01.06.2015 Views

Effects of arbuscular mycorrhizal inoculation on the growth, photosynthetic pigments and soluble sugar of Crocus sativus (saffron) in autoclaved soil

The beneficial soil microorganisms as arbuscular mycorrhizal fungi (AMF) form the mutualistic relationship with plant roots and act as bio fertilizers for saffron (Crocus sativus L.). In the present study, the plant growth, AMF colonization and nutrient uptake of C. sativus evaluated in earthen pots filled with sterile soil. C. sativus seedlings with or without AMF spores of the Glomus species, were cultivated for six months in autoclaved sediment medium. The results of the first year showed a significant increase of the above and below ground growth of saffron plant. The fresh and dry weight content indicated in higher levels of inoculated group that the value of biomass was 4.05 (gr) and 0.42 (gr) than non-inoculated group, respectively. The photosynthetic pigments and soluble sugar content increased in the mycorrhiza infected as compared to the non-inoculated ones with rate of 36.69% and 43.1%, respectively. In addition, the mycorrhizal dependency (MD) of C. sativus to AMF reached a maximum of 38.18% under AMF inoculation treatment, which was significant (p < 0.05).

The beneficial soil microorganisms as arbuscular mycorrhizal fungi (AMF) form the mutualistic relationship with plant roots and act as bio fertilizers for saffron (Crocus sativus L.). In the present study, the plant growth, AMF
colonization and nutrient uptake of C. sativus evaluated in earthen pots filled with sterile soil. C. sativus seedlings with or without AMF spores of the Glomus species, were cultivated for six months in autoclaved
sediment medium. The results of the first year showed a significant increase of the above and below ground growth of saffron plant. The fresh and dry weight content indicated in higher levels of inoculated group that the value of biomass was 4.05 (gr) and 0.42 (gr) than non-inoculated group, respectively. The photosynthetic pigments and soluble sugar content increased in the mycorrhiza infected as compared to the non-inoculated ones with rate of 36.69% and 43.1%, respectively. In addition, the mycorrhizal dependency (MD) of C. sativus to AMF reached a maximum of 38.18% under AMF inoculation treatment, which was significant (p < 0.05).

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RESEARCH PAPER<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <strong>and</strong> Agricultural Research (IJAAR)<br />

OPEN ACCESS<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>growth</strong>,<br />

photosyn<strong>the</strong>tic <strong>pigments</strong> <strong>and</strong> <strong>soluble</strong> <strong>sugar</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Crocus</strong> <strong>sativus</strong><br />

(saffr<strong>on</strong>) <strong>in</strong> <strong>autoclaved</strong> <strong>soil</strong><br />

ISSN: 2223-7054 (Pr<strong>in</strong>t) 2225-3610 (Onl<strong>in</strong>e)<br />

http://www.<strong>in</strong>nspub.net<br />

Vol. 6, No. 4, p. 296-304, 2015<br />

Mohammad Mohebi-Anabat 1 , Hosse<strong>in</strong> Riahi 1* , Sima Zanganeh 2 , Ehsan Sadeghnezhad 3<br />

1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Science, Shahid Beheshti University G, C. Ev<strong>in</strong>,<br />

Tehran, Iran<br />

2<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, Plant Pests & Diseases Research Institute, Shahid Beheshti University G, C.<br />

Ev<strong>in</strong>, Tehran, Iran<br />

3<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Biology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Science, Tarbiat Modares University G, C.<br />

Tehran, Iran<br />

Article published <strong>on</strong> April 29, 2015<br />

Key words: Arbuscular <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> fungi (AMF), <strong>Crocus</strong> <strong>sativus</strong>, Plant <strong>growth</strong>, Symbiosis.<br />

Abstract<br />

The beneficial <strong>soil</strong> microorganisms as <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> fungi (AMF) form <strong>the</strong> mutualistic relati<strong>on</strong>ship with<br />

plant roots <strong>and</strong> act as bio fertilizers for saffr<strong>on</strong> (<strong>Crocus</strong> <strong>sativus</strong> L.). In <strong>the</strong> present study, <strong>the</strong> plant <strong>growth</strong>, AMF<br />

col<strong>on</strong>izati<strong>on</strong> <strong>and</strong> nutrient uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> evaluated <strong>in</strong> ear<strong>the</strong>n pots filled with sterile <strong>soil</strong>. C. <strong>sativus</strong><br />

seedl<strong>in</strong>gs with or without AMF spores <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Glomus species, were cultivated for six m<strong>on</strong>ths <strong>in</strong> <strong>autoclaved</strong><br />

sediment medium. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first year showed a significant <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> above <strong>and</strong> below ground<br />

<strong>growth</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saffr<strong>on</strong> plant. The fresh <strong>and</strong> dry weight c<strong>on</strong>tent <strong>in</strong>dicated <strong>in</strong> higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>oculated group that <strong>the</strong><br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass was 4.05 (gr) <strong>and</strong> 0.42 (gr) than n<strong>on</strong>-<strong>in</strong>oculated group, respectively. The photosyn<strong>the</strong>tic<br />

<strong>pigments</strong> <strong>and</strong> <strong>soluble</strong> <strong>sugar</strong> c<strong>on</strong>tent <strong>in</strong>creased <strong>in</strong> <strong>the</strong> mycorrhiza <strong>in</strong>fected as compared to <strong>the</strong> n<strong>on</strong>-<strong>in</strong>oculated <strong>on</strong>es<br />

with rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 36.69% <strong>and</strong> 43.1%, respectively. In additi<strong>on</strong>, <strong>the</strong> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> dependency (MD) <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> to AMF<br />

reached a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 38.18% under AMF <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> treatment, which was significant (p < 0.05).<br />

* Corresp<strong>on</strong>d<strong>in</strong>g Author: Hosse<strong>in</strong> Riahi H-Riahi@.sbu.ac.ir<br />

Anabat et al.<br />

Page 296


Introducti<strong>on</strong><br />

The mutualistic symbiosis between <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> fungi (AMF) <strong>and</strong> plant roots are <str<strong>on</strong>g>of</str<strong>on</strong>g> great<br />

ecological significance as <strong>the</strong>y can form with most<br />

terrestrial plant species (Smith <strong>and</strong> Read, 2010). Soil<br />

is c<strong>on</strong>sidered to be <strong>the</strong> store house <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients for<br />

organisms <strong>and</strong> plants. The organisms c<strong>on</strong>vert <strong>the</strong><br />

nutrients <strong>in</strong>to those forms that plant can easily<br />

absorb. Symbiotic associati<strong>on</strong>s AMF <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

roots can ultimately <strong>in</strong>fluence health, vigor <strong>and</strong><br />

productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> plant (Wang <strong>and</strong> Qui, 2006).They<br />

can cause improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> macro- <strong>and</strong> micr<strong>on</strong>utrients<br />

status to plants such as N, K, Mg, Cu, Zn<br />

<strong>and</strong> especially P present <strong>in</strong> <strong>soil</strong> <strong>in</strong> <strong>soluble</strong> form, (Clark<br />

