01.06.2015 Views

Quadratic Forms and Closed Geodesics

Quadratic Forms and Closed Geodesics

Quadratic Forms and Closed Geodesics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

Outline<br />

<strong>Quadratic</strong> <strong>Forms</strong> <strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Yiannis Petridis 1<br />

1 University College London<br />

January 8, 2010


Outline<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic surfaces<br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

<strong>Closed</strong> <strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

◮ Algorithm for solving<br />

x 2 − 2y 2 = ±1<br />

(Pythagoreans)<br />

◮ Start with<br />

◮ We get<br />

x 1 = 1, y 1 = 1<br />

(x 2 , y 2 ) = (3, 2)<br />

(x 3 , y 3 ) = (7, 5)<br />

(x 4 , y 4 ) = (17, 12)<br />

◮ Recurrences<br />

x n+1 = x n + 2y n<br />

y n+1 = x n + y n<br />

◮ Fundamental solution:<br />

1 + √ 2<br />

x n + √ 2y n = (1 + √ 2) n<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Indefinite <strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Q(x, y) = ax 2 + bxy + cy 2 , d = b 2 − 4ac > 0<br />

( ) t ( ) ( )<br />

x x a b/2<br />

◮ Q(x, y) = M M =<br />

y y<br />

b/2 c<br />

◮ Which integers are represented by Q, i.e.<br />

Q(x, y) = N,<br />

x, y, N ∈ N<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Equivalence of <strong>Quadratic</strong> <strong>Forms</strong><br />

Q ∼ Q ′ ⇒ they represent the same integers.<br />

( ) 0 −1<br />

◮ x 2 − 2y 2 ∼ −2x 2 + y 2 ◮ S =<br />

1 0<br />

◮ x 2 − 2y 2 ∼ x 2 + 2xy − y 2 ( ) 1 1<br />

T =<br />

0 1<br />

◮ (x + y) 2 − 2y 2 = x 2 + 2xy − y 2<br />

Q(x + y, y) = Q ′ (x, y) <strong>and</strong> Q ′ (x − y, y) = Q(x, y)


