17.11.2012 Views

(ICT-ROMANIA) & Instituto Tecnológico de la Energía in Valencia

(ICT-ROMANIA) & Instituto Tecnológico de la Energía in Valencia

(ICT-ROMANIA) & Instituto Tecnológico de la Energía in Valencia

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BOOK OF ABSTRACTS<br />

ADVANCED WORKSHOP<br />

Timişoara, July 4-5, 2012<br />

Insights <strong>in</strong>to Novel Solid Materials,<br />

their Recyc<strong>la</strong>bility and Integration <strong>in</strong>to<br />

Li Polymer Batteries for EVs.<br />

Future research directions <strong>in</strong> this field.<br />

Development of novel SOlid MAterials for<br />

high power Li polymer BATteries (SOMABAT).<br />

Recyc<strong>la</strong>bility of components.<br />

COLLABORATIVE PROJECT<br />

(GA No. NMP3-SL-2010-266090)<br />

Institute of Chemistry Timisoara of Romanian Aca<strong>de</strong>my<br />

TIMISOARA, <strong>ROMANIA</strong>


M18 WORKSHOP<br />

Timişoara, July, 4-5, 2012<br />

BOOK OF ABSTRACTS<br />

Advanced workshop<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and<br />

Integration <strong>in</strong>to Li Polymer Batteries for EVs.<br />

Future research directions <strong>in</strong> this field.<br />

4-5 July 2012<br />

Institute of Chemistry Timisoara of Romanian Aca<strong>de</strong>my<br />

TIMISOARA, <strong>ROMANIA</strong><br />

SOMABAT M18 July 2012 - Meet<strong>in</strong>g Agenda and WORKSHOP. Page 1 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

Organised by<br />

SOMABAT CONSORTIUM<br />

Institute of Chemistry Timisoara of Romanian Aca<strong>de</strong>my<br />

(<strong>ICT</strong>-<strong>ROMANIA</strong>)<br />

&<br />

<strong>Instituto</strong> <strong>Tecnológico</strong> <strong>de</strong> <strong>la</strong> <strong>Energía</strong> <strong>in</strong> <strong>Valencia</strong><br />

(ITE-Spa<strong>in</strong>)<br />

Scientific directors:<br />

Eugenia Fagadar-Cosma<br />

Mayte Gil-Agustí<br />

Gheorghe Ilia<br />

Scientific secretariat:<br />

Nicoleta Plesu<br />

Lav<strong>in</strong>ia Macarie<br />

Smaranda Iliescu<br />

Adriana Popa<br />

Gheorghe Fagadar-Cosma<br />

Edited by<br />

Eugenia Fagadar-Cosma<br />

F<strong>in</strong>ancially supported<br />

The 7 th Framework Programme of the European Commission<br />

(GA No. NMP3-SL-2010-266090)<br />

SOMABAT WORKSHOP M18 July 2012 Page 2 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

Advanced workshop:<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration <strong>in</strong>to Li<br />

Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

Timisoara, July 4-5, 2012<br />

It is our pleasure to <strong>in</strong>vite you to jo<strong>in</strong> <strong>in</strong>ternational scientists to discuss the cutt<strong>in</strong>g edge science and<br />

eng<strong>in</strong>eer<strong>in</strong>g aspects of Li Polymer Batteries for EVs to meet clean energy <strong>de</strong>mands and to ga<strong>in</strong> novel<br />

perspectives on the future.<br />

The Workshop will consist of one General Lecture, two Sessions of Invited Lectures addressed by lead<strong>in</strong>g<br />

researchers <strong>in</strong> the field, as well as contributed Oral presentations. Also, two Roundtables and a Poster<br />

session will be organized.<br />

The workshop is organized by SOMABAT CONSORTIUM: Institute of Chemistry Timisoara of Romanian<br />

Aca<strong>de</strong>my (<strong>ICT</strong>-<strong>ROMANIA</strong>) & <strong>Instituto</strong> <strong>Tecnológico</strong> <strong>de</strong> <strong>la</strong> <strong>Energía</strong> <strong>in</strong> <strong>Valencia</strong> (ITE-Spa<strong>in</strong>)<br />

F<strong>in</strong>ancially supported: The 7th Framework Programme of the European Commission (GA No. NMP3-SL-<br />

2010-266090)<br />

Scientific directors: Eugenia Fagadar-Cosma, Mayte Gil-Agustí, Gheorghe Ilia<br />

Scientific secretariat: Smaranda Iliescu, Lav<strong>in</strong>ia Macarie, Nicoleta Plesu, Adriana Popa, Gheorghe<br />

Fagadar-Cosma<br />

Topics: Materials, BMS, Recycl<strong>in</strong>g, Battery, EVs, Information Communication Strategy<br />

LOCATION: Institute of Chemistry Timisoara of Romanian Aca<strong>de</strong>my, 24 M. Viteazu Ave, 300223-Timisoara,<br />

<strong>ROMANIA</strong><br />

DATE AND VENUE OF THE WORKSHOP: 2012, July 4-5 th Timisoara, Institute of Chemistry of Romanian<br />

Aca<strong>de</strong>my<br />

FEES: No Registration Fee is nee<strong>de</strong>d<br />

ABSTRACTS: Abstracts of contributions to be presented dur<strong>in</strong>g the conference should be sent on maximum<br />

2 A4 pages. An electronic version of the abstract (Temp<strong>la</strong>te avai<strong>la</strong>ble) has to be sent as an e-mail<br />

attachment to the contact persons.<br />

POSTERS: will be on disp<strong>la</strong>y dur<strong>in</strong>g the entire WS (the authors are requested to be present for questions<br />

and discussion). POSTER TEMPLATE avai<strong>la</strong>ble. Size. - Poster Boards 1.00 m wi<strong>de</strong> and 2.00 m high will be<br />

avai<strong>la</strong>ble. The recommen<strong>de</strong>d format for posters is ISO A0 portrait (0.84 m x 1.19 m). Material to affix the<br />

posters will be provi<strong>de</strong>d.<br />

ACCOMMODATION & TRAVEL INFORMATION: participants are <strong>in</strong>vited to accomodate at Timisoara<br />

HOTEL, http://www.hoteltimisoara.ro/<br />

CONTACT: Eugenia Fagadar-Cosma [efagadar@yahoo.com]; Gheorghe Ilia [gheilia@yahoo.com]<br />

SOMABAT WORKSHOP M18 July 2012 Page 3 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

TITLE: Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration <strong>in</strong>to Li Polymer<br />

Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

The ma<strong>in</strong> objective of the Workshop is to discuss the emerg<strong>in</strong>g art and science of lighter and smaller Libattery<br />

for EVs (environmental safety and low cost). Secondary goals are to share the state-of-the-art <strong>in</strong><br />

BMS and R&D strategies for implement<strong>in</strong>g performance mo<strong>de</strong>ls for Li- battery usage based on novel solid<br />

materials.<br />

Another important purpose is to share our experiences and accomplishments, to support each other, to be<br />

open to our common concerns, and to refresh our vision of the future!<br />

Education challenges will be oriented on shortfall of experience <strong>in</strong> these fields.<br />

Activities will <strong>in</strong>clu<strong>de</strong> conferences, lectures and roundtables to share knowledge and discuss the Ma<strong>in</strong><br />

Topics: Materials, BMS, Recycl<strong>in</strong>g, BATTERY, EVs, <strong>ICT</strong><br />

� the state-of-the-art <strong>in</strong> battery materials and chemistries;<br />

� technical limitations;<br />

� future research directions and needs for obta<strong>in</strong><strong>in</strong>g and advanced characterization of materials and<br />

electro<strong>de</strong>s<br />

� BMS (<strong>in</strong>clud<strong>in</strong>g State-of -Charge and State-of-Health estimation for cells chemistries and cell<br />

ba<strong>la</strong>nc<strong>in</strong>g)<br />

� compare performance/durability/safety<br />

� <strong>de</strong>velop and dissem<strong>in</strong>ate materials to improve public un<strong>de</strong>rstand<strong>in</strong>g of electric vehicle advantages<br />

and teach/<strong>in</strong>troduce young doctoral stu<strong>de</strong>nts <strong>in</strong> the issue<br />

� A possible answer to the question: Is global standardization <strong>de</strong>sirable/necessary?<br />

Program:<br />

� General Open Lecture (General view of Battery and EV)<br />

� Session I (Materials and <strong>in</strong>tegration: ano<strong>de</strong>, catho<strong>de</strong> and solid polymer electrolytes and battery)<br />

� Session II (Capabilities & Recyc<strong>la</strong>bility: BMS, Mo<strong>de</strong>ll<strong>in</strong>g, EVs (IUG), <strong>ICT</strong>)<br />

� Roundtables: Experience shar<strong>in</strong>g with SOMABAT application specialists<br />

� Poster session (a possible prize for best poster will be awar<strong>de</strong>d for a young doctoral stu<strong>de</strong>nt)<br />

� Visit of the <strong>ICT</strong> <strong>la</strong>boratories (presentation regard<strong>in</strong>g pr<strong>in</strong>ciples of Investigations)<br />

SOMABAT WORKSHOP M18 July 2012 Page 4 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

Expected result of the workshop:<br />

- Publish<strong>in</strong>g program; a book of abstracts; the oral presentations (lectures and conferences) avai<strong>la</strong>ble on<br />

<strong>in</strong>ternal <strong>ICT</strong> website and SOMABAT website<br />

- Shar<strong>in</strong>g experience to refresh our vision<br />

- An open<strong>in</strong>g for young doctors for future research approaches<br />

Targeted audience:<br />

- PO, PTA and Consortium members of SOMABAT<br />

- External Experts <strong>in</strong> the field<br />

- Doctoral stu<strong>de</strong>nts and young doctors<br />

- Specialists <strong>in</strong> the fields<br />

Estimated number of participants: 30 specialists that are members from SOMABAT and 5 External<br />

experts<br />

Attendants: m<strong>in</strong>. 20.<br />

SOMABAT WORKSHOP M18 July 2012 Page 5 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration <strong>in</strong>to Li<br />

Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

Advanced workshop AGENDA:<br />

Wednesday Afternoon, July 4 th , 2012<br />

Timisoara, July 4-5, 2012<br />

WORKSHOP: Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration <strong>in</strong>to Li Polymer<br />

Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

15:30 30´ Start of the workshop<br />

16:00 30-40' OPEN LECTURE:<br />

� Welcome to the participants by the host <strong>ICT</strong> organisation<br />

Erik Verhaeven (Invited IUG Expert-CTO 4ESYS)<br />

Cont<strong>in</strong>uous cell-to-cell ba<strong>la</strong>nc<strong>in</strong>g with high power lithium<br />

batteries<br />

20' Coffee break<br />

SOMABAT WORKSHOP M18 July 2012 Page 6 of 14<br />

<strong>ICT</strong><br />

IUG


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

17:00 150´<br />

20-30’<br />

<strong>in</strong>vited<br />

person<br />

SESSION I: MATERIALS AND ITS INTEGRATION<br />

1. Leire Zubizarreta (ITE)<br />

Polymer electrolytes: an alternative for safer EV Li batteries<br />

2. Fabio Rosciano (Invited IUG-EXPERT- Toyota)<br />

New materials for solid electrolytes.<br />

3. György Keglevich (Invited Expert, Professor, Department of<br />

Organic Chemistry and Technology, Budapest University of<br />

Technology and Economics, Budapest (Hungary)<br />

Novel synthetic method for the synthesis of phosph<strong>in</strong>ates<br />

and phosph<strong>in</strong>ic ami<strong>de</strong>s; The potential of the microwave<br />

technique<br />

4. Alexandre Leonard, Marie-Laure Piedboeuf, Jean-Paul Pirard<br />

and Nathalie Job (ULG)<br />

Synthesis and characterization of porous carbon xerogels<br />

and or<strong>de</strong>red mesoporous carbons for ano<strong>de</strong> materials <strong>in</strong> Libased<br />

batteries<br />

5. Viaches<strong>la</strong>v Barsukov and Volodymyr Khomenko (KNUTD).<br />

Promis<strong>in</strong>g ano<strong>de</strong> materials for lithium batteries<br />

6. Volodymyr Khomenko and Viaches<strong>la</strong>v Barsukov (KNUTD).<br />

The peculiarity of ano<strong>de</strong> and catho<strong>de</strong> Integration <strong>in</strong> a whole<br />

lithium battery<br />

SOMABAT WORKSHOP M18 July 2012 Page 7 of 14<br />

ITE<br />

IUG<br />

Scientific Expert<br />

ULG<br />

KNUTD<br />

KNUTD<br />

19:30 30´ FREE DISCUSSIONS on TOPICS Mayte Gil-Agustí<br />

20:00 Festive DINNER


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

Thursday, July 5 th , 2012<br />

WORKSHOP: Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration <strong>in</strong>to Li Polymer<br />

Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

9:00 15’ Welcome and short remarks on First Day of the Workshop by the<br />

host <strong>ICT</strong> organisation<br />

9:15 150´<br />

20-30’<br />

<strong>in</strong>vited<br />

person<br />

SESSION II: CAPABILITIES & RECYCLABILITY<br />

1. Iratxe <strong>de</strong> Meatza<br />

11:15 15´ Coffee break<br />

Departament of New Technologies CEGASA INTERNACIONAL<br />

Cell and module manufactur<strong>in</strong>g of Lithium batteries for EVs<br />

and stationary applications<br />

2. Ewald Wachmann (Invited IUG Expert- Senior Manager<br />

Process R&D, Austriamicrosystems AG, Coord<strong>in</strong>ator<br />

„ESTRELIA“, www.estrelia.eu)<br />

Advanced BMS-IC solutions for Li-Ion cell monitor<strong>in</strong>g and<br />

active ba<strong>la</strong>nc<strong>in</strong>g<br />

3. Viorel Stanciu, Pau<strong>la</strong> Anghelita and Mihae<strong>la</strong> Chefneux<br />

(Invited Expert -ICPE SA- Bucuresti, Romania)<br />

Energy Storage System for an Innovative Eco-Boat Equipped<br />

with an Integrated Hybrid Propulsion System<br />

4. Franz Pichler and Mart<strong>in</strong> Cifra<strong>in</strong> (Kompetenzzentrum – Das<br />

virtuelle Fahrzeug ForschungsgesmbH (ViF)<br />

Estimation of Thermal and Electrical Battery Module<br />

Characteristics by Mathematical Mo<strong>de</strong>ll<strong>in</strong>g<br />

5. Lars Barkler and Karl Vest<strong>in</strong> (LB)<br />

Battery management systems (BMS) of Li-Batteries for<br />

satisfy<strong>in</strong>g the ma<strong>in</strong> <strong>de</strong>mands<br />

6. Re<strong>in</strong>er Weyhe, Isabelle Desmuee and Farouk Tedjar<br />

(ACC&RE)<br />

Economic requirements on future Li-Ion recycl<strong>in</strong>g processes<br />

SOMABAT WORKSHOP M18 July 2012 Page 8 of 14<br />

<strong>ICT</strong><br />

CEGASA<br />

IUG<br />

ICPE<br />

VIF<br />

LB<br />

ACC&RE


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

11:30 75´ Round Table 1<br />

12:45 75´ Round Table 2<br />

“Li POLYMER BATTERIES and EVs. Industry Needs”<br />

� Nanomaterials and Li polymer Batteries<br />

� Solutions to <strong>in</strong>crease electrochemical performance<br />

� Actions to implement Li polymer batteries on EVs’ market<br />

20 doctoral stu<strong>de</strong>nts as attendants<br />

R&D Emerg<strong>in</strong>g Directions<br />

Structural <strong>de</strong>sign and prediction of performances<br />

Surface modified catho<strong>de</strong> materials. Novel methods<br />

New f<strong>la</strong>me retardants porous polymer membranes<br />

Economic requirements on future Li-Ion recycl<strong>in</strong>g processes<br />

20 doctoral stu<strong>de</strong>nts as attendants<br />

Mo<strong>de</strong>rators:<br />

Erno Van<strong>de</strong>weert<br />

& Flor<strong>in</strong> Babarada<br />

Ewald Wachmann<br />

SOMABAT WORKSHOP M18 July 2012 Page 9 of 14<br />

CCB<br />

Mo<strong>de</strong>rators:<br />

Erik Verhaeven &<br />

Iratxe <strong>de</strong> Meatza<br />

14:00 15´ Sem<strong>in</strong>ar evaluation. End of sem<strong>in</strong>ar Mayte Gil-Agusti &<br />

14:15 60’ Lunch break<br />

15:15' 45’ Visit to <strong>ICT</strong> Organic Chemistry Department Laboratories<br />

16:00 120' Gui<strong>de</strong>d Visit of TIMISOARA City<br />

Doctoral stu<strong>de</strong>nts registered for poster award:<br />

Eugenia Fagadar-<br />

Cosma<br />

Iuliana Popa, Ione<strong>la</strong> Creanga, Anca Pa<strong>la</strong><strong>de</strong> -doctoral stu<strong>de</strong>nts (National Institute for<br />

Electrochemistry and Con<strong>de</strong>nsed Materials-Timisoara & <strong>ICT</strong>)<br />

Nadia Pop-doctoral stu<strong>de</strong>nt (<strong>ICT</strong> & Laboratoire CRISMAT, UMR 6508 CNRS ENSICAEN, 14050<br />

CAEN Ce<strong>de</strong>x, France)<br />

Marie-Laure Piedboeuf- doctoral stu<strong>de</strong>nt (Université <strong>de</strong> Liège, Laboratoire <strong>de</strong> Génie Chimique<br />

(B6a), B-4000 Liège, Belgium)


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

POSTER CONTRIBUTIONS<br />

(will be disp<strong>la</strong>yed dur<strong>in</strong>g all activities)<br />

1. INFLUENCE OF TEXTURAL AND STRUCTURAL FEATURES OF MESOPOROUS<br />

CARBON-BASED ANODE MATERIALS ON THE ELECTROCHEMICAL<br />

CHARACTERISTICS OF Li-ION BATTERIES.<br />

Marie-Laure Piedboeuf, Alexandre Leonard, Jean-Paul Pirard and Nathalie Job (ULG)<br />

2. RESORCINOL-FORMALDEHYDE CARBON XEROGELS AS LITHIUM-ION<br />

BATTERY ANODE MATERIALS: INFLUENCE OF POROSITY ON CAPACITY AND<br />

CYCLING BEHAVIOUR<br />

Alexandre F. Leonard, Marie-Laure Piedboeuf, Volodymyr Khomenko, Ilona Senyk , Jean-Paul<br />

