>in</strong>terspersed with silence<br />

freiburg


Sensitivity to scal<strong>in</strong>g of depression<br />

A<br />

rate [Hz]<br />

B<br />

rate [Hz]<br />

C<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

29 29.2 29.4 29.6 29.8 30<br />

time [s]<br />

0<br />

100<br />

D<br />

E<br />

◮ at higher α (stronger<br />

depression), here 2%, a<br />

new stable state emerges<br />

at a lower rate<br />

◮ but, if α chosen 2% too<br />

low, the network explodes<br />

◮ new regime displays<br />

strongly patterned activity<br />

<strong>in</strong>terspersed with silence<br />

neuron id<br />

75<br />

50<br />

25<br />

29.1 29.1025 29.105<br />

time [s]<br />

29.7 29.7025 29.705<br />

time [s]<br />

freiburg


Synchronous stimulation<br />

A<br />

neuron id<br />

B<br />

neuron id<br />

C<br />

neuron id<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3 3.2 3.4 3.6 3.8 4<br />

time [s]<br />

◮ current <strong>in</strong>jected <strong>in</strong>to 500<br />

neurons irregularly at 3 Hz<br />

◮ <strong>in</strong>jection times for each<br />

neuron drawn from<br />

Gaussian<br />

(σ = 0.5 ms)<br />

◮ moderate effect on<br />

high-connectivity group<br />

(K synch ≥ 69)<br />

◮ weak effect on rest of<br />

network<br />

freiburg


Synchronous stimulation<br />

A<br />

neuron id<br />

B<br />

neuron id<br />

C<br />

neuron id<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3 3.2 3.4 3.6 3.8 4<br />

time [s]<br />

◮ current <strong>in</strong>jected <strong>in</strong>to 500<br />

neurons irregularly at 3 Hz<br />

◮ <strong>in</strong>jection times for each<br />

neuron drawn from<br />

Gaussian<br />

(σ = 0.5 ms)<br />

◮ moderate effect on<br />

high-connectivity group<br />

(K synch ≥ 69)<br />

◮ weak effect on rest of<br />

network<br />

freiburg


Synchronous stimulation<br />

A<br />

neuron id<br />

B<br />

neuron id<br />

C<br />

neuron id<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

3 3.2 3.4 3.6 3.8 4<br />

time [s]<br />

◮ current <strong>in</strong>jected <strong>in</strong>to 500<br />

neurons irregularly at 3 Hz<br />

◮ <strong>in</strong>jection times for each<br />

neuron drawn from<br />

Gaussian<br />

(σ = 0.5 ms)<br />

◮ moderate effect on<br />

high-connectivity group<br />

(K synch ≥ 69)<br />

◮ weak effect on rest of<br />

network<br />

freiburg


Development of activity dur<strong>in</strong>g stimulation<br />

A<br />

20<br />

B<br />

20<br />

rate [Hz]<br />

15<br />

10<br />

15<br />

10<br />

5<br />

5<br />

C<br />

neuron id<br />

D<br />

0<br />

0 100 200<br />

time [s]<br />

100<br />

40<br />

0<br />

0 100 200 300 400<br />

time [s]<br />

◮80<strong>in</strong>tra-group connections amplify stimulus<br />

60<br />

◮20remov<strong>in</strong>g <strong>in</strong>tra-group connections permits stable network<br />

100<br />

80<br />

◮60rate of stimulated group plummets<br />

neuron id<br />

40<br />

20<br />

→ explosion<br />

activity for N synch = 500<br />

222.95 223 223.05 223.1 223.15<br />

time [s]<br />

freiburg


Development of weights<br />

A<br />

frac. synapses<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

20 40 60 80<br />

weight [pA]<br />

B<br />

weight [pA]<br />

65<br />

60<br />

55<br />

50<br />

45<br />

20 40 60 80<br />

convergence<br />

◮ <strong>in</strong>com<strong>in</strong>g synapses to stimulated group decrease<br />

→ rate drop<br />

◮ outgo<strong>in</strong>g synapses <strong>in</strong>crease as K synch <strong>in</strong>creases<br />

◮ effect does not transfer to high connectivity group<br />

freiburg


Development of correlation<br />

B<br />

C(τ)<br />

x 10 −3<br />

3<br />

2<br />

1<br />

0<br />

A<br />

C(τ)<br />

x 10 −3<br />

3<br />

2<br />

1<br />

0<br />

−40 −20 0 20 40<br />

τ [ms]<br />

x 10 −3<br />

C<br />

3<br />

2<br />

1<br />

0<br />

◮ expect <strong>in</strong>crease <strong>in</strong> correlation<br />

due to weight <strong>in</strong>crease (A→B)<br />

◮ decrease <strong>in</strong> correlation<br />

observed (A→C)<br />

◮ reduction of <strong>in</strong>put to stimulated<br />

group lowers responsiveness<br />

to stimulus<br />

◮ development of structure<br />

counteracted<br />

−40 −20 0 20 40<br />

τ [ms]<br />

−40 −20 0 20 40<br />

τ [ms]<br />

freiburg


Summary<br />

◮ power law description fits STDP data<br />

◮ predicts small changes for small weights<br />

◮ compatible with <strong>balanced</strong> <strong>random</strong> <strong>networks</strong><br />

◮ equilibrium weight distribution is unimodal<br />

◮ weights fluctuate on time scale of m<strong>in</strong>utes<br />

◮ no spontaneous development of structure<br />

◮ stimulation creates structure, but<br />

(oversimplified?) network counteracts<br />

freiburg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!