01.06.2015 Views

Volume Targeted Ventilation in Preterm Infants

Volume Targeted Ventilation in Preterm Infants

Volume Targeted Ventilation in Preterm Infants

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Volume</strong> <strong>Targeted</strong> <strong>Ventilation</strong><br />

<strong>in</strong> <strong>Preterm</strong> <strong>Infants</strong><br />

Nelson Claure MSc, PhD<br />

Director, Neonatal Pulmonary Research Laboratory<br />

Division of Neonatology, Department of Pediatrics<br />

University of Miami School of Medic<strong>in</strong>e


Susceptibility to volume <strong>in</strong>duced<br />

lung <strong>in</strong>jury <strong>in</strong> the preterm <strong>in</strong>fant<br />

from Jobe and Ikegami, Ear Hum Dev 1998


Prevention of ventilator <strong>in</strong>duced<br />

lung <strong>in</strong>jury<br />

• Avoidance of volutrauma<br />

– Avoid excessive V T<br />

Limit Pressure (PIP – PEEP)<br />

– Avoid excessive lung volume<br />

High PEEP, gas trapp<strong>in</strong>g<br />

• Ma<strong>in</strong>tenance of lung volume<br />

– Apply sufficient PEEP<br />

– Ma<strong>in</strong>ta<strong>in</strong> sufficient V T<br />

– Avoid collapse – recruitment cycles<br />

• Can volume targeted ventilation help?


Methods and modalities of<br />

volume targeted t ventilation<br />

• <strong>Volume</strong> measurement<br />

• PRVC: Pressure regulated volume control<br />

• VC: <strong>Volume</strong> Controlled<br />

• VG: <strong>Volume</strong> guarantee


<strong>Volume</strong> measurement<br />

Expiratory<br />

port<br />

Ventilator<br />

Ventilator volume<br />

(output/returned)<br />

Inspiratory<br />

port<br />

Compressed<br />

volume <strong>in</strong><br />

circuit<br />

Tidal volume by<br />

proximal flow sensor<br />

measured dur<strong>in</strong>g the<br />

<strong>in</strong>spiratory or expiratory<br />

phase<br />

Gas leaks


<strong>Volume</strong> Controlled<br />

• Inspiratory phase cont<strong>in</strong>ues until set volume is<br />

delivered<br />

– Peak pressure and Ti cont<strong>in</strong>ue to <strong>in</strong>crease<br />