<strong>and</strong> Zeto, 2000; Goussous <strong>and</strong> Mohammad, 2009;<br />

Cozzol<strong>in</strong>o et al., 2010). Incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> AM fungal<br />

col<strong>on</strong>izati<strong>on</strong> has been reported <strong>in</strong> corms <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong><br />

(L<strong>on</strong>e, 2014), that it is a sterile triploid (2n = 3x = 24)<br />

(Bright<strong>on</strong>, 1977; Ma<strong>the</strong>w, 1982) <strong>and</strong> is vegetatively<br />

propagated via its corms. Although <strong>the</strong> phenology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> vegetative development is well established<br />

(Botella et al., 2002; Kafi, 2006), literature about<br />

photosyn<strong>the</strong>sis <strong>in</strong> saffr<strong>on</strong> <strong>and</strong> o<strong>the</strong>r <strong>Crocus</strong> is also<br />

lack<strong>in</strong>g. Saffr<strong>on</strong> has low water requirements <strong>and</strong> is<br />

typically cultivated under ra<strong>in</strong>ed c<strong>on</strong>diti<strong>on</strong>s because it<br />

is well adapted to <strong>the</strong> ra<strong>in</strong>fall pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> diverse<br />

Mediterranean areas (Alizadeh, 2006). While ga<strong>in</strong><strong>in</strong>g<br />

<strong>soluble</strong> carbohydrates <strong>and</strong> o<strong>the</strong>r <strong>growth</strong> substances<br />

from <strong>the</strong> host plant such as C. <strong>sativus</strong>, AMF hyphae<br />

can absorb water <strong>and</strong> m<strong>in</strong>eral nutrients from <strong>the</strong> <strong>soil</strong><br />

<strong>and</strong> transport <strong>the</strong>m to <strong>the</strong> root, act<strong>in</strong>g as a liv<strong>in</strong>g<br />

bridge between <strong>soil</strong> <strong>and</strong> plants. The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> purity,<br />

homogeneity, health <strong>and</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong><br />

status <str<strong>on</strong>g>of</str<strong>on</strong>g> saffr<strong>on</strong> corms <strong>in</strong>fluence vegetative<br />

development <strong>and</strong> <strong>the</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> daughter corms <strong>in</strong><br />

rhizosphere regi<strong>on</strong> (European Saffr<strong>on</strong> White Book,<br />

2006). Present study is based <strong>on</strong> a simple premise<br />

whe<strong>the</strong>r or not <strong>the</strong> AM fungi have any c<strong>on</strong>stitutive<br />

associati<strong>on</strong> with saffr<strong>on</strong> corms which <strong>in</strong>volve <strong>in</strong> <strong>the</strong><br />

<strong>growth</strong> <strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> saffr<strong>on</strong> plant. It<br />

<strong>in</strong>vestigates <strong>the</strong> changes <strong>in</strong> leaf photosyn<strong>the</strong>tic<br />

efficiency, plant <strong>growth</strong> <strong>and</strong> <strong>soil</strong> nutriti<strong>on</strong> status <strong>in</strong><br />

saffr<strong>on</strong> dur<strong>in</strong>g vegetative development <strong>and</strong> to know<br />

<strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> mutualistic symbiosis.<br />

Underst<strong>and</strong><strong>in</strong>g <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> symbiosis-related<br />

practices will help better to develop <strong>the</strong> agriculture<br />

<strong>and</strong> natural habitats for this crop.<br />

Material <strong>and</strong> methods<br />

Sample collecti<strong>on</strong><br />

Soil was collected from Khalil Abad natural reserve,<br />

Khorasan Razavi prov<strong>in</strong>ce, North eastern Iran, <strong>in</strong> May<br />

<strong>and</strong> December 2011. The area (33◦11_N, 58◦72_E) is<br />

characterized by a subtropical climate, with an annual<br />

mean temperature <strong>and</strong> Altitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 22.2◦C <strong>and</strong> 1210 m,<br />

respectively. The sampl<strong>in</strong>g site ma<strong>in</strong>ly c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

re<strong>growth</strong> <strong>and</strong> mature <strong>Crocus</strong> <strong>sativus</strong> (saffr<strong>on</strong>)<br />

community. Roots <strong>and</strong> rhizosphere <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

subsurface layer (5–30 cm) were collected from<br />

representative adult <strong>in</strong>dividuals <str<strong>on</strong>g>of</str<strong>on</strong>g> saffr<strong>on</strong> plant. For<br />

<strong>the</strong> corm sample, <strong>on</strong>ly <strong>the</strong> nutritive corms attached to<br />

<strong>the</strong> plant were collected. The <strong>soil</strong> that rema<strong>in</strong>ed<br />

adhered to <strong>the</strong> corm after gentle shak<strong>in</strong>g (i.e. <strong>the</strong><br />

rhizosphere <strong>soil</strong>) was also collected for AMF<br />

identificati<strong>on</strong>.<br />

AMF identificati<strong>on</strong> <strong>and</strong> trap culture<br />

The wet siev<strong>in</strong>g <strong>and</strong> decantati<strong>on</strong> methods<br />

(Gerdemann <strong>and</strong> Nicols<strong>on</strong>, 1963) were used to isolate<br />

spores <str<strong>on</strong>g>of</str<strong>on</strong>g> AMF from corm-associated <strong>soil</strong>. Then <strong>the</strong><br />

AMF spores were identified from sporemorphology by<br />

reference to type descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> species (Schüßler<br />

<strong>and</strong> Walker, 2010). Three AMF species were found to<br />

be dom<strong>in</strong>ant <strong>in</strong> Khalil Abad farms, which were:<br />

Glomus aggregatum (Koske), Glomus mosseae<br />

(Nicol & Gerd) <strong>and</strong> Glomus etunicatum (W.N.Becker<br />

& Gerd.). Those three major types <str<strong>on</strong>g>of</str<strong>on</strong>g> AMF spores<br />

were selected <strong>and</strong> propagated toge<strong>the</strong>r to prepare <strong>the</strong><br />

AMF <strong>in</strong>ocula for <strong>the</strong> pot experiment. Trap culture<br />

experiments were c<strong>on</strong>ducted us<strong>in</strong>g <strong>autoclaved</strong> (120◦C,<br />

0.2 MPa, 20 m<strong>in</strong>) s<strong>and</strong> <strong>and</strong> commercial peat <strong>soil</strong> (pH<br />

= 7.7) (v:v = 1:1) as <strong>the</strong> culture medium <strong>and</strong> Zea mays<br />

as <strong>the</strong> host plant. After <strong>the</strong> successful trapp<strong>in</strong>g<br />

process, <strong>the</strong> mixtures c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g AMF spores,<br />

mycelium, s<strong>and</strong>y <strong>soil</strong> <strong>and</strong> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> corm<br />

fragments were used as <strong>the</strong> <strong>in</strong>ocula. Every 100 g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> prepared <strong>in</strong>ocula c<strong>on</strong>ta<strong>in</strong>ed about 400<br />

propagules, <strong>and</strong> <strong>the</strong> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> those three AMF<br />

species was ma<strong>in</strong>ta<strong>in</strong>ed at 1:2:1 to mimic <strong>the</strong> natural<br />

envir<strong>on</strong>ment.<br />

Anabat et al.<br />

Page 297


Pot experiment<br />

Plant <strong>growth</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

Five pots <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment (n<strong>on</strong>-<strong>in</strong>oculated group<br />