Class Numbers<br />

h(d) = number of inequivalent forms of discriminant d.<br />

h(d) d=<br />

1 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53<br />

2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165<br />

3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892<br />

4 145, 328, 445, 505, 520, 680, 689, 777, 780, 793<br />

5 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, ...<br />

◮ D = {d|d > 0, d ≡ 0, 1 (mod 4), d ≠ □}<br />

◮ x 2 − dy 2 = 4, fundamental solution (t, u)<br />

ɛ d = t + u√ d<br />

2<br />

◮ Gauss, Siegel (1944)<br />

∑<br />

h(d) log ɛ d = π2 x 3/2<br />

+ O(x log x).<br />

18ζ(3)<br />

d∈D,d≤x<br />

ζ(s) =<br />

∞∑<br />

n=1<br />

1<br />

, R(s) > 1.<br />

ns <strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Class Numbers<br />

h(d) = number of inequivalent forms of discriminant d.<br />

h(d) d=<br />

1 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53<br />

2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165<br />

3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892<br />

4 145, 328, 445, 505, 520, 680, 689, 777, 780, 793<br />

5 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, ...<br />

◮ D = {d|d > 0, d ≡ 0, 1 (mod 4), d ≠ □}<br />

◮ x 2 − dy 2 = 4, fundamental solution (t, u)<br />

ɛ d = t + u√ d<br />

2<br />

◮ Gauss, Siegel (1944)<br />

∑<br />

h(d) log ɛ d = π2 x 3/2<br />

+ O(x log x).<br />

18ζ(3)<br />

d∈D,d≤x<br />

ζ(s) =<br />

∞∑<br />

n=1<br />

1<br />

, R(s) > 1.<br />

ns <strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Class Numbers<br />

h(d) = number of inequivalent forms of discriminant d.<br />

h(d) d=<br />

1 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 53<br />

2 40, 60, 65, 85, 104, 105, 120, 136, 140, 156, 165<br />

3 229, 257, 316, 321, 469, 473, 568, 733, 761, 892<br />

4 145, 328, 445, 505, 520, 680, 689, 777, 780, 793<br />

5 401, 817, 1093, 1393, 1429, 1641, 1756, 1897, ...<br />

◮ D = {d|d > 0, d ≡ 0, 1 (mod 4), d ≠ □}<br />

◮ x 2 − dy 2 = 4, fundamental solution (t, u)<br />

ɛ d = t + u√ d<br />

2<br />

◮ Gauss, Siegel (1944)<br />

∑<br />

h(d) log ɛ d = π2 x 3/2<br />

+ O(x log x).<br />

18ζ(3)<br />

d∈D,d≤x<br />

ζ(s) =<br />

∞∑<br />

n=1<br />

1<br />

, R(s) > 1.<br />

ns <strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


From <strong>Quadratic</strong> <strong>Forms</strong> to Hyperbolic<br />

Geometry<br />

Q(x, y) = ax 2 + bxy + cy 2<br />

az 2 + bz + c = 0 ⇔ z 1 = −b+√ d<br />

2a<br />

, z 2 = −b−√ d<br />

2a<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

*<br />

(!b!d^(1/2))/2a<br />

x<br />

(!b+d^(1/2))/2a


From <strong>Quadratic</strong> <strong>Forms</strong> to Hyperbolic<br />

Geometry<br />

Q(x, y) = ax 2 + bxy + cy 2<br />

az 2 + bz + c = 0 ⇔ z 1 = −b+√ d<br />

2a<br />

, z 2 = −b−√ d<br />

2a<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

(!b!d^(1/2))/2a<br />

x<br />

(!b+d^(1/2))/2a


Linear Fractional Transformations <strong>and</strong><br />

SL 2 (R)<br />

T (z) = az + b , ad − bc ≠ 0<br />

cz + d<br />

maps ( circles)<br />

to circles<br />

a b<br />

γ =<br />

→ T (z)<br />

c d<br />

{ ( a b<br />

SL 2 (R) = γ =<br />

c d<br />

acts on<br />

Upper-half space<br />

)<br />

}<br />

, ad − bc = 1<br />

H = {z = x + iy, y > 0} ds 2 = dx 2 + dy 2<br />

z(t) = x(t) + iy(t), t ∈ [a, b], L = ∫ b<br />

a<br />

◮ z → z + 1<br />

y<br />

√ 2<br />

x ′ (t) 2 +y ′ (t) 2<br />

y(t)<br />

dt<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

◮ z → − 1 z<br />

Γ = SL 2 (Z) = {γ ∈ SL 2 (R), a, b, c, d ∈ Z}


The Hyperbolic Disc<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

◮ Model of hyperbolic<br />

geometry<br />

H = {z = x + iy, |z| < 1}<br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

◮ Hyperbolic metric<br />

ds 2 =<br />

dx 2 + dy 2<br />

(1 − (x 2 + y 2 )) 2<br />

d(0, z) = ln 1 + |z|<br />

1 − |z| ,


<strong>Geodesics</strong> in Hyperbolic Disc<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

◮ Semicircles perpendicular to<br />

boundary<br />

◮ Diameters


<strong>Geodesics</strong> in the Upper Half Plane<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

(!b!d^(1/2))/2a<br />

x<br />

(!b+d^(1/2))/2a


Fundamental Domains<br />

z ∼ w ⇔ w = T (z), T ∈ Γ<br />

H/Γ the modular surface<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Arithmetic subgroups of SL 2 (Z)<br />

Example<br />

Fundamental Domain for Γ 0 (6)<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Hecke subgroups Γ 0 (N)<br />

