04.06.2015 Views

The Infinitesimal Circulation Theorem - Gauge-institute.org

The Infinitesimal Circulation Theorem - Gauge-institute.org

The Infinitesimal Circulation Theorem - Gauge-institute.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<strong>The</strong> <strong>Circulation</strong> <strong>The</strong>orem<br />

H. Vic Dannon<br />

vic0@comcast.net<br />

January, 2012<br />

Abstract <strong>The</strong> Curl <strong>The</strong>orem involves 3 projected areas in<br />

3-space, 6 in 4-space, 10 in 5-space, 15 in 6-space, etc.<br />

<strong>Infinitesimal</strong> Calculus yields the <strong>Circulation</strong> <strong>The</strong>orem. A<br />

version of the Curl <strong>The</strong>orem that depends on 3 areas in 3-<br />

space, 4 areas in 4-space, 5 in 5-space, etc.<br />

<strong>The</strong> <strong>Circulation</strong> <strong>The</strong>orem is easier to state, and comprehend,<br />

than the Curl <strong>The</strong>orem.<br />

It requires <strong>Infinitesimal</strong>s, and does not exist in the Calculus<br />

of Limits, where infinitesimals are not defined.<br />

Thus, <strong>The</strong> <strong>Circulation</strong> <strong>The</strong>orem is another demonstration of<br />

the power of the <strong>Infinitesimal</strong> Calculus, and its advantage<br />

over the Calculus of Limits.<br />

Keywords: <strong>Infinitesimal</strong>, Infinite-Hyper-real, Hyper-real,<br />

Cardinal, Infinity. Non-Archimedean, Calculus, Limit,<br />

Continuity, Derivative, Integral, Gradient, Divergence, Curl,<br />

1


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

2000 Mathematics Subject Classification 26E35; 26E30;<br />

26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17;<br />

03H15;46S20; 97I40; 97I30.<br />

2


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Introduction<br />

<strong>The</strong> Curl <strong>The</strong>orem over an infinitesimal rectangle in the<br />

Plane says that the circulation of ⎡Pxy<br />

(, ), Qxy (, ) ⎤<br />

⎢⎣<br />

⎥ around the<br />

⎦<br />

rectangle depends on one area<br />

∫<br />

infinitesimal<br />

rectangle<br />

∂x<br />

∂y<br />

P(, x y) dx + Q(, x y)<br />

dy = dxdy<br />

P Q<br />

<strong>The</strong> Curl <strong>The</strong>orem Over an infinitesimal 3-box says that the<br />

circulation of ⎡Pxyz (,, ), Qxyz (,, ), Rxyz (,, ) ⎤<br />

⎢⎣<br />

⎥⎦<br />

sides of the 3-box depends on 3 areas.<br />

around the<br />

∫ Pxyzdx (,, ) + Qxyzdy (,, ) + Rxyzdz (,, ) =<br />

sides of<br />

infinitesimal 3-box<br />

∂x ∂y ∂z ∂x ∂y ∂z<br />

= dxdy + dzdx + dydz<br />

P Q R Q Q R<br />

<strong>The</strong> Curl <strong>The</strong>orem Over an infinitesimal 4-box says that the<br />

circulation of<br />

⎡Pxyzt (,,,), Qxyzt (,,,), Rxyzt (,,,), Sxyzt (,,,) ⎤<br />

⎢⎣<br />

⎥⎦<br />

around the sides of the 3-box rectangle depend on 6 areas.<br />

∫ Pxyztdx (,,,) + Qxyztdy (,,,) + Rxyztdz (,,,) + Sxyztdt (,,,) =<br />

sides of<br />

infinitesimal 4-box<br />

3


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

∂z ∂t ∂t ∂x ∂x ∂z<br />

= dzdt + dtdx + dxdz +<br />

R S S P P R<br />

∂x ∂y ∂t ∂y ∂y ∂z<br />

+ dxdy + dtdy + dydz<br />

P Q S Q Q R<br />

<strong>The</strong> Curl <strong>The</strong>orem Over an infinitesimal 5-box says that the<br />

circulation of<br />

⎡Pxyztu (,,,, ), Qxyztu (,,,, ), Rxyztu (,,,, ), Sxyztu (,,,, ), Txyztu (,,,, ) ⎤<br />

⎢⎣<br />

⎥⎦<br />

around the sides of the 5-box rectangle depends on 10 areas.<br />

<strong>The</strong> number of different areas is the number of combinations<br />

of pairs in the space,<br />

⎛2⎞ ⎜<br />

=<br />

2<br />

⎜⎝ ⎠ ⎟<br />

⎛3⎞ 1, ⎛ 4⎞ = 3, ⎛ 5<br />

⎜<br />

, , ,…<br />

2<br />

= 6<br />

⎞ ⎛ 6⎞ ⎜⎝ ⎠ ⎟ ⎜2<br />

= 10<br />

⎜⎝ ⎠ ⎟ ⎜2<br />

15<br />

⎜⎝ ⎟ ⎜<br />

=<br />

⎠ 2<br />

⎜⎝ ⎟ ⎠<br />

<strong>The</strong> false belief that the 6 areas in 4-space are all<br />

independent, lead to the definition of a 6 dimensional Curl in<br />

4-space. But as we pointed out in [Dan4], the 4-space Curl is<br />

4 dimensional.<br />

While the number of circulation terms in the Curl <strong>The</strong>orem<br />

equals the space dimension, the number of areas depends on<br />

the space dimension indirectly.<br />

Here, we seek, and obtain a <strong>Circulation</strong> <strong>The</strong>orem in which<br />

