04.06.2015 Views

Space-Time Curves and Surfaces - Gauge-institute.org

Space-Time Curves and Surfaces - Gauge-institute.org

Space-Time Curves and Surfaces - Gauge-institute.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<strong>Space</strong>-<strong>Time</strong> <strong>Curves</strong> <strong>and</strong><br />

<strong>Surfaces</strong><br />

H. Vic Dannon<br />

vic0@comcast.net<br />

June, 2013<br />

Abstract<br />

The Differential Geometry of <strong>Space</strong>-<strong>Time</strong><br />

<strong>Curves</strong> <strong>and</strong> surfaces, requires the Cross-Product of 4 -<br />

vectors.<br />

A 3-space curve<br />

<br />

xs ()<br />

, parametrized by its arc-length s , is<br />

characterized by two curvature functions κ () s , <strong>and</strong> τ () s . At<br />

<br />

each point along xs (), the Tangent unit vector<br />

<br />

x '( s)<br />

Ts () ≡ 1x<br />

'( s)<br />

x '( s)<br />

= <br />

,<br />

<strong>and</strong> the Normal unit vector<br />

<br />

T '( s)<br />

<br />

Ns () ≡ = 1T<br />

,<br />

'( s)<br />

T '( s)<br />

define the Binormal unit vector<br />

<br />

1x 1y 1<br />

<br />

z<br />

Bs () ≡ T× N = T T T<br />

1 2 3<br />

N N N<br />

1 2 3<br />

.<br />

1


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

<br />

The Derivatives T '( s)<br />

, N '( s)<br />

, B'( s)<br />

, in the Frenet Frame, T ,<br />

N <br />

, B <br />

, satisfy the Frenet Differential Equation.<br />

<br />

A 4-space curve xs (), parametrized by its arc-length s , is<br />

characterized by three curvature functions κ () s , τ()<br />

s , <strong>and</strong><br />

<br />

ω () s . At each point along xs (), the Tangent unit vector<br />

<br />

x '( s)<br />

Ts () ≡ 1x<br />

'( s)<br />

x '( s)<br />

= <br />

,<br />

<strong>and</strong> the Normal unit vector<br />

<br />

T '( s)<br />

<br />

Ns () ≡ = 1T<br />

,<br />

'( s)<br />

T '( s)<br />

define the Binormal unit vector<br />

<br />

Bs () ≡ T×<br />

N,<br />

which is believed to have six components.<br />

Clearly, the Curve Equations cannot be written as a mixture<br />

of 4-vectors, <strong>and</strong> 6-vectors.<br />

Thus, the Fundamental Differential Equations of <strong>Space</strong>-time<br />

<strong>Curves</strong> were not developed.<br />

<br />

A 3-space surface xuv (,), with components along the axes<br />

xyz , , ,<br />

is parametrized by two linearly independent families<br />

of curves, u , <strong>and</strong> v .<br />

<br />

At each point on xuv (,), the Tangent Vector along u<br />

2


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

<strong>and</strong> the Tangent Vector along v<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

u<br />

v<br />

define the Normal to the surface,<br />

x <br />

u(,) u v x <br />

v(,) u v n <br />

× ≡ (,) u v .<br />

<br />

The Derivatives xuu (,) u v , x <br />

uv(,) u v x <br />

vu(,)<br />

u v <br />

= , <strong>and</strong> xvv (,) u v in<br />

the Gauss Frame, x , x <br />

, x × x , satisfy the Gauss<br />

u<br />

v<br />

Differential Equations.<br />

The Derivatives ∂ , <strong>and</strong> ∂ in the Gauss Frame satisfy<br />

u n<br />

v n<br />

the Weingarten Differential Equations.<br />

<br />

A <strong>Space</strong>-time surface xuv (,), with components along the axes<br />

u<br />

v<br />

u<br />

v<br />

xyzt , , ,<br />

is parametrized by two linearly independent families<br />

of curves, u , <strong>and</strong> v .<br />

<br />

At each point on xuv (,), the Tangent Vector along u<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