Pirard, Nathalie Job (ULG,&KNUTD)<br />

3. SYNTHESIS AND MORPHOLOGY CONTROL OF NOVEL NANOSTRUCTURED<br />

LiFePO4 CATHODE MATERIALS FOR Li-ION BATTERY<br />

Omar Ayyad and Pedro-Gómez-Romero (CSIC-INC&MATGAS)<br />

4. AGROWASTES AS PRECURSOR FOR THE DEVELOPMENT OF CARBON ANODES<br />

FOR Li BATTERIES<br />

Leire Zubizarreta, Mayte Gil-Agustí, Jessica Calleja-Langa, Ilona Senyk, Volodymir Khomenko,<br />

Viaches<strong>la</strong>v Barsukov<br />

5. SYNTHESIS AND ELECTROCHEMICAL PERFORMANCE OF Li4Mo5O17 AS<br />

POSITIVE ELECTRODE MATERIAL FOR ENERGY STORAGE<br />

Nadia Pop, V<strong>in</strong>cent Caignaert, Bernard Raveau, Valerie Pralong (<strong>ICT</strong> & Laboratoire CRISMAT,<br />

Ce<strong>de</strong>x, France)<br />

6. NEW PHOSPHORUS SOLID ELECTROLYTES: SYNTHESIS BY INTERFACIAL<br />

TECHNIQUE AND PROPERTIES<br />

Gheorghe Ilia, Smaranda Iliescu, Mayte Gil-Agusti, Nicoleta Plesu, Lav<strong>in</strong>ia Macarie, Adriana Popa<br />

(<strong>ICT</strong> &ITE)<br />

7. GREEN SYNTHESIS AND CHARACTERIZATION OF NEW POLYMERS<br />

CONTAINING PHOSPHORUS GROUPS AND POLYETHERS<br />

Smaranda Iliescu, Nicoleta Plesu, Lav<strong>in</strong>ia Macarie, Adriana Popa, Gheorghe Ilia (<strong>ICT</strong>)<br />

8. UV-POLYMERIZATION AND CHRACTERIZATION OF NEW POLYMERS<br />

CONTAINING PHOSPHORUS GROUPS AND POLYETHERS<br />

Lav<strong>in</strong>ia Macarie, Nicoleta Plesu, Smaranda Iliescu, Adriana Popa, Gheorghe Ilia, Nico<strong>la</strong>e Hurduc<br />

(<strong>ICT</strong>)<br />

SOMABAT WORKSHOP M18 July 2012 Page 10 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

9. IONIC CONDUCTIVITY OF LINEAR PHOSPHONATE-POLY(ETHYLENE)GLYCOL<br />

POLYMERS<br />

Nicoleta Plesu, Smaranda Iliescu, Leire Zubizarreta, Gheorghe Fagadar-Cosma, Lav<strong>in</strong>ia Macarie,<br />

Adriana Popa, Gheorghe Ilia (<strong>ICT</strong>& ITE)<br />

10. POLYSTIRENE-DIVINYL BENZEN GELS - COMPOSITE PROPER FOR<br />

REDUCTION OF Cr (VI)<br />

Adriana Popa, Nicoleta Plesu, Smaranda Iliescu, Lav<strong>in</strong>ia Macarie, Gheorghe Ilia (<strong>ICT</strong>)<br />

11. LIFE CYCLE ASSESSMENT OF CARBON XEROGELS<br />

Raphaëlle Melon, Roberto Renzoni, Alexandre Leonard, Nathalie Job, Angélique Leonard (ULG)<br />

12. NOVEL SENSOR BASED ON PORPHYRINS FOR MONITORING OF IRON(III) IONS<br />

IN RECOVERED SOLUTIONS FROM SPENT LITHIUM ION BATTERIES<br />

Eugenia Fagadar-Cosma, Dana V<strong>la</strong>scici, Iuliana Popa, Ione<strong>la</strong> Creanga, Anca Pa<strong>la</strong><strong>de</strong>, Mayte Gil-<br />

Agusti, Gheorghe Fagadar-Cosma, Leire Zubizarreta (<strong>ICT</strong>&ITE)<br />

13. LITHIUM BATTERY CELL TO PACK INTEGRATION FOR ELECTRIC VEHICLES<br />

Peter Dooley (Cleancarb)<br />

SOMABAT WORKSHOP M18 July 2012 Page 11 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

ABSTRACTS<br />

CONTENT<br />

Erik Verhaeven<br />

Cont<strong>in</strong>uous cell-to-cell ba<strong>la</strong>nc<strong>in</strong>g with high power lithium batteries, p. 14.<br />

Leire Zubizarreta, Mayte Gil-Agustí, Jessica Calleja-Langa, Eugenia Fagadar-Cosma,<br />

Gheorghe Ilia<br />

Polymer electrolytes: an alternative for safer EV Li batteries, pp. 15-16.<br />

Fabio Rosciano, Julien Roussel<br />

Toyota's strategy for solid state batteries applied to hybrid and full electric powertra<strong>in</strong>s, p. 17.<br />

Alexandre Leonard, Jean-Paul Pirard, Nathalie Job<br />

Synthesis and characterization of porous carbon xerogels and or<strong>de</strong>red mesoporous carbons for<br />

ano<strong>de</strong> materials <strong>in</strong> Li-based batteries, pp. 18-19.<br />

György Keglevich, Zs. Nóra Kiss, Erika Bál<strong>in</strong>t, Tamás Körtvélyesi<br />

Novel synthetic method for the synthesis of phosph<strong>in</strong>ates and phosph<strong>in</strong>ic ami<strong>de</strong>s. The potential of<br />

the microwave technique, pp. 20-21.<br />

Viaches<strong>la</strong>v Barsukov, Volodymyr Khomenko<br />

Promis<strong>in</strong>g ano<strong>de</strong> materials for lithium batteries, pp. 22-23.<br />

Volodymyr Khomenko, Viaches<strong>la</strong>v Barsukov<br />

The peculiarity of ano<strong>de</strong> and catho<strong>de</strong> <strong>in</strong>tegration <strong>in</strong> a whole lithium battery, pp. 24-25.<br />

Ewald Wachmann, Manfred Brandl<br />

Advanced BMS-IC solutions for Li-ion cell monitor<strong>in</strong>g and active ba<strong>la</strong>nc<strong>in</strong>g, pp. 26-27.<br />

Viorel Stanciu, Pau<strong>la</strong> Anghelita, Mihae<strong>la</strong> Chefneux<br />

Energy storage system for an <strong>in</strong>novative eco-boat equipped with an <strong>in</strong>tegrated hybrid propulsion<br />

system, pp. 28-29.<br />

Franz Pichler, Mart<strong>in</strong> Cifra<strong>in</strong><br />

Estimation of thermal and electrical battery module characteristics by mathematical mo<strong>de</strong>ll<strong>in</strong>g,<br />

pp.30-31<br />

Karl Vest<strong>in</strong><br />

Functional safety <strong>in</strong> <strong>la</strong>rge scale lithium ion battery packs, p. 32<br />

Leire Zubizarreta, Mayte Gil-Agustí, Jessica Calleja-Langa, Ilona Senyk,<br />

Volodymir Khomenko, Viaches<strong>la</strong>v Barsukov<br />

Agrowastes as precursor for the <strong>de</strong>velopment of carbon ano<strong>de</strong>s for Li batteries, pp. 33-34.<br />

SOMABAT WORKSHOP M18 July 2012 Page 12 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

Nadia Pop, V<strong>in</strong>cent Caignaert, Bernard Raveau, Valerie Pralong<br />

Synthesis and electrochemical performance of Li4Mo5O17 as positive electro<strong>de</strong> material for energy<br />

storage, pp. 35-36.<br />

Gheorghe Ilia, Smaranda Iliescu, Mayte Gil-Agusti, Nicoleta Plesu, Lav<strong>in</strong>ia Macarie,<br />

Adriana Popa<br />

New phosphorus solid electrolytes: synthesis by <strong>in</strong>terfacial technique and properties, pp.37-38.<br />

Smaranda Iliescu, Nicoleta Plesu, Lav<strong>in</strong>ia Macarie, Adriana Popa, Gheorghe Ilia<br />

Green synthesis and characterization of new polymers conta<strong>in</strong><strong>in</strong>g phosphorus groups and<br />

polyethers, pp.39-40.<br />

Lav<strong>in</strong>ia Macarie, Nicoleta Plesu, Smaranda Iliescu, Adriana Popa, Gheorghe Ilia,<br />

Nico<strong>la</strong>e Hurduc<br />

UV-polymerization and chracterization of new polymers conta<strong>in</strong><strong>in</strong>g phosphorus groups and<br />

polyethers, pp.41-42.<br />

Nicoleta Plesu, Smaranda Iliescu, Leire Zubizarreta, Gheorghe Fagadar-Cosma,<br />

Lav<strong>in</strong>ia Macarie, Adriana Popa, Gheorghe Ilia<br />

Ionic conductivity of l<strong>in</strong>ear phosphonate-poly(ethylene)glycol polymers, pp.43-44.<br />

Eugenia Fagadar-Cosma, Dana V<strong>la</strong>scici, Iuliana Popa, Ione<strong>la</strong> Creanga, Anca Pa<strong>la</strong><strong>de</strong>,<br />

Mayte Gil-Agusti, Gheorghe Fagadar-Cosma, Leire Zubizarreta<br />

Novel sensor based on porphyr<strong>in</strong>s for monitor<strong>in</strong>g of iron(III) ions <strong>in</strong> recovered solutions from spent<br />

lithium ion batteries, pp.45-47.<br />

Omar Ayyad, Pedro-Gómez-Romero<br />

Synthesis and morphology control of novel nanostructured LiFePO4 catho<strong>de</strong> materials for Li-ion<br />

battery, pp.48-50.<br />

Raphaëlle Melon, Roberto Renzoni, Alexandre Leonard, Nathalie Job, Angélique Leonard<br />

Life cycle assessment of carbon xerogels, pp.51-52.<br />

Peter Dooley<br />

Lithium battery cell to pack <strong>in</strong>tegration for electric vehicles, p. 53.<br />

Adriana Popa, Nicoleta Plesu, Smaranda Iliescu, Lav<strong>in</strong>ia Macarie, Gheorghe Ilia<br />

Polystirene-div<strong>in</strong>yl benzen gels - composite proper for reduction of Cr(VI), pp.54-55.<br />

Alexandre F. Leonard, Marie-Laure Piedboeuf, Volodymyr Khomenko,<br />

Ilona Senyk, Jean-Paul Pirard, Nathalie Job<br />

Resorc<strong>in</strong>ol-formal<strong>de</strong>hy<strong>de</strong> carbon xerogels as lithium-ion battery ano<strong>de</strong> materials: <strong>in</strong>fluence of<br />

porosity on capacity and cycl<strong>in</strong>g behaviour, pp.56-57.<br />

SOMABAT WORKSHOP M18 July 2012 Page 13 of 14


SOMABAT WORKSHOP Timisoara, July 4-5, 2012<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Open Lecture<br />

CONTINUOUS CELL-TO-CELL BALANCING WITH HIGH<br />

POWER LITHIUM BATTERIES<br />

Erik VERHAEVEN<br />

CTO 4ESYS<br />

erik.verhaeven@4esys.com<br />

Keywords: Energy Storage System, Cell-to-Cell Ba<strong>la</strong>nc<strong>in</strong>g, Ultra High Power Lithium<br />

Cell, Ba<strong>la</strong>nc<strong>in</strong>g Current.<br />

Abstract<br />

After the successful <strong>in</strong>troduction of the new cont<strong>in</strong>uous cell-to-cell ba<strong>la</strong>nc<strong>in</strong>g approach<br />

OPTEFLOW® with ultracapacitor based energy storage systems based on commercial<br />

hybrid buses and trucks, further <strong>in</strong>vestigations were performed to leverage this<br />

technology to other battery technologies like VRLA, NiMH, and Lithium <strong>in</strong> or<strong>de</strong>r to<br />

capture specific <strong>de</strong>viations and possible benefits.<br />

After the pr<strong>in</strong>cipals beh<strong>in</strong>d this cell-to-cell ba<strong>la</strong>nc<strong>in</strong>g, test results on ultra-high power<br />

lithium cells cycled with different charge and discharge profiles will be provi<strong>de</strong>d. Besi<strong>de</strong>s<br />

<strong>in</strong>vestigations on electrical and thermal aspects, <strong>in</strong>fluences of cell-to-cell ba<strong>la</strong>nc<strong>in</strong>g<br />

between the <strong>in</strong>dividual energy cells were recor<strong>de</strong>d dur<strong>in</strong>g the different operat<strong>in</strong>g mo<strong>de</strong>s.<br />

The obta<strong>in</strong>ed results lead towards new approaches for optimal energy management and<br />

enhancements towards durability and lifetime.<br />

SOMABAT WORKSHOP M18 July 2012 Page 14 of 14


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

POLYMER ELECTROLYTES: AN ALTERNATIVE FOR SAFER<br />

EV Li BATTERIES<br />

Leire Zubizarreta a , Mayte Gil-Agustí a , Jessica Calleja-Langa a , Eugenia Fagadar-<br />

Cosma b , Gheorghe Ilia b<br />

a <strong>Instituto</strong> <strong>Tecnológico</strong> <strong>de</strong> <strong>la</strong> <strong>Energía</strong> (ITE), Avenida Juan <strong>de</strong> <strong>la</strong> Cierva, 24 46980<br />

Paterna, <strong>Valencia</strong>, Spa<strong>in</strong>; b Institute of Chemistry Timisoara of Romanian Aca<strong>de</strong>my,<br />

M. Viteazul Ave. 24, 300223-Timisoara, Romania<br />

Keywords: polymer, electrolyte, battery, safety, lithium<br />

Abstract<br />

Lithium ion battery technology is one of the most promis<strong>in</strong>g future energy resources for<br />

electric vehicles (EV) [1]. However, <strong>in</strong> spite of the several advantage of Li ion<br />

technology for its use <strong>in</strong> EV there are still different technological barriers to overcome<br />

and improve, such as performance of the battery, its life, recyc<strong>la</strong>bility, cost and safety.<br />

The use of polymer electrolytes for the <strong>de</strong>velopment of lithium polymer batteries could<br />

resolve some of these drawbacks.<br />

The advantages of polymer electrolytes respect to liquid electrolytes are their excellent<br />

processability and flexibility, higher safety due to the absence of electrolyte leakage and<br />

<strong>in</strong>f<strong>la</strong>mmability of electrolyte, possible prevention of the growth of lithium <strong>de</strong>ndrite<br />

crystals upon cycl<strong>in</strong>g, and high dimensional stability. However, <strong>in</strong> or<strong>de</strong>r to use them as<br />

possible candidate for Li batteries the performance required can be summarized as<br />

follows: 1) high ionic conductivity over 0.5 mS/cm, 2) chemical and electrochemical<br />

stability, 3) mechanical strength and flexibility, 4) thermal stability, 5) environmental<br />

safety, and 6) high aff<strong>in</strong>ity with liquid electrolyte.<br />

The first type of polymer electrolytes studied consisted of polymers such as<br />

poly(ethylene oxi<strong>de</strong>) PEO and poly(propylene oxi<strong>de</strong>) PPO or their blend complexed<br />

with suitable salts [2]. However, they showed poor room temperature conductivity. Of<br />

<strong>la</strong>te, a new system has ga<strong>in</strong>ed much attention where<strong>in</strong> a polymer matrix is mixed with<br />

p<strong>la</strong>sticizers to get p<strong>la</strong>sticized or gelled polymer electrolyte. Among the host polymer<br />

used for such gelled polymer electrolytes are poly(v<strong>in</strong>yli<strong>de</strong>nefluori<strong>de</strong>) PVDF [3],<br />

poly(methyl methacry<strong>la</strong>te) PMMA [4], poly(v<strong>in</strong>yl chlori<strong>de</strong>) PVC [5] and<br />

poly(acrylonitrile) PAN [6]. Compared with other polymer electrolytes, these<br />

p<strong>la</strong>sticized or gelled polymer electrolytes possess higher room temperature ionic<br />

conductivity and could be useful for lithium polymer battery applications.<br />

15


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

A strategy to improve the performance of polymer electrolytes could be build<strong>in</strong>g gel<br />

polymer composites <strong>in</strong> the direction of reduce the crystall<strong>in</strong>ity and improve flexibility of<br />

the membrane with high ionic conductivity and electrochemical stability, without los<strong>in</strong>g<br />

the free-stand<strong>in</strong>g features of certa<strong>in</strong> polymer materials. This fact implies the addition of<br />

different components to the polymeric matrix such as a p<strong>la</strong>sticizer,with a low molecu<strong>la</strong>r<br />

weight and high dielectric constant.<br />

PROMISING<br />

PROPERTIES<br />

oHigher safety (avoid<br />

problems re<strong>la</strong>ted<br />

withleakage and<br />

<strong>in</strong>f<strong>la</strong>mability of electrolyte)<br />

o Good flexibility<br />

o Good flexibility<br />

o Possible prevention of<br />

<strong>de</strong>ndrite growth<br />

oHigh dimensional stability<br />

POLYMER<br />

ELECTROLYTE<br />

REQUIREMENTS FOR THEIR USE IN<br />

Li POLYMER BATTERIES<br />

o High ionic conductivity<br />

oChemical and<br />

electrochemical stability<br />

o Mechanical strengh<br />

oThermal stability<br />

oEnvironmental safety<br />

Figure 1. Scheme with the promis<strong>in</strong>g properties of polymer electrolytes and the<br />

requirements for their use <strong>in</strong> Li polymer batteries for EV<br />

Poly(v<strong>in</strong>yli<strong>de</strong>nefluori<strong>de</strong>-co-hexafluoropropylene) [P(VdF-HFP)] is semi-crystall<strong>in</strong>e and<br />

chemically resistant copolymer with excellent mechanical strength and re<strong>la</strong>tively high<br />

dielectric constants. Besi<strong>de</strong>s, it also exhibits lower g<strong>la</strong>ss transition and melt<strong>in</strong>g<br />

temperatures, and a higher solubility <strong>in</strong> organic solvents as compared to pure PVdF. All<br />

these credits make it an i<strong>de</strong>al candidate as polymer host for polymer electrolytes.<br />

In the core of SOMABAT project, the role of ITE is the <strong>de</strong>velopment of PVdF-HFP<br />

based polymer electrolyte with high ionic conductivity, electrochemical stability and<br />

good mechanical properties study<strong>in</strong>g different PVdF-HFP based membranes with<br />

different compositions.<br />

References:<br />

[1] Sailia D.., Wu H., Pan Y., Chi-P<strong>in</strong> L., Huang K., Chen K., Fey G.and Kao H., Journal of Power<br />

Sources, vol. 196, pp. 2826-2834, 2011<br />

[2] Croce F., Appetecchi G.B., Persi B., Scrosati B., Nature, vol 394, pp.456-X, 1998<br />

[3] .Saito Y, Capigi<strong>la</strong> C., Yamamoto H., Mustarelli P., Journal of Electrochemical Society, vol. 147<br />