the number of areas involved is the dimension of the space.<br />

4


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<strong>The</strong> <strong>Circulation</strong> <strong>The</strong>orem is easier to state, and comprehend,<br />

than the Curl <strong>The</strong>orem.<br />

For space dimension greater than 3, the <strong>Circulation</strong><br />

<strong>The</strong>orem holds, while the Curl <strong>The</strong>orem holds only if one<br />

accepts an erroneous definition of the Curl.<br />

For instance, in 4 dimensions the Curl is 4 dimensional, and<br />

not 6-dimensional<br />

<strong>The</strong> derivation, and the statement of the <strong>Circulation</strong><br />

<strong>The</strong>orem requires <strong>Infinitesimal</strong>s.<br />

Consequently, the <strong>Circulation</strong> <strong>The</strong>orem does not exist in the<br />

Calculus of Limits, where infinitesimals are not defined.<br />

Thus, the <strong>Circulation</strong> <strong>The</strong>orem is another demonstration of<br />

the power of the <strong>Infinitesimal</strong> Calculus, and its advantage<br />

over the Calculus of Limits.<br />

We need to use <strong>Infinitesimal</strong>s, <strong>Infinitesimal</strong> Calculus, and<br />

<strong>Infinitesimal</strong> Vector Calculus.<br />

We have constructed infinitesimals in [Dan1], established<br />

the <strong>Infinitesimal</strong> Calculus in [Dan2], and derived the<br />

<strong>Infinitesimal</strong> Vector Calculus in [Dan3]. <strong>The</strong> Hyper-real<br />

Plane, Hyper-real Vector Functions, Continuity, Derivatives,<br />

and Hyper-real Integration are presented in [Dan3].<br />

5


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

1.<br />

Hyper-real Plane<br />

We present the Hyper-real 2-Space, which is a cross product<br />

of two Hyper-real lines.<br />

Each 2-vector of real numbers ( αβ) , can be represented by a<br />

Cauchy sequence of rational numbers,<br />

so that ( rn, qn ) → ( αβ , ) .<br />

( r1, q1),( r2, q2),( r3, q3)...<br />

<strong>The</strong> constant sequence ( αβ , ),( αβ , ),( αβ , )... is a constant<br />