– Set PIP and Ti become limits<br />

• <strong>Volume</strong> delivered by ventilator (circuit volume+<br />

tidal volume) dur<strong>in</strong>g <strong>in</strong>spiratory i phase<br />

• Available <strong>in</strong> IMV, SIMV, and A/C modes


P AW<br />

0<br />

25 cmH 2 O<br />

<strong>Volume</strong> controlled<br />

5 lpm<br />

Flow<br />

0<br />

12.5 ml<br />

V T<br />

0


<strong>Volume</strong> controlled<br />

Tidal volume 5 ml<br />

Set ventilator volume 12 ml<br />

Set ventilator volume 16 ml


Pressure Regulated <strong>Volume</strong> Controlled<br />

• Time-cycled, pressure limited<br />

• Peak pressure adjusted breath to breath<br />

• Set PIP becomes peak pressure limit<br />

• Inspiratory V T compared to target V T<br />

• V T measured at ventilator can be compensated<br />

for gas compressed <strong>in</strong> circuit<br />

• Available only <strong>in</strong> A/C mode


PRVC<br />

5 lpm<br />

Flow<br />

0<br />

V T<br />

5 ml/Kg<br />

V T 5 ml/Kg<br />

C L<br />

V T 5 ml/Kg<br />

25 cmH 2 O<br />

P AW<br />

0<br />

ΔP AW 7 cm H 2 O<br />

ΔP AW 20 cm H 2 O<br />

1 sec


5 lpm<br />

Flow<br />

0<br />

Gas leak dur<strong>in</strong>g <strong>in</strong>spiratory phase<br />

V T measured<br />

dur<strong>in</strong>g <strong>in</strong>spiration<br />

5 ml/Kg<br />

Exhaled V T<br />

V T<br />

25 cmH 2 O<br />

P AW<br />

0<br />

4s


<strong>Volume</strong> Guarantee<br />

• Time-cycled, pressure limited<br />

• Peak pressure adjusted breath to breath<br />

• Set PIP limits the peak pressure<br />

• Exhaled V T compared to target V T<br />

• Available <strong>in</strong> PSV, A/C, IMV and SIMV


VG<br />

Flow<br />

5 lpm<br />

0<br />

V T<br />

5 ml/Kg<br />

C L<br />

25 cmH 2 O<br />

P AW<br />

0<br />

1 sec


<strong>Volume</strong> targeted ventilation and<br />

spontaneous breath<strong>in</strong>g effort<br />

25lpm 2.5 Flow<br />

0<br />

V T<br />

5 ml/Kg<br />

0<br />

25 cmH 2 O<br />

P AW<br />

0<br />

60 sec


Effects of volume targeted ventilation<br />

• Wean<strong>in</strong>g of peak pressure<br />

• Stability of tidal volume and gas<br />

exchange<br />

• Inflammation<br />

• Duration of ventilation<br />

• BPD


Automatic wean<strong>in</strong>g<br />

Herrera et al. Pediatrics 2002<br />

*: p


Automatic wean<strong>in</strong>g<br />

Coeff. of var. V T (%): 27±7 31±7 41±7<br />

Herrera et al. Pediatrics 2002


Is V T 3 ml/Kg too low?<br />

Flow<br />

25lpm 2.5 0<br />

V T<br />

5 ml/Kg<br />

0<br />

25 cmH 2 O<br />

P AW<br />

0<br />

60 sec


Stability of Tidal <strong>Volume</strong> and<br />

Incidence of Hypocarbia<br />

Keszler et al. Ped Pulmonol 2004<br />

V T < 4 ml/Kg<br />

V T > 6 ml/Kg<br />

(% of breaths)<br />

A/C<br />

35%<br />

25%<br />

A/C + VG<br />

(target V T 5.0 ml)<br />

21%<br />

15%<br />

PaCO 2 < 35 mmHg<br />

36%<br />

20%<br />

PaCO 2 > 45 mmHg 17% 19%<br />

(% of samples)


PSV vs. PSV+VG @5.0 <strong>in</strong> RDS<br />

Inflammatory mediators on d 1-3-7 (n=53)<br />

IL-8<br />

IL-6<br />

Lista et al.<br />

Ped Pulmonol 2004


A/C+VG 5.0 vs. A/C+VG 3.0 <strong>in</strong> RDS<br />

Inflammatory mediators on d 1-3-7 (n=30)<br />

IL-8<br />

TNFα<br />

Lista et al.<br />

Ped Pulmonol 2006


VC vs. TCPL <strong>in</strong> RDS<br />

VC<br />

TCPL<br />

S<strong>in</strong>ha 50 <strong>in</strong>fants<br />

1997 BW ≥1200g<br />

VIP Bird<br />

MV days 5 7 *<br />

BPD 1/25 5/25<br />

S<strong>in</strong>gh 109 <strong>in</strong>fants<br />

2006 BW 600-1500g<br />

VIP Gold<br />

MV days 11 14<br />

BPD 28% 33%


PRVC vs. IMV <strong>in</strong> RDS<br />

Piotrowski et al. Int Care Med 1997<br />

Piotrowski<br />

57 <strong>in</strong>fants<br />

BW 600-1200g<br />

Servo 300<br />

PRVC IMV<br />

(<strong>in</strong> A/C)<br />

MV days 8 8<br />

BPD 6/27 6/31


PRVC vs. IMV<br />

Duration of <strong>Ventilation</strong> <strong>in</strong> BW


PRVC vs. SIMV<br />

D’Angio et al. Arch Pediatr Adolesc Med 2005<br />

PRVC<br />

(<strong>in</strong> A/C)<br />

SIMV<br />

212 <strong>in</strong>fants Age extub. 33d 24d<br />

BW 500-1249g<br />

Servo 300 BPD 35% 29%


Can VTV prevent acute<br />

hypoventilation and hypoxemia?<br />

Flow<br />

P AW<br />

V T


<strong>Volume</strong> <strong>Targeted</strong>-SIMV on Spontaneous<br />

Episodes of Hypoxemia <strong>in</strong> <strong>Preterm</strong> <strong>Infants</strong><br />