az + b<br />

cz + d ∈ SL 2(Z), N|c


¡<br />

Tesselations<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

T 1 F<br />

F<br />

TF<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

T 1 JF<br />

JF<br />

T JF<br />

T 2 UTF<br />

T 1 U 2 F<br />

T 1 UTF<br />

U 2 F<br />

UTF<br />

TU 2 F<br />

1<br />

0 1<br />

1<br />

Figure: Translates of the<br />

fundamental domain of<br />

SL 2 (Z)<br />

Figure: Triangles in the<br />

disc


Equivalence of <strong>Quadratic</strong> forms <strong>and</strong><br />

SL 2 (R)<br />

Q ′ ∼ Q ⇔ M ′ = γ t Mγ, γ ∈ Γ.<br />

Q → g =<br />

( t−bu<br />

)<br />

2<br />

−cu<br />

∈ Γ<br />

au<br />

t+bu<br />

2<br />

where t 2 − du 2 = 4 <strong>and</strong> (t, u) is the fundamental<br />

(smallest solution).<br />

Remarks: 1. g has eigenvalue ɛ d = t + u√ d<br />

2<br />

2. Most g ∈ SL 2 (R) can be diagonalised<br />

g ∼<br />

( N(g)<br />

1/2<br />

0<br />

0 N(g) −1/2 )<br />

.<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Pell’s Equation <strong>and</strong> Lengths of <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

N(g)<br />

1<br />

∫ N(g)<br />

1<br />

1<br />

y dy = ln N(g) = ln(ɛ2 d )<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

x<br />

1<br />

N(g)<br />

Theorem<br />

The lengths of the closed geodesics for the hyperbolic<br />

surface H/SL 2 (Z) are 2 log ɛ d with multiplicity h(d),<br />

d ∈ D.


Distribution <strong>Closed</strong> geodesics of H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Closed</strong> geodesics γ.<br />

Prime Geodesic Theorem Prime Number Theorem<br />

◮ π(x) = {γ, length (γ) ≤ ln x}<br />

π(x) ∼<br />

x<br />

◮ π(x) = {p prime, p ≤ x}<br />

ln x , x → ∞ π(x) ∼<br />

x<br />

ln x , x → ∞<br />

◮ Class number distribution (Sarnak, 1982)<br />

∑<br />

d∈D,ɛ d ≤x<br />

h(d) ∼ x 2<br />

2 ln x<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Distribution <strong>Closed</strong> geodesics of H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Closed</strong> geodesics γ.<br />

Prime Geodesic Theorem Prime Number Theorem<br />

◮ π(x) = {γ, length (γ) ≤ ln x}<br />

π(x) ∼<br />

x<br />

◮ π(x) = {p prime, p ≤ x}<br />

ln x , x → ∞ π(x) ∼<br />

x<br />

ln x , x → ∞<br />

◮ Class number distribution (Sarnak, 1982)<br />

∑<br />

d∈D,ɛ d ≤x<br />

h(d) ∼ x 2<br />

2 ln x<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


Distribution <strong>Closed</strong> geodesics of H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Closed</strong> geodesics γ.<br />

Prime Geodesic Theorem Prime Number Theorem<br />

◮ π(x) = {γ, length (γ) ≤ ln x}<br />

π(x) ∼<br />

x<br />

◮ π(x) = {p prime, p ≤ x}<br />

ln x , x → ∞ π(x) ∼<br />

x<br />

ln x , x → ∞<br />

◮ Class number distribution (Sarnak, 1982)<br />

∑<br />

d∈D,ɛ d ≤x<br />

h(d) ∼ x 2<br />

2 ln x<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory


The Laplace Operator<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

( )<br />

∂<br />

∆ = −y 2 2<br />

∂x 2 + ∂2<br />

∂y 2<br />

∆f = 0 ⇔ f is harmonic<br />

Eigenvalue problem: Solve<br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

∆f = λf<br />

Infinite Matrix, no determinant to compute eigenvalues.<br />

I require f (γz) = f (z), γ ∈ Γ (automorphic form)


Contour plots of eigenfunctions of H/Γ 0 (7)<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Figure: λ = 37.08033 λ = 692.7292


Contour plots of eigenfunctions of H/Γ 0 (3)<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Figure: λ = 26.3467 λ = 60.4397