hyper-real 2-vector.<br />

In [Dan2] we established that,<br />

1. Any totally ordered set of positive, monotonically<br />

decreasing to (0, 0) sequences of 2-vectors<br />

( ι1, ο1)( ι2, ο2),( ι3, ο3)...<br />

constitutes a family of<br />

infinitesimal hyper-real 2-vectors.<br />

2. <strong>The</strong> infinitesimal 2-vectors are smaller than any real<br />

2-vector, yet strictly greater than the zero 2-vector.<br />

3. <strong>The</strong>ir reciprocals<br />

1 1 1 1 1 1<br />

( , ),( , ),( , ),...<br />

ι ο ι ο ι ο<br />

1 1 2 2 3 3<br />

are the infinite<br />

hyper-real 2-vectors.<br />

6


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

4. <strong>The</strong> infinite hyper-real 2-vectors are greater than any<br />

real 2-vector, yet strictly smaller than the infinity 2-<br />

vector.<br />

5. <strong>The</strong> infinite hyper-real 2-vectors with negative signs<br />

are smaller than any real 2-vector, yet strictly greater<br />

than ( −∞, −∞) .<br />

6. <strong>The</strong> sum of a real 2-vector with an infinitesimal 2-<br />

vector is a non-constant hyper-real 2-vector.<br />

7. <strong>The</strong> Hyper-real 2-vectors are the totality of<br />

constant hyper-real 2-vectors,<br />

a family of infinitesimal 2-vectors, with signs that<br />

may be ( ++ , ), ( +− , ), ( −+ , ), or ( −− , ),<br />

a family of infinite hyper-real 2-vectors with signs<br />

that may be ( ++ , ), ( +− , ), ( −+ , ), or ( −− , ), and<br />

non-constant hyper-real 2-vectors.<br />

8. <strong>The</strong> hyper-real 2-vectors constitute the Hyper-real<br />

Plane.<br />

9. That plane includes the real 2-vectors separated by the<br />

non-constant hyper-real 2-vectors. Each real 2-vector is<br />

the center of a disk of infinitesimal radius of hyper-real<br />

2-vectors, that includes no other real 2-vector.<br />

7


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

10. In particular, the zero 2-vector is separated from<br />

any real 2-vector by infinitesimal 2-vectors that lie in a<br />

disk of infinitesimal radius around the zero.<br />

11. <strong>The</strong> Zero 2-vector is not an infinitesimal 2-vector,<br />

because zero is not strictly greater than zero.<br />

12. We do not add the infinity 2-vector to the hyperreal<br />

Plane.<br />

13. <strong>The</strong> infinitesimal 2-vectors, and the infinite<br />

hyper-real 2-vectors, are semi-groups with respect to<br />

addition. Neither set includes zero.<br />

14. <strong>The</strong> hyper-real Plane is embedded in × ,<br />

and is not homeomorphic to the real Plane. <strong>The</strong>re is no<br />

bi-continuous one-one mapping from the hyper-real<br />

Plane onto the real plane.<br />

15. In particular, there are no points in the real<br />

Plane that can be assigned uniquely to the<br />

infinitesimal hyper-real 2-vectors, or to the infinite<br />

hyper-real 2-vectorss, or to the non-constant hyper-real<br />

2-vectors.<br />

∞<br />

∞<br />

8


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

16. No neighbourhood of a hyper-real 2-vector is<br />

n × n<br />

homeomorphic to an ball. <strong>The</strong>refore, the<br />

hyper-real plane is not a manifold.<br />

17. <strong>The</strong> hyper-real plane is not spanned by two<br />

elements, and it is not two-dimensional.<br />

9


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

2.<br />

Hyper-real Vector Function<br />

2.1 Definition of a hyper-real function<br />

f (, xy ) is a hyper-real function, iff it is from the hyper-real 2-<br />

vectors into the hyper-reals.<br />

This means that any number in the domain, or in the range<br />

of a hyper-real f (, xy ) is either one of the following<br />

Clearly,<br />

real vector<br />

real vector + infinitesimal vector<br />

infinitesimal vector<br />

infinite hyper-real vector<br />

2.2 Every function from the real plane into the reals is a<br />

hyper-real function.<br />

10


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

3.<br />

2-Space Path Integral<br />

<strong>The</strong> definition of Path Integration extends to a vector of two<br />

Hyper-real functions<br />

3.1 2-space Path Integral Definition<br />

the Hyper-real Path Integral of ⎡Pxy<br />

(, ), Qxy (, ) ⎤<br />

⎢⎣<br />

⎥ over a path<br />

⎦<br />

((),()), xt yt τ ∈ [ α, β]<br />

, is the sum of the areas<br />

∑<br />

t∈[ αβ , ]<br />

{ P( x(), t y()) t dx() t + Q((), x t y()) t dy()<br />

t }<br />

If for any infinitesimal dt , the Integration Sum equals the<br />

same hyper-real number, then ⎡Pxy<br />

(, ), Qxy (, ) ⎤<br />

⎢⎣<br />

⎥⎦<br />

Real Integrable over the path γ(,)<br />

ab .<br />

is Hyper-<br />

<strong>The</strong>n, we call the Integration Sum the Hyper-Real Path<br />

Integral of ⎡Pxy<br />

(, ), Qxy (, ) ⎤ ⎥ over γ(,)<br />

ab , and denote it by<br />

⎢⎣<br />

⎦<br />

∫ Pxydx (, ) + Qxydy (, ) .<br />

γ(,)<br />

ab<br />

Since there are countably many real numbers in [ αβ] , ,<br />

5.2 <strong>The</strong> Integration Sum has countably many terms.<br />

11


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

5.3 Continuous ⎡Pxy<br />

(, ), Qxy (, ) ⎤ is Path-Integrable<br />

⎢⎣<br />

⎥⎦<br />

If Pxy (, ), Qxy (, ),are Continuous on a domain D<br />

<strong>The</strong>n<br />

⎡Pxy<br />

(, ), Qxy (, ) ⎤<br />

⎢⎣<br />

⎥⎦<br />

is Path-Integrable in D<br />

12


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

4.<br />

Hyper-real Area Integral<br />

4.1 Area Integral of Pxy (, ) Definition<br />

Let<br />

Pxy (, )<br />

be a hyper-real function, defined on a bounded<br />

domain in the Hyper-Real Plane.<br />

Pxy (, ) may take infinite hyper-real values.<br />

An area element is<br />

dA<br />

= dxdy ,<br />

For each ( xy) , , there is an infinitesimal rectangular box with<br />

base area dA = dxdy , height Pxy (, ), and volume Pxydxdy (, ) .<br />

We form the Double Sum of all the volumes that are<br />

enclosed between the surface of<br />

Pxy (, ), and the Pxy (, )<br />

domain in the plane<br />

y= b x=<br />

a<br />

2 2<br />

∑∑ Pxydxdy (, ) .<br />

y= b x=<br />

a<br />

1 1<br />

If for any infinitesimals dx , and dy , the Double Sum equals<br />

the same hyper-real number, then<br />

Integrable over the plain domain.<br />

Pxy (, )<br />

is Hyper-Real<br />

13


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<strong>The</strong>n, we call the Double Integration Sum the Hyper-Real<br />