(5), pp. 1645-X, 2000<br />

[4] Bohnke O., Frand G., Rezrazzi M., Rousselot C., Truche C., Solid State Ionics, vol. 66, pp. 97-X,<br />

1193<br />

[5] A<strong>la</strong>mgir M., Abraham K.m., Journal of Electrochemical Society, vol. 140, pp. 96-X, 1993<br />

[6] Peramunage D., Pasquariello D.M., Abraham K.M., Journal of Electrochemical Society, vol. 41,<br />

1789-X, 1995<br />

16


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

TOYOTA'S STRATEGY FOR SOLID STATE BATTERIES<br />

APPLIED TO HYBRID AND FULL ELECTRIC POWERTRAINS<br />

Fabio Rosciano, Julien Roussel<br />

Toyota Motor Europe, Hoge Wei 33, 1930 Zaventem, Belgium<br />

Keywords: solid electrolytes, sulfi<strong>de</strong>-type, oxi<strong>de</strong>-type, safety<br />

Abstract<br />

Toyota‟s strategy for susta<strong>in</strong>able mobility is us<strong>in</strong>g Hybrid as the core technology.<br />

In<strong>de</strong>ed, Toyota Hybrid Synergy Drive (HSD) can be applied to various environmental<br />

powertra<strong>in</strong>s, on the way to full-zero emission mobility with Battery and Fuel Cells. This<br />

broad portfolio of technologies requires reliable batteries as buffer or ma<strong>in</strong> energy<br />

sources. Safety be<strong>in</strong>g the top priority, Toyota p<strong>la</strong>ces great hopes <strong>in</strong> all-solid batteries<br />

which avoid the use of liquid electrolytes. In fact, Toyota has carried out <strong>in</strong>-house<br />

research <strong>in</strong> battery systems for many years now, <strong>de</strong>velop<strong>in</strong>g technologies from the<br />

materials all the way up to the real world applications.<br />

In this contribution, Toyota will e<strong>la</strong>borate on the strategy for <strong>in</strong>troduc<strong>in</strong>g all-solid<br />

batteries <strong>in</strong> hybrid and full electric powertra<strong>in</strong>s with particu<strong>la</strong>r focus on solid state<br />

battery systems us<strong>in</strong>g sulfi<strong>de</strong> and oxi<strong>de</strong> based electrolytes.<br />

17


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

SYNTHESIS AND CHARACTERIZATION OF POROUS CARBON<br />

XEROGELS AND ORDERED MESOPOROUS CARBONS FOR<br />

ANODE MATERIALS IN LI-BASED BATTERIES<br />

Alexandre F. Leonard, Jean-Paul Pirard, Nathalie Job<br />

Université <strong>de</strong> Liège, Laboratoire <strong>de</strong> Génie Chimique (B6a), B-4000 Liège, Belgium<br />

alexandre.leonard@ulg.ac.be<br />

Keywords: Li-ion batteries, Porous Carbon, Xerogel, OMC<br />

Abstract<br />

In the aim of <strong>de</strong>velop<strong>in</strong>g new high performance C-based ano<strong>de</strong> materials for Li-ion<br />

batteries, carbon xerogels (hard carbons) as well as or<strong>de</strong>red mesoporous carbons (OMC)<br />

are promis<strong>in</strong>g candidates s<strong>in</strong>ce their specific capacities wi<strong>de</strong>ly exceed that of<br />

conventional graphitic structures. Nevertheless, hard carbons are also well-known to<br />

exhibit quite high irreversible capacity losses due to their <strong>in</strong>tr<strong>in</strong>sic high<br />

microporosity[1]. In or<strong>de</strong>r to reduce such losses and to enhance the cycl<strong>in</strong>g<br />

performances, the structural and textural characteristics of such materials need to be<br />

carefully controlled. OMC <strong>in</strong> turn still rema<strong>in</strong> difficult to prepare un<strong>de</strong>r reasonable time<br />

constra<strong>in</strong>ts and <strong>in</strong> green conditions, say aqueous syntheses for <strong>in</strong>stance.<br />

The polymerization, dry<strong>in</strong>g and pyrolysis of aqueous Resorc<strong>in</strong>ol-Formal<strong>de</strong>hy<strong>de</strong> gels<br />

lead to carbon materials with a dual porosity, i.e. they are composed of microporous<br />

nodules <strong>de</strong>limit<strong>in</strong>g meso-or macroporous voids, the average size of which <strong>de</strong>pends on<br />

both the composition of the precursor solution (pH, ma<strong>in</strong>ly) and the dry<strong>in</strong>g<br />

procedure.[2] The application of such xerogels as ano<strong>de</strong> component is however not<br />

straightforward s<strong>in</strong>ce too a high microporosity can <strong>in</strong>duce consi<strong>de</strong>rable irreversible<br />

capacity losses and too small mesopores h<strong>in</strong><strong>de</strong>r the proper chemical diffusion of lithium<br />

ions with<strong>in</strong> a bulk electro<strong>de</strong> material. The <strong>la</strong>tter is often a rate-limit<strong>in</strong>g step and<br />

optimized transport pathways could be provi<strong>de</strong>d by creat<strong>in</strong>g <strong>la</strong>rge mesopores or even<br />

macropores with<strong>in</strong> the microporous carbon structure.[3-4]<br />

Here we report on the control of the textural characteristics of meso-microporous RF<br />

xerogels prepared by vacuum dry<strong>in</strong>g procedure. The improvement of accessibility <strong>in</strong> the<br />

framework was achieved (i) by adjustment of the pH of the RF precursor solution and<br />

(ii) by addition of a block-copolymer non-ionic surfactant (Pluronic F127) to the<br />

reaction mixture prepared with different Resorc<strong>in</strong>ol/Na-Carbonate (R/C) mo<strong>la</strong>r ratios.<br />

The micropore volume was tuned upon addition of a supplementary aqueous carbon<br />

precursor, either via direct synthesis or by post-modification of (i) dried and (ii)<br />

pyrolysed xerogels.<br />

18


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Investigation of mesopore size adjustment shows that the structural features of the f<strong>in</strong>al<br />

pyrolyzed carbons rema<strong>in</strong>s unchanged, whereas the mesopore sizes can be en<strong>la</strong>rged by<br />

<strong>de</strong>creas<strong>in</strong>g the pH of the precursor solution. In<strong>de</strong>ed, the lower pH leads to <strong>la</strong>rger<br />

primary carbon nodules, <strong>de</strong>limit<strong>in</strong>g <strong>la</strong>rger voids <strong>in</strong>-between them. A more f<strong>in</strong>e-tun<strong>in</strong>g of<br />

mesopore sizes can be achieved upon addition of the non-ionic block-copolymer<br />

surfactant. In this case, it is believed that the surfactant acts as a scaffold prevent<strong>in</strong>g the<br />

structure from shr<strong>in</strong>k<strong>in</strong>g dur<strong>in</strong>g the dry<strong>in</strong>g procedure. The <strong>in</strong>crease <strong>in</strong> mesopore sizes is<br />

accompanied by an en<strong>la</strong>rgement of the volume of pores >7.5 nm, <strong>de</strong>term<strong>in</strong>ed by Hg<br />

<strong>in</strong>trusion porosimetry, <strong>de</strong>monstrat<strong>in</strong>g an <strong>in</strong>creased accessibility with<strong>in</strong> the pore<br />

framework, with values that become near those found for cryogels and aerogels.<br />

Moreover, all of these features are ma<strong>in</strong>ta<strong>in</strong>ed when the synthesis is scaled-up to 15 g of<br />

f<strong>in</strong>al porous carbon material.<br />

The micropore volume of these materials can be <strong>de</strong>creased and tuned upon<br />

impregnation with a secondary carbon precursor. It is shown that micropores can<br />

selectively be filled at least partially, but also that the particle sizes of the start<strong>in</strong>g<br />

xerogels govern the success of this route. Moreover, the f<strong>in</strong>al pyrolysis step <strong>in</strong>evitably<br />

<strong>in</strong>duces the <strong>de</strong>velopment of micropores.<br />

Or<strong>de</strong>red Mesoporous Carbons offer a complementary strategy towards the <strong>de</strong>velopment<br />

of high-performance ano<strong>de</strong>s for Li-based batteries [4-5]. In<strong>de</strong>ed, such materials have<br />

been shown to offer high capacities and long-<strong>la</strong>st<strong>in</strong>g cycl<strong>in</strong>g performances. The <strong>la</strong>st part<br />

of the talk will highlight the recent <strong>de</strong>velopments ma<strong>de</strong> <strong>in</strong> the field of OMC synthesis<br />

via rapid aqueous routes.<br />

References:<br />

[1] T. Tran, B. Yebka, X. Song, G. Nazri, K. K<strong>in</strong>oshita and D. Curtis, J. Power Sources, 85, 269, 2000.<br />

[2] N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Bégu<strong>in</strong> and J.-P. Pirard, Carbon,<br />

43, 2481, 2005.<br />

[3] M.D. Levi and D. Aurbach. J. Phys. Chem. B, 101, 4641, 1997.<br />

[4] F. Cheng, Z. Tao, J. Liang and J. Chen, Chem. Mater., 20, 667, 2008.<br />

[5] H. Zhou, S. Zhu, M. Hib<strong>in</strong>o, I. Honma, M. Ichihara, Adv. Mater., 15, 2107, 2003.<br />

19


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

NOVEL SYNTHETIC METHOD FOR THE SYNTHESIS OF<br />

PHOSPHINATES AND PHOSPHINIC AMIDES;<br />

THE POTENTIAL OF THE MICROWAVE TECHNIQUE<br />

György Keglevich 1 , Zs. Nóra Kiss 1 , Erika Bál<strong>in</strong>t 1 , Tamás Körtvélyesi 2<br />

1 Department of Organic Chemistry and Technology, Budapest University of Technology<br />

and Economics, 1521 Budapest, Hungary<br />

2 Department of Physical Chemistry and Material Science, University of Szeged, 6701<br />

Szeged, Hungary<br />

E-mail: gkeglevich@mail.bme.hu<br />

Keywords: phosph<strong>in</strong>ic acids, phosph<strong>in</strong>ates, phosph<strong>in</strong>ic ami<strong>de</strong>s, transesterification,<br />

microwave, theoretical calcu<strong>la</strong>tions<br />

Abstract<br />

Phosph<strong>in</strong>ic, phosphonic and phosphoric acid <strong>de</strong>rivatives are of synthetic and biological<br />

importance and receive a broad-scale application. We studied the possibility of<br />

convert<strong>in</strong>g phosph<strong>in</strong>ic acids (1), to phosph<strong>in</strong>ates (2) and phosph<strong>in</strong>ic ami<strong>de</strong>s (3) <strong>in</strong><br />

reaction with alcohols and primary am<strong>in</strong>es, respectively.<br />

These reactions do not take p<strong>la</strong>ce un<strong>de</strong>r thermal conditions, but the microwave (MW)<br />

irradiation promotes the reactions. Us<strong>in</strong>g longer cha<strong>in</strong> alcohols and apply<strong>in</strong>g ca. 210 °C,<br />

the esterifications are quantitative [1].<br />

A variety of phosph<strong>in</strong>ic acids, especially cyclic <strong>de</strong>rivatives, such as 1-hydroxy-3phospholene-1-oxi<strong>de</strong>s,<br />

1-hydroxy-phospho<strong>la</strong>ne-1-oxi<strong>de</strong>s and a 1-hydroxy-1,2,3,4,5,6hexahydrophosph<strong>in</strong><strong>in</strong>e-1-oxi<strong>de</strong><br />

were converted to the correspond<strong>in</strong>g esters. However,<br />

the amidations could only be performed <strong>in</strong> low conversions. This experience is the<br />

consequence of the thermod<strong>in</strong>amics of the reactions. B3LYP/6-31++G(d,p) calcu<strong>la</strong>tions<br />

suggested that while the direct esterifications are thermoneutral (by the reaction<br />

enthalpy), the direct amidations are by ca. 30-40 kJ/mol endothermic.<br />

The mechanism of the esterifications and amidations was also evaluated by B3LYP/6-<br />

31++G(d,p) calcu<strong>la</strong>tions.<br />

It was found that both the esterifications and amidations take p<strong>la</strong>ce via a four-centered<br />

transition state, like A and B, whose energy content (activation enthalpy of reaction) is<br />

20


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

rather high (ca. 70-160 kJ/mol and ca. 60-90 kJ/mol, respectively).<br />

It may be said that the esterifications are k<strong>in</strong>etically controlled and the high barrier can<br />

be overcome by the beneficial effect of MW.<br />

Further evi<strong>de</strong>nces have been collected that the esterifications are <strong>in</strong><strong>de</strong>ed<br />

phosphory<strong>la</strong>tions (acy<strong>la</strong>tions) and do not <strong>in</strong>volve alky<strong>la</strong>tions tak<strong>in</strong>g p<strong>la</strong>ce via the SN 2 or<br />

SN 1 mechanism, or via the formation of olef<strong>in</strong>s from the alcohols un<strong>de</strong>r the<br />

circumstances of the reaction.<br />

Accord<strong>in</strong>g to another method, phosph<strong>in</strong>ates were prepared by the alky<strong>la</strong>tion of<br />

phosph<strong>in</strong>ic acids.<br />

In the solid-liquid solventless accomplishment, the use of MW and a phase transfer<br />

catalyst synergized each other.<br />

F<strong>in</strong>ally, the transesterification of dialkyl phosphites was performed efficiently <strong>in</strong> the<br />

presence of the 15-20 fold excess of the alcohol on MW irradiation.<br />

It was possible to optimize the synthesis for the mixed ester (5).<br />

References (as general <strong>in</strong>formation):<br />

[1] Kiss N. Zs., Ludányi K., Drahos L. and Keglevich G. Synthetic Commun, vol. 39, pp. 2392–2404,<br />

2009.<br />

[2] Keglevich G., Bál<strong>in</strong>t E., Kiss N. Zs., Jablonkai E., Hegedűs L., Grün A. and Gre<strong>in</strong>er I. Curr Org<br />

Chem, vol. 15, pp. 2802–1810, 2011.<br />

[3] Keglevich, G., Kiss, N. Zs., Mucsi, Z. and Körtvélyesi, T. Org. Biomol. Chem. vol. 10, pp. 2011-2018,<br />

2012.<br />

21


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

PROMISING ANODE MATERIALS FOR LITHIUM BATTERIES<br />

Viaches<strong>la</strong>v Barsukov, Volodymyr Khomenko<br />

Kiev National University of Technologies and Design, Department of Electrochemical<br />

Power Eng<strong>in</strong>eer<strong>in</strong>g & Chemistry, 2, Nemirovich-Danchenko str., 01011, Kiev, Ukra<strong>in</strong>e;<br />

E-Mail: v-barsukov@i.ua<br />

Keywords: lithium battery, ano<strong>de</strong> materials, nano-composites<br />

Obviously, lithium metal could be the best material for produc<strong>in</strong>g Li batteries (LBs),<br />

such as Li-ion and Li-polymer batteries. However, its comb<strong>in</strong><strong>in</strong>g high reactivity with<br />

peculiar properties of the surface film result<strong>in</strong>g from <strong>in</strong>teraction with electrolyte<br />

components poses a problem of efficient cycl<strong>in</strong>g (recharge) of metallic lithium, which is<br />

unsolvable so far. The most efficient and promis<strong>in</strong>g way of solv<strong>in</strong>g the problem of<br />

cycl<strong>in</strong>g lithium is the employment of lithium-conta<strong>in</strong><strong>in</strong>g materials capable of reversible<br />

electrochemical <strong>in</strong>sertion and extraction dur<strong>in</strong>g charge-discharge cycles <strong>in</strong>stead of<br />

metallic Li. In fact, the use of such materials is a compromise between high specific<br />

energy and long life of LBs, as the <strong>in</strong>creas<strong>in</strong>g number of charge-discharge cycles should<br />

compensate for some loss <strong>in</strong> specific energy characteristics.<br />

By the nature of their <strong>in</strong>teraction with Li the ano<strong>de</strong> materials can be divi<strong>de</strong>d <strong>in</strong>to two<br />

groups:<br />

- materials which do not un<strong>de</strong>rgo phase transformations and, therefore, a substantial<br />

transformation of their crystal structure dur<strong>in</strong>g <strong>in</strong>terca<strong>la</strong>tion-<strong>de</strong><strong>in</strong>terca<strong>la</strong>tion of Li;<br />

- materials which form Li compounds with a structure different from that of the<br />

electro<strong>de</strong> material.<br />

Typical representatives of the first group are graphite and graphitized carbon materials<br />

<strong>la</strong>yered by structure. It is such constantly improved materials that are ma<strong>in</strong>ly used <strong>in</strong><br />

commercial lithium-ion batteries. The best of them enable reversible lithium<br />

<strong>in</strong>terca<strong>la</strong>tion <strong>in</strong> graphite to form LiC6. In this case, the graphite hosts lithium atoms <strong>in</strong> its<br />

<strong>in</strong>ter<strong>la</strong>yer space, due to which the change <strong>in</strong> volume dur<strong>in</strong>g <strong>in</strong>terca<strong>la</strong>tion-<strong>de</strong><strong>in</strong>terca<strong>la</strong>tion<br />

does not exceed 10-30%. Nevertheless, even theoretical specific capacity of graphite is<br />

quite small (372 mA∙h/g).<br />

The other type of host-materials <strong>in</strong>clu<strong>de</strong>s some metal and non-metal electro<strong>de</strong>s which<br />

form <strong>in</strong>termetallic compounds with lithium. Si, Sn, Sb, Al, Ge, Pb, Bi, Sb, Zn, Cd and<br />

some other have been referred to as the most promis<strong>in</strong>g ones <strong>in</strong> terms of their possible<br />

use <strong>in</strong> lithium batteries (see, for example, [1-4]).<br />

Theoretical analysis of the most essential characteristics of these materials enables one<br />

to evaluate both advantages and disadvantages of each type of the materials. Generally,<br />

by their theoretical specific capacity (Fig.1) Li alloys surpass graphite consi<strong>de</strong>rably.<br />

22


5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

3830<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

372<br />

4200<br />

900 990<br />

Specific capacity, mAh/g<br />

S O M A B A T - Advanced workshop,<br />

370<br />

Timisoara, July 4-5, 2012<br />

Li<br />

LiC6<br />

Li4.4Si<br />

Li4Sn<br />

LiAl<br />

Li3Sb<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

1915<br />

600<br />

9660<br />

6570<br />

2673 2442<br />

Specific capacity, mAh/cc<br />

Fig.1. Specific capacity of promis<strong>in</strong>g <strong>in</strong>termetallic compounds <strong>in</strong> mA∙h/g and mA∙h/cc<br />