The Riemann Hypothesis<br />

◮ Think of<br />

∞∑<br />

n=0<br />

z n = 1<br />

1 − z .<br />

Series: |z| < 1, 1/(1 − z), z ≠ 1.<br />

∞∑ 1<br />

◮ ζ(s) = ,<br />

ns R(s) > 1.<br />

n=1<br />

Extend to 1/2 ≤ R(s), then to C using functional<br />

equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

−1+s Γ((1 − s)/2)<br />

ζ(s) = π ζ(1 − s).<br />

Γ(s/2)<br />

Zeros: ρ, 1 − ρ symmetric around R(s) = 1/2.<br />

Riemann Hypothesis<br />

R(ρ) = 1/2 ALWAYS


The Riemann Hypothesis<br />

◮ Think of<br />

∞∑<br />

n=0<br />

z n = 1<br />

1 − z .<br />

Series: |z| < 1, 1/(1 − z), z ≠ 1.<br />

∞∑ 1<br />

◮ ζ(s) = ,<br />

ns R(s) > 1.<br />

n=1<br />

Extend to 1/2 ≤ R(s), then to C using functional<br />

equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

−1+s Γ((1 − s)/2)<br />

ζ(s) = π ζ(1 − s).<br />

Γ(s/2)<br />

Zeros: ρ, 1 − ρ symmetric around R(s) = 1/2.<br />

Riemann Hypothesis<br />

R(ρ) = 1/2 ALWAYS


The Riemann Hypothesis<br />

◮ Think of<br />

∞∑<br />

n=0<br />

z n = 1<br />

1 − z .<br />

Series: |z| < 1, 1/(1 − z), z ≠ 1.<br />

∞∑ 1<br />

◮ ζ(s) = ,<br />

ns R(s) > 1.<br />

n=1<br />

Extend to 1/2 ≤ R(s), then to C using functional<br />

equation<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

−1+s Γ((1 − s)/2)<br />

ζ(s) = π ζ(1 − s).<br />

Γ(s/2)<br />

Zeros: ρ, 1 − ρ symmetric around R(s) = 1/2.<br />

Riemann Hypothesis<br />

R(ρ) = 1/2 ALWAYS


Relations of RH with spectral theory<br />

Scattering of waves on H/Γ<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

φ(s) = √ π<br />

Γ(s − 1/2)ζ(2s − 1)<br />

Γ(s)ζ(2s)<br />

Poles of φ(s) at ρ/2.<br />

RH⇔Poles of φ(s), have real part 1/4.


Duality between periods <strong>and</strong> eigenvalues<br />

Physical background Hyperbolic manifolds Eigenfunctions Periodic orbits Free groups<br />

Duality between periods <strong>and</strong> eigenvalues<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Periods<br />

Eigenvalues


Duality between periods <strong>and</strong> eigenvalues<br />

Physical background Hyperbolic manifolds Eigenfunctions Periodic orbits Free groups<br />

Duality between periods <strong>and</strong> eigenvalues<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Periods<br />

Trace Formulae<br />

Eigenvalues


Duality between periods <strong>and</strong> eigenvalues<br />

Physical background Hyperbolic manifolds Eigenfunctions Periodic orbits Free groups<br />

Duality between periods <strong>and</strong> eigenvalues<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory<br />

Periods<br />

Trace Formulae<br />

Eigenvalues<br />

Lengths of closed<br />

geodesics<br />

Selberg Trace formula<br />

Laplace eigenvalues


Simple trace formula<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

n∑<br />

Tr(A) = a ii =<br />

n∑<br />

i=1 j=1<br />

What is <strong>and</strong> how do I compute the trace of an operator?<br />

λ j<br />

Spectral Theory


Credits for the pictures<br />

1. V. Golovshanski, N. Motrov: preprint, Inst. Appl.<br />

Math. Khabarovsk (1982)<br />

2. D. Hejhal, B. Rackner: On the topography of Maass<br />

waveforms for PSL(2, Z ). Experiment. Math. 1<br />

(1992), no. 4, 275–305.<br />

3. A. Krieg: http://www.matha.rwthaachen.de/forschung/fundamentalbereich.html<br />

4. http://mathworld.wolfram.com/<br />

5. F. Stromberg:<br />

http://www.math.uu.se/ fredrik/research/gallery/<br />

6. H. Verrill: http://www.math.lsu.edu/ verrill/<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

<strong>and</strong> <strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Y. Petridis<br />

<strong>Quadratic</strong> <strong>Forms</strong><br />

Hyperbolic<br />

surfaces<br />

<strong>Closed</strong><br />

<strong>Geodesics</strong><br />

Spectral Theory

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!