(NG) <strong>and</strong> <strong>in</strong>oculated group (IG)), with a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

15 cm <strong>and</strong> a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 cm were used to grow C.<br />

<strong>sativus</strong> seedl<strong>in</strong>gs. These plastic pots were filled with<br />

sterilized <strong>soil</strong> <strong>in</strong>clud<strong>in</strong>g peat <strong>soil</strong>, clay <strong>and</strong> s<strong>and</strong> (1:1:1<br />

v:v:v). For <strong>the</strong> <strong>in</strong>oculated group (IG), 100 g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prepared <strong>in</strong>ocula were thoroughly mixed with <strong>the</strong> <strong>soil</strong>,<br />

while <strong>the</strong> same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sterilized <strong>in</strong>ocula were<br />

mixed <strong>in</strong> n<strong>on</strong>-<strong>in</strong>oculated group (NG). Every three<br />

corms <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> were planted <strong>in</strong> a cultivati<strong>on</strong> pot<br />

<strong>and</strong> grown <strong>in</strong> a sunlit greenhouse with natural light,<br />

day/night temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 25/15 ◦C. Plants were<br />

watered with dei<strong>on</strong>ized water dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g<br />

period.<br />

Soil analysis<br />

The <strong>soil</strong> samples <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<strong>in</strong>oculated group (NG) <strong>and</strong><br />

<strong>in</strong>oculated group (IG) were air-dried <strong>and</strong> passed<br />

through a 0.25 mm sieve for determ<strong>in</strong><strong>in</strong>g total N<br />

(TN), total P (TP) <strong>and</strong> total K (TK) amount. These<br />

analysis were based <strong>on</strong> <strong>the</strong> st<strong>and</strong>ard method<br />

described by Page (1982) .Total N (digested with<br />

H2SO4–H2O2) were measured by a Kjeldahl apparatus<br />

(Kjeltec, Foss 2003, Denmark). Total P (digested with<br />

65% HNO3) were measured by Molydenumantim<strong>on</strong>y-Diso-ascorbic-acid-colorimetry.<br />

Total K<br />

was quantified by atomic absorpti<strong>on</strong><br />

spectrophotometry after extracti<strong>on</strong> with amm<strong>on</strong>ium<br />

acetate 1 M, pH 7.0.<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AMF root col<strong>on</strong>izati<strong>on</strong><br />

Plants <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> were harvested after 6 m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>growth</strong>. Leaves, shoots <strong>and</strong> roots were sampled<br />

separately. Sub-samples <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh nutritive roots were<br />

taken to assess <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong>. R<strong>in</strong>sed root<br />

samples were cleared with 10% KOH at 90◦C for 60<br />

m<strong>in</strong> <strong>and</strong> soaked with 1% HCl for 5 m<strong>in</strong>, <strong>and</strong> <strong>the</strong>n<br />

sta<strong>in</strong>ed with lactophenol cott<strong>on</strong> blue (LPCB) (Phillips<br />

& Hayman, 1970). The sta<strong>in</strong>ed roots segments<br />

suspended <strong>in</strong> lactoglycer<strong>in</strong> were <strong>the</strong>n spread <strong>in</strong> a petri<br />

dish marked with 1cm grid to facilitate scann<strong>in</strong>g, <strong>and</strong><br />

viewed under a stereomicroscope at 12 to 50*<br />

(Bierman <strong>and</strong> L<strong>in</strong>derman, 1981). The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> length <str<strong>on</strong>g>of</str<strong>on</strong>g> each root segment which c<strong>on</strong>ta<strong>in</strong>ed <strong>the</strong><br />

any <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> endophytic elements - hyphae, coils,<br />

vesicles <strong>and</strong> arbuscules - was taken as evidence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mycorrhizati<strong>on</strong> <strong>and</strong> estimated to <strong>the</strong> nearest 10%. The<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> root length with mycorrhiza<br />

endophytes <strong>in</strong> <strong>the</strong> sample was <strong>the</strong>n calculated from<br />

<strong>the</strong> frequency distributi<strong>on</strong>. Percentage root<br />

col<strong>on</strong>izati<strong>on</strong> (PRC) was determ<strong>in</strong>ed as <strong>the</strong> proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> root segments with hyphae,<br />

coils, vesicles <strong>and</strong> arbuscules by use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> same root<br />

segments as <strong>in</strong> <strong>the</strong> previous measurements.<br />

Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <strong>growth</strong><br />

Plant height <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> was measured with a<br />

tapel<strong>in</strong>e before harvest. Rema<strong>in</strong><strong>in</strong>g roots <strong>and</strong> o<strong>the</strong>r<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> plant were r<strong>in</strong>sed with dei<strong>on</strong>ized water<br />

three times. Fresh weight <str<strong>on</strong>g>of</str<strong>on</strong>g> total leaves, shoots <strong>and</strong><br />

roots were measured <strong>and</strong> <strong>the</strong>n dried at 70 ◦ C <strong>in</strong> an<br />

oven for 48 h to c<strong>on</strong>stant weight. The percentage<br />

water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> rema<strong>in</strong><strong>in</strong>g roots <strong>and</strong> total fresh root<br />

weight were used to estimate total root dry weight.<br />

The <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> dependency (MD) was calculated<br />

based <strong>on</strong> <strong>the</strong> follow<strong>in</strong>g formula (Plenchette et al.,<br />

1983): Mycorrhizal dependency (MD) = (dry weight<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants − dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong><str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g><br />

plants)/dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants<br />

× 100%.<br />

Carotenoid <strong>and</strong> Chlorophyll Analysis<br />

Fresh shoot tissues from n<strong>on</strong>-<strong>in</strong>oculated group (NG)<br />

<strong>and</strong> <strong>in</strong>oculated group (IG), weigh<strong>in</strong>g 150 mg, were<br />

extracted <strong>in</strong> 80% acet<strong>on</strong>e. The debris were removed<br />

by filtrati<strong>on</strong> us<strong>in</strong>g Whatman filter paper <strong>and</strong> <strong>the</strong><br />

c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> Chl a, Chl b <strong>and</strong> carotenoids were<br />

determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> filtrates by record<strong>in</strong>g absorbance at<br />

664, 648 <strong>and</strong> 470 nm us<strong>in</strong>g a spectrophotometer<br />

[Shimidzu-ultraviolet–visible-1601-pc]. C<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chls <strong>and</strong> carotenoids were calculated accord<strong>in</strong>g to<br />