Li<br />

LiC6<br />

Li4.4Si<br />

However, compared to lithiated graphite such alloys have a very serious disadvantage. It<br />

is a dramatic change <strong>in</strong> the volume of metal dur<strong>in</strong>g <strong>in</strong>terca<strong>la</strong>tion or <strong>de</strong><strong>in</strong>terca<strong>la</strong>tion of Li<br />

ions, which is estimated from 100% for LiAl to 300% for Li22Si5. Due to the sharp<br />

volume changes there occurs mechanical tension <strong>in</strong> charge-discharge, which, <strong>in</strong> its turn,<br />

causes a loss of contact between the particles of active material and also <strong>in</strong> <strong>de</strong>gradation<br />

of the electro<strong>de</strong> as a whole. An important factor enabl<strong>in</strong>g morphological stability of<br />

composite materials on cycl<strong>in</strong>g Li is a high <strong>de</strong>gree of dispersion of the reactant‟s<br />

particles. The follow<strong>in</strong>g conclusions for further practical work can be drawn from the<br />

theoretical analysis of ano<strong>de</strong> materials and the ways of their improvement:<br />

- nanosized particles of Si, Sn and Al are among the most promis<strong>in</strong>g ano<strong>de</strong> materials for<br />

LBs;<br />

- different-type materials should be present <strong>in</strong> the composition of electro<strong>de</strong> materials<br />

based on <strong>in</strong>termetallic compounds, a reliable matrix be<strong>in</strong>g of primary importance due to<br />

its role <strong>in</strong> the <strong>in</strong>teraction of the metals with lithium and morphological stability of the<br />

system;<br />

- the phase separation of the components should be ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> cycl<strong>in</strong>g Li.<br />

It was shown practically by our team on the moment that usage of nano-composite<br />

materials is a realistic way to reach a specific capacity of LBs ano<strong>de</strong> at least at the level<br />

of 600-650 mA∙h/g un<strong>de</strong>r quite stable cyclization.<br />

References:<br />

[1] Besenhard J.O., Gurtler J., Komenda P. Negatives for secondary Li-batteries: Li-alloys or metallic Li,<br />

Chemical physics of <strong>in</strong>terca<strong>la</strong>tion, Eds.: Legrand A.P. and F<strong>la</strong>ndrois S., Plenum, 1987.<br />

[2]. New Carbon Based Materials for Electrochemical Energy Storage Systems. Eds.: Barsukov I.,<br />

Johnson Ch., Don<strong>in</strong>ger J. and Barsukov V., Dordrecht, The Nether<strong>la</strong>nds, Spr<strong>in</strong>ger, 2006.<br />

[3] Khomenko V., Barsukov V., Don<strong>in</strong>ger J. and Barsukov I., J. Power Sources, vol. 165/2, pp. 598 – 608,<br />

2007.<br />

[4] Khomenko V. and Barsukov V., Electrochimica Acta, vol. 52/8, pp. 2829 – 2840, 2007.<br />

Li4Sn<br />

LiAl<br />

Li3Sb<br />

23


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

THE PECULIARITY OF ANODE AND CATHODE INTEGRATION<br />

IN A WHOLE LITHIUM BATTERY<br />

Volodymyr Khomenko, Viaches<strong>la</strong>v Barsukov<br />

Kiev National University of Technologies and Design, Department of Electrochemical<br />

Power Eng<strong>in</strong>eer<strong>in</strong>g & Chemistry, 2, Nemirovich-Danchenko str., 01011, Kiev, Ukra<strong>in</strong>e<br />

E-Mail: vkg@ukrpost.ua<br />

Keywords: lithium battery; catho<strong>de</strong>, ano<strong>de</strong> ba<strong>la</strong>nc<strong>in</strong>g; optimization<br />

The follow<strong>in</strong>g essential aspects must be taken <strong>in</strong>to consi<strong>de</strong>ration <strong>in</strong> the research and<br />

<strong>de</strong>sign of lithium battery (LB): а) the capacities of the catho<strong>de</strong> and ano<strong>de</strong> should be<br />

properly ba<strong>la</strong>nced; b) the battery as a whole should possess maximum values of specific<br />

energy.<br />

Let us first consi<strong>de</strong>r the situation where the catho<strong>de</strong> material does not change, for<br />

example LiCoO2 with a specific capacity of about 140 mА∙h/g, and common graphite<br />

with а specific capacity of about 350 mА∙h/g (№1) and modified graphite with аn<br />

<strong>in</strong>creased specific capacity of about 600 mА∙h/g (№2) are used as an ano<strong>de</strong>. Fig. 1 and<br />

Fig. 2 present a scheme of ba<strong>la</strong>nc<strong>in</strong>g the electro<strong>de</strong>s <strong>in</strong> the co<strong>in</strong> prototypes of LB (2016<br />

size) and its charge-discharge curves, correspond<strong>in</strong>gly.<br />

Fig. 1. The ratio of the catho<strong>de</strong> thickness<br />

to the ano<strong>de</strong> thickness <strong>in</strong> the LB based on<br />

common graphite (№ 1- 350 mА∙h/g) and<br />

modified graphite (№2 - 600 mА∙h/g)<br />

Fig. 2. Charge-discharge curves of LBs<br />

with ano<strong>de</strong>s based on common graphite<br />

(№ 1- 350 mА∙h/g) and modified graphite<br />

(№2 - 600 mА∙h/g)<br />

It is seen from Fig. 1 that the thickness of a higher-capacity ano<strong>de</strong> can be <strong>de</strong>creased to<br />

0.058 mm aga<strong>in</strong>st 0.073. The space left <strong>in</strong> such a cell can be filled with the catho<strong>de</strong><br />

material, the thickness of catho<strong>de</strong> be<strong>in</strong>g <strong>in</strong>creased to 0.099 aga<strong>in</strong>st 0.088. Thus, the LB‟s<br />

capacity will be <strong>in</strong>creased <strong>in</strong> proportion to the additional mass of the catho<strong>de</strong> material.<br />

The proposed conception was implemented and <strong>in</strong>vestigated <strong>in</strong> <strong>la</strong>boratory LB<br />

prototypes.<br />

24


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Fig. 2 presents charge-discharge curves for LBs based on LiCoO2 and common graphite<br />

with a capacity of 350 mА∙h/g (curve 1), and graphite modified with silicon<br />

nanoparticles with a capacity of 600 mА∙h/g (curve 2). As it was expected, the LB based<br />

on the modified ano<strong>de</strong> <strong>de</strong>f<strong>in</strong>itely shows higher capacity and energy than that based on<br />

common graphite.<br />

Yet, further improv<strong>in</strong>g the energy characteristics of the LB should be atta<strong>in</strong>ed at the<br />

expense of <strong>de</strong>velop<strong>in</strong>g and us<strong>in</strong>g new catho<strong>de</strong> materials with higher specific capacity<br />

rather than <strong>in</strong>creas<strong>in</strong>g the ano<strong>de</strong> capacity.<br />

To f<strong>in</strong>d out an optimum ratio of the catho<strong>de</strong> specific capacity to that of the ano<strong>de</strong>, the<br />

<strong>de</strong>pen<strong>de</strong>nce of the LB specific capacity on the ano<strong>de</strong> specific capacity was estimated for<br />

the LB with a LiCoO2 catho<strong>de</strong> (specific capacity 140 mА∙h/g) and with a hypothetical<br />

new catho<strong>de</strong> (specific capacity 250 mА∙h/g). Results are shown Fig. 3.<br />

The results show that <strong>in</strong>creas<strong>in</strong>g the catho<strong>de</strong> capacity results <strong>in</strong> proportionally<br />

<strong>in</strong>creased LB capacity. That is to say, the <strong>in</strong>crease <strong>in</strong> the catho<strong>de</strong> capacity from 140 to<br />

250 mА∙h/g enables the LB specific capacity almost to double provi<strong>de</strong>d the ano<strong>de</strong><br />

capacity has reached its optimum value. As the data given show there is an optimum <strong>in</strong><br />

<strong>in</strong>creas<strong>in</strong>g the ano<strong>de</strong> specific capacity.<br />

(a) (b)<br />

Fig. 3. Estimated specific capacity of the LB vs the ano<strong>de</strong> specific capacity on us<strong>in</strong>g<br />

catho<strong>de</strong>s with specific capacities of (a) 140 and (b) 250 mА∙h/g<br />

The LB specific energy <strong>in</strong>creases dramatically with <strong>in</strong>creas<strong>in</strong>g the ano<strong>de</strong> specific<br />

capacity to a maximum of 1000 mА∙h/g. Further <strong>in</strong>creas<strong>in</strong>g the ano<strong>de</strong> specific capacity<br />

does not practically affect the LB specific energy. This is observed for both the systems<br />

with a conventional catho<strong>de</strong> (140 mА∙h/g) and those with a higher-capacity catho<strong>de</strong><br />

(250 mА∙h/g). So, <strong>in</strong>creas<strong>in</strong>g the ano<strong>de</strong> specific capacity over 1000-1500 mА∙h/g is not<br />

expedient.<br />

The prelim<strong>in</strong>ary estimates prove that the proposed technique and <strong>la</strong>boratory mo<strong>de</strong>l<strong>in</strong>g of<br />

LBs can be used for study<strong>in</strong>g the pr<strong>in</strong>ciples of optimum LB <strong>de</strong>sign and predict<strong>in</strong>g their<br />

energy characteristics.<br />

25


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

ADVANCED BMS-IC SOLUTIONS FOR LI-ION CELL<br />

MONITORING AND ACTIVE BALANCING<br />

Ewald Wachmann, Manfred Brandl<br />

Austriamicrosystems AG, 8141 Unterpremsätten, Austria<br />

ewald.wachmann@austriamicrosystems.com<br />

Keywords: Battery Management System BMS IC, lithiumbattery, passive and active<br />

ba<strong>la</strong>nc<strong>in</strong>g<br />

Battery Management Systems BMS for Li-ion batteries for FEVs require an <strong>in</strong>telligent<br />

and robust control electronic to ba<strong>la</strong>nce different cell voltages. Passive ba<strong>la</strong>nc<strong>in</strong>g has<br />

dom<strong>in</strong>ated Li-ion battery packs <strong>in</strong> the past. Economic pressures are forc<strong>in</strong>g automotive<br />

OEMs to choose more advanced, active ba<strong>la</strong>nc<strong>in</strong>g systems to optimize the long term<br />

energy retrieval from the battery pack. Recent progress <strong>in</strong> Li-ion battery technology<br />

<strong>in</strong>creased the power and energy <strong>de</strong>nsity of battery cells and reduced their cost, but lead<br />

for some material compositions to very f<strong>la</strong>t charge characteristics [1].<br />

High performance BMS with a high accuracy of cell voltage measurement together with<br />

active ba<strong>la</strong>nc<strong>in</strong>g is the answer to the limitations of HEV and EV battery packs [2].<br />

Instead of bypass<strong>in</strong>g the cells and dissipat<strong>in</strong>g power, the active ba<strong>la</strong>nc<strong>in</strong>g system<br />

transfers charge between cells by the means of DCDC converters. The charge can be<br />

transferred dur<strong>in</strong>g charg<strong>in</strong>g, discharg<strong>in</strong>g or idle state. The cells can always be kept<br />

ba<strong>la</strong>nced. The cells are be<strong>in</strong>g equalized faster and higher charg<strong>in</strong>g current rates are<br />

possible.<br />

Dur<strong>in</strong>g the idle state, even the perfectly ba<strong>la</strong>nced cells lose charge at a different rate due<br />

to vary<strong>in</strong>g <strong>in</strong>ternal leakage result<strong>in</strong>g from temperature gradients. The active ba<strong>la</strong>nc<strong>in</strong>g<br />

allows reba<strong>la</strong>nc<strong>in</strong>g of the cells dur<strong>in</strong>g idle state thus be<strong>in</strong>g able to utilize all the energy<br />

stored <strong>in</strong> the battery pack. In the BMS IC solutions we <strong>de</strong>veloped the reference voltage<br />

is either broadcasted as a digital value to all of the ba<strong>la</strong>ncer IC‟s <strong>in</strong> the stack dur<strong>in</strong>g low<br />

speed cha<strong>in</strong>ed SPI communication slot or provi<strong>de</strong>d as an external analog reference.<br />

By this <strong>de</strong>velopment the communication can be strongly reduced and no synchronisation<br />

with current measurement is required as a further cost reduction potential to skip the<br />

current sensor for specific applications were Coulomb count<strong>in</strong>g is not mandatory.<br />

The ba<strong>la</strong>nce current is targeted to be 100 mA, enabl<strong>in</strong>g to <strong>in</strong>tegrate all of the required<br />

switches to shuttle charge packages either <strong>in</strong> passive or active ba<strong>la</strong>nc<strong>in</strong>g.<br />

26


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

The concept enables active ba<strong>la</strong>nc<strong>in</strong>g at little additional cost for better efficiency and<br />

faster equalization. The required high accuracy of cell voltage measurement has been<br />

addressed by <strong>de</strong>velopment of a highly accurate curvature compensated reference and<br />

offset compensation for the cell voltage comparators.<br />

These BMS ICs <strong>de</strong>velopments are be<strong>in</strong>g evaluated for use <strong>in</strong> such different storage<br />

components as Lithium Ion batteries and supercapacitors for applications <strong>in</strong> EVs <strong>in</strong><br />

project ESTRELIA [3].<br />

References:<br />

1. Dirk Uwe Sauer, W<strong>la</strong>dis<strong>la</strong>w Waag, Jochen Gerschler: “Monitor<strong>in</strong>g and state-of-charge<br />

diagnostics of lithium-ion batteries and supercapacitors Energy Management & Wire Harness<br />

Systems, March 2011, Essen<br />

2. Manfred Brandl, Low Voltage Storage and Battery Management, Elektrik/Elektronik <strong>in</strong><br />

Hybrid- und Elektrofahrzeugen und elektrisches Energiemanagement, 24. - 25. April 2012,<br />

München<br />

3. www.estrelia.eu<br />

27


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

ENERGY STORAGE SYSTEM FOR AN INNOVATIVE ECO-<br />

COMPATIBLE BOAT EQUIPPED WITH AN INTEGRATED<br />

HYBRID PROPULSION SYSTEM<br />

Viorel Stanciu, Pau<strong>la</strong> Anghelita, Mihae<strong>la</strong> Chefneux<br />

ICPE SA, Sp<strong>la</strong>iul Unirii 313, 030138, Bucuresti, Romania,<br />

viorel.stanciu@icpe.ro<br />

Keywords: electric propulsion systems, boats, energy storage, hybrid system<br />

Abstract<br />

Global warm<strong>in</strong>g represents a great problem today that need to be approached by every<br />

field that have a potential impact <strong>in</strong> this direction. That is why research and<br />

technological <strong>de</strong>velopment activities are encouraged to provi<strong>de</strong> clean and efficient<br />

transportation systems, especially <strong>in</strong> European countries, USA and Japan. The <strong>la</strong>ws<br />

regard<strong>in</strong>g environmental protection are aim<strong>in</strong>g greenhouse gas emissions limitation and<br />

Romania must and wishes to follow the same direction. Nowadays there is a worldwi<strong>de</strong><br />

<strong>in</strong>terest about <strong>de</strong>velopment of high efficiency, environmental friendly and competitive<br />

transportation systems such as boats and <strong>la</strong>nd vehicles.<br />

The <strong>de</strong>velopment of an eco-friendly boat, that would have m<strong>in</strong>imal impact on the<br />

natural habitat and contribute to the discovery and appreciation of nature, with<br />

m<strong>in</strong>imised or no pollut<strong>in</strong>g emission and drastically reduced noise represent a big<br />

challenge.<br />

An answer to the problems of environmental pollution is Eco-boats as an alternative<br />

mean of water transport. That is why the authors of the paper are <strong>in</strong>volved <strong>in</strong> several<br />

projects <strong>de</strong>al<strong>in</strong>g with propulsion systems <strong>in</strong> or<strong>de</strong>r to offer competitive products to fit on<br />

boats.<br />

The authors are now carry<strong>in</strong>g out a project <strong>in</strong> a consortium from three countries – Italy,<br />

Romania and Turkey- a project that aims at the <strong>de</strong>sign, <strong>de</strong>velopment and subsequent<br />

prototyp<strong>in</strong>g and test<strong>in</strong>g, of a small ship, based on an <strong>in</strong>tegrated hybrid propulsion<br />

system, coupled with a very compact storage system for energy, partially generated<br />

through renewable sources and the recovery of the eng<strong>in</strong>e‟s waste heat: the ECO-Boat<br />

<strong>in</strong>tends to be suitable for the tourist hire market, thanks to its operational flexibility.<br />

The energy management system coord<strong>in</strong>ates the performance of the generators, the<br />

distribution system and the power consumers: basically it manages and optimizes the<br />

28


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

power-flow <strong>in</strong> the whole system. One of the most important target is to provi<strong>de</strong> the<br />

system with an <strong>in</strong>telligent energy management concept, <strong>in</strong> or<strong>de</strong>r to optimize the<br />

characteristics of the whole boat.<br />

A prelim<strong>in</strong>ary analysis of the state of the art has i<strong>de</strong>ntified a number of boat <strong>de</strong>signs<br />

around the world that <strong>in</strong>corporate new and advanced technologies, with particu<strong>la</strong>r<br />

reference to hybrid propulsion and eco-friendly <strong>in</strong>novations. Most are privately owned,<br />

<strong>in</strong> <strong>de</strong>velopment programmes or are technology <strong>de</strong>monstrators <strong>de</strong>veloped by <strong>la</strong>rge<br />

corporations.<br />

Because of the high <strong>de</strong>velopment <strong>in</strong>volved costs that companies must <strong>in</strong>vest <strong>in</strong><br />

<strong>in</strong>novative technologies, only applications characterized by high revenue streams have<br />

been <strong>de</strong>signed.<br />

With<strong>in</strong> this paper, the authors propose an <strong>in</strong>novative hybrid propulsion system and an<br />

<strong>in</strong>telligent power management system, to control the hybrid propulsion system and the<br />

on-board <strong>de</strong>vices, based on the propulsion currently <strong>in</strong> use.<br />

29


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

ESTIMATION OF THERMAL AND ELECTRICAL BATTERY<br />

MODULE CHARACTERISTICS BY MATHEMATICAL<br />

MODELLING<br />

Franz Pichler, Mart<strong>in</strong> Cifra<strong>in</strong><br />

Kompetenzzentrum – Das virtuelle Fahrzeug ForschungsgesmbH (vif)<br />

Inffeldgasse 21A, 8010 Graz, Austria<br />

mart<strong>in</strong>.cifra<strong>in</strong>@v2c2.at<br />

Keywords: battery mo<strong>de</strong>ll<strong>in</strong>g, multiscal<strong>in</strong>g, homogenization, thermal characterization,<br />

electrical characterization<br />

Abstract<br />

A multiscale thermal/electrical mo<strong>de</strong>l of a battery module is presented. The cas<strong>in</strong>g, a<br />

battery of fourteen cells <strong>in</strong> series, separated by cool<strong>in</strong>g p<strong>la</strong>tes as well as two channels for<br />

liquid cool<strong>in</strong>g are mo<strong>de</strong>led us<strong>in</strong>g a c<strong>la</strong>ssical thermal approach [1] by solv<strong>in</strong>g the heat<br />

equation with appropriate boundary and <strong>in</strong>itial conditions (Fig. 1a).<br />