Area Integral of<br />

Pxy (, )<br />

over the Domain, and denote it by<br />

y= b x=<br />

a<br />

2 2<br />

∫ ∫ Pxydxdy (, ) .<br />

y= b x=<br />

a<br />

1 1<br />

If the number is an infinite hyper-real, then it equals<br />

y= b x=<br />

a<br />

2 2<br />

∫ ∫<br />

y= b x=<br />

a<br />

1 1<br />

Pxydxdy (, ) .<br />

If the number is a finite hyper-real, then its constant part<br />

y= b x=<br />

a<br />

2 2<br />

∫ ∫<br />

equals Pxydxdy (, ) . <br />

y= b x=<br />

a<br />

1 1<br />

<strong>The</strong> Integration Sum may take infinite hyper-real values,<br />

such as<br />

1<br />

( dx )( dy )<br />

, but may not equal to ∞ .<br />

Since there are countably many real numbers in the plane,<br />

4.2 <strong>The</strong> Integration Sum is countable.<br />

4.3 Continuous Pxy (, ) is Area-Integrable<br />

14


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

5.<br />

3-Space Surface Integral<br />

5.1 <strong>The</strong> Surface Area Element<br />

A point on a surface is determined by two parameters u , and<br />

v , so that in the xyz , , coordinate system,<br />

<br />

At the point ruv (,),<br />

⎡xuv<br />

(,) ⎤<br />

<br />

ruv (,) = yuv (,)<br />

.<br />

zuv (,)<br />

⎢⎣<br />

⎥⎦<br />

the tangent to the surface in the direction of u is<br />

<br />

∂r<br />

,<br />

∂u<br />

the tangent to the surface in the direction of v is<br />

<br />

∂r<br />

,<br />

∂v<br />

and the normal to the tangent plane is<br />

<br />

<br />

⎡ 1x 1y 1 ⎤<br />

z<br />

∂r<br />

∂r<br />

× = ∂ux ∂uy ∂uz<br />

∂u<br />

∂v<br />

∂vx ∂vy ∂vz<br />

⎢⎣<br />

⎥⎦<br />

⎛ (, yz) (, zx) (, xy)<br />

⎞<br />

= ∂ ,<br />

∂ ∂ ⎜⎝∂(,) uv ∂(,) uv ∂(,)<br />

uv ⎠ ⎟<br />

.<br />

15


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<strong>The</strong> unit normal is<br />