Lichtenthaler (1987)<br />

Soluble Sugar Analysis<br />

Reduc<strong>in</strong>g <strong>sugar</strong> c<strong>on</strong>centrati<strong>on</strong> was analyzed us<strong>in</strong>g <strong>the</strong><br />

phenol–sulphuric acid Method (Dubois et al., 1956).<br />

The phenol reagent was prepared by add<strong>in</strong>g 10mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

distilled water to 90mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 90% phenol soluti<strong>on</strong>. Dry<br />

Anabat et al.<br />

Page 298


weight <str<strong>on</strong>g>of</str<strong>on</strong>g> root (150 mg) mixed with 70% ethanol.<br />

Then <strong>the</strong> phenol reagent <strong>and</strong> sulphuric acid were<br />

added <strong>and</strong> <strong>the</strong> soluti<strong>on</strong>s were <strong>in</strong>cubated at room<br />

temperature for 30m<strong>in</strong> <strong>and</strong> <strong>the</strong> UV absorbance was<br />

read at 485nm. Glucose was used as <strong>the</strong> st<strong>and</strong>ard for<br />

this analysis.<br />

Data analysis<br />

The experiment was laid out as a completely<br />

r<strong>and</strong>omized design, with five replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

treatment. Data were analyzed us<strong>in</strong>g a statistical<br />

package, SPSS versi<strong>on</strong> 16.0. One-way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variance (ANOVA) followed by <strong>the</strong> t-test (h<strong>on</strong>estly<br />

significant difference, p < 0.05) were carried out to<br />

determ<strong>in</strong>e differences between means. Correlati<strong>on</strong><br />

analysis was carried out by two-tailed Pears<strong>on</strong> test,<br />

with p < 0.05 as <strong>the</strong> correlati<strong>on</strong> degree. All data were<br />

plotted us<strong>in</strong>g Orig<strong>in</strong> 8.0 s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware.<br />

Results<br />

AMF root col<strong>on</strong>izati<strong>on</strong><br />

Our <strong>in</strong>vestigati<strong>on</strong> <strong>in</strong>dicated no AMF structures <strong>in</strong><br />

n<strong>on</strong>-<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> treatments. In <strong>the</strong> AMF<br />

<str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> treatment, all plant roots showed<br />

associati<strong>on</strong>s with AMF. Intracellular hyphae <strong>and</strong><br />

<str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> were <strong>the</strong> dom<strong>in</strong>ant structures, <strong>and</strong> <strong>the</strong><br />

<str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> structure was ‘Arum’ type (Fig. 1). The<br />

PRC <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>in</strong>oculated AMF (<strong>in</strong>clud<strong>in</strong>g Glomus<br />

etunicatum, G. mosseae, <strong>and</strong> G. aggregatum)<br />

calculated 39% (p < 0.05).<br />

Table 1. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<strong>in</strong>oculated <strong>and</strong> <strong>in</strong>oculated <strong>soil</strong>s <strong>on</strong> chlorophyll <strong>and</strong> carotenoids (mg.g -1 FW) <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong><br />

plant <strong>in</strong> pot experiment.<br />

Group No. <str<strong>on</strong>g>of</str<strong>on</strong>g> pots Chl.a Chl.b Carotenoid Chl.a + Chl.b Chl.a /Chl.b Chl.a + Chl.b/<br />

Carotenoid<br />

N<strong>on</strong>-<strong>in</strong>oculated (NG) 5 0.752 0.371 0.385 1.123 2.027 2.917<br />

Inoculated (IG) 5 1.12 0.654 0.576 1.774 1.713 3.08<br />

Enhanced plant <strong>growth</strong> resp<strong>on</strong>se<br />

Significant <strong>in</strong>crease <strong>in</strong> rate <strong>and</strong> total emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

<strong>sativus</strong> seedl<strong>in</strong>g <strong>in</strong> <strong>soil</strong> treated with AMF <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g><br />

were observed (Fig. 2). Sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> emerged plant <strong>in</strong> <strong>soil</strong><br />

<strong>in</strong>fested with AMF <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> were more uniform<br />

than those <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol plant. In additi<strong>on</strong>, <strong>the</strong> plant<br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> differed significantly under AMF<br />

<str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> (p < 0.05). In AMF <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> treatment<br />

group, plant height reached a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 27.61 cm,<br />

which was 35.8% higher than <strong>the</strong> c<strong>on</strong>trol.<br />

<strong>and</strong> dry weight compared to c<strong>on</strong>trol, respectively. The<br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> dependency (MD) <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> to AMF<br />

reached a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 38.18% under AMF<br />

<str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> treatment, which was significant (p <<br />

0.05)<br />

Biomass <strong>and</strong> MD <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong><br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> pot study showed that <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

<strong>sativus</strong> seedl<strong>in</strong>g with AMF affected root <strong>and</strong> shoot<br />

fresh weight (Fig. 3). Total Shoot fresh weight<br />

significantly <strong>in</strong>creased by <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> sterile <strong>soil</strong>,<br />

which was 3.14 g higher than <strong>the</strong> c<strong>on</strong>trol (5.02 g)<br />

(p


As shown <strong>in</strong> Figure 4, <strong>the</strong> significant difference was<br />

found am<strong>on</strong>g essential elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>growth</strong> <strong>in</strong>clud<strong>in</strong>g<br />

N, P, <strong>and</strong> K <strong>in</strong> n<strong>on</strong>-<strong>in</strong>oculated <strong>and</strong> <strong>in</strong>oculated <strong>soil</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

C. <strong>sativus</strong>. The N amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>oculated <strong>soil</strong> <strong>in</strong>creased<br />

56.5% than n<strong>on</strong>-<strong>in</strong>oculated <strong>soil</strong> (p < 0.05). Total<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> P <strong>in</strong>creased significantly <strong>in</strong> <strong>in</strong>oculated <strong>soil</strong><br />

with AMF (66.04%) over <strong>the</strong> n<strong>on</strong>-<strong>in</strong>oculated <strong>soil</strong>. In<br />

additi<strong>on</strong>, K c<strong>on</strong>tent was much higher <strong>in</strong> <strong>in</strong>oculated<br />

<strong>soil</strong> (77.7 %) than <strong>the</strong> n<strong>on</strong>-<strong>in</strong>oculated <strong>soil</strong> (p < 0.05).<br />

Fig. 2. Plant <strong>growth</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> <strong>in</strong> <strong>the</strong> n<strong>on</strong><strong>in</strong>oculated<br />

group (NG) <strong>and</strong> <strong>in</strong>oculated group (IG).<br />

Total carotenoid <strong>and</strong> chlorophyll c<strong>on</strong>tent<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>oculated <strong>soil</strong> with AMF for plant<br />

<strong>growth</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> showed <strong>the</strong> highest<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chl.a, chl.b <strong>and</strong> chl.a+chl.b as well as<br />

total carotenoids <strong>in</strong> <strong>the</strong> pots experiment (Table 1).<br />

