01.06.2015 Views

Lecture 11: Riemann Sums and Definite Integrals

Lecture 11: Riemann Sums and Definite Integrals

Lecture 11: Riemann Sums and Definite Integrals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Lecture</strong> <strong>11</strong>: <strong>Riemann</strong> <strong>Sums</strong> <strong>and</strong> <strong>Definite</strong> <strong>Integrals</strong><br />

Definition 1 (<strong>Riemann</strong> <strong>Sums</strong>)<br />

Let f be defined on [a,b] <strong>and</strong> let ∆ be a partition of [a,b] given by<br />

a = x 0 < x 1 < x 2 < ... < x n−1 < x n = b<br />

n∑<br />

where ∆x i = x i − x i−1 <strong>and</strong> c i ∈ [x i−1 ,x i ] then f(c i )∆x i is called the <strong>Riemann</strong> sum of<br />

f for the partition ∆.<br />

Note that: If every subinterval is of equal width, the partition is regular <strong>and</strong> the norm<br />

is defined by ‖∆‖ = ∆x = b − a<br />

n .<br />

Definition 2 (<strong>Definite</strong> <strong>Integrals</strong>)<br />

n∑<br />

If f be defined on [a,b] <strong>and</strong> the limit lim f(c i )∆x i exist, then f is integrable on<br />

‖∆‖→0<br />

i=1<br />

[a,b] <strong>and</strong> the limit is denoted by<br />

n∑<br />

∫ b<br />

lim f(c i )∆x i = f(x)dx.<br />

‖∆‖→0<br />

i=1<br />

a<br />

The limit is called the definite integral of f from a to b.<br />

Theorem 1 If a function f is continuous on [a,b] then f is integrable [a,b].<br />

Example 1 Evaluate the definite integral<br />

∫ 1<br />

−2<br />

i=1<br />

2x dx.<br />

Sol: Let f(x) = 2x <strong>and</strong> ∆x = b − a<br />

n<br />

= 1 − (−2)<br />

n<br />

∫ 1<br />

n∑<br />

2x dx = lim f(c i )∆x i = lim<br />

−2<br />

‖∆‖→0<br />

i=1<br />

n∑<br />

6 ( 3i<br />

= n→∞<br />

lim − 2 +<br />

n<br />

i=1<br />

n<br />

( 9 )<br />

= n→∞<br />

lim − 12 + 9 + = −3.<br />

n<br />

Note that: The summation formulas:<br />

n∑<br />

n∑ n(n + 1)<br />

n∑<br />

c = cn i = i 2 =<br />

2<br />

i=1<br />

i=1<br />

) 6 = n→∞ lim<br />

n<br />

i=1<br />

= 3 n . Choosing c i = a+i∆x = −2+ 3i<br />

n .<br />

n ∑<br />

n→∞<br />

i=1<br />

(<br />

− 2n +<br />

3<br />

n<br />

n(n + 1)(2n + 1)<br />

6<br />

2 ( − 2 + 3i ) 3 ×<br />

n n<br />

n(n + 1) )<br />

2<br />

n∑<br />

i=1<br />

i 3 = [ n(n + 1) ] 2<br />

2<br />

Exercise:<br />

Evaluate the definite integral by the <strong>Riemann</strong> sums:<br />

19<br />

∫ 1<br />

0<br />

x 2 dx <strong>and</strong><br />

∫ 1<br />

−1<br />

x 3 dx.


Theorem 2 If f is integrable [a,b] <strong>and</strong> c ∈ [a,b], then<br />

†<br />

∫ a<br />

a<br />

f(x)dx = 0 †<br />

∫ b<br />

a<br />

∫ a ∫ b ∫ c ∫ b<br />

f(x)dx = − f(x)dx † f(x)dx = f(x)dx+ f(x)dx<br />

b<br />

a<br />

a<br />

c<br />

Theorem 3 If f <strong>and</strong> g are integrable [a,b] <strong>and</strong> k is a constant then the function of kf<br />

<strong>and</strong> f ± g are integrable on [a,b]<br />

†<br />

∫ b<br />

a<br />

∫ b<br />

kf(x)dx = k f(x)dx ‡<br />

a<br />

∫ b<br />

a<br />

[ ] ∫ b<br />

f(x) ± g(x) dx = f(x)dx ±<br />

Theorem 4 † If f is integrable <strong>and</strong> f(x) ≥ 0 on [a,b] then<br />

‡ If f <strong>and</strong> g are integrable <strong>and</strong> f(x) ≤ g(x) on [a,b] then<br />

a<br />

∫ b<br />

a<br />

∫ b<br />

a<br />

∫ b<br />

a<br />

f(x)dx ≥ 0.<br />

f(x)dx ≤<br />

g(x)dx<br />

Theorem 5 (Fundamental Theorem of Calculus)<br />

† If f is continuous on [a,b] <strong>and</strong> F(x) is an antiderivative of f on [a,b] then<br />

∫ b<br />

a<br />

f(x)dx = F(b) − F(a).<br />

‡ If f is continuous on [a,b] then for every x ∈ [a,b],<br />

Example 2 Evaluate the definite integral<br />

Example 3 Evaluate d<br />

dx<br />

∫ x<br />

0<br />

√<br />

t2 + 1 dt.<br />

∫ 2<br />

1<br />

(x 2 − 3)dx <strong>and</strong><br />

Theorem 6 (Mean Value Theorem for <strong>Integrals</strong>)<br />

If f is continuous on [a,b] then there exists c ∈ [a,b] such that<br />

Theorem 7 (Average Value of Function)<br />

If f is integrable on [a,b] then the average value of f on [a,b] is<br />

Exercise:<br />

1. Evaluate:<br />

∫ 4<br />

1<br />

3 √ x dx,<br />

2. Evaluate the derivative:<br />

∫ π/4<br />

0<br />

∫ x<br />

−1<br />

sec 2 x dx,<br />

√<br />

t4 + 1 dt,<br />

∫ 4<br />

u − 2<br />

√ u<br />

du,<br />

1<br />

∫ x+2<br />

3. Find the average value of f(x) = 3x 2 − 2x on [1, 4].<br />

20<br />

x<br />

∫ b<br />

∫<br />

d x<br />

f(t)dt = f(x).<br />

dx a<br />

∫ 3<br />

0<br />

(4t + 1) dt,<br />

∫ 2<br />

0<br />

∫ b<br />

a<br />

|2x − 1| dx.<br />

a<br />

g(x)dx.<br />

f(x)dx = f(c)(b − a).<br />

∫<br />

1 b<br />

f(x)dx.<br />

b − a a<br />

|x 2 −4| dx,<br />

∫ x 3<br />

0<br />

∫ 1<br />

0<br />

sin t 2 dt.<br />

(2t−1) 2 dt.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!