<strong>and</strong> the Tangent Vector along v<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

define the Normal to the surface,<br />

x <br />

(,) u v x <br />

× (,) u v ,<br />

which is believed to have six components.<br />

u<br />

v<br />

u<br />

u<br />

v<br />

v<br />

3


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Clearly, the <strong>Space</strong>-time Differential Equations cannot be<br />

written as a mixture of 4-vectors, <strong>and</strong> 6-vectors.<br />

Thus, the Fundamental Differential Equations of <strong>Space</strong>-time<br />

<strong>Surfaces</strong> were not developed.<br />

Recently, we showed that the cross product of 4-vectors is a<br />

4-vector, <strong>and</strong> supplied the correct formula for it.<br />

Applying this formula to <strong>Space</strong>-time Vectors, we obtain the<br />

Differential Equations for <strong>Space</strong>-time <strong>Curves</strong>, for <strong>Space</strong>-time<br />

surfaces, <strong>and</strong> for the Normals to a surface in <strong>Space</strong> time.<br />

Keywords: Infinitesimal, Infinite-Hyper-real, Hyper-real,<br />

Cardinal, Infinity. Non-Archimedean, Calculus, Limit,<br />

Continuity, Derivative, Integral, Gradient, Divergence, Curl,<br />

<strong>Space</strong>-time Vectors Fields<br />

2000 Mathematics Subject Classification 26E35; 26E30;<br />

26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15;<br />

46S20; 97I40; 97I30.<br />

4


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Contents<br />

Introduction<br />

1. 4-<strong>Space</strong> Curl<br />

2. Cross Product of 4-Vectors<br />

3. <strong>Space</strong>-time Curve Frame<br />

4. <strong>Space</strong>-time Curve Equations<br />

5. <strong>Space</strong>-time Surface Frame<br />

6. <strong>Space</strong>-time Surface Curvatures<br />

7. <strong>Space</strong>-time Surface Equations, <strong>and</strong> Christoffel Curvatures<br />

8. <strong>Space</strong>-time Normals Equations, <strong>and</strong> Curvatures<br />

References.<br />

5


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Introduction<br />

0.1 <strong>Space</strong>-time Curve<br />

<br />

A 3-space curve xs (), parametrized by its arc-length s , is<br />

characterized by two curvature functions κ () s , <strong>and</strong> τ () s . At<br />

<br />

each point along xs (), the Tangent unit vector<br />

<br />

x '( s)<br />

Ts () ≡ 1x<br />

'( s)<br />

x '( s)<br />

= <br />

,<br />

<strong>and</strong> the Normal unit vector<br />

<br />

T '( s)<br />

<br />

Ns () ≡ = 1T<br />

,<br />

'( s)<br />

T '( s)<br />

define the Binormal unit vector<br />

<br />

1 1 1<br />

<br />

Bs () ≡ T× N = T T T<br />

N N N<br />

x y z<br />

1 2 3<br />

1 2 3<br />

<br />

<br />

The Derivatives T '( s)<br />

, N '( s)<br />

, B'( s)<br />

, in the Frenet Frame T ,<br />

N , B , satisfy the Frenet Differential Equations.<br />

<br />

<br />

⎡T '( s) ⎤ ⎡ 0 κ( s) 0 ⎤ ⎡T( s)<br />

⎤<br />

<br />

N '( s) κ( s) 0 τ( s) <br />

= −<br />

N( s)<br />

.<br />

<br />

B'( s) 0 −τ( s) 0<br />

<br />

⎢ ⎥ ⎢⎣<br />

⎥⎦<br />

⎢B( s)<br />

⎣ ⎦ ⎣ ⎥⎦<br />

The Differential Geometry of <strong>Space</strong>-time <strong>Curves</strong> requires the<br />

.<br />

6


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Cross-Product of 4-vectors.<br />

<br />

A space-time curve xs (), parametrized by its arc-length s , is<br />

characterized by three curvature functions κ () s , τ()<br />

s , <strong>and</strong><br />

<br />

ω () s . At each point along xs (), the Tangent unit vector<br />

<br />

x '( s)<br />

Ts () ≡ 1x<br />

'( s)<br />

x '( s)<br />

= <br />

,<br />

<strong>and</strong> the Normal unit vector<br />

<br />

T '( s)<br />

<br />

Ns () ≡ = 1T<br />

,<br />

'( s)<br />

T '( s)<br />

define the Binormal unit vector<br />

<br />

Bs () ≡ T×<br />

N,<br />

provided the cross product of space-time vectors is a spacetime<br />

vector.<br />

It is not self evident how the Spatial Cross-Product, with its<br />

<br />

1 x , 1y , <strong>and</strong> 1z components may be generalized to a <strong>Space</strong>time<br />