Our studies <strong>in</strong>dicated that total chlorophyll<br />

significantly <strong>in</strong>creased <strong>in</strong> <strong>in</strong>oculated group (IG)<br />

(36.69%) than n<strong>on</strong>-<strong>in</strong>oculated group (NG) (p < 0.05).<br />

In additi<strong>on</strong>, Table 1 show <strong>the</strong> spectrophotometric<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> total carotenoids based at <strong>the</strong> sample<br />

Abs at 470 nm. The results revealed that <strong>the</strong> IG are<br />

<strong>the</strong> most rich <strong>in</strong> <strong>the</strong>se comp<strong>on</strong>ents. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total carotenoids <strong>in</strong> NG presented 33.15% lower than<br />

IG. Therefore, <strong>the</strong> promoti<strong>on</strong> <strong>in</strong> total chlorophyll <strong>and</strong><br />

carotenoids exhibited positive correlati<strong>on</strong> with <strong>the</strong><br />

<strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> PRC (39%) <strong>in</strong> IG (p < 0.05).<br />

Soluble <strong>sugar</strong>s c<strong>on</strong>tent<br />

The <strong>in</strong>oculated <strong>soil</strong> with AMF <strong>in</strong> pot experiments<br />

significantly <strong>in</strong>creased <strong>soluble</strong> <strong>sugar</strong> c<strong>on</strong>tents <strong>in</strong><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants (Fig. 5). Soluble <strong>sugar</strong> c<strong>on</strong>tents <strong>in</strong><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants <strong>in</strong>creased (43.1%) <strong>in</strong> comparis<strong>on</strong><br />

with n<strong>on</strong>-<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants (1.61 mg.g -1 DW) that,<br />

<strong>the</strong>re was a significant (P< 0.05) <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AMF<br />

<str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> <strong>soluble</strong> <strong>sugar</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> plants.<br />

Discussi<strong>on</strong><br />

AMF symbiosis with C. <strong>sativus</strong> roots<br />

Plant–microbe <strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> rhizosphere can be<br />

def<strong>in</strong>ed as any volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soil</strong> specially <strong>in</strong>fluenced by<br />

<strong>the</strong> plant roots or <strong>in</strong> associati<strong>on</strong> with <strong>the</strong> roots <strong>and</strong><br />

plant-produced material <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten extend<strong>in</strong>g a few<br />

mm from <strong>the</strong> root surface (Br<strong>in</strong>ghurst et al., 2001;<br />

Smith <strong>and</strong> Read, 2010). Arbuscular <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> fungi<br />

(AMF) are endo-mycorrhizae that are classified <strong>in</strong> <strong>the</strong><br />

fungal phyllum Glomeromycota (Schüssler et al.,<br />

2001). They live symbiotically, as obligate biotrophs,<br />

<strong>in</strong> <strong>the</strong> roots <str<strong>on</strong>g>of</str<strong>on</strong>g> about 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species (Wang <strong>and</strong><br />

Qiu, 2006). Saffr<strong>on</strong> corms produce both fibrous roots<br />

<strong>and</strong> c<strong>on</strong>tractile roots. The fibrous roots emerge from a<br />

s<strong>in</strong>gle r<strong>in</strong>g at <strong>the</strong> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> corms. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> roots<br />

enable corms to dig <strong>in</strong>to <strong>the</strong> ground, so corms rest <strong>in</strong><br />

optimum depth <strong>and</strong> positi<strong>on</strong> <strong>in</strong> <strong>the</strong> <strong>soil</strong> (Chio-Sang,<br />

1996). In our study, <strong>the</strong> PRC differed a lot under <strong>the</strong><br />

<strong>in</strong>oculated AMF treatment. Compared to n<strong>on</strong><str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g><br />

plants, we observed <strong>in</strong>creases <strong>in</strong> pot<br />

experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>oculated AMF treatment (39%; p <<br />

0.05). However, <strong>the</strong> mixed AMF <strong>in</strong>ocula applied <strong>in</strong><br />

this study successfully col<strong>on</strong>ized C. <strong>sativus</strong> roots, <strong>and</strong><br />

<strong>in</strong>tercellular hyphe, <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g>, <strong>and</strong> vesicle structures<br />

were present <strong>in</strong> all <strong>in</strong>oculated treatments. The tested<br />

AMF species were dom<strong>in</strong>ant <strong>in</strong>digenous species<br />

selected from Khalil Abad regi<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g Glomus<br />

etunicatum, G. mosseae, <strong>and</strong> G. aggregatum. These<br />

species have developed adaptati<strong>on</strong> characteristics to<br />

semi-arid climate.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>oculated AMF <strong>on</strong> <strong>the</strong> <strong>growth</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong><br />

Mycorrhiza helps plants with such as shallow sparse<br />

root system to <strong>in</strong>crease absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong> <strong>and</strong><br />

metabolic level (Ganesan <strong>and</strong> Mahadevan, 1998). It is<br />

now vastly reported that <strong>the</strong> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong><br />

improves plant <strong>growth</strong> by facilitat<strong>in</strong>g m<strong>in</strong>eral<br />

nutriti<strong>on</strong> <strong>and</strong> progressive water relati<strong>on</strong>s which lead<br />

to large plant size <strong>and</strong> higher yield (Auge, 2001; Xie et<br />

al., 2014). In this study, <strong>in</strong>oculated <strong>soil</strong> al<strong>on</strong>e<br />

Anabat et al.<br />

Page 300


significantly promoted <strong>the</strong> height <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong>, which<br />

was 35.8% higher than <strong>the</strong> n<strong>on</strong>-<strong>in</strong>oculated <strong>soil</strong> <strong>in</strong> pot<br />

experiment. When <strong>in</strong>oculated with AMF, <strong>the</strong> total<br />

biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> <strong>in</strong>creased significantly with<br />

enhanc<strong>in</strong>g <strong>the</strong> plant height. Studies <strong>on</strong> <strong>on</strong>i<strong>on</strong> <strong>and</strong><br />

saffr<strong>on</strong> dem<strong>on</strong>strated that fresh <strong>and</strong> dry biomass is<br />

more <strong>in</strong> <strong>in</strong>oculated AMF plants than n<strong>on</strong>-<strong>in</strong>oculated<br />

plants (Kianmehr, 1981; Shuab et al., 2014). The<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> MD value c<strong>on</strong>firmed that AMF <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g><br />

make a greater biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> than n<strong>on</strong><strong>in</strong>oculated<br />

plants. MD value depended <strong>on</strong> P amount<br />

<strong>and</strong> significantly <strong>in</strong>creased with high P <strong>in</strong> rhizosphere<br />

that resulted <strong>in</strong> optimal <strong>growth</strong> promoti<strong>on</strong> effect (Xie<br />

et al., 2014). Therefore, our data <strong>in</strong>dicated that <strong>the</strong><br />

higher P treatment can create by AMF <strong>in</strong> C. <strong>sativus</strong><br />

roots.<br />

Fig. 3. Fresh <strong>and</strong> dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> shoot <strong>and</strong> root <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<strong>in</strong>oculated group (NG) <strong>and</strong> <strong>in</strong>oculated group (IG) <str<strong>on</strong>g>of</str<strong>on</strong>g> C.<br />