<br />

∂r ∂r<br />

×<br />

1 u v<br />

n<br />

= ∂ ∂<br />

, ∂ r ∂ r<br />

×<br />

∂u<br />

∂v<br />

<br />

⎡(1 , 1 ) ⎤<br />

x n<br />

<br />

= (1<br />

y, 1<br />

n)<br />

,<br />

<br />

⎢(1 z, 1<br />

n)<br />

⎣ ⎥⎦<br />

<br />

⎡cos(1 ,1 ) ⎤<br />

x n<br />

<br />

= cos(1<br />

y, 1<br />

n)<br />

.<br />

<br />

⎢ cos(1<br />

z, 1<br />

n)<br />

⎣ ⎥⎦<br />

<strong>The</strong> surface area element is<br />

<br />

∂r<br />

∂r<br />

dS = ( du) × ( dv)<br />

∂u<br />

∂v<br />

<br />

∂r<br />

∂r ∂r<br />

∂r<br />

<br />

= × dudv = × 1<br />

∂u<br />

∂v<br />

n<br />

dudv<br />

∂u<br />

∂v<br />

⎡∂(, yz)<br />

⎤<br />

dudv<br />

∂(,)<br />

uv<br />

∂(, xz)<br />

= dudv<br />

∂(,)<br />

uv<br />

(, xy)<br />

∂ dudv<br />

∂(,)<br />

uv<br />

⎢⎣<br />

⎥⎦<br />

<br />

⎡dydz<br />

⎤ ⎡<br />

dS ⎤ ⎡1<br />

x<br />

x<br />

dS ⎤<br />

⋅<br />

= dxdz<br />

= dS<br />

<br />

y<br />

= 1y<br />

dS<br />

⋅<br />

dxdy<br />

⎢⎣<br />

⎥ dS<br />

<br />

⎦ ⎢⎣<br />

z ⎥⎦<br />

⎢ 1z<br />

⋅ dS<br />

⎣ ⎥⎦<br />

5.2 Surface Integral of ϕ(,, xyz)<br />

Definition<br />

Let<br />

16


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

ϕ(,, xyz) = ϕ((, xuv),(, yuv),(, zuv))<br />

= ϕ(,),<br />

uv<br />

be hyper-real function, defined on a bounded surface<br />

<br />

ruv (,)<br />

in the Hyper-Real 3-space.<br />

ϕ (,) uv may take infinite hyper-real values.<br />

For each ( uv) , , there is an infinitesimal volume<br />

<br />

ϕ(,)1 uv ⋅ dS = ϕ(,,)<br />

xyzdydz.<br />

We form the Double Sum<br />

x<br />

z= c y=<br />

b<br />

2 2<br />

∑∑ ϕ(,, xyzdydz ) .<br />

z= c y=<br />

b<br />

1 1<br />

If for any infinitesimals dy , and dz , the Double Sum equals<br />

the same hyper-real number, then<br />

Integrable over the surface.<br />

ϕ(,, xyz)<br />

is Hyper-Real<br />

<strong>The</strong>n, we call the Double Integration Sum the Hyper-Real<br />

Surface Integral of<br />

ϕ(,)<br />

uv<br />

over the surface, and denote it by<br />

z= c y=<br />

b<br />

2 2<br />

∫ ∫ ϕ(,, xyzdydz ) .<br />

z= c y=<br />

b<br />

1 1<br />

If the number is an infinite hyper-real, then it equals<br />

z= c y=<br />

b<br />

2 2<br />

∫ ∫<br />

z= c y=<br />

b<br />

1 1<br />

ϕ(,,)<br />

xyzdydz.<br />

17


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

If the number is a finite hyper-real, then its constant part<br />

z= c y=<br />

b<br />

2 2<br />

∫ ∫<br />

equals ϕ(,,)<br />

xyzdydz.<br />

z= c y=<br />

b<br />

1 1<br />

<strong>The</strong> Integration Sum may take infinite hyper-real values,<br />

such as<br />

1<br />

( dy)( dz )<br />

, but may not equal to ∞ .<br />

Since there are countably many real numbers in the plane,<br />

5.3 <strong>The</strong> Integration Sum is countable.<br />

5.4 Continuous ϕ(,, xyz)<br />

is Surface-Integrable.<br />

18


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

6.<br />

Plane Curl<br />

Let Pxy (, ), and Qxy (, ), be hyper-real differentiable<br />

functions, defined on a rectangle with vertex at<br />

sides dx , dy .<br />

( x0,<br />

y<br />

0)<br />

and<br />

6.1 <strong>The</strong> Area Curl<br />

<strong>The</strong> circulation of ⎡Pxy<br />

(, ), Qxy (, ) ⎤ along the rectangle is<br />

⎢⎣<br />

⎥⎦<br />

<br />

Pxy (, )1x ⋅ 1<br />

ldl+ Qxy (, )1y ⋅1ldl.<br />

∫<br />

rectangle<br />

We define the area density of that circulation multiplied by<br />

⎡Pxy<br />

(, ) ⎤<br />

1 z<br />

as the Curl of<br />

Qxy (, )<br />

⎢⎣<br />

⎥⎦<br />

⎡Pxy<br />

(, ) ⎤ 1<br />

<br />

<br />

Curl <br />

= 1<br />

z<br />

Pxy ( , )1x ⋅ 1<br />

ldl+<br />

Qxy ( , )1 1 dl<br />

Qxy (, ) dxdy<br />

∫ y<br />

⋅<br />

l<br />

∇× ⎢⎣<br />

⎥⎦<br />

rectangle<br />

19


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

⎡Pxy<br />

(, ) ⎤ ∂x<br />

∂ <br />

6.2 Curl y<br />

<br />

1<br />

Qxy (, ) =<br />

Pxy (, ) Qxy (, )<br />

∇× ⎢⎣<br />

⎥⎦<br />