Polimeni et al. Biol Neonate 2006<br />

Crossover trial SIMV vs. VT-SIMV<br />

32 <strong>in</strong>fants with frequent episodes of hypoxemia<br />

GA 25 ± 1 wks, Age 38 ± 17 d<br />

Initial phase (n=12)<br />

SIMV vs. VG-SIMV with V T @ 45 4.5 ml/Kg<br />

‣ No effect on hypoxemia episodes<br />

Second phase (n=20)<br />

SIMV vs. VG-SIMV with V T @ 6.0 ml/Kg<br />

T


SIMV vs. VG-SIMV @ 6.0 ml/Kg<br />

SIMV<br />

VG-SIMV<br />

PIP<br />

(cmH 2 O)<br />

18±2 23±3 *<br />

V T mech 4.9±1.0 5.5±0.4 *<br />

(ml/Kg)<br />

V T mech ≤ 3 ml/Kg<br />

(% of breaths)<br />

22±6 14±7 *


SIMV vs. VG-SIMV @ 6.0 ml/Kg<br />

Polimeni et al. Biol Neonate 2006


Comb<strong>in</strong>ed<br />

<strong>Targeted</strong> m<strong>in</strong>ute ventilation<br />

(automatic adjustment of rate)<br />

and<br />

<strong>Volume</strong> targeted ventilation<br />

(automatic adjustment of PIP)


2.5 lpm<br />

Flow<br />

SIMV<br />

•0<br />

25 cmH 2 O<br />

•Paw<br />

•0<br />

2.5 lpm<br />

Flow<br />

•0<br />

25 cmH 2 O<br />

<strong>Targeted</strong> m<strong>in</strong>ute ventilation<br />

5 b/m<strong>in</strong><br />

Paw<br />

•0<br />

•60 s


Experimental Setup<br />

• Apnea <strong>in</strong>duced by propofol bolus<br />

• Reduction <strong>in</strong> lung volume and C RS by cuff around<br />

chest<br />

• PaO 2 and PaCO 2 by <strong>in</strong>dwell<strong>in</strong>g electrode <strong>in</strong> femoral<br />

artery<br />

• Random sequence:<br />

• Conventional SIMV<br />

• <strong>Targeted</strong> V T<br />

• <strong>Targeted</strong> V’ E<br />

• <strong>Targeted</strong> V’ E + V T


<strong>Targeted</strong> V’ E + targeted V T<br />

10 lpm<br />

Flow<br />

0<br />

25 ml/Kg<br />

V T<br />

0<br />

50 cmH 2 O<br />

Extra<br />

thoracic<br />

pressure<br />

dur<strong>in</strong>g apnea with reduced volume and C RS<br />

Induced apnea by propofol bolus<br />

Reduced lung volume and C RS<br />

by extra-thoracic pressure<br />

20 cmH 2 O<br />

Paw<br />

0<br />

60 s Claure et al. Neonatology 2008


Decrease <strong>in</strong> PaO 2 with <strong>in</strong>duced apnea +<br />

reduced lung volume and C RS<br />

0<br />

PaO 2<br />

(m mmHg)<br />

P<br />

-10<br />

-20<br />

- 30<br />

•*#<br />

SIMV<br />

<strong>Targeted</strong> V T<br />

-40<br />

•*<br />

•*<br />

<strong>Targeted</strong> V’ E<br />

-50<br />

<strong>Targeted</strong> V’ E + V T<br />

*: p < 0.05 vs SIMV<br />

#: p < 0.05 vs <strong>Targeted</strong> V T<br />

Claure et al. Neonatology 2008


<strong>Volume</strong> targeted ventilation<br />

<br />

Can achieve wean<strong>in</strong>g of peak pressure<br />

<br />

<br />

Avoids extremes of V T<br />

Prevent hypocapnia<br />

A too low target V T can lead to higher PaCO 2<br />

<br />

Attenuates acute hypoventilation and hypoxemia<br />

<br />

Requires a higher target V T<br />

<br />

<br />

<br />

Shorter duration of ventilation<br />

No effect on BPD<br />

Can VG attenuate <strong>in</strong>flammation?<br />

What is the most effective range of V T ?


Questions and Considerations<br />

• Was VTV <strong>in</strong>troduced too late?<br />

• Can volume target<strong>in</strong>g/limit<strong>in</strong>g be done manually?<br />

• Are there differences between modes of VTV?<br />

– Some other VTV modes are used w/o physiologic or<br />

cl<strong>in</strong>ical data<br />

• Adequately safe, if used appropriately<br />

• Optimal and most effective V T for different<br />

phases of respiratory failure?<br />

• Trials should focus on or stratify smaller <strong>in</strong>fants

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!