<strong>sativus</strong>. Statistical analysis <strong>and</strong> <strong>the</strong> mean ± SD were performed <strong>in</strong> p < 0.05 level <strong>on</strong> <strong>the</strong> three different samples.<br />

Fig. 4. Nitrogen (N), Phosphorus (P), <strong>and</strong> Potassium (K) amount <strong>and</strong> c<strong>on</strong>tent <strong>in</strong> n<strong>on</strong>-<strong>in</strong>oculated group (NG) <strong>and</strong><br />

<strong>in</strong>oculated group (IG) <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong>.<br />

N-P-K <strong>in</strong> pot <strong>soil</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong><br />

The <strong>growth</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants closely related to absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water <strong>and</strong> nutrients from <strong>the</strong> envir<strong>on</strong>ment. The<br />

rhizosphere microbial communities are vigorously<br />

associated with <strong>the</strong> biogeochemical cycl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient<br />

elements (Cardoso <strong>and</strong> Freitas, 1992). The<br />

improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutriti<strong>on</strong> through <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g><br />

symbioses <strong>and</strong> <strong>the</strong> molecular bases <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient<br />

transfer are currently well studied for phosphorus<br />

(Javot et al., 2007; Plassard <strong>and</strong> Dell, 2010) <strong>and</strong><br />

nitrogen (Müller et al., 2007; J<strong>in</strong> et al., 2012) <strong>and</strong><br />

potassium (Benito <strong>and</strong> G<strong>on</strong>zalez-Guerrero, 2014). In<br />

our study, P promoted <strong>the</strong> <strong>growth</strong> <strong>and</strong> vitality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

root <strong>in</strong> <strong>in</strong>oculated <strong>soil</strong> with AMF <strong>and</strong> <strong>in</strong>creased<br />

significantly (66.04%) over <strong>the</strong> n<strong>on</strong>-<strong>in</strong>oculated <strong>soil</strong>.<br />

As an essential macr<strong>on</strong>utrient, P is absorbed by plants<br />

<strong>in</strong> <strong>the</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>organic phosphate ani<strong>on</strong> (Pi). The<br />

AMF could produce <strong>the</strong> enzymes that hydrolyzed<br />

organically bound P <strong>in</strong>to Pi to enter <strong>the</strong> plant root<br />

(Javot et al., 2007). N as <strong>the</strong> pr<strong>in</strong>ciple comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

prote<strong>in</strong> <strong>in</strong> stem <strong>and</strong> leaf <strong>growth</strong> <strong>in</strong>creased 56.5% <strong>in</strong><br />

<strong>in</strong>oculated <strong>soil</strong> than n<strong>on</strong>-<strong>in</strong>oculated. The c<strong>on</strong>tributi<strong>on</strong><br />

Anabat et al.<br />

Page 301


<str<strong>on</strong>g>of</str<strong>on</strong>g> this mutualistic symbiosis to <strong>the</strong> enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant K + nutriti<strong>on</strong> will lead to benefits for <strong>the</strong> plant <strong>in</strong><br />

<strong>in</strong>oculated <strong>soil</strong> (77.7 %) over <strong>the</strong> n<strong>on</strong>-<strong>in</strong>oculated <strong>soil</strong>.<br />

Although <strong>the</strong> role <str<strong>on</strong>g>of</str<strong>on</strong>g> K + is still poorly <strong>in</strong>vestigated <strong>in</strong><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> studies, it appears that plant K + nutriti<strong>on</strong><br />

is clearly improved by mycorrhizati<strong>on</strong> (Garcia <strong>and</strong><br />

Zimmermann, 2014). N-P-K accumulati<strong>on</strong> <strong>in</strong><br />

<strong>in</strong>oculated plants with AMF can positively correlate<br />

with PRC <strong>and</strong> plant biomass, suggest<strong>in</strong>g which led to<br />

greater MD.<br />

Fig. 5. Soluble <strong>sugar</strong>s <strong>in</strong> n<strong>on</strong>-<strong>in</strong>oculated group (NG)<br />

<strong>and</strong> <strong>in</strong>oculated group (IG) <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong>. Statistical<br />

analysis <strong>and</strong> <strong>the</strong> mean ± SD were performed <strong>in</strong> p <<br />

0.05 level <strong>on</strong> <strong>the</strong> three different samples.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>oculated AMF <strong>on</strong> photosyn<strong>the</strong>tic<br />

<strong>pigments</strong> <strong>and</strong> <strong>soluble</strong> <strong>sugar</strong><br />

AMF col<strong>on</strong>izati<strong>on</strong> enhances <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

photosyn<strong>the</strong>tic <strong>pigments</strong> than n<strong>on</strong> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> <strong>on</strong>es<br />

(Morte et al., 2000, Giri et al. 2003). Therefore,<br />

significant differences <strong>in</strong> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlorophyll-a, chlorophyll-b <strong>and</strong> carotenoids<br />

observed <strong>in</strong> C. <strong>sativus</strong> plant may be attributed to<br />

plant-microbe <strong>in</strong>teracti<strong>on</strong> <strong>in</strong> leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> AM-<strong>in</strong>oculated<br />

<strong>and</strong> n<strong>on</strong>-<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants <strong>in</strong> pot experiment. The<br />

high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll <strong>in</strong> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> <strong>in</strong>oculated<br />

plants <strong>in</strong>creased <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>sis <strong>and</strong> so as<br />

to <strong>in</strong>crease <strong>the</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<strong>the</strong>tic storage <strong>and</strong><br />

export at <strong>the</strong> same time (Haneef et al., 2013). The<br />

enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <strong>soluble</strong> <strong>sugar</strong> c<strong>on</strong>tent studied <strong>in</strong><br />

AM plants <str<strong>on</strong>g>of</str<strong>on</strong>g> M. tetraphylla (Yooy<strong>on</strong>gwech et al.,<br />

2013), AM treated pige<strong>on</strong> pea (Qiao et al. 2011) <strong>and</strong><br />

AM treated lettuce cultivars (Baslam <strong>and</strong> Goicoechea,<br />

2011) that might generally act as an osmoprotectant<br />

to stabilize <strong>the</strong> plant organelles when subjected to<br />

water deficit stress.Our data <strong>in</strong>dicated that<br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants had higher <strong>soluble</strong> <strong>sugar</strong> c<strong>on</strong>tent<br />

<strong>in</strong> <strong>the</strong> roots <str<strong>on</strong>g>of</str<strong>on</strong>g> C. <strong>sativus</strong> <strong>in</strong> pot experiment, compared<br />

with n<strong>on</strong>-<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants. This may be due to <strong>the</strong><br />

s<strong>in</strong>k effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> AM fungus-dem<strong>and</strong><strong>in</strong>g <strong>sugar</strong> from<br />

leaves (Porcel <strong>and</strong> Ruiz-Lozano, 2004). AM fungi<br />

regulate <strong>growth</strong> under water deficit <strong>and</strong> may lead to<br />

high accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>soluble</strong> carbohydrates.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