x , y x , y<br />

0 0 0 0<br />

z<br />

Proof:<br />

<br />

Since Pxy (, )1 ⋅ 1dl<br />

x<br />

l<br />

<br />

is nonzero when 1 is along the x axis,<br />

l<br />

the circulation path starts at<br />

( x 0, y 0)<br />

, and ends at ( x 0 , y 0 + dy)<br />

∫<br />

( x , y + dy)<br />

0 0<br />

<br />

Pxy (, )1 ⋅ 1 dl= Pxy (, )1 ⋅1dl<br />

x l x l<br />

rectangle ( x , y )<br />

∫<br />

0 0<br />

<br />

= Px ( , y)1 ⋅ 1 dx+ Px ( , y + y)1 ⋅( −1 ) dx<br />

0 0 x x 0 0 x x<br />

{ }<br />

= Px ( , y) − Px ( , y + y)<br />

dx.<br />

0 0 0 0<br />

⎧<br />

∂P<br />

= ⎪<br />

⎨−<br />

∂y<br />

⎪⎩<br />

x , y<br />

0 0<br />

⎫<br />

dy ⎪<br />

⎬dx<br />

.<br />

⎪⎭<br />

<br />

Since Qxy (, )1 ⋅ 1dl<br />

y<br />

l<br />

<br />

is nonzero when 1 is along the y axis,<br />

l<br />

20


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

the circulation path starts at<br />

( x + dx,<br />

y0 ) , and ends at<br />

0<br />

( x , y )<br />

0 0<br />

∫<br />

( x , y )<br />

0 0<br />

<br />

Qxy (, )1 ⋅ 1 dl= Qxy (, )1 ⋅1dl<br />

y l x l<br />

rectangle ( x + dx, y )<br />

∫<br />

0 0<br />

⎧⎪<br />

Q<br />

= ⎪∂<br />

⎨ ∂x<br />

⎪⎩<br />

<strong>The</strong>refore,<br />

<br />

= Q( x + dx, y )1 ⋅ 1 dy + P( x , y )1 ⋅( −1<br />

) dy<br />

0 0 y y 0 0 y y<br />

{ }<br />

= Qx ( + dxy , ) −Qx ( , y)<br />

dy.<br />

0 0 0 0<br />

x , y<br />

0 0<br />

⎫<br />

dx ⎪<br />

⎬dy<br />

.<br />

⎪<br />

⎭<br />

⎡Pxy<br />

(, ) ⎤ 1<br />

<br />

<br />

Curl <br />

= 1<br />

z<br />

Pxy ( , )1x ⋅ 1<br />

ldl+<br />

Qxy ( , )1 1 dl<br />

Qxy (, ) dxdy<br />

∫ y<br />

⋅<br />

l<br />

∇× ⎢⎣<br />

⎥⎦<br />

rectangle<br />

1<br />

⎧<br />

⎪ ∂P<br />

∂Q<br />

= − +<br />

⎪⎩<br />

<br />

= ( ∂ Q −∂ P)<br />

.<br />

1 z ⎨<br />

dxdy ⎪ ∂y x , y<br />

∂x<br />

x , y<br />

x y<br />

1z<br />

0 0 0 0<br />

⎫<br />

⎪<br />

⎬dxdy<br />

⎪⎭<br />

21


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

7.<br />

Plane Curl <strong>The</strong>orem<br />

Let Pxy (, ), and Qxy (, ), be hyper-real differentiable<br />

functions, defined on a plane domain S , enclosed in the loop<br />

∂S .<br />

7.1 Green’s Curl <strong>The</strong>orem<br />

∂S<br />

<br />

∂x<br />

∂y<br />

P(, x y)1x ⋅ 1<br />

ldl + Q(, x y)1y ⋅ 1ldl = ∫∫<br />

dxdy<br />

Pxy (, ) Qxy (, )<br />

∫ <br />

Proof: <strong>The</strong> sum of the { ∂ Q −∂ P dxdy over the<br />

infinitesimal rectangles enclosed in a plane area S ,<br />

equals the sum of the circulations<br />

<br />

Pxy (, )1 ⋅ 1 dl+ Qxy (, )1 ⋅1dl<br />

∫<br />

rectangle<br />

x<br />

S<br />

y<br />

}<br />

x l y l<br />

over the sides of the infinitesimal rectangles enclosed in the<br />

area S ,<br />

Q P dxdy P (, x y <br />

)1 1 dl Q (, x y <br />

∂ −∂ = ⋅ + )1 ⋅1<br />

dl<br />

y = b x = a y = b x = a<br />

2 2 2 2<br />

∑∑ { } ∑ ∑<br />

x y x l y l<br />

y= b x= a y= b x=<br />

a<br />

1 1 1 1<br />

<strong>The</strong> sum over the areas is<br />

∫∫ { ∂xQ(, x y) −∂yP(, x y)<br />

} dxdy .<br />

S<br />

22


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<strong>The</strong> Interior path integrals of<br />

<br />

Pxy (, )1 ⋅ 1dl, and<br />

∫<br />

rectangle<br />

x<br />

l<br />

∫<br />

rectangle<br />

<br />

Qxy (, )1 ⋅ 1dl,<br />

appear in pairs of opposite signs and cancel, leaving the<br />

Integral over the boundary line,<br />

<br />

P(, x y)1 ⋅ 1 dl + Q(, x y)1 ⋅ 1dl = ∂ Q −∂ P dxdy<br />

∫ x l y l ∫∫ { x y } .<br />

∂S<br />

S<br />

y<br />

l<br />

23


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

8.<br />

<strong>The</strong> <strong>Infinitesimal</strong> <strong>Circulation</strong><br />

<strong>The</strong>orem<br />

Let Pxyz (,, ), Qxyz (,, ), Rxyz (,, ) be hyper-real differentiable<br />

functions, defined on an infinitesimal area element dS .<br />

8.1 <strong>Infinitesimal</strong> <strong>Circulation</strong> <strong>The</strong>orem in 3-Space<br />