The cells physically consist of a stack of <strong>la</strong>yers (Fig. 1c), namely the current collectors<br />

(Cu and Al-foils), the electro<strong>de</strong>‟s active <strong>la</strong>yers (ano<strong>de</strong>s and catho<strong>de</strong>s) and the separators<br />

(electrolyte). In or<strong>de</strong>r to m<strong>in</strong>imize calcu<strong>la</strong>tion efforts, the effective thermal as well as<br />

electrical behavior is captured through a homogenization technique [2]. The use of this<br />

technique leads to effective global equations and - mathematically speak<strong>in</strong>g – cell<br />

problems. Instead of resolv<strong>in</strong>g the exact <strong>la</strong>yered geometry over the whole doma<strong>in</strong>, these<br />

cell problems support effective coefficients for the global equations. When it comes to<br />

numerical computations this allows for the use of coarser grids than those which would<br />

be necessary <strong>in</strong> the c<strong>la</strong>ssical approach.<br />

In the c<strong>la</strong>ssical approach, the govern<strong>in</strong>g equations of the electrical potentials <strong>in</strong> the<br />

cathodic and anodic current collectors are standard homogeneous elliptic equations on<br />

two separated doma<strong>in</strong>s. The homogenization [3] of such equations leads to a system of<br />

coupled elliptic equations with source terms, which represent the current that is collected<br />

from the electro<strong>de</strong>s. The size of this source term <strong>de</strong>pends on the mo<strong>de</strong>l<strong>in</strong>g of the<br />

electrochemical behavior <strong>in</strong>si<strong>de</strong> the cells. Because of a possible un<strong>de</strong>r-<strong>de</strong>term<strong>in</strong>ation of<br />

the equations these source terms have to be <strong>de</strong>pen<strong>de</strong>nt on the potentials <strong>in</strong> every po<strong>in</strong>t.<br />

This can be <strong>in</strong>terpreted as physically mean<strong>in</strong>gful and <strong>de</strong>scribes the potential difference<br />

and the overpotential of an electro<strong>de</strong> pair.<br />

30


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

In a first step and for simplification reasons, this <strong>de</strong>pen<strong>de</strong>ncy on the potentials is chosen<br />

to be l<strong>in</strong>ear. However, <strong>in</strong> or<strong>de</strong>r to capture the electro<strong>de</strong>‟s microstructure <strong>in</strong> <strong>de</strong>tail, the<br />

simu<strong>la</strong>tion can be exten<strong>de</strong>d to the next level of multiscal<strong>in</strong>g by homogenization of the<br />

electro<strong>de</strong>s at a level of the <strong>la</strong>yers. The global equation now gives an anodic and a<br />

cathodic potential at every po<strong>in</strong>t <strong>in</strong> a cell (Fig. 1b), allow<strong>in</strong>g module optimization,<br />

provi<strong>de</strong>d that the mo<strong>de</strong>l was properly parameterized.<br />

(a) (b) (c)<br />

Figure 1. Temperature distribution <strong>in</strong> the module (left), potential distribution of both<br />

electro<strong>de</strong>s of a s<strong>in</strong>gle cell (center), schematic view of the <strong>la</strong>yered micro structure (right)<br />

References:<br />

1. Incropera F. P., Dewitt D.P., Fundamentals of Heat and Mass Transfer, 4 th Edition University<br />

of Michigan, 1996<br />

2. Cioranescu D., Donato P., An Introduction to Homogenization, Oxford University Press, New<br />

York, 1999<br />

3. Hornung U., Homogenization and Porous Media, Spr<strong>in</strong>ger, New York,1996<br />

31


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

FUNCTIONAL SAFETY IN LARGE SCALE LITHIUM ION<br />

BATTERY PACKS<br />

Karl Vest<strong>in</strong><br />

Lithium Ba<strong>la</strong>nce A/S, Bal<strong>de</strong>rshøj 26C, 2635 Ishøj, Denmark<br />

k.vest<strong>in</strong>@lithiumba<strong>la</strong>nce.com<br />

Keywords: battery management, functional safety<br />

Abstract<br />

Increas<strong>in</strong>g awareness of the risks <strong>in</strong>herent to <strong>la</strong>rge scale lithium ion battery packs is<br />

creat<strong>in</strong>g a <strong>de</strong>mand for formal methods to mitigate risks and prevent acci<strong>de</strong>nts. This<br />

presentation will provi<strong>de</strong> a brief overview of such methods, and their applicability for<br />

the SOMABAT project.<br />

Agenda for presentation:<br />

- What is functional safety? Def<strong>in</strong>ition of the topic.<br />

- Overview of functional safety standards and references for further read<strong>in</strong>g.<br />

- Safety culture. What are the organizational characteristics required <strong>in</strong> or<strong>de</strong>r to<br />

<strong>de</strong>velop safe systems?<br />

- Safety lifecycle. Dur<strong>in</strong>g a products lifecycle from <strong>de</strong>sign, <strong>de</strong>velopment,<br />

operations to <strong>de</strong>commission<strong>in</strong>g it exposes users to hazards. A brief <strong>in</strong>troduction<br />

to how functional safety is addressed <strong>in</strong> different stages of the products lifecycle.<br />

- Hazards, faults and risk. Notation and concepts for <strong>de</strong>f<strong>in</strong><strong>in</strong>g dangers <strong>in</strong>herent <strong>in</strong><br />

the use of the product.<br />

- Safety <strong>in</strong>tegrity levels (SIL). Sett<strong>in</strong>g the bar for functional safety.<br />

- Practical application of functional safety. The SOMABAT battery management<br />

system.<br />

- Questions and answers.<br />

References:<br />

1. Functional safety of electrical/electronic/programmable electronic safety-re<strong>la</strong>ted systems –<br />

IEC 61508, 2010.<br />

2. Road vehicles -- Functional safety – ISO 26262, 2011.<br />

32


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

AGROWASTES AS PRECURSOR FOR THE DEVELOPMENT OF<br />

CARBON ANODES FOR LI BATTERIES<br />

Leire Zubizarreta a , Mayte Gil-Agustí a , Jessica Calleja-Langa a , Ilona Senyk b ,<br />

Volodymir Khomenko b , Viaches<strong>la</strong>v Barsukov b<br />

a <strong>Instituto</strong> <strong>Tecnológico</strong> <strong>de</strong> <strong>la</strong> <strong>Energía</strong> (ITE), Avenida Juan <strong>de</strong> <strong>la</strong> Cierva, 24 46980<br />

Paterna, <strong>Valencia</strong>, Spa<strong>in</strong>; b Kiev National University of Technology and Design,<br />

Nemirovich-Danchenko str., 01011, Kiev (Ukra<strong>in</strong>e)<br />

Keywords: agrowastes, carbon, ano<strong>de</strong>, lithium, battery<br />

Abstract<br />

Many of the research efforts have been ma<strong>de</strong> <strong>in</strong> the search of suitable carbon materials<br />

as the alternative ano<strong>de</strong>s, because lithium batteries conta<strong>in</strong><strong>in</strong>g lithium metal as negative<br />

electro<strong>de</strong> has limited cycle life performance. An <strong>in</strong>tense research has been done <strong>in</strong> or<strong>de</strong>r<br />

to obta<strong>in</strong> carbon materials with a<strong>de</strong>quate properties <strong>in</strong> or<strong>de</strong>r to obta<strong>in</strong> <strong>la</strong>rge reversible<br />

and low irreversible capacity of the carbon ano<strong>de</strong>s, although this research is still <strong>in</strong><br />

progress. Most of carbon materials tested as carbon ano<strong>de</strong>s <strong>in</strong> Li ion batteries are<br />

obta<strong>in</strong>ed from precursors which are either directly or <strong>in</strong>directly re<strong>la</strong>ted to the petroleum<br />

products or fossil fuels such as graphite, etc. For synthesiz<strong>in</strong>g novel carbon material as a<br />

viable product, it is necessary to select a precursor, which is not <strong>de</strong>rived from fossil<br />

fuels or re<strong>la</strong>ted to petroleum products. Furthermore, another priority for the <strong>la</strong>rge-scale<br />

implementation of Li battery systems is actually focused on the <strong>de</strong>velopment of lowcost<br />

carbons. The search for environmentally friendly and lower-cost carbons is a<br />

priority. In this context, the utilization of residues as precursors of carbons is an<br />

<strong>in</strong>terest<strong>in</strong>g strategy 1 . In this work, carbon materials obta<strong>in</strong>ed from agricultural wastes<br />

has been <strong>de</strong>veloped and characterised for its application as carbon ano<strong>de</strong> materials <strong>in</strong> Li<br />

ion batteries. For that, olive stones (HA) and orange sk<strong>in</strong> (CN) were selected as carbon<br />

precursors and carbonized un<strong>de</strong>r nitrogen flow <strong>in</strong> a tubu<strong>la</strong>r oven at 1100 ºC. The carbon<br />

materials obta<strong>in</strong>ed were characterised by N2 and CO2 adsorption isotherms at -196 ºC<br />

and 0ºC respectively, elemental analysis and Raman spectroscopy. Additionally, the<br />

electrochemical characterisation of carbon obta<strong>in</strong>ed was also performed.<br />

As can be seen <strong>in</strong> Table 1 the textural properties of carbon materials obta<strong>in</strong>ed <strong>de</strong>pend<br />

strongly on nature of agrowaste used. The use of olive stones as precursor gives carbon<br />

materials with higher specific surface area and micropore volume.<br />

Table 1. Textural properties of the carbon materials obta<strong>in</strong>ed<br />

SAMPLE SBET (m 2 g -1 ) VmicN 2 (cm 3 g -1 ) VmicCO 2 (cm 3 g -1 )<br />

CN 2 0.01 0.005<br />

HA 94 0.03 0.8<br />

33


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Table 2 shows the elemental analysis of the carbon materials obta<strong>in</strong>ed. It can be<br />

observed that the carbon materials obta<strong>in</strong>ed from olives stones present high carbon and<br />

oxygen content and low ash content. However, orange sk<strong>in</strong> gives carbon with very high<br />

ash content.<br />

Table 2. Elemental analysis of carbon materials obta<strong>in</strong>ed<br />

SAMPLE C (wt.%) H (wt.%) N S (wt.%) O (wt.%) Ash<br />

(wt.%)<br />

(wt.%)<br />

CN 69.64 1.34 1.65 0.00 4.80 22.5<br />

HA 86.15 0.80 0.63 0.20 10.55 1.87<br />

These differences <strong>in</strong> carbon materials properties are traduced <strong>in</strong> different<br />

electrochemical behavior of materials as carbon ano<strong>de</strong>s as can be seen <strong>in</strong> Table 3.<br />

Carbon ano<strong>de</strong>s obta<strong>in</strong>ed from olives stones give higher reversible capacity and lower<br />

irreversible capacity <strong>in</strong> the first cycle than the ones obta<strong>in</strong>ed from orange sk<strong>in</strong>. For this,<br />

olive stones is more a<strong>de</strong>quate precursor for the <strong>de</strong>velopment of carbon ano<strong>de</strong>s However,<br />

<strong>in</strong> view of applications above materials <strong>in</strong> lithium-ion battery, the characteristics ASA<br />

and value of specific surface should be further optimized.<br />

Table 3. Specific capacity of carbon samples at the current <strong>de</strong>nsity of 30 mA/g<br />

SAMPLE<br />

Specific capacity at first cycle Specific capacity at second<br />

Qr, mAh/g<br />

(±15 mAh/g)<br />

Qirr, mAh/g<br />

(±10 mAh/g)<br />

Qr, mAh/g<br />

(±10 mAh/g)<br />

cycle<br />

Qirr, mAh/g<br />

(±5 mAh/g)<br />

CN 85 145 78 5<br />

HA 196 135 190 10<br />

References:<br />

1. Aworn A., Thiraveetyan P., Nakbanpote W., Journal of Analytical and Applied Pyrolisis,<br />

vol. 82 pp. 279-285, 2008<br />

34


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Synthesis and electrochemical performance of Li4Mo5O17 as positive<br />

electro<strong>de</strong> material for energy storage<br />

Nadia Pop 1,2 , V<strong>in</strong>cent Caignaert 1 , Bernard Raveau 1 ,and Valerie Pralong 1<br />

1) Laboratoire CRISMAT, UMR 6508 CNRS ENSICAEN,<br />

6 bd. Marechal Ju<strong>in</strong>, 14050 CAEN Ce<strong>de</strong>x, France<br />

http://www-crismat.ensicaen.fr<br />

2) Institute of Chemistry, Timisoara of Romanian Aca<strong>de</strong>my<br />

Bvd. Mihai Viteazul Nr.24, 300223 Timisoara, <strong>ROMANIA</strong><br />

E-Mail: nadia_dana_pop@yahoo.com<br />

Keywords: molyb<strong>de</strong>num oxi<strong>de</strong>s, lithium <strong>in</strong>sertion, batteries<br />

Abstract<br />

The search of new materials potential electro<strong>de</strong> for Li-ion batteries took us to the<br />

exploration of the Li-Mo-O system. Curiously, no lithium molybdate Mo(VI) was<br />

<strong>in</strong>vestigated neither for ionic conductivity, nor for the electrochemical Li <strong>in</strong>terca<strong>la</strong>tion<br />

viewpo<strong>in</strong>t, <strong>in</strong> spite of the existence of several phases such as Li4Mo5O17 [1, 2], Li2MoO4<br />

and Li2Mo4O13 [2-5].<br />

Bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d the ribbon structure of Li4Mo5O17, we have explored the ionic<br />

conductivity of this phase and its ability to <strong>in</strong>terca<strong>la</strong>te lithium. The parent phase was<br />

prepared by a sol gel synthesis. Interca<strong>la</strong>tion of lithium <strong>in</strong> the ribbon structure<br />

Li4Mo5O17 [6] has been achieved, us<strong>in</strong>g both electrochemistry and soft chemistry. A<br />

maximum of 8 Li/f.u. could be <strong>in</strong>serted, lead<strong>in</strong>g to the phase Li12Mo5O17.<br />

The ab <strong>in</strong>itio structure <strong>de</strong>term<strong>in</strong>ation of the “Mo-O” framework of Li12Mo5O17 shows<br />

that the [Mo5O17]∞ ribbons keep the same arrangement of edge shar<strong>in</strong>g MoO6 octahedra,<br />

and the same orientation as <strong>in</strong> the parent structure, but that a topotactic anti-distortion of<br />

the ribbons appears, due to the <strong>la</strong>rger size of Mo 4+ <strong>in</strong> “Li12” compared to Mo 6+ <strong>in</strong> “Li4”.<br />

Based on bond valence calcu<strong>la</strong>tions, it is observed that 12 octahedral sites are avai<strong>la</strong>ble<br />

for Li + <strong>in</strong> the new structure so that an or<strong>de</strong>red hypothetical rock salt type structure can<br />

be proposed for Li12Mo5O17 [7]. The exploration of the Li mobility <strong>in</strong> those oxi<strong>de</strong>s<br />

shows that Li4Mo5O17 is a cationic conductor with �=10-3.5 S/cm at 500°C and<br />

Ea=0.35eV.<br />

In the case of Li4Mo5O17 a reversible topotactic transformation takes p<strong>la</strong>ce dur<strong>in</strong>g the<br />

lithium <strong>in</strong>sertion/extraction between 2.0-3.0V potential w<strong>in</strong>dows at very low rate.<br />

35


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

The electrochemical characterization was performed by galvanostatic cycl<strong>in</strong>g and<br />

electroanalytical methods such: PITT, GITT and EIS. The <strong>de</strong><strong>in</strong>terca<strong>la</strong>tion of Li <strong>in</strong><br />

Li12Mo5O17 is shown to be reversible with a stable reversible capacity of 250mAh/g.<br />

References:<br />

[1] M. Wiesmann, H. Heitzel, I. Svoboda, H. Fuess, Zeitschrift fur Kristallographie, 1997,<br />

212, 795<br />

[2] W. S. Brower, H. S. Parker, R. S. Roth , J. L. War<strong>in</strong>g, J.Cryst.Growth, 1972, 16, 115<br />

[3] B. M. Gatehouse, B. M. Misk<strong>in</strong>, J. Solid State Chem., 1974, 9, 247<br />

[4] B. M. Gatehouse, B. M. Misk<strong>in</strong>, J. Solid State Chem., 1975, 15, 274<br />

[5] J. P. Smit, P. C. Stair, K. R. Poppelmeier, Crystal Growth & Design, 2007, 7, 521<br />

[6] Pop N, Pralong V, Caignaert V, Col<strong>in</strong>, JF, Malo S, Van Ten<strong>de</strong>loo G. and Raveau B., Chem<br />

Mater, 2009, 21, pp. 3242-3250<br />

[7] V.Pralong, Progr. Solid St. Chem., 2009, 37, pp. 262-277<br />

36


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

NEW PHOSPHORUS SOLID ELECTROLYTES: SYNTHESIS BY<br />

INTERFACIAL TECHNIQUE AND PROPERTIES<br />

Gheorghe Ilia 1* , Smaranda Iliescu, 1 Mayte Gil-Agusti, 2 Nicoleta Plesu, 1 Lav<strong>in</strong>ia<br />

Macarie, 1 Adriana Popa 1<br />

1Institute of Chemistry, Romanian Aca<strong>de</strong>my, 24 Mihai Viteazul Bvd. 300223 Timisoara,<br />

Romania, email: ilia@acad-icht.tm.edu.ro; gheilia@yahoo.com.<br />

2 <strong>Instituto</strong> <strong>Tecnológico</strong> <strong>de</strong> <strong>la</strong> <strong>Energía</strong>, Av. Juan <strong>de</strong> <strong>la</strong> Cierva, 24 Parque <strong>Tecnológico</strong> <strong>de</strong><br />

<strong>Valencia</strong>, 46980 Paterna (<strong>Valencia</strong>), Spa<strong>in</strong><br />

Keywords: polyphosphoesters, solid polymer electrolyte, <strong>in</strong>terfacial polycon<strong>de</strong>nsation<br />