Based <strong>on</strong> <strong>the</strong> symbiotic relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> saffr<strong>on</strong> <strong>and</strong><br />

AMF, this research <strong>in</strong>vestigated <strong>the</strong> eco-physiological<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AMF <strong>on</strong> saffr<strong>on</strong> plant <strong>growth</strong> <strong>and</strong> nutrient<br />

uptake. The <strong>in</strong>oculated AMF successfully <strong>in</strong>fected C.<br />

<strong>sativus</strong> roots, developed <strong>in</strong>tercellular hyphae,<br />

<str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> (Arum-type), <strong>and</strong> vesicle structures.<br />

Present communicati<strong>on</strong> for <strong>the</strong> first time, reports <strong>the</strong><br />

cultivable AMF spores <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Glomus species such as<br />

G. aggregatum, G. mosseae <strong>and</strong> G. etunicatum,<br />

present <strong>in</strong> rhizosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> Saffr<strong>on</strong> (grown <strong>in</strong> Khalil<br />

Abad, Khorasan Razavi prov<strong>in</strong>ce, Iran). The AMF<br />

col<strong>on</strong>izati<strong>on</strong> improved positively <strong>the</strong> overall <strong>growth</strong><br />

<strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> saffr<strong>on</strong> plant. In additi<strong>on</strong>, <strong>the</strong><br />

photosyn<strong>the</strong>tic <strong>pigments</strong> <strong>and</strong> <strong>soluble</strong> <strong>sugar</strong> c<strong>on</strong>tent<br />

too were found higher<strong>in</strong> AMF <strong>in</strong>oculated than c<strong>on</strong>trol.<br />

Acknowledgement<br />

The authors acknowledge <strong>the</strong> facilities provided by<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant biology,<br />

Shahid Beheshti University, Tehran.<br />

References<br />

Alizadeh A. 2006. Irrigati<strong>on</strong>. In: Kafi M , Koocheki<br />

A , Rashed M.H , Nassiri M. (Eds.), Saffr<strong>on</strong> (<strong>Crocus</strong><br />

<strong>sativus</strong>) Producti<strong>on</strong> <strong>and</strong> Process<strong>in</strong>g. Science<br />

Publishers, Enfield, 79–90 P.<br />

Allaway WG, Curran M, Holl<strong>in</strong>gt<strong>on</strong> LM,<br />

Ricketts MC, Skelt<strong>on</strong> NJ. 2001. Gas space <strong>and</strong><br />

oxygen exchange <strong>in</strong> roots <str<strong>on</strong>g>of</str<strong>on</strong>g> Avicennia mar<strong>in</strong>a<br />

(Forsk.) Vierh. Var. aus-tralasica (Walp.) Moldenke<br />

ex NC Duke, <strong>the</strong> grey mangrove. Wetl<strong>and</strong>s<br />

Ecology<strong>and</strong> Management 9, 221–228.<br />

Anabat et al.<br />

Page 302


Auge RM. 2001. Water relati<strong>on</strong>s, drought <strong>and</strong><br />

vesicular-<str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> symbiosis.<br />

Mycorrhiza 11, 3-42.<br />

Baslam M, Goicoechea N. 2011. Water deficit<br />

improved <strong>the</strong> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g><br />

fungi (AMF) for <strong>in</strong>duc<strong>in</strong>g <strong>the</strong> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antioxidant compounds <strong>in</strong> lettuce leaves. Mycorrhiza<br />

22, 347–359.<br />

Cozzol<strong>in</strong>o V, Pigna M, Di Meo V, Caporale AG,<br />

Violante A. 2010. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g><br />

<str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong> phosphorus supply <strong>on</strong> <strong>the</strong> <strong>growth</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Lactuca sativa L. <strong>and</strong> arsenic <strong>and</strong> phosphorus<br />

availability <strong>in</strong> an arsenic polluted <strong>soil</strong> undern<strong>on</strong>sterile<br />

c<strong>on</strong>diti<strong>on</strong>s. Applied Soil Ecology 45, 262–268.<br />

European Saffr<strong>on</strong> White Book. 2006.<br />

INTERREG IIIC. European Uni<strong>on</strong>.<br />

Benito B, Haro R, Amtmann A, Cu<strong>in</strong> TA,<br />

Dreyer I. 2014. The tw<strong>in</strong>s K + <strong>and</strong> Na + <strong>in</strong> Plants.<br />

Plant Physiology 171, 723–732.<br />

Botella O, de Juan A, Mu˜noz MR, Moya A,<br />

López H. 2002. Descripción morfológ- ica y ciclo<br />

anual del azafrán (<strong>Crocus</strong> <strong>sativus</strong> L.). Cuadernos de<br />

Fitopatología. Revista técnica de fitopatología y<br />

entomología 71, 18–28.<br />

Ganesan V, Mahadevan A. 1998. The Role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mycorrhizae <strong>in</strong> <strong>the</strong> Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> Tuber Crops <strong>in</strong><br />

Pot <strong>and</strong> Field C<strong>on</strong>diti<strong>on</strong>s, <strong>in</strong>: A. Prakash (ed.), Fungi<br />

<strong>in</strong> Biotechnology, CBS Publishers, New Delhi, India,<br />

51-58.<br />

Garcia K, Zimmermann SD. 2014. The role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> associati<strong>on</strong>s <strong>in</strong> plant potassium nutriti<strong>on</strong>.<br />

Fr<strong>on</strong>tiers <strong>in</strong> plant science, 5.<br />

Bright<strong>on</strong> CA. 1977. Cytology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Crocus</strong> <strong>sativus</strong> <strong>and</strong><br />

its allies (Iridaceae). Plant Systematic Evoluti<strong>on</strong> 128,<br />

137–157.<br />

Br<strong>in</strong>ghurst RM, Card<strong>on</strong> ZG, Gage DJ. 2001.<br />

Galactosides <strong>in</strong> <strong>the</strong> rhizosphere: utilizati<strong>on</strong> by<br />

S<strong>in</strong>orhizobiummeliloti <strong>and</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

biosensor. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America 98, 4540–<br />

4545.<br />

Cardoso EJBN, Freitas SS. 1992. A rizosfera. In:<br />

Cardoso EJBN, Tsai SM, Neves PCP (eds)<br />

Microbiologia do solo. Sociedade Brasileira de Ciencia<br />

do Solo, Camp<strong>in</strong>as, 41–57 P.<br />

Chio-Sang T. 1996. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> plant<strong>in</strong>g depth <strong>and</strong><br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> tunic <strong>on</strong> <strong>growth</strong> <strong>and</strong> flower<strong>in</strong>g <strong>in</strong> Freesia<br />

forc<strong>in</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Korean Society for<br />