∫ ∫∫ <br />

∂( dS )<br />

P(,, x y z) dx + Q(,, x y z) dy + R(,, x y z)<br />

dz = dPdx + dQdy + dRdz<br />

Proof:<br />

A point on dS is determined by two parameters u , and v ,<br />

that define a uv plane<br />

dS<br />

Hence,<br />

x<br />

= x(,)<br />

u v , y = y(,)<br />

u v , z = z(,)<br />

u v<br />

Pxyz (,, ) = Pxu ((),(),()) yu zu = Puv (, )<br />

Qxyz (,, ) = Qxu ((),(),()) yu zu = Quv (, )<br />

Rxyz (,, ) = Rxu ((),(),()) yu zu = Ruv (, )<br />

Thus,<br />

Pxyzdx (,, ) + Qxyzdy (,, ) + Rxyzdz (,, )<br />

=<br />

24


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

= P(,)[ u v x du + x dv] + Q(,)[ u v y du + y dv] + R(,)[ u v z du + z dv]<br />

u v u v u v<br />

{ (,) (,) (,) } { (,) (,) (,) }<br />

= Puvx + Quvy + Ruvz du+ Puvx + Quvy + Ruvz dv<br />

<strong>The</strong>refore,<br />

∂( dS )<br />

u u u v v v<br />

∫ Pxyzdx (,, ) + Qxyzdy (,, ) + Rxyzdz (,, ) =<br />

∫<br />

∂( dS )<br />

{ (,) (,) (,) } { (,) (,) (,) }<br />

= Puvx + Quvy + Ruvz du+ Puvx + Quvy + Ruvz dv<br />

u u u v v v<br />

By the Curl <strong>The</strong>orem in the plane,<br />

=<br />

∫∫<br />

dS<br />

∂<br />

u<br />

Puvx (,) + Quvy (,) + Ruvz (,) Puvx (,) + Quvy (,) + Ruvz (,)<br />

u u u v v v<br />

∂<br />

v<br />

dudv<br />

Now,<br />

∂<br />

u<br />

Px + Qy + Rz P(,)<br />

u v x + Qy + Rz<br />

u u u v v v<br />

∂<br />

v<br />

dudv<br />

=<br />

{ ⎡ Px u v<br />

Px vu<br />

Qy u v<br />

Qy vu<br />

Rz u v<br />

Rz vu<br />

=<br />

⎣<br />

+ + + + +<br />

− ⎡Px v u<br />

Pxuv Qy<br />

v u<br />

Qyuv Rz<br />

v u<br />

Rz ⎤<br />

⎣<br />

+ + + + +<br />

uv ⎦<br />

dudv =<br />

= ( P x − P x ) dudv + ( Q y − Q y ) dudv + ( R z −R z ) dudv<br />

<br />

u v v u u v v u u v v u<br />

∂( Px , ) ∂( Qy , ) ∂( Rz , )<br />

∂( uv , ) ∂( uv , ) ∂( uv , )<br />

∂( Px , ) ∂( Qy , ) ∂( Rz , )<br />

= dudv + dudv + dudv<br />

∂(,) uv ∂(,) uv ∂(,)<br />

uv<br />

= dPdx + dQdy + dRdz .<br />

Consequently,<br />

⎤<br />

⎦<br />

}<br />

25


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

P(,, x y z) dx + Q(,, x y z) dy + R(,, x y z)<br />

dz = dPdx + dQdy + dRdz .<br />

∫<br />

∂( dS )<br />

∫∫<br />

dS<br />

<strong>The</strong> Proof shows that the <strong>Circulation</strong> <strong>The</strong>orem holds for any<br />

number of any dimensions in this form.<br />

That is,<br />

8.2 <strong>Infinitesimal</strong> <strong>Circulation</strong> <strong>The</strong>orem in n-Space<br />

∫<br />

∂( dS )<br />

Pi( x1,... xn)<br />

dxi = ∫∫dPdx<br />

i i<br />

, for any n ≥ 2<br />

dS<br />

26


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

9.<br />

Meaning of<br />

∫∫<br />

dS<br />

dPdx<br />

+ dQdy<br />

Under positive right hand orientation, the infinitesimals are<br />

anti-commutative. That is,<br />

And<br />

dxdy =−dydx .<br />

dxdx = 0 , dydy = 0 .<br />

dPdx + dQdy = ( P dx + P dy) dx + ( Q dx + Q dy)<br />

dy<br />

x y x y<br />

= Pxdxdx + Pydydx <br />

+ Qxdxdy + Qydydy<br />

<br />

x<br />

0 −dxdy<br />

0<br />

= Qdxdy−Pdxdy<br />

y<br />

27


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

10.<br />

Meaning of<br />

∫∫<br />

dS<br />

dPdx + dQdy + dRdz<br />

Under positive right hand orientation, the infinitesimals are<br />

anti-commutative. That is,<br />

And<br />

dydz<br />

=− dzdy , dzdx =−dxdz<br />

, dxdy =−dydx<br />

.<br />

dxdx = 0 , dydy = 0 , dzdz = 0.<br />

dPdx = ( P dx + P dy + P dz)<br />

dx<br />

x y z<br />

That is,<br />

10.1 Pdy + Pdz is the diagonal in the rectangle with sides<br />

y<br />

z<br />

Pdy<br />

y<br />

, and Pdz. That diagonal is perpendicular to dx<br />

z<br />

dP dx is the area of the rectangle with sides dx , and<br />

Pdy<br />

y<br />

+ Pdz.<br />

z<br />

28


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

10.2 <strong>The</strong> <strong>Infinitesimal</strong> 3-Space <strong>Circulation</strong> <strong>The</strong>orem implies<br />

the <strong>Infinitesimal</strong> 3-Space Curl <strong>The</strong>orem.<br />

Proof:<br />

dPdx + dQdy + dRdz = ( P dx + P dy + P dz)<br />

dx +<br />

x y z<br />

+ ( Qdx+ Qdy+<br />

Qdzdy )<br />

x y z<br />

+<br />

+ ( Rdx+ Rdy+<br />

Rdzdz )<br />

x y z<br />

= Pxdxdx + Pydydx <br />

+ Pzdzdx<br />

0<br />

−dxdy<br />

+ Qxdxdy + Qydydy <br />

+ Qzdzdy<br />

<br />

0<br />

−dydz<br />

+<br />

+<br />

+ R dxdz + R dydz + R dzdz<br />

x y z<br />

−dzdx<br />

<br />

0<br />

= ( Q − P ) dxdy + ( P − R ) dzdx + ( R −Q ) dydz<br />

x y z x y z<br />

29


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

11.<br />

Meaning of<br />

∫∫<br />

dS<br />

dPdx + dQdy + dRdz + dSdt<br />

Under positive right hand orientation, the infinitesimals are<br />

anti-commutative. That is,<br />

dydz<br />

dzdy<br />

=− dzdy , dzdx =−dxdz<br />

, dxdy =−dydx<br />

,<br />

=− dydz , dz dt =−dtdz<br />

, dtdx =−dxdt<br />

.<br />

<strong>The</strong>refore,<br />

dxdx = 0 , dydy = 0 , dzdz = 0,<br />

dtdt = 0<br />

dPdx = ( P dx + P dy + P dz + Pdt)<br />

dx<br />

x y z t<br />

11.1 Pdy Pdz Pdt is the diagonal in the box with sides<br />

y<br />

z<br />

+ + t<br />

Pdy<br />

y<br />

, Pdz<br />

z<br />

, and Pdt<br />

t<br />

. That diagonal is perpendicular<br />

to dx<br />

dP dx is the area of the rectangle with sides dx , and<br />

Pdy y<br />

+ Pdz z<br />

+ Pdt t .<br />

11.2 <strong>The</strong> <strong>Infinitesimal</strong> 4-Space <strong>Circulation</strong> <strong>The</strong>orem implies<br />