Cross-product with 1 x , 1y ,1z , <strong>and</strong> 1t<br />

components.<br />

For instance, we can add a column to obtain<br />

<br />

1x 1y 1z 1t<br />

Ax Ay Az At<br />

,<br />

Bx By Bz Bt<br />

? ? ? ?<br />

7


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

but what will be a fourth raw of that 4 × 4 determinant?<br />

It is less evident how the fact that there are six terms of the<br />

form<br />

AB<br />

− AB<br />

i j j i<br />

that determine the 4-space Cross Product, lead to the belief<br />

that the 4-<strong>Space</strong> cross product is six dimensional.<br />

Clearly, the Curve Differential Equations cannot be written<br />

as a mixture of 4-vectors, <strong>and</strong> 6-vectors.<br />

Thus, the Fundamental Differential Equations of <strong>Space</strong>-time<br />

<strong>Curves</strong> were not developed.<br />

0.2 <strong>Space</strong>-time Surface<br />

<br />

A 3-space surface xuv (,), with components along the axes<br />

xyz , , ,<br />

is parametrized by two linearly independent families<br />

of curves, u , <strong>and</strong> v .<br />

<br />

At each point on xuv (,), the Tangent Vector along u<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

<strong>and</strong> the Tangent Vector along v<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

define the Normal to the surface,<br />

x <br />

(,) u v x <br />

(,) u v n <br />

× ≡ (,) u v .<br />

u<br />

u<br />

v<br />

v<br />

u<br />

v<br />

8


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

The Derivatives xuu (,) u v , x <br />

uv(,) u v x <br />

vu(,)<br />

u v <br />

= , <strong>and</strong> xvv (,) u v in<br />

the Gauss Frame, x , x <br />

, x × x , satisfy the Gauss<br />

u<br />

v<br />

Differential Equations.<br />

The Derivatives ∂ , <strong>and</strong> ∂ in the Gauss Frame satisfy<br />

u n<br />

the Weingarten Differential Equations.<br />

v n<br />

The Differential Geometry of <strong>Space</strong>-time <strong>Surfaces</strong> requires<br />

the Cross-Product of 4-vectors.<br />

<br />

A <strong>Space</strong>-time surface xuv (,), with components along the axes<br />

u<br />

v<br />

xyzt , , ,<br />

is parametrized by two linearly independent families<br />

of curves, u , <strong>and</strong> v .<br />

<br />

At each point on xuv (,), the Tangent Vector along u<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

<strong>and</strong> the Tangent Vector along v<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

define the Normal to the surface,<br />

x <br />

(,) u v x <br />

× (,) u v ,<br />

which is believed to have six components.<br />

u<br />

v<br />

u<br />

Clearly, the Surface Differential Equations cannot be<br />

written as a mixture of 4-vectors, <strong>and</strong> 6-vectors.<br />

u<br />

v<br />

v<br />

9


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Thus, the Fundamental Differential Equations of <strong>Space</strong>-time<br />

<strong>Surfaces</strong> were not developed.<br />

0.3 Correct <strong>Space</strong>-time Cross Product<br />

Recently, we showed that the cross product of 4-vectors is a<br />

4-vector, <strong>and</strong> supplied the correct formula for it.<br />

In [Dan4], we showed that the 4-space curl is a 4-vector, <strong>and</strong><br />

supplied the correct formula for it. In [Dan5], we obtained<br />

the Cross-Product of 4-vectors, for space-time<br />

Electromagnetic Vector Fields.<br />

Applying this formula to <strong>Space</strong>-time Vectors, we obtain the<br />

Differential Equations for <strong>Space</strong>-time <strong>Curves</strong>, for <strong>Space</strong>-time<br />

surfaces, <strong>and</strong> for the Normals to a surface in <strong>Space</strong> time.<br />