Abstract<br />

Phosphorus-conta<strong>in</strong><strong>in</strong>g polymers are of <strong>in</strong>terest because they confer low f<strong>la</strong>mmability,<br />

p<strong>la</strong>sticity, thermal stability and lubrication properties on polymers. 1 The synthetic<br />

flexibility of phosphorus-conta<strong>in</strong><strong>in</strong>g polymers allows the <strong>de</strong>velopment of copolymers<br />

with poly(ethylene glycol), poly (ethylene oxi<strong>de</strong>), poly(propylene oxi<strong>de</strong>) etc <strong>in</strong> or<strong>de</strong>r to<br />

obta<strong>in</strong> solid polymer electrolytes.<br />

Among the ma<strong>in</strong> ways of obta<strong>in</strong><strong>in</strong>g phosphorus conta<strong>in</strong><strong>in</strong>g polymers, phase transfer<br />

catalysis (PTC) has been frequently used <strong>in</strong> the synthesis of these polymers, due to its<br />

simplicity, low reaction temperatures and the l<strong>in</strong>earity of the result<strong>in</strong>g polymers. 2 The<br />

method follows the trend of green chemistry result<strong>in</strong>g <strong>in</strong> the reduction of environmental<br />

pollution and steady <strong>de</strong>velopment of chemistry.<br />

In or<strong>de</strong>r to prevent the <strong>de</strong>gradation of polymer and term<strong>in</strong>at<strong>in</strong>g compet<strong>in</strong>g reactions and<br />

to get data for prepar<strong>in</strong>g thermally stable heteroatom polymers with high molecu<strong>la</strong>r<br />

weights we have synthesized new phosphorus solid electrolytes (PSE) by a new method,<br />

respectively PTC <strong>in</strong> solid-liquid system, when potassium phosphate is used as an unique<br />

base.<br />

This paper presents <strong>in</strong> <strong>de</strong>tail the novel method for the synthesis of PSE by solid-liquid<br />

PTC polycon<strong>de</strong>nsation of phenylphosphonic dichlori<strong>de</strong> with poly(ethylene glycol)<br />

(PEG of 4000) and 1,10-<strong>de</strong>candiol <strong>in</strong> or<strong>de</strong>r to obta<strong>in</strong> optimal conditions for the reaction.<br />

(Scheme 1)<br />

37


Cl<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

O<br />

P<br />

C6H5 O<br />

P<br />

Cl<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

+ HO(CH 2CH 2O) nH/HO[(CH 2) 10]OH<br />

O(CH 2CH 2O) n<br />

C6H5 x C6H5 y<br />

Scheme 1. L<strong>in</strong>ear polyphosphonate random copolymers<br />

O<br />

P<br />

O[(CH 2) 10O] m<br />

+4K 3PO 4<br />

-4K 2HPO 4 +2KCl<br />

The conversion of liquid-liquid PTC <strong>in</strong>to solid-liquid PTC proves to be advantageous<br />

from the po<strong>in</strong>t of view of suppression of si<strong>de</strong> reactions, respectively hydrolysis of the<br />

phosphoryl chlori<strong>de</strong> groups of the reagent or of the cha<strong>in</strong> end-groups of the polymer.<br />

The synthesized copolymers were characterized by gel permeation chromatography, FT-<br />

IR, 1 H-NMR spectroscopy, and thermal analysis.<br />

These copolymers and membrane based on these copolymers showed good LOI values<br />

(34) and beg<strong>in</strong> to lose weight <strong>in</strong> the range 360 o -428 o C. The PSE/LiCF3SO3 electrolyte<br />

exhibited ionic conductivity of 1.05.10 -7 S.cm -1 at 25°C.<br />

Acknowledgments<br />

The research lead<strong>in</strong>g to these results has received fund<strong>in</strong>g from the European<br />

Community's Seventh Framework Programme (FP7/2007-2013) un<strong>de</strong>r Grant<br />

Agreement n° 266090 (SOMABAT) and also by the Romanian M<strong>in</strong>istry of Education,<br />

Research and Innovation Agency through PNCDI 2 Program(Romanian co-f<strong>in</strong>anc<strong>in</strong>g<br />

EU-7FP- SOMBAT - Module III - nr. 128 EU/2011, which are gratefully<br />

acknowledged.<br />

References:<br />

[1] S. M<strong>in</strong>egishi, S. Komatsu, A. Kameyama, T. Nishikubo, J. Polym. Sci. Part. A: Polym. Chem., 37,<br />

959-964, 1999<br />

[2] N. Narendran, K. Kishore, J. Appl. Polym. Sci., 87, 626-630, 2003<br />

38


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

GREEN SYNTHESIS AND CHARACTERIZATION OF NEW<br />

POLYMERS CONTAINING PHOSPHORUS GROUPS AND<br />

POLYETHERS<br />

Smaranda Iliescu, 1 Nicoleta Plesu, 1 Lav<strong>in</strong>ia Macarie, 1 Adriana Popa, 1 Gheorghe<br />

Ilia 1*<br />

1Institute of Chemistry, Romanian Aca<strong>de</strong>my, 24 Mihai Viteazul Bvd. 300223 Timisoara,<br />

Romania, email: ilia@acad-icht.tm.edu.ro; gheilia@yahoo.com.<br />

Keywords: polyphosphoesters, ionic liquid, solid polymer electrolyte<br />

Abstract<br />

Phosphorus-conta<strong>in</strong><strong>in</strong>g high performance polymers have been extensively studied<br />

dur<strong>in</strong>g the <strong>la</strong>st years. They have aroused wi<strong>de</strong> <strong>in</strong>terest, ma<strong>in</strong>ly due to their excellent fire<br />

resistance and good mechanical properties.[1-3] Polyphosphoesters can also form<br />

another <strong>in</strong>terest<strong>in</strong>g c<strong>la</strong>ss of phosphorus conta<strong>in</strong><strong>in</strong>g polymers which were <strong>de</strong>veloped as<br />

biomaterials.[4]<br />

Solid polymer electrolytes systems with fire-retardant polymer matrixes have been<br />

<strong>in</strong>vestigated <strong>in</strong> only few cases. In or<strong>de</strong>r to reduce the risk of fire <strong>in</strong> lithium-ion battery<br />

new polymers conta<strong>in</strong><strong>in</strong>g phosphorus groups and polyethers were <strong>de</strong>veloped.<br />

In this paper, novel l<strong>in</strong>ear Phosphonate-PEG polymers composed of phosphonate (4chlorophenyldichlorophosphonate)<br />

as a l<strong>in</strong>k<strong>in</strong>g agent with poly(ethylene glycol) (PEG)<br />

with different molecu<strong>la</strong>r weights (MW of 200 and 2000) as soft segment <strong>in</strong>creas<strong>in</strong>g<br />

cha<strong>in</strong> flexibility) were synthesized to <strong>in</strong>crease segmental motion to aid the ion transport<br />

and ionic conductivity at ambient temperatures. (Scheme 1)<br />

Triethy<strong>la</strong>m<strong>in</strong>e and 1-methylimidazole as acid scavengers were used. A convenient<br />

method for synthesiz<strong>in</strong>g Phosphonate-PEG polymers by adopt<strong>in</strong>g 1- methylimidazole as<br />

an HCl scavenger is presented.<br />

The advantages are: an ionic liquid is formed and the products can be easily recovered<br />

by a simple <strong>la</strong>yer separation; the enhanc<strong>in</strong>g of polymer yield; reduc<strong>in</strong>g of the corrosion<br />

problem.<br />

Best results (yield 88%, <strong>in</strong>herent viscosities 0.48 dl/g and Mn 2.6) were obta<strong>in</strong>ed with<br />

1-methylimidazole as an acid scavenger and PEG 2000.<br />

39


Cl<br />

O<br />

P<br />

Cl<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

Cl<br />

+ HO<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

H P<br />

O<br />

n<br />

-HCl<br />

O<br />

Scheme 1. Synthesis of Phosphonate-PEG polymers<br />

The synthesized polymers were characterized by gel permeation chromatography, FT-<br />

IR, 1 H-NMR spectroscopy, and thermal analysis. These polymers and membrane based<br />

on these polymers showed good LOI values (<strong>in</strong> the range 23-29, 30) and beg<strong>in</strong> to lose<br />

weight <strong>in</strong> the range 330 o -412 o C.<br />

The novelty of this study is the use of 1-methylimidazole as an acid scavenger and of<br />

1,3-dioxo<strong>la</strong>ne as a green solvent.<br />

Acknowledgments<br />

The research lead<strong>in</strong>g to these results has received fund<strong>in</strong>g from the European<br />

Community's Seventh Framework Programme (FP7/2007-2013) un<strong>de</strong>r Grant<br />

Agreement n° 266090 (SOMABAT) and also by the Romanian M<strong>in</strong>istry of Education,<br />

Research and Innovation Agency through PNCDI 2 Program(Romanian co-f<strong>in</strong>anc<strong>in</strong>g<br />

EU-7FP- SOMBAT - Module III - nr. 128 EU/2011, which are gratefully<br />

acknowledged.<br />

References:<br />

[1] H. Ren, J. Sun, B. Wu, Q. Zhou, Polym. Degrad. Stab., 92, 956-961, 2007<br />

[2] O. Petreus, T. V<strong>la</strong>d-Bubu<strong>la</strong>c, C. Hamciuc, Eur. Polym. J., 41, 2663-2670, 2005<br />

[3] Y.-L. Chang, Y.-Z. Wang, D.-M. Ban, B. Yang, G.-M. Zhao, Macromo. Mater. Eng., 289, 703-707,<br />

2004<br />

[4] S. Monge, B. Canniccioni, A. Graillot, J.-J. Rob<strong>in</strong>, Biomacromolecules, 12, 1973-1982, 2011<br />

O<br />

O<br />

Cl<br />

O<br />

n<br />

P<br />

O<br />

O<br />

Cl<br />

40


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

UV-POLYMERIZATION AND CHRACTERIZATION OF NEW<br />

POLYMERS CONTAINING PHOSPHORUS GROUPS AND<br />

POLYETHERS<br />

Lav<strong>in</strong>ia Macarie, 1 Nicoleta Plesu, 1 Smaranda Iliescu, 1 Adriana Popa, 1 Gheorghe<br />

Ilia 1* , Nico<strong>la</strong>e Hurduc 2<br />

1Institute of Chemistry, Romanian Aca<strong>de</strong>my, 24 Mihai Viteazul Bvd. 300223 Timisoara,<br />

Romania, email: ilia@acad-icht.tm.edu.ro; gheilia@yahoo.com.<br />

2 Technical University «Gheorghe Asachi» Iasi, Department of Natural and Synthetic<br />

Polymers, Mangeron Ave No. 73, 700050-Iasi, Romania<br />

Keywords: UV-cur<strong>in</strong>g, polyphosphoesters, solid polymer electrolyte<br />

Abstract<br />

Nowadays, the rep<strong>la</strong>cement of conventionally used liquid electrolytes by a polymer<br />

membrane to form lithium-based polymer batteries is an effective approach to the<br />

optimization of some critical operational features such as safety, <strong>de</strong>sign flexibility, etc.<br />

[1–3]. Solid polymer electrolyte membranes formed by the dissolution of lithium salts <strong>in</strong><br />

suitable polymer matrixes such as poly(ethylene glycol) (PEG) which has a high<br />

solvat<strong>in</strong>g ability for <strong>in</strong>organic salts and shows homogeneous solution mix<strong>in</strong>g because of<br />

<strong>in</strong>teractions with po<strong>la</strong>r ether groups and coord<strong>in</strong>ation with dissociated cations were<br />

obta<strong>in</strong>ed [4]. Solid polymer electrolyte membranes prepared by UV cur<strong>in</strong>g could be an<br />

<strong>in</strong>terest<strong>in</strong>g alternative to the present products, because the photo<strong>in</strong>itiated polymerization<br />

is one of the fastes and efficient methods to obta<strong>in</strong> membranes based on polymeric<br />

materials [5-7].<br />

This paper illustrates the possibility of us<strong>in</strong>g a facile and rapid free-radical<br />

photopolymerization (UV cur<strong>in</strong>g) process to prepare solid polymer electrolyte<br />

membranes based on novel l<strong>in</strong>ear phosphonate-PEG polymers, which do not conta<strong>in</strong><br />

any k<strong>in</strong>d of organic solvent. Hence, the drawbacks, such as solvent vo<strong>la</strong>tility and<br />

leakage, poor mechanical property at high <strong>de</strong>gree of p<strong>la</strong>sticization, and reactivity of<br />

po<strong>la</strong>r solvents with the lithium electro<strong>de</strong> solvent are avoi<strong>de</strong>d.<br />

The l<strong>in</strong>ear phosphonate-PEG polymers composed of phosphonate (4-chlorophenyldichlorophosphonate)<br />

as a l<strong>in</strong>k<strong>in</strong>g agent with poly(ethylene glycol) (PEG) with<br />

different molecu<strong>la</strong>r weights (MW of 400, 1000, 4000, 12000 and 35000) as soft<br />

segment <strong>in</strong>creas<strong>in</strong>g cha<strong>in</strong> flexibility were used, and 10% w/w<br />

bis(trifluoromethane)sulfonimi<strong>de</strong> lithium salt (LiFMS) was ad<strong>de</strong>d. To this mixture<br />

aliphatic urethane diacry<strong>la</strong>te oligomer (Photomer 6210), at different mass ratios and<br />

photo<strong>in</strong>itiator Darocure 4265 3% w/w were ad<strong>de</strong>d. The photopolymerization<br />

41


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

formu<strong>la</strong>tion was <strong>la</strong>id on PTFE p<strong>la</strong>te and exposed to UV-<strong>la</strong>mp for 3 m<strong>in</strong>.<br />

The mechanically stable, flexible, free-stand<strong>in</strong>g uniform film was peeled off from the<br />

PTFE p<strong>la</strong>tes and analyzed. The obta<strong>in</strong>ed membranes were characterized by FT-IR (the<br />

disappearance of the acrylic double bonds) and ionic conductivity was <strong>de</strong>term<strong>in</strong>ed by<br />

impedance spectroscopy us<strong>in</strong>g sta<strong>in</strong>less steel (SS) as block<strong>in</strong>g electro<strong>de</strong>s and direct<br />

current (DC) method respectively.<br />

Best results of conductivity 4.067 x 10 -7 Scm -1 was obta<strong>in</strong>ed for the membrane<br />

conta<strong>in</strong><strong>in</strong>g PEG 1000, at mass ratios 2:1 acry<strong>la</strong>te monomer: phosphonate-PEG<br />

polymers.<br />

The novelty of this study is the use of UV-cur<strong>in</strong>g to a photopolimerizable formu<strong>la</strong>tion<br />

conta<strong>in</strong><strong>in</strong>g synthesized phosphonate-PEG polymers, Li salt and diacry<strong>la</strong>te oligomer.<br />

Acknowledgments<br />

The research lead<strong>in</strong>g to these results has received fund<strong>in</strong>g from the European<br />

Community's Seventh Framework Programme (FP7/2007-2013) un<strong>de</strong>r Grant<br />

Agreement n° 266090 (SOMABAT) and also by the Romanian M<strong>in</strong>istry of Education,<br />

Research and Innovation Agency through PNCDI 2 Program(Romanian co-f<strong>in</strong>anc<strong>in</strong>g<br />

EU-7FP- SOMBAT - Module III - nr. 128 EU/2011, which are gratefully<br />

acknowledged.<br />

References:<br />

[1] M. Watanabe, M. Itoh, K. Sanui, N. Ogata, (1987) Macromolecules, 20, 569, 1987.<br />

[2] L.A. Guilherme, R.S. Borges, E. Mara, S. Moraes, G. Gou<strong>la</strong>rt Silva, M.A. Pimenta, A. Marletta, R.A.<br />

Silva, Electrochimica Acta, 53, 1503–1511, 2007<br />

[3] K. W. Oh, J. H. Choi, S. H. Kim, Journal of Applied Polymer Science, 103, 2402–2408, 2007<br />

[4] S. H. Kim, J. Y Kim, H. S. Kim, H. N. Cho, Solid State Ionics, 124, 91, 1999<br />

[5] A. Munch Elme´r, P. Jannasch, Solid State Ionics, 177 573 – 579, 2006<br />

[6] C. Gerbaldi, Ionics, 16, 777–786, 2010<br />

[7] J.R. Nair, C. Gerbaldi, G. Meligrana, R. Bongiovanni,S. Bodoardo, N. Penazzi, P. Reale, V. Gentili,<br />

Journal of Power Sources, 178, 751–757, 2008<br />

42


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

IONIC CONDUCTIVITY OF LINEAR PHOSPHONATE-<br />

POLY(ETHYLENE)GLYCOL POLYMERS<br />

Nicoleta Plesu, 1* Smaranda Iliescu, 1 Leire Zubizarreta 2 Gheorghe Fagadar-<br />

Cosma 3 , Lav<strong>in</strong>ia Macarie, 1 Adriana Popa, 1 Gheorghe Ilia 1<br />

1Institute of Chemistry, Romanian Aca<strong>de</strong>my, 24 Mihai Viteazul Bvd. 300223 Timisoara,<br />

Romania, email: nplesu@acad-icht.tm.edu.ro; plesu_nicole@yahoo.com.<br />

2 <strong>Instituto</strong> <strong>Tecnológico</strong> <strong>de</strong> <strong>la</strong> <strong>Energía</strong>, Av. Juan <strong>de</strong> <strong>la</strong> Cierva, 24 Parque <strong>Tecnológico</strong> <strong>de</strong><br />

<strong>Valencia</strong>, 46980 Paterna (<strong>Valencia</strong>), Spa<strong>in</strong><br />

3 "Politehnica" University of Timisoara, T. Lalescu Street, No. 2, 300223-Timisoara,<br />

Romania<br />

Keywords: polyphosphoesters, ionic liquid, solid polymer electrolyte<br />

Abstract<br />

Improvement of solid polymer electrolytes conductivity can be achieved by the<br />

modification of polymer architecture and by us<strong>in</strong>g additives. F<strong>la</strong>me retardancy <strong>in</strong><br />

lithium batteries is also a major challenge for battery manufacturers. Fire-retardant<br />

polymer electrolytes are key materials for safer operation of lithium batteries.<br />

New membranes based on phosphonate-PEG polymers and Li trif<strong>la</strong>te were prepared (P-<br />

Li). Phosphonate-PEG polymers were synthesized <strong>in</strong> our <strong>la</strong>boratory by the reaction of<br />

4-chlorophenyldichlorophosphonate and PEG (MW of 2000) <strong>in</strong> the presence of 1methylimidazole.<br />

After the complexation with Li trif<strong>la</strong>te, ionic conductivity and<br />

transference ion number were <strong>de</strong>term<strong>in</strong>ed by means of impedance spectroscopy us<strong>in</strong>g<br />

sta<strong>in</strong>less steel (SS) as block<strong>in</strong>g electro<strong>de</strong>s and direct current (DC) method respectively.<br />

The Bo<strong>de</strong> plots for P-Li at Open Circuit Potential (OCP), V, and the evolution of<br />

po<strong>la</strong>rization current as a function of time after the application of a DC potential (1.5 V)<br />

across the SS/P-Li/SS cell is presented <strong>in</strong> Figures 1a and 1b.<br />