Horticultural Science 37, 577-581.<br />

Clark R, Zeto S. 2000. M<strong>in</strong>eral acquisiti<strong>on</strong> by<br />

<str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> plants. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant<br />

Nutriti<strong>on</strong> 23, 867–902.<br />

Goussous SJ, Mohammad MJ. 2009.<br />

Comparative Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Two Arbuscular Mycorrhizae<br />

<strong>and</strong> N <strong>and</strong> P Fertilizers <strong>on</strong> Growth <strong>and</strong> Nutrient<br />

Uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> Oni<strong>on</strong>s. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agriculture & Biology 11, 463-467.<br />

Haneef I, Faizan S, Perveen R, Kausar S. 2013.<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> fungi <strong>on</strong> <strong>growth</strong> <strong>and</strong><br />

photosyn<strong>the</strong>tic <strong>pigments</strong> <strong>in</strong> (Cori<strong>and</strong>rum sativum L.)<br />

grown under cadmium stress. World Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agricultural Sciences 9(3), 245-250.<br />

Javot H, Pumpl<strong>in</strong> N, Harris<strong>on</strong> MJ. 2007.<br />

Phosphate <strong>in</strong> <strong>the</strong> <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> symbiosis:<br />

transport properties <strong>and</strong> regulatory roles. Plant, Cell<br />

& Envir<strong>on</strong>ment 30, 310–322.<br />

J<strong>in</strong> H, Liu R, Liu J, Huang XW. 2012. Forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen uptake, translocati<strong>on</strong>, <strong>and</strong> transfer via<br />

<str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> fungi: a review. Science Ch<strong>in</strong>a<br />

Life Sciences 55, 474–482.<br />

Kafi M. 2006. Saffr<strong>on</strong> ecophysiology. In: Kafi M,<br />

Koocheki A , Rashed M H , Nassiri, M (Eds.), Saffr<strong>on</strong><br />

(<strong>Crocus</strong> <strong>sativus</strong>) Producti<strong>on</strong> <strong>and</strong> Process<strong>in</strong>g. Science<br />

Anabat et al.<br />

Page 303


Publishers, Enfield, 39–58.<br />

Kianmehr H. 1981. Vesicular—<str<strong>on</strong>g>arbuscular</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> spore populati<strong>on</strong> <strong>and</strong> <strong>in</strong>fectivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

saffr<strong>on</strong> (crocus <strong>sativus</strong>) <strong>in</strong> Iran. New Phytologist<br />

88(1), 79-82.<br />

L<strong>on</strong>e R. 2014. Effect <strong>on</strong> Certa<strong>in</strong> Biochemical<br />

Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> Plants Hav<strong>in</strong>g Underground Stem<br />

Propagules due to Mycorrhizal Associati<strong>on</strong> Ph.D<br />

<strong>the</strong>sis, Jiwaji University, Gwalior.<br />

Ma<strong>the</strong>w B. 1982. The <strong>Crocus</strong>. A Revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Genus <strong>Crocus</strong> (Iridaceae). L<strong>on</strong>d<strong>on</strong>, BT Batsford Ltd,<br />

127, 96.<br />

Qiao G, Wen XP, Yu LE, Ji XB. 2011. The<br />

enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> droughtal tolerance for pige<strong>on</strong> pea<br />

<strong>in</strong>oculated by <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> mycorrhizae fungi. Plant<br />

Soil Envir<strong>on</strong>mental 57, 541–546.<br />

Schüssler A, Schwarzott D, Walker C. 2001.<br />

Anew fungal phylum, <strong>the</strong> Glomeromycota: phylogeny<br />

<strong>and</strong> evoluti<strong>on</strong>. Mycological research 105, 1413–1421.<br />

Shuab R, L<strong>on</strong>e R, Naidu J, Sharma V, Imtiyaz,<br />

S, Koul K. 2014. Benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> Inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Arbuscular Mycorrhizal Fungi <strong>on</strong> Growth <strong>and</strong><br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Oni<strong>on</strong> (Allium cepa) Plant.<br />

American-eurasian journal <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture &<br />

envir<strong>on</strong>mental science 14(6), 527-535.<br />

Morte A, Lovisola C, Schubert A. 2000. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drought stress <strong>on</strong> <strong>growth</strong> <strong>and</strong> water relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> aossicati<strong>on</strong> Helian<strong>the</strong>mum almeriense-<br />

Terfezia clavery. Mycorrhiza 10(3), 115-119.<br />

Müller T, Avolio M, Olivi M, Benjdia M,<br />

Rikirsch E, Kasaras A. 2007. Nitrogen transport<br />

<strong>in</strong> <strong>the</strong> ectomycorrhiza associati<strong>on</strong>: <strong>the</strong> Hebeloma<br />

cyl<strong>in</strong>drosporum-P<strong>in</strong>usp<strong>in</strong>aster<br />

model.<br />

Phytochemistry 68, 41–51.<br />

Plassard C, Dell B. 2010. Phosphorus nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> trees. Tree Physiology 30, 1129–1139.<br />

Porcel R, Ruiz-Lozano JM. 2004. Arbuscular<br />

<str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> <strong>in</strong>fluence <strong>on</strong> leaf water potential, solute<br />

accumulati<strong>on</strong>, <strong>and</strong> oxidative stress <strong>in</strong> soybean plants<br />

subjected to drought stress. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental<br />

Botany 55, 1743–1750.<br />

Smith SE, Read DJ. 2010. Mycorrhizal Symbiosis,<br />

Academic Press.<br />

Wang B, Qui YL. 2006. Phylogenetic distributi<strong>on</strong><br />

<strong>and</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mycorrhizas <strong>in</strong> l<strong>and</strong> plants.<br />

Mycorrhiza 16(5), 299-363.<br />

Xie X, Weng B, Cai B, D<strong>on</strong>g Y, Yan C. 2014.<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>arbuscular</str<strong>on</strong>g> <str<strong>on</strong>g>mycorrhizal</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>oculati<strong>on</strong></str<strong>on</strong>g> <strong>and</strong><br />

phosphorus supply <strong>on</strong> <strong>the</strong> <strong>growth</strong> <strong>and</strong> nutrient uptake<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> K<strong>and</strong>elia obovata (Sheue, Liu & Y<strong>on</strong>g) seedl<strong>in</strong>gs <strong>in</strong><br />

<strong>autoclaved</strong> <strong>soil</strong>. Applied Soil Ecology 75, 162-171.<br />

Yooy<strong>on</strong>gwech S, Phauk<strong>in</strong>sang N, Cha-um S,<br />

Supaibulwatana K. 2013 . Arbuscular mycorrhiza<br />

improved <strong>growth</strong> performance <strong>in</strong> Macadamia<br />

tetraphylla L. grown under water deficit stress<br />

<strong>in</strong>volves <strong>soluble</strong> <strong>sugar</strong> <strong>and</strong> prol<strong>in</strong>e accumulati<strong>on</strong>.<br />

Plant Growth Regulati<strong>on</strong> 69(3), 285-293.<br />

Anabat et al.<br />

Page 304

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!