10


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

1.<br />

Curl of 4-Vectors<br />

Let Pxyzt (,,,), Qxyzt (,,,), Rxyzt (,,,), <strong>and</strong> Sxyzt (,,,) be hyperreal<br />

differentiable functions, defined on an infinitesimal area<br />

element dS .<br />

the unit vectors<br />

dS projects onto six 2-planes generated by<br />

<br />

1 x ,1y ,1z , <strong>and</strong> 1t .<br />

<br />

x-y projection with area dxdy <strong>and</strong> normal 1x<br />

× 1y<br />

= 1 z<br />

<br />

y-z projection with area dydz <strong>and</strong> normal 1y<br />

× 1z<br />

= 1 t<br />

<br />

z-t projection with area dz dt <strong>and</strong> normal 1z<br />

× 1t<br />

= 1 x<br />

<br />

t-x projection with area dt dx <strong>and</strong> normal 1t<br />

× 1x<br />

= 1 y<br />

11


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

t-y projection with area dtdy <strong>and</strong> normal<br />

<br />

1t × 1<br />

y<br />

= (1y × 1<br />

z) × 1y = 1<br />

z<br />

(1y ⋅1 y) −1 y(1z ⋅ 1<br />

y) = 1<br />

z<br />

1 0<br />

z-x projection with area dzdx <strong>and</strong> normal<br />

<br />

1z × 1<br />

x<br />

= (1x × 1<br />

y) × 1x = 1<br />

y(1x ⋅1 x) −1 x<br />

(1y ⋅ 1<br />

x) = 1<br />

y<br />

1 0<br />

The projected areas are<br />

<br />

dSx = 1x ⋅ 1ndS = dzdt ,<br />

<br />

dSy = 1y ⋅ 1ndS = dtdx + dzdx ,<br />

<br />

dSz = 1z ⋅ 1ndS = dxdy + dtdy ,<br />

<br />

dS = 1 ⋅ 1 dS = dydz<br />

t t n<br />

The projections areas are walls of a box with vertex at<br />

( x0, y0, z0, t0)<br />

<strong>and</strong> sides dx , dy , dz , <strong>and</strong> dt .<br />

12


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Given positive orientation of a right h<strong>and</strong> system,<br />