the <strong>Infinitesimal</strong> 4-Space Curl <strong>The</strong>orem.<br />

Proof:<br />

30


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

dPdx + dQdy + dRdz + dSdt = ( P dx + P dy + P dz + Pdt)<br />

dx +<br />

x y z t<br />

+ ( Q dx + Q dy + Q dz + Q dt)<br />

dy<br />

x y z t<br />

+ ( R dx + R dy + R dz + R dt)<br />

dz<br />

x y z t<br />

+<br />

+<br />

+ ( S dx + S dy + S dz + S dt)<br />

dt<br />

x y z t<br />

= Pxdxdx + Pydydx <br />

+ Pzdzdx + Pdtdx<br />

t<br />

0<br />

−dxdy<br />

+<br />

+ Qxdxdy + Qydydy <br />

+ Qzdzdy <br />

+ Qtdtdy<br />

<br />

+<br />

0<br />

−dydz<br />

−dydt<br />

+ R dxdz + R dydz + R dzdz + R dtdz +<br />

x y z t<br />

−dzdx<br />

0 −dzdt<br />

+ S dxdt + S dydt + S dzdt + S dtdt<br />

x y z t<br />

−dtdx<br />

<br />

0<br />

= ( Q − P ) dxdy + ( P − R ) dzdx + ( R −Q ) dydz<br />

x y z x y z<br />

+ ( P − S ) dtdx + ( S − Q ) dydt + ( S −R ) dzdt<br />

t x y t z t<br />

31


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

12.<br />

<strong>Circulation</strong> <strong>The</strong>orem<br />

We shall state, and prove the theorem for<br />

n = 3. <strong>The</strong> proof<br />

extends to any<br />

n ≥ 2<br />

Let Pxyz (,, ), Qxyz (,, ), Rxyz (,, ), be hyper-real differentiable<br />

functions, defined on a surface Σ , with closed boundary ∂Σ.<br />

8.1 3-Space <strong>Circulation</strong> <strong>The</strong>orem<br />

∫ ∫∫ <br />

∂Σ<br />

P(,,) x y z dx + Q(,,) x y z dy + R(,,)<br />

x y z dz = dPdx + dQdy + dRdz<br />

Proof: <strong>The</strong> sum of the dP dx + dQdy + dRdz over the<br />

infinitesimal rectangles enclosed in the plane area Σ ,<br />

equals the sum of the circulations<br />

That is,<br />

z= c y= b x=<br />

a<br />

∫ P (,,) x y z dx + Q (,,) x y z dy + R (,,) x y z dz .<br />

sides of rectangles<br />

bounding 3-box<br />

2 2 2<br />

∑∑∑ dPdx + dQdy + dRdz =<br />

z= c1 y= b1 x=<br />

a1<br />

Σ<br />

32


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

x = a y = b z = c<br />

2 2 2<br />

∑ ∫ ∑ ∫ ∑ ∫ .<br />

= Pxyzdx (,, ) + Qxyzdy (,, ) +<br />

Rxyzdz (,, )<br />

x= a1 sides of y= b1 sides of z=<br />

c1<br />

sides of<br />

rectangles rectangles rectangles<br />

<strong>The</strong> sum over the areas is<br />

∫∫ dPdx + dQdy + dRdz .<br />

<strong>The</strong> Interior path integrals of<br />

Σ<br />

x = a y = b z = c<br />

2 2 2<br />

∑ ∫ ∑ ∫ ∑ ∫<br />

Pxyzdx ( , , ) + Qxyzdy ( , , ) +<br />

Rxyzdz ( , , )<br />

x= a1 sides of y= b1 sides of z=<br />

c1<br />

sides of<br />

rectangles rectangles rectangles<br />

appear in pairs of opposite signs and cancel, leaving the<br />

Integral over the boundary line,<br />

∫ ∫∫ <br />

∂Σ<br />

P(,,) x y z dx + Q(,,) x y z dy + R(,,)<br />

x y z dz = dPdx + dQdy + dRdz<br />

Σ<br />

References<br />

[Dan1] Dannon, H. Vic, “<strong>Infinitesimal</strong>s” in <strong>Gauge</strong> Institute Journal<br />

Vol.6 No 4, November 2010;<br />

[Dan2] Dannon, H. Vic, “<strong>Infinitesimal</strong> Calculus” in <strong>Gauge</strong> Institute<br />

Journal Vol.7 No 4, November 2011;<br />

[Dan3] Dannon, H. Vic, “<strong>Infinitesimal</strong> Vector Calculus” in <strong>Gauge</strong><br />

Institute Journal, December, 2011;<br />

[Dan4] Dannon, H. Vic, “4-Space Curl is a 4-Vector” in <strong>Gauge</strong> Institute<br />

Journal, January 2012;<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!