The ionic conductivity (σ) value was calcu<strong>la</strong>ted at room temperature accord<strong>in</strong>g to Eq.<br />

(1)<br />

σ = L/ Rb.A (1) Where: � - ionic conductivity, Rb – the resistance correspond<strong>in</strong>g to<br />

the angle closest to zero <strong>in</strong> the Bo<strong>de</strong> diagram, L – the height of the sample between the<br />

electro<strong>de</strong>s, A – the cross-sectional contact area of the measured sample with the<br />

electro<strong>de</strong>s.<br />

43


IZI / � cm 2<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

0.1 1 10 100 1000 10000 100000 1000000<br />

f / Hz<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

I,A<br />

2.0x10 -6<br />

1.5x10 -6<br />

1.0x10 -6<br />

5.0x10 -7<br />

0.0<br />

0 500 1000 1500 2000 2500<br />

a) b)<br />

Figure 1. a) Bo<strong>de</strong> plots at OCP potential and b) Po<strong>la</strong>rization current as a function of<br />

time for membrane P-Li sandwiched between two SS electro<strong>de</strong>s<br />

The total ionic transference number was calcu<strong>la</strong>ted from plots of the po<strong>la</strong>rization current<br />

versus time with the equation (2):<br />

I f t �1 � (2)<br />

ion Ii<br />

Where Ii is the <strong>in</strong>itial current and If is the f<strong>in</strong>al residual current. The conductivity for this<br />

membrane was 9.18 x 10 -7 S.cm -1 . This value is higher than the conductivity observed<br />

for pure PEG 2000, about 1.67 × 10 –9 S.cm -1 and close to 7.27 × 10 –7 S.cm -1 for<br />

(PEG)xLiClO4 system. [1] The total ionic transference number was found to be <strong>in</strong> the<br />

range of 0.94–0.96 <strong>in</strong> these polymer electrolyte systems and suggests that the charge<br />

transport <strong>in</strong> this electrolyte membrane is predom<strong>in</strong>antly due to ions.<br />

Acknowledgments<br />

The research lead<strong>in</strong>g to these results has received fund<strong>in</strong>g from the European<br />

Community's Seventh Framework Programme (FP7/2007-2013) un<strong>de</strong>r Grant<br />

Agreement n° 266090 (SOMABAT) and also by the Romanian M<strong>in</strong>istry of Education,<br />

Research and Innovation Agency through PNCDI 2 Program(Romanian co-f<strong>in</strong>anc<strong>in</strong>g<br />

EU-7FP- SOMBAT - Module III - nr. 128 EU/2011, which are gratefully<br />

acknowledged.<br />

References:<br />

[1] T.H.J. S<strong>in</strong>gh, S.V. Bhat, Bull. Mater. Sci., 26, 707-714 , 2003.<br />

t,s<br />

44


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

NOVEL SENSOR BASED ON PORPHYRINS FOR MONITORING<br />

OF IRON(III) IONS IN RECOVERED SOLUTIONS FROM SPENT<br />

LITHIUM ION BATTERIES<br />

Eugenia Fagadar-Cosma 1 , Dana V<strong>la</strong>scici 2 , Iuliana Popa 3 , Ione<strong>la</strong> Creanga 1 , Anca<br />

Pa<strong>la</strong><strong>de</strong> 1 , Mayte Gil-Agusti 4 , Gheorghe Fagadar-Cosma 1 , Leire Zubizarreta 4<br />

1Institute of Chemistry Timisoara of Romanian Aca<strong>de</strong>my, M. Viteazul Ave. 24, 300223-<br />

Timisoara, Romania, email: efagadar@yahoo.com;<br />

2 West University of Timisoara, Faculty of Chemistry-Biology-Geography, Pestalozzi<br />

Street 16, 300115-Timisoara, Romania, danav<strong>la</strong>scici@yahoo.com;<br />

3 National Institute of Research for Electrochemistry and Con<strong>de</strong>nsed Matter,<br />

Timisoara, Aurel Paunescu Po<strong>de</strong>anu Street 144, 300860-Timisoara, Romania,<br />

iuliana_p19@yahoo.com;<br />

4 <strong>Instituto</strong> <strong>Tecnológico</strong> <strong>de</strong> <strong>la</strong> <strong>Energía</strong> (ITE), Avenida Juan <strong>de</strong> <strong>la</strong> Cierva, 24 46980<br />

Paterna, <strong>Valencia</strong>, Spa<strong>in</strong>, mayte.gil@ite.es<br />

Keywords: porphyr<strong>in</strong>s; ion-selective electro<strong>de</strong>; potentiometry; batteries; iron(III);<br />

PVC membrane<br />

Abstract<br />

Three A3B porphyr<strong>in</strong>s mixed functionalized on meso-phenyl groups with carboxy-,<br />

phenoxy-, pyridyl- and dimethoxy- substituents [1] were obta<strong>in</strong>ed by multicomponent<br />

synthesis, fully characterized and used as ionophores for prepar<strong>in</strong>g PVC-based<br />

membrane sensors selective to iron(III).<br />

The membranes have the composition ionophore: PVC: p<strong>la</strong>sticizer <strong>in</strong> the ratio 1:33:66.<br />

Sodium tetraphenylborate was used as additive (20 mol.% re<strong>la</strong>tive to ionophore). The<br />

performance characteristics (l<strong>in</strong>ear concentration range, slope and selectivity) of the<br />

sensors were <strong>in</strong>vestigated.<br />

The best results were obta<strong>in</strong>ed for the membrane based on 5-(4-carboxyphenyl)-<br />

10,15,20-tris(4-phenoxyphenyl)-porphyr<strong>in</strong> (P1, Figure1) p<strong>la</strong>sticized with bis(2ethylhexyl)sebacate,<br />

<strong>in</strong> a l<strong>in</strong>ear range from 1x10 -7 – 1x10 -1 M with a slope of 21.9<br />

mV/<strong>de</strong>ca<strong>de</strong>.<br />

The electro<strong>de</strong> showed high selectivity with respect to alkal<strong>in</strong>e and heavy metal ions<br />

(Figure 2) and a response time of 20 s. The <strong>in</strong>fluence of pH on the sensor response was<br />

studied.<br />

The sensor may be used <strong>in</strong> a pH range from 2.0 – 3.8. Above this value of the pH the<br />

precipitation of iron(III) hydroxi<strong>de</strong> occurs.<br />

45


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

The sensor was used for a period of six weeks and the utility has been tested for the<br />

quantitative <strong>de</strong>term<strong>in</strong>ation of Fe(III) <strong>in</strong> recovered solutions from spent lithium ion<br />

batteries [2].<br />

HOOC<br />

N N H<br />

H<br />

N<br />

O<br />

O<br />

Figure 1. The chemical structure of 5-(4-carboxyphenyl)- 10,15,20-tris(4phenoxyphenyl)-porphyr<strong>in</strong><br />

E (mV)<br />

660<br />

640<br />

620<br />

600<br />

580<br />

560<br />

540<br />

520<br />

500<br />

480<br />

460<br />

440<br />

N<br />

5 4 3 2 1<br />

-log[conc]<br />

O<br />

Fe3+<br />

Ni2+<br />

Mn2+<br />

Zn2+<br />

Co2+<br />

Cu2+<br />

Na+<br />

Li+<br />

Figure 2. Potentiometric response of porphyr<strong>in</strong> P1-based sensors hav<strong>in</strong>g the optimum<br />

composition of the membrane toward different metal ions<br />

Acknowledgments<br />

The research lead<strong>in</strong>g to these results has received fund<strong>in</strong>g from the European<br />

Community's Seventh Framework Programme (FP7/2007-2013) un<strong>de</strong>r grant agreement<br />

46


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

n° 266090 (SOMABAT), Romanian PNCDI2 Program-Module III-EU 128/2011 and is<br />

a result of col<strong>la</strong>boration between the coauthors with<strong>in</strong> the project<br />

POSDRU/21/1.5/G/38347.<br />

References:<br />

[1] Fagadar-Cosma, E.; Cseh, L.; Ba<strong>de</strong>a, V.; Fagadar-Cosma, G.; V<strong>la</strong>scici, D. Comb<strong>in</strong>atorial<br />

synthesis and characterization of new asymmetric porphyr<strong>in</strong>s as potential photosensitizers <strong>in</strong><br />

photodynamic therapy, Comb. Chem.High T. Scr., 10, 466-472, 2007.<br />

[2] Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. Development of a<br />

Recycl<strong>in</strong>g Process for Li-Ion Batteries, J. Power Sources 207, 173-182, 2012.<br />

47


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

SYNTHESIS AND MORPHOLOGY CONTROL OF NOVEL<br />

NANOSTRUCTURED LiFePO4 CATHODE MATERIALS<br />

FOR Li-ION BATTERY<br />

Omar Ayyad 1 , Pedro Gómez-Romero 1,2<br />

1. Centro <strong>de</strong> Investigación en Nanociencia y Nanotecnologia, CIN2 (CSIC-ICN) and 2.<br />

MATGAS.<br />

Campus UAB, Bel<strong>la</strong>terra 08193, Spa<strong>in</strong>.<br />

omar.ayyad@c<strong>in</strong>2.es, pedro.gomez@c<strong>in</strong>2.es<br />

Keywords: LiFePO4, catho<strong>de</strong>, Li-ion battery, solvothermal, hydrothermal, reflux,<br />

morphology<br />

Abstract<br />

Lithium-ion batteries are most advanced battery technology for mo<strong>de</strong>rn portable<br />

electronics such as mobile phones and notebook computers. S<strong>in</strong>ce the <strong>in</strong>troduction of<br />

oliv<strong>in</strong>e type lithium metal phosphate as potential catho<strong>de</strong> material for Li-ion batteries by<br />

Goo<strong>de</strong>nough and coworkers <strong>in</strong> 1997, [1] significant progresses have been ma<strong>de</strong> <strong>in</strong><br />

un<strong>de</strong>rstand<strong>in</strong>g the chemistry of this system and <strong>in</strong> manufactur<strong>in</strong>g lithium metal<br />

phosphate materials and batteries. [2] This compound has <strong>de</strong>monstrated competitive<br />

electrochemical properties, although its use <strong>in</strong> pure form is limited by low ionic and<br />

electronic conductivity. This highly limits the electron transfer through the material.<br />

Therefore the use of additional electronically conductive materials as additives and/or<br />

C-coat<strong>in</strong>g of the active material particles are nee<strong>de</strong>d to enhance conductivity and thus<br />

improve the k<strong>in</strong>etics of LiFePO4 electrochemical reactions. [2,3] These drawbacks,<br />

however, can also be reduced by: downsiz<strong>in</strong>g the particles for reduc<strong>in</strong>g the lengths of<br />

ionic and electronic transport; [3,4] selective dop<strong>in</strong>g with supervalent cations to <strong>in</strong>crease<br />

the <strong>in</strong>tr<strong>in</strong>sic conductivity; [3] and/or morphological and textural tun<strong>in</strong>g. [5]<br />

There are big potentials for Li-ion batteries to be used for electric vehicles, hybrid<br />

electric vehicles and stationary power storage. Materials research p<strong>la</strong>ys a key role <strong>in</strong> the<br />

<strong>de</strong>velopment of the next generation of advanced Li-ion batteries with high energy<br />

<strong>de</strong>nsity, high power <strong>de</strong>nsity, and long cycle life.<br />

Solid state syntheses methods, which rely on us<strong>in</strong>g very high temperatures and multiple<br />

step procedures, are still the most commonly used method for commercial production of<br />

LiFePO4 although these methods normally lead to a poor control of morphology and<br />

<strong>la</strong>rger particles sizes. On the other hand, other approaches, such as solvothermal and<br />

48


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

reflux reactions have provi<strong>de</strong> a better alternative, offer<strong>in</strong>g the possibility to use cheaper<br />

precursor materials, lower work<strong>in</strong>g temperatures (≤200 ºC) and lead<strong>in</strong>g to better<br />

morphology and size control.<br />

This work aims to verify the solvothermal and reflux approaches for improv<strong>in</strong>g the size,<br />

morphology and electrochemical properties of lithium iron phosphates. In this work,<br />

solvothermal and reflux reactions were used to synthesize novel architectures of<br />

LiFePO4 catho<strong>de</strong> materials, and their particle sizes and shapes were controlled from the<br />

nanometer to sub-micrometer scales lead<strong>in</strong>g to peculiar self-organized sheave<br />

formations. In these lower temperature (180-200ºC) approaches, environmentally<br />

benign and <strong>in</strong>expensive precursors have been used. These approaches are shown to be<br />

simple, highly reproducible and cost-effective. Therefore, they could be a good<br />

alternative to rep<strong>la</strong>ce the commonly used high-energy solid state techniques employed<br />

for the production of LiFePO4. The crystall<strong>in</strong>e structures of the synthesized catho<strong>de</strong><br />

materials were characterized by X-ray diffraction, and their morphologies were<br />

analyzed by SEM and TEM.<br />

The LiFePO4 nanostructure materials synthesized by reflux approach (LFPR) <strong>in</strong> this<br />

work exhibited uniform and beautiful morphology. A SEM photograph shows a very<br />

homogeneous sample consist<strong>in</strong>g of <strong>in</strong>tricate agglomerates (approx. 4 µm lengths and 3<br />

µm widths; Figure 1.A) <strong>in</strong> the shape of <strong>de</strong>nse, space-fill<strong>in</strong>g sheaves. The grown sheaf<br />

particles are formed of self-assembled needles (approx. 2-4 µm length and 30-40 nm<br />

diameters; Figure 1.B). Each sheaf consist<strong>in</strong>g of two urch<strong>in</strong>-like sub-structures. The<br />

nanostructured LiFePO4 material shown <strong>in</strong> Figure 1.B was synthesized us<strong>in</strong>g a<br />

solvothermal method ((LFPS) by us<strong>in</strong>g a different iron precursor, different synthetic<br />

method, and different mo<strong>la</strong>r ratios from the one obta<strong>in</strong>ed us<strong>in</strong>g the reflux approach<br />

<strong>de</strong>scribed above. This method has led to those astonish<strong>in</strong>g superstructures formed <strong>in</strong><br />

turn by sheave blocks.<br />

The result<strong>in</strong>g fuzzy octahedra (approx. 5 µm diameter) consist of monodispersed sheaflike<br />

units with a diameter rang<strong>in</strong>g from 1 to 2 µm formed <strong>in</strong> turn by nanometer sized<br />

self-assembled needle primary particles. Additionally, it has been proven that this<br />

unusual and previously unreported morphology is directed simply by controll<strong>in</strong>g the<br />

synthesis parameters such as temperature, time, precursor‟s type and precursor‟s mo<strong>la</strong>r<br />

ratio. This curious morphology is possibly grown via solvothermal Ostwald ripen<strong>in</strong>g<br />

process of sheaf-like units. Nevertheless, the <strong>de</strong>tailed formation mechanism of the<br />

presented nanostructured LiFePO4 materials has not been fully exp<strong>la</strong><strong>in</strong>ed yet.<br />

49


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Figure 1. SEM and TEM images of prist<strong>in</strong>e LiFePO4 nano and microstructures<br />

synthesized through Reflux method (A) and Solvothermal method (B).<br />

References:<br />

[1] Padhi A.K. et al., J. Electrochem. Soc. 144 (4): 1188-1194, 1997.<br />

[2] Dunn B. et al., Science, 334 (6058): 928-935, 2011.<br />

[3] Chung S.Y., et al., Nat. Mater. 1 (2): 123-128, 2002.<br />

[4] Wang Y.G. et al., Angew Chem.Int. Ed., 47 (39): 7461-7465, 2008.<br />

[5] Liu J. et al., Energy Environ. Sci., 4 (3): 885-888, 2011.<br />

50


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

LIFE CYCLE ASSESSMENT OF CARBON XEROGELS<br />

Raphaëlle Melon, Roberto Renzoni, Alexandre Leonard, Nathalie Job, Angélique<br />

Leonard<br />

Laboratory of chemical Eng<strong>in</strong>eer<strong>in</strong>g, University of Liège<br />

17 allée <strong>de</strong> <strong>la</strong> chimie, 4000 Liège, Belgium<br />

Raphaelle.melon@ulg.ac.be; r.renzoni@ulg.ac.be; a.leonard@ulg.ac.be<br />

Keywords: LCA, ReCiPe, carbon xerogels, comparison, dry<strong>in</strong>g technology<br />

Introduction<br />

In the framework of the SOMABAT European project, a life cycle assessment applied<br />

to the production of carbon xerogels was carried out. These carbon materials with<br />

controlled texture are thought to be used as active material at the ano<strong>de</strong> si<strong>de</strong>.<br />

Methodology<br />

This analysis focuses on the transport of raw materials and the synthesis of carbon<br />

xerogels. Their use as active material <strong>in</strong> the ano<strong>de</strong> of lithium-polymer batteries will be<br />

consi<strong>de</strong>red <strong>la</strong>ter. The functional unit is the synthesis of 1 kg of carbon xerogels and the<br />

used method is ReCiPe endpo<strong>in</strong>t. The synthesis is carried out <strong>in</strong> four steps: (1) transport<br />

of reagents by truck and homogenization of synthesis reagents by mechanical agitation,<br />

(2) reaction, gelification, and gel ag<strong>in</strong>g <strong>in</strong> an oven at 85 °C for two or three days, (3)<br />

dry<strong>in</strong>g and (4) pyrolysis un<strong>de</strong>r a nitrogen flow. For dry<strong>in</strong>g, three technologies were<br />

compared:<br />

- Vacuum dry<strong>in</strong>g („vacuum‟): the sample is simply kept at 60 °C and the pressure is<br />

progressively <strong>de</strong>creased <strong>in</strong> one day from 10 5 Pa to 10 3 Pa. The sample is then heated<br />

to 150 °C at 10 3 Pa dur<strong>in</strong>g 5h.<br />

- Convective dry<strong>in</strong>g („conv.‟): the sample is dried <strong>in</strong> a c<strong>la</strong>ssical convective rig un<strong>de</strong>r a<br />

hot air flow at 115 °C with a superficial velocity of 2 m/s and ambient humidity.<br />

- Microwave dry<strong>in</strong>g („MW‟): the sample is dried <strong>in</strong> a cavity oven us<strong>in</strong>g a power of<br />

1000 kW for 30 m<strong>in</strong>utes.<br />

Results and discussion<br />

The results (Table 1) show that vacuum dry<strong>in</strong>g is the technique that uses the most<br />

energy with 96.8% of the environmental impacts associated with this step. Microwave<br />

dry<strong>in</strong>g uses less energy compared to the vacuum technique but presents an important<br />

environmental contribution of 58.6 %. For convective dry<strong>in</strong>g un<strong>de</strong>r a hot air stream, it<br />

represents only 6.4% of the total impact of the synthesis because its low energy <strong>de</strong>mand.<br />

Moreover, the energy <strong>de</strong>mand corresponds to a heat consumption and not electricity as<br />

<strong>in</strong> the other two cases. Heat production is assumed to be produce from natural gas.<br />

51


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Vacuum Convective Microwave<br />

Reagents 2.2 65.4 28.9<br />

Ag<strong>in</strong>g 0.4 11.5 5.1<br />

Dry<strong>in</strong>g 96.8 6.4 58.6<br />

Pyrolysis 0.6 16.7 7.4<br />

Total 100.0 100.0 100.0<br />

Table 1 : Environmental contributions of synthesis steps<br />

The s<strong>in</strong>gle score chart (Figure 1) which i<strong>de</strong>ntifies the <strong>in</strong>volved impact categories for the<br />

whole production process, confirms the previous results. The vacuum technology has a<br />

s<strong>in</strong>gle score around 64 po<strong>in</strong>ts while the two other dry<strong>in</strong>g technologies are below 10<br />

po<strong>in</strong>ts. The <strong>in</strong>volved impact categories are ma<strong>in</strong>ly due to the energy needs of processes,<br />

particu<strong>la</strong>rly the high <strong>de</strong>mand for electricity.<br />

Figure 1 : S<strong>in</strong>gle score for the 3 production way of carbon xerogels<br />

Conclusions<br />

From this analysis, it appears that convective dry<strong>in</strong>g, <strong>in</strong> view of its lower environmental<br />

impact, is the most appropriate dry<strong>in</strong>g technique for an <strong>in</strong>dustrial-scale production of<br />

carbon xerogels.<br />

References<br />

1. ADEME, Les procédés <strong>de</strong> séchage dans l’<strong>in</strong>dustrie, (2000) Angers.<br />

2. Ar<strong>la</strong>bosse, P., Séchage <strong>in</strong>dustriel ; Aspects pratiques, Techniques <strong>de</strong> l‟<strong>in</strong>génieur.<br />

3. Vachet, F., Séchage dans l’<strong>in</strong>dustrie chimique, Techniques <strong>de</strong> l‟<strong>in</strong>génieur.<br />

4. Vasseur, J., Séchage : pr<strong>in</strong>cipes et calcul d’appareils. Séchage convectif par air chaud, Techniques<br />

<strong>de</strong> l‟<strong>in</strong>génieur.<br />

Acknowledgments<br />

The research lead<strong>in</strong>g to these results has received fund<strong>in</strong>g from the European<br />

Community's Seventh Framework Programme un<strong>de</strong>r grant agreement n°NMP3-SL-<br />

2010-266090.<br />

52


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

LITHIUM BATTERY CELL TO PACK INTEGRATION<br />

FOR ELECTRIC VEHICLES<br />

Peter Dooley<br />

Cleancarb, 2a Rue Schmitz, 8190 Kopstal, Luxembourg<br />

pdooley@pt.lu<br />

Keywords: pouch cells, cyl<strong>in</strong>drical and block type, <strong>in</strong>tegration, energy <strong>de</strong>nsity,<br />

mechanical <strong>in</strong>terfaces, servicability.<br />

Abstract<br />

Here different type of Lithium battery packs is discussed.Most Lithium battery packs<br />

for Evs are based on several different cell architectures.The most common types of<br />

battery cells <strong>in</strong> use are cyl<strong>in</strong>drical type, block type and pouch type cells. All of these<br />

types of cells have their advantages and disadvantages.<br />

Cyl<strong>in</strong>drical and block types have excellent mechanical properties and re<strong>la</strong>tively low<br />

energy <strong>de</strong>nsities.<br />

Pouch type cells on the other hand are lightweight but suffer <strong>in</strong> terms of mechanical<br />

strength and stability. However they offer many advantages over block and cyl<strong>in</strong>drical<br />

cells <strong>in</strong> terms of volume packag<strong>in</strong>g.<br />

Jo<strong>in</strong><strong>in</strong>g pouch cells together is usually carried out us<strong>in</strong>g mechanical fix<strong>in</strong>g c<strong>la</strong>mps ,<br />

ultrasonice weld<strong>in</strong>g, braz<strong>in</strong>g etc.<br />

Cyl<strong>in</strong>dircal and block cells are usually fixed together mechanically us<strong>in</strong>g screws, bolts<br />

and busbars.<br />

This paper will also address areas such as safety and serviceability of Lithium Battery<br />

packs etc.<br />

References:<br />

1. A.A. Pesaran, G.-H. Kim, and M. Keyser., Integration Issues of Cells <strong>in</strong>to battery pack for Plug-In<br />

and Hybrid Electric Vehicles,EVS 24, 2009<br />

2. McBri<strong>de</strong> M.W., Title of the book, 2nd Ed., vol. 3, New York, Aca<strong>de</strong>mic Press, pp. 270 – 373, 2000.<br />

53


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

POLYSTIRENE-DIVINYL BENZEN GELS - COMPOSITE<br />

PROPER FOR REDUCTION OF Cr (VI)<br />

Adriana Popa, 1* Nicoleta Plesu, 1 Smaranda Iliescu, 1 Lav<strong>in</strong>ia Macarie, 1 Gheorghe<br />

Ilia 1<br />

1Institute of Chemistry, Romanian Aca<strong>de</strong>my, 24 Mihai Viteazul Bvd. 300223 Timisoara,<br />

Romania, email: apopa@acad-icht.tm.edu.ro<br />

Keywords: polystyrene-div<strong>in</strong>ilbenzene gels, hexavalent chromium reduction,<br />

composite, pollution prevention<br />

Abstract<br />

The Environmental Protection Agency (EPA) <strong>de</strong>f<strong>in</strong>es Green Chemistry (GC) as the use<br />

of chemistry for pollution prevention at molecu<strong>la</strong>r level. [1] The mission of GC is to<br />

promote <strong>in</strong>novative chemical technologies that reduce or elim<strong>in</strong>ate the use or generation<br />

of hazardous substances <strong>in</strong> the <strong>de</strong>sign, manufacture, and use of chemical products. [2]<br />

There are many types of battery which utilize one or more toxic heavy metals. Heavy<br />

metals from batteries can leach out of <strong>la</strong>ndfills and pollute water sources. When<br />

batteries are <strong>in</strong>c<strong>in</strong>erated, the heavy metals present <strong>in</strong> them can contam<strong>in</strong>ate the<br />

environmental media (water, ash and air).<br />

The common household alkal<strong>in</strong>e batteries, AAA, AA, C, D, 9-volt can conta<strong>in</strong> mercury,<br />

chromium and z<strong>in</strong>c. The lead-acid one used <strong>in</strong> vehicles, wheelchairs, forklifts, and<br />

portable generators conta<strong>in</strong>s lead and lithium battery used <strong>in</strong> some cameras can conta<strong>in</strong><br />

chromium. It is necessary to f<strong>in</strong>d proper method to elim<strong>in</strong>ate or recover the heavy<br />

metals from pollute sources.<br />

The aim of this paper was to obta<strong>in</strong> a composite polystyrene-div<strong>in</strong>ylbenzene gels<br />

(Dovex 1)- polyanil<strong>in</strong>e (PANI) and to study the possibility of reduction of hexavalent<br />

chromium present <strong>in</strong> pollute water sources with the composite.<br />

The composite was obta<strong>in</strong>ed by absorption onto a Dowex1 of emerald<strong>in</strong>e base form of<br />

PANI from DMF solution. The prepared composite was used to reduce the Cr (VI) to Cr<br />

(III). In or<strong>de</strong>r to study the reduction of hexavalent chromium to trivalent chromium, the<br />

potassium dichromate solution with a concentration of 0.5, 1.0 and 1.5 mg/l and<br />

adjusted to pH=1.0 with hydrochloric acid is used. The composite is suitable for<br />

treatment of polluted water with 0.5-1.5 mg/l of Cr (VI).<br />

54


Acknowledgments<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

The research lead<strong>in</strong>g to these results has received fund<strong>in</strong>g from the European<br />

Community's Seventh Framework Programme (FP7/2007-2013) un<strong>de</strong>r Grant<br />

Agreement n° 266090 (SOMABAT) and also by the Romanian M<strong>in</strong>istry of Education,<br />

Research and Innovation Agency through PNCDI 2 Program(Romanian co-f<strong>in</strong>anc<strong>in</strong>g<br />

EU-7FP- SOMBAT - Module III - nr. 128 EU/2011, which are gratefully<br />

acknowledged.<br />

References:<br />

[1] Nelson, W.M. Green Solvents for Synthesis. Perspectives and Practice, Oxford University Press, New<br />

York, 2003.<br />

[2] Anastas, P.T; He<strong>in</strong>e, L.G; Williamson, T.C. In Green Chemical Syntheses and Processes, American<br />

Chemical Society, Wash<strong>in</strong>gton, DC, Chapter 1, 2000.<br />

55


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

RESORCINOL-FORMALDEHYDE CARBON XEROGELS AS<br />

LITHIUM-ION BATTERY ANODE MATERIALS: INFLUENCE OF<br />

POROSITY ON CAPACITY AND CYCLING BEHAVIOUR<br />

Alexandre F. Leonard 1 , Marie-Laure Piedboeuf 1 , Volodymyr Khomenko 2 , Ilona<br />

Senyk 2 , Jean-Paul Pirard 1 , Nathalie Job 1<br />

1 Université <strong>de</strong> Liège, Laboratoire <strong>de</strong> Génie Chimique (B6a), B-4000 Liège, Belgium<br />

2 Kiev National University of Technologies and Design, 2, Nemirovich-Danchenko str.,<br />

Kiev 01011 Ukra<strong>in</strong>e.<br />

alexandre.leonard@ulg.ac.be<br />

Keywords: ano<strong>de</strong>, carbon xerogel, electrochemical characterization<br />

Abstract<br />

Carbon xerogels are promis<strong>in</strong>g candidates <strong>in</strong> the <strong>de</strong>velopment of new high performance<br />

C-based ano<strong>de</strong> materials for Li-ion batteries. In<strong>de</strong>ed, their specific capacities wi<strong>de</strong>ly<br />

exceed that of conventional graphitic structures, and they can be<br />

<strong>in</strong>terca<strong>la</strong>ted/<strong>de</strong><strong>in</strong>terca<strong>la</strong>ted <strong>in</strong> a low-cost electrolyte based on propylene carbonate (PC),<br />

which has an excellent conductivity at low temperatures. In addition, such carbonaceous<br />

materials show very small changes of volume dur<strong>in</strong>g the charge/discharge, provid<strong>in</strong>g a<br />

long cycle life of such an ano<strong>de</strong>. Nevertheless, hard carbons also exhibit quite high<br />

irreversible capacity losses due to their <strong>in</strong>tr<strong>in</strong>sic high microporosity and, compared to<br />

graphite, a poor rate performance re<strong>la</strong>ted to slow diffusion of Li <strong>in</strong> the <strong>in</strong>ternal<br />

structure[1]. To reduce these disadvantages, the structural and textural characteristics<br />

need to be carefully controlled.<br />

Porous carbon xerogels can easily be prepared from resorc<strong>in</strong>ol-formal<strong>de</strong>hy<strong>de</strong> aqueous<br />

mixtures, which are polymerized, dried and pyrolysed. The porosity of these xerogels is<br />

ma<strong>in</strong>ly governed by the pH of the precursor solution as well as by the dry<strong>in</strong>g procedure.<br />

Globally, these materials are composed of microporous nodules <strong>de</strong>limit<strong>in</strong>g meso- or<br />

macroporous voids, the size of which is adjusted via the synthesis pH. Too a high<br />

microporosity can <strong>in</strong>duce consi<strong>de</strong>rable irreversible capacity losses and too small<br />

mesopores may h<strong>in</strong><strong>de</strong>r the proper chemical diffusion of lithium ions with<strong>in</strong> a bulk<br />

electro<strong>de</strong> material. The <strong>la</strong>tter is often a rate-limit<strong>in</strong>g step and optimized transport<br />

pathways could be provi<strong>de</strong>d by creat<strong>in</strong>g <strong>la</strong>rge mesopores or even macropores with<strong>in</strong> the<br />

microporous carbon [3].<br />

Here we report on the prelim<strong>in</strong>ary electrochemical characterization of porous carbon<br />

xerogels prepared by vacuum dry<strong>in</strong>g procedure. By adjust<strong>in</strong>g the pH of the precursor<br />

solution, the materials obta<strong>in</strong>ed <strong>de</strong>velop low to high values of specific surface areas and<br />

56


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

exhibit homogeneous pore sizes that range from several microns to several nanometers.<br />

The electrochemical performance of these materials as electro<strong>de</strong> compounds was tested<br />

by galvanostatic charge-discharge of 16-mm disc electro<strong>de</strong>s assembled <strong>in</strong> CR2016 co<strong>in</strong><br />

cells or of 13-mm disc electro<strong>de</strong>s <strong>in</strong> home-ma<strong>de</strong> Swagelok-type cells.<br />

The first results show that all the samples show quite a high irreversible capacity dur<strong>in</strong>g<br />

the first cycle; this irreversible capacity is proportional to the specific surface area. Its<br />

value nevertheless rema<strong>in</strong>s quite low for the low-surface area macroporous sample. The<br />

<strong>la</strong>tter also shows the best reversible capacity after the second cycle, with values<br />

approach<strong>in</strong>g that of commonly used graphite. For example, when cycled at a rate of<br />

C/20 for 10 cycles, this sample showed a capacity of 320 mAh/g; the value was kept at<br />

200 mAh/g when <strong>in</strong>creas<strong>in</strong>g the rate up to C/5. The long-term cycl<strong>in</strong>g performance was<br />

<strong>in</strong>vestigated by cycl<strong>in</strong>g the ano<strong>de</strong>s at C/20 and C/5. Aga<strong>in</strong>, the macroporous sample<br />

behaves best, with superior capacity retention and <strong>in</strong>variable discharge capacity of ~175<br />

mAh/g after more than 100 cycles. The electrochemical properties of carbon xerogels<br />

was evaluated <strong>in</strong> the conditions which are used typically for graphite (cycles <strong>in</strong> the<br />

potentials range from 0.003 to 1.5 V vs. Li + /Li). A higher reversible capacity of 400<br />

mAh/g could be obta<strong>in</strong>ed for the macroporous sample us<strong>in</strong>g a discharge with p<strong>la</strong>t<strong>in</strong>g of<br />

Li as <strong>de</strong>scribed <strong>in</strong> [4], but this method could not be accepted <strong>in</strong> the case of Lithium-ion<br />

batteries.<br />

These first results show that carbon xerogels are very promis<strong>in</strong>g candidates as ano<strong>de</strong><br />

materials for Li batteries, provid<strong>in</strong>g the textural characteristics are carefully controlled. The<br />

ongo<strong>in</strong>g work is <strong>de</strong>al<strong>in</strong>g with the establishment of possible re<strong>la</strong>tionships between textural<br />

features and electrochemical performance <strong>in</strong> or<strong>de</strong>r to shed light on the requirements that<br />

will dictate the best synthesis procedures.<br />

References:<br />

[1] T. Tran, B. Yebka, X. Song, G. Nazri, K. K<strong>in</strong>oshita and D. Curtis, J. Power Sources, 85, 269, 2000.<br />

[2] N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Bégu<strong>in</strong> and J.-P. Pirard, Carbon<br />

43, 2481, 2005.<br />

[3] F. Cheng, Z. Tao, J. Liang, and J. Chen, Chem. Mater., 20, 667, 2008.<br />

[4] W. X<strong>in</strong>g, J. S. Xue, J.R. Dahn, J. Electrochem. Soc, 143, 3046, 1996.<br />

57


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

LIST of PARTICIPANTS<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

European Commision PO: Dr. Erno Van<strong>de</strong>weert<br />

Project Technical Assistant: Dr. Flor<strong>in</strong> Babarada<br />

Invited EXPERTS:<br />

Erik Verhaeven (Invited IUG Expert-CTO 4ESYS)<br />

Fabio Rosciano (Invited IUG-EXPERT- Toyota)<br />

György Keglevich (Invited Expert, Professor, Department of Organic<br />

Chemistry and Technology, Budapest University of Technology and<br />

Economics, Budapest (Hungary)<br />

Ewald Wachmann (Invited IUG Expert- Senior Manager Process R&D,<br />

Austriamicrosystems AG, Coord<strong>in</strong>ator „ESTRELIA“, www.estrelia.eu)<br />

Viorel Stanciu (Invited Expert -ICPE SA- Bucuresti, Romania)<br />

SPONSOR:<br />

S.C. COROZIN S.R.L.<br />

58


Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

Participants - Members of SOMABAT-FP7 Project<br />

COMPANY<br />

ITE<br />

Université <strong>de</strong> Liege<br />

Consejo Superior <strong>de</strong> Investigaciones<br />

Científicas<br />

Das Virtuelle Fahrzeug<br />

Forschungsgesellschaft MBH (VIF)<br />

University of Kiev<br />

Institute of Chemistry Timisoara of<br />

Romanian Aca<strong>de</strong>my<br />

Cleancarb<br />

Recupyl<br />

Accurec<br />

Litthium Ba<strong>la</strong>nce<br />

Cegasa<br />

Umicore<br />

Atos Orig<strong>in</strong><br />

NAME/SURNAME<br />

Esther Mocholi<br />

Mayte Gil -Agusti<br />

Leire Zubizarreta<br />

Alexandre Leonard<br />

Nathalie Job<br />

Marie-Laure Piedboeuf<br />

Raphaëlle Melon<br />

Pedro Gómez Romero<br />

Omar Ayaad<br />

Mart<strong>in</strong> Cifra<strong>in</strong><br />

Franz Pichler<br />

Viaches<strong>la</strong>v Barsukov<br />

Volodymir Khomenko<br />

Eugenia Fagadar-Cosma<br />

Georghe Ilia<br />

Nicoleta Plesu<br />

Lav<strong>in</strong>ia Macarie<br />

Smaranda Iliescu<br />

Adriana Popa<br />

Gheorghe Fagadar-Cosma<br />

Peter Dooley<br />

Gal<strong>in</strong>a Pouzankova<br />

Farouk Tedjar<br />

Isabelle Desnuee<br />

Re<strong>in</strong>er Weyhe<br />

Karl Vest<strong>in</strong><br />

Iratxe <strong>de</strong> Meatza<br />

David Merch<strong>in</strong><br />

Silvia Castellvi<br />

59


Notes<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

60


Notes<br />

Insights <strong>in</strong>to Novel Solid Materials, their Recyc<strong>la</strong>bility and Integration<br />

<strong>in</strong>to Li Polymer Batteries for EVs. Future research directions <strong>in</strong> this field.<br />

S O M A B A T - Advanced workshop,<br />

Timisoara, July 4-5, 2012<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!