⎡Pxyzt<br />

(,,,) ⎤ 1<br />

<br />

∇× = 1 Pxyzt ( , , , )1 ⋅ 1 dl+ Qxyzt ( , , , )1 ⋅ dl<br />

Qxyzt (,,,)<br />

∫ y<br />

1l<br />

,<br />

⎢⎣<br />

⎥⎦<br />

z x l<br />

dxdy ∂ ( dS )<br />

z<br />

=<br />

∂<br />

x<br />

∂<br />

Pxyzt (,,,) Qxyzt (,,,)<br />

y<br />

x , y , z , t<br />

0 0 0 0<br />

<br />

1<br />

z<br />

⎡Qxyzt<br />

(,,,) ⎤ 1<br />

<br />

∇× = 1 Qxyzt ( , , , )1 ⋅ 1 dl+ Rxyzt ( , , , )1 ⋅ dl<br />

Rxyzt (,,,)<br />

∫ z<br />

1l<br />

,<br />

⎢⎣<br />

⎥⎦<br />

t y l<br />

dydz ∂ ( dS )<br />

t<br />

=<br />

∂<br />

y<br />

∂<br />

Qxyzt (,,,) Rxyzt (,,,)<br />

z<br />

x , y , z , t<br />

0 0 0 0<br />

<br />

1<br />

t<br />

⎡Rxyzt<br />

(,,,) ⎤ 1<br />

<br />

∇× = 1 Rxyzt ( , , , )1 ⋅ 1 dl+ Sxyzt ( , , , )1 ⋅ dl<br />

Sxyzt (,,,)<br />

∫ t<br />

1l<br />

,<br />

⎢⎣<br />

⎥⎦<br />

x z l<br />

dzdt ∂ ( dS )<br />

x<br />

=<br />

∂<br />

z<br />

∂<br />

Rxyzt (,,,) Sxyzt (,,,)<br />

t<br />

x , y , z , t<br />

0 0 0 0<br />

<br />

1 .<br />

x<br />

⎡Sxyzt<br />

(,,,) ⎤ 1<br />

<br />

∇× = 1 Sxyzt ( , , , )1 ⋅ 1 dl+ Pxyzt ( , , , )1 ⋅ dl<br />

Pxyzt (,,,)<br />

∫ x<br />

1l<br />

,<br />

⎢⎣<br />

⎥⎦<br />

y t l<br />

dtdx ∂ ( dS )<br />

y<br />

=<br />

∂<br />

t<br />

∂<br />

Sxyzt (,,,) Pxyzt (,,,)<br />

x<br />

x , y , z , t<br />

0 0 0 0<br />

<br />

1<br />

y<br />

⎡Sxyzt<br />

(,,,) ⎤ 1<br />

<br />

∇× = 1 Sxyzt ( , , , )1 ⋅ 1 dl+ Qxyzt ( , , , )1 ⋅ dl<br />

Qxyzt (,,,)<br />

∫ y<br />

1l<br />

,<br />

⎢⎣<br />

⎥⎦<br />

z t l<br />

dtdy ∂ ( dS )<br />

z<br />

13


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

=<br />

∂<br />

t<br />

∂<br />

Sxyzt (,,,) Qxyzt (,,,)<br />

y<br />

x , y , z , t<br />

0 0 0 0<br />

<br />

1<br />

z<br />

⎡Pxyzt<br />

(,,,) ⎤ 1<br />

<br />

∇× = 1 Pxyzt ( , , , )1 ⋅ 1 dl+ Rxyzt ( , , , )1 ⋅ dl<br />

Rxyzt (,,,)<br />

∫ z<br />

1l<br />

,<br />

⎢⎣<br />

⎥⎦<br />

y x l<br />

dzdx ∂ ( dS )<br />

y<br />

=<br />

∂<br />

x<br />

∂<br />

Pxyzt (,,,) Rxyzt (,,,)<br />

z<br />

x , y , z , t<br />

0 0 0 0<br />

<br />

1<br />

y<br />

The 4-space Curl is the sum of the six area curls. That is,<br />

⎡Pxyzt<br />

(,,,) ⎤<br />

Qxyzt (,,,)<br />

∇× Rxyzt (,,,)<br />

=<br />

Sxyzt (,,,)<br />

⎢⎣<br />

⎥⎦<br />

⎡R⎤ ⎡S ⎤ ⎡P⎤ ⎡P⎤ ⎡S ⎤ ⎡Q⎤<br />

= ∇× S +∇× +∇× +∇× +∇× +∇×<br />

P R Q Q<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢R<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ <br />

⎣ ⎦ ⎣ ⎥⎦<br />

∂z ∂ <br />

t<br />

∂t ∂ <br />

x<br />

∂x ∂ <br />

z<br />

∂x ∂ <br />

y<br />

∂t ∂ <br />

y<br />

∂y ∂ <br />

z<br />

1x 1y 1y 1z 1z<br />

1<br />

R S S P P R P Q S Q Q R t<br />

⎛ Sz<br />

R ⎞<br />

−<br />

t<br />

Pt Sx Rx P<br />

− + −<br />

z<br />

= .<br />

Qx Py Qt S<br />

− + −<br />

y<br />

⎜<br />

⎜⎝ Ry<br />

−Q<br />

z ⎠⎟<br />

14


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

2.<br />

Cross-Product of 4-Vectors<br />

2.1 The Cross-product of 4-vectors is the sum of six crossproducts<br />

of 2-vectors, That is,<br />

⎡A<br />

⎤ ⎡B<br />

⎤<br />

x<br />

x<br />

A y<br />

B ⎡<br />

y<br />

A ⎤ ⎡<br />

z<br />

B ⎤ ⎡<br />

z<br />

A ⎤ ⎡<br />

t<br />

B ⎤ ⎡<br />

t<br />

A ⎤ ⎡<br />

x<br />

B ⎤<br />

x<br />

A × z<br />

B = z<br />

A × t<br />

B + t<br />

A × x<br />

B + x<br />

A ×<br />

z<br />

B<br />

⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣ z ⎥⎦<br />

A<br />

t<br />

B<br />

<br />

⎢ ⎥ ⎢ t ⎥ Az A <br />

t<br />

At A <br />

x<br />

Ax A <br />

⎣ ⎦ ⎣ ⎦ z<br />

1x<br />

1y<br />

1<br />

B B B B B B y<br />

z t t x x z<br />

+<br />

⎡A ⎤ ⎡B ⎤ ⎡A ⎤ ⎡B ⎤ ⎡A ⎤ ⎡B<br />

⎤<br />

+ × + × + ×<br />

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣<br />

⎦ ⎣ ⎦<br />

x x t t y<br />

y<br />

A y<br />

B y<br />

A y<br />

B y<br />

A z<br />

B<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ z ⎥<br />

Ax A <br />

y<br />

At A <br />

y<br />

Ay A <br />

z<br />

1z<br />

1z<br />

1<br />

B B B B B B t<br />

x y t y y z<br />

⎡ Az<br />

A ⎤<br />

t<br />

Bz<br />

B<br />

t<br />

At Ax Ax A<br />

z<br />

+<br />

Bt Bx Bx B<br />

z<br />

= Ax Ay At A<br />

y<br />

+<br />

Bx By Bt By<br />

Ay<br />

Az<br />

⎢ By<br />

B<br />

⎣<br />

z ⎥<br />

⎦<br />

.<br />

15


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

2.2 1 × 1 = 1<br />

x<br />

y<br />

<br />

1 × 1 =<br />

y<br />

z<br />

z<br />

<br />

1<br />

<br />

1 × 1 = 1<br />

z<br />

t<br />

t<br />

x<br />

<br />

1 × 1 = 1<br />

t<br />

x<br />

y<br />

Proof:<br />

⎡1⎤<br />

⎡0⎤<br />

0 1 Ax<br />

A <br />

y<br />

1 0 <br />

1x × 1y = 1z 1z<br />

0 × 0 = = .<br />

Bx<br />

By<br />

0 1<br />

0 0<br />

⎢⎣ ⎥⎦<br />

⎢⎣ ⎥⎦<br />

<br />

2.3 A× B = − B×<br />

A<br />

<br />

2.4 A× ( B× C) ≠ ( A⋅C) B −(<br />

A⋅B)<br />

C<br />

<br />

Proof: 1 × ( 1 × 1 ) = 1 × 1 = 1<br />

y x y y z<br />

<br />

(1 ⋅1 )1 −(1 ⋅ 1 )1 = 1<br />

y y x y x y<br />

x<br />

t<br />

d <br />

As () ⋅ Bs () = A '() s ⋅ Bs () + As () ⋅ B '() s<br />

ds<br />

2.5 { }<br />

d <br />

{ As () × Bs ()}<br />

= A '() s × Bs () + As () × B '() s<br />

ds<br />

16


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

3.<br />

<strong>Space</strong>-time Curve Frame<br />

<br />

Let xs () be a Curve parametrized by its arc-length s ,<br />

<br />

xs ()<br />

⎡ x1()<br />

s ⎤<br />

x2()<br />

s<br />

= x3()<br />

s<br />

x4()<br />

s<br />

⎢⎣<br />

⎥⎦<br />

,<br />

with continuous linearly independent derivative functions,<br />

<br />

dx()<br />

s<br />

x '( s)<br />

= ,<br />

ds<br />

2 <br />

dxs ()<br />

x ''( s)<br />

= ,<br />

2<br />

ds<br />

3 <br />

dxs ()<br />

x '''( s)<br />

= ,<br />

3<br />

ds<br />

4 <br />

dxs ()<br />

x ''''( s)<br />

= .<br />

4<br />

ds<br />

3.1 The Tangent unit vector At s ,<br />

<br />

x '( s)<br />

Ts () ≡ 1x<br />

'( s)<br />

x '( s)<br />

= <br />

.<br />

17


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

3.2 T '( s) ⊥ T( s)<br />

<br />

T '( s)<br />

is Normal to the Tangent.<br />

<br />

Proof: Ts () ⋅ Ts () = 1,<br />

<br />

T '( s) ⋅ T( s) + T( s) ⋅ T '( s) = 0 ,<br />

<br />

T '( s) ⋅ T( s) = 0,<br />

3.3 The Normal unit vector at s<br />

<br />

Ns () ≡ 1 T s<br />

<br />

'( )<br />

<br />

T '() s = T '() s N()<br />

s<br />

<br />

3.4 The Curvature of xs () at s<br />

κ () s = T <br />

'() s<br />

3.5 The First Frenet Equation<br />

<br />

T '( s) = κ( s) N( s)<br />

3.6 The Bi-Normal unit vector at s<br />

<br />

Bs () ≡ Ts () × Ns ()<br />

18


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

3.7 The Tri-Normal unit vector at s<br />

<br />

Ws () ≡ Ns () × Bs ()<br />

<br />

3.8 { TNBW , , , } is an Orthonormal Vector System at s<br />

<br />

Bs () × Ws () = Ts ()<br />

<br />

Ws () × Ts () = Ns ()<br />

<br />

3.10 T , <strong>and</strong> N <br />

span the Osculating (=Tangent) Plane<br />

<br />

Span{ TN , } = { λT+ μN: λ, μ ∈ }<br />

<br />

3.11 N , <strong>and</strong> B <br />

span the Normal Plane<br />

<br />

Span{ NB , } = { λN+ μB: λ, μ ∈ }<br />

<br />

3.12 B , <strong>and</strong> W span the Bi-Normal Plane<br />

<br />

Span{ BW , } = { λB+ μW<br />

: λ, μ ∈ }<br />

<br />

3.13 W , <strong>and</strong> T span the Tri-Normal Plane<br />

<br />

Span{ WT , } = { λW + μT<br />

: λ, μ ∈ }<br />

19


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

4.<br />

<strong>Space</strong>-time Curve Equations<br />

The Vector Functions<br />

<br />

T '( s)<br />

, N '( s)<br />

, B'( s)<br />

, <strong>and</strong> W '( s)<br />

are in<br />

<br />

Span{ Ts ( ), Ns ( ), Bs ( ), Ws ( )}.<br />

From 3.2,<br />

<br />

4.1 T '( s) ⊥ T( s)<br />

, <strong>and</strong><br />

<br />

<br />

T '( s)<br />

has no component along Ts ().<br />

Similarly,<br />

<br />

4.2 N '( s) ⊥ N( s)<br />

, <strong>and</strong><br />

<br />

<br />

N '( s)<br />

has no component along Ns (),<br />

<br />

B'( s) ⊥ B( s), <strong>and</strong><br />

<br />

<br />

B'( s)<br />

has no component along Bs (),<br />

<br />

W '( s) ⊥ W( s), <strong>and</strong><br />

<br />

<br />

W '( s)<br />

has no component along Ws ().<br />

20


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

<br />

By 3.3, T '( s)<br />

only component is along Ns (). That is,<br />

<br />

<br />

4.3 T '( s)<br />

has no component along Bs (),<br />

<br />

T '( s) ⋅ B( s) = 0 .<br />

<br />

<br />

T '( s)<br />

has no component along Ws (),<br />

<br />

T '( s) ⋅ W( s) = 0 .<br />

<br />

<br />

T '( s)<br />

has no component along Ts (),<br />

<br />

T '( s) ⋅ T( s) = 0 .<br />

<br />

<strong>and</strong> by 3.5, the Frenet Equation for T '( s)<br />

is<br />

<br />

T '( s) = κ( s) N( s)<br />

,<br />

<br />

Similarly, we obtain the Differential Equations for N '( s)<br />

,<br />

<br />

B'( s)<br />

, <strong>and</strong> W '( s)<br />

.<br />

<br />

<br />

4.4 The component of N '( s)<br />

along Ts () is<br />

<br />

N '( s) ⋅ T( s) = −κ( s)<br />

.<br />

<br />

Proof: N ⋅ T = 0 ,<br />

<br />

N '( s) ⋅ T( s) + N( s) ⋅ T '( s) = 0 . <br />

<br />

κ() sNs ()<br />

<br />

κ()<br />

s<br />

21


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

<br />

4.5 The component of N '( s)<br />

along Bs () is<br />

<br />

N '( s) ⋅ B( s) = −N( s) ⋅B'( s)<br />

.<br />

<br />

Proof: Ns () ⋅ Bs () = 0,<br />

<br />

N '( s) ⋅ B( s) + N( s) ⋅ B'( s) = 0 .<br />

<br />

4.6 The Bi-Curvature (=Torsion) of xs () at s<br />

<br />

τ () s = N '() s ⋅B()<br />

s<br />

<br />

<br />

4.7 The component of N '( s)<br />

along Ws () is<br />

<br />

N '( s) ⋅ W( s) = 0 .<br />

Proof: By the Schmidt Orthogonalization Process<br />

<br />

T = x ' ,<br />

x<br />

'' <br />

N = ∈ Span{ x ', x ''},<br />

x ''<br />

<br />

<br />

x ''' −( x ''' ⋅T) T −( x ''' ⋅N)<br />

N <br />

B = ∈ Span{ x ', x '', x '''},<br />

x ''' −( x ''' ⋅T) T −( x ''' ⋅N)<br />

N<br />

<br />

<br />

N ' ∈ Span{ x ', x '', x '''} = Span{ T, N, B },<br />

The projection of N <br />

' on W <br />

is zero.<br />

22


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

4.8 The Differential Equation for N '( s)<br />

<br />

<br />

N '( s) =− κ( sT ) ( s) + τ( s) B( s)<br />

,<br />

<br />

<br />

4.9 The component of B'( s)<br />

along Ts () is<br />

<br />

B'( s) ⋅ T( s) = 0 .<br />

<br />

Proof: B ⋅ T = 0 ,<br />

<br />

B'<br />

⋅ T + B ⋅ T ' = 0.<br />

<br />

T ' ⋅ B=<br />

0<br />

<br />

<br />

4.10 The component of B'( s)<br />

along Ns () is<br />

<br />

B'( s) ⋅ N( s) = −τ( s)<br />

.<br />

<br />

Proof: Bs () ⋅ Ns () = 0,<br />

<br />

B'<br />

⋅ N + B ⋅ N ' = 0<br />

<br />

B'<br />

⋅ N = −B ⋅N<br />

'.<br />

τ()<br />

s<br />

<br />

<br />

4.11 The component of B'( s)<br />

along Ws () is<br />

<br />

B'() s ⋅ W() s = −W '() s ⋅B()<br />

s .<br />

<br />

Proof: Bs () ⋅ Ws () = 0,<br />

23


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

B'<br />

⋅ W + B<br />

⋅ W ' =<br />

<br />

W ' ⋅B<br />

0.<br />

<br />

<br />

4.12 The Tri-Curvature of xs () at s<br />

<br />

ω () s = B'() s ⋅W()<br />

s<br />

<br />

4.13 The Differential Equation for B'( s)<br />

<br />

B'( s) =− τ( s) N( s) + ω( sW ) ( s)<br />

,<br />

<br />

<br />

4.14 The component of W '( s)<br />

along Ts () is<br />

<br />

W '( s) ⋅ T( s) = 0<br />

<br />

Proof: W ⋅ T = 0,<br />

<br />

W ' ⋅ T + W ⋅ T ' = 0.<br />

<br />

T ' ⋅ W=<br />

0<br />

<br />

<br />

4.15 The component of W '( s)<br />

along Ns () is<br />

<br />

W '( s) ⋅ N( s) = 0 .<br />

<br />

Proof: Ws () ⋅ Ns () = 0,<br />

<br />

W ' ⋅ N + W ⋅ N ' = 0.<br />

<br />

N ' ⋅ W=<br />

0, by (4.7)<br />

24


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

<br />

4.16 The component of W '( s)<br />

along Bs () is<br />

<br />

W '( s) ⋅ B( s) = −ω( s)<br />

.<br />

<br />

Proof: Ws () ⋅ Bs () = 0,<br />

<br />

W ' ⋅ B + W ⋅ B'<br />

= 0.<br />

<br />

BW ' ⋅ =ω( s)<br />

<br />

4.17 The Differential Equation for W '( s)<br />

<br />

<br />

W '( s) =−ω( s) B( s)<br />

,<br />

4.18 The <strong>Space</strong>-time Curve Differential Equations<br />

<br />

<br />

⎡T '( s) ⎤ ⎡ 0 κ( s) 0 0 ⎤⎡T( s)<br />

⎤<br />

<br />

<br />

N '( s) −κ() s 0 τ() s 0<br />

N( s)<br />

<br />

=<br />

B'( s) 0 τ( s) 0 ω( s)<br />

<br />

−<br />

B( s)<br />

<br />

W '( s) 0 0 −ω( s) 0<br />

<br />

⎢ ⎥ ⎢⎣<br />

⎥⎦⎢W( s)<br />

⎣ ⎦ ⎣<br />

⎥<br />

⎦<br />

25


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

5.<br />

<strong>Space</strong>-<strong>Time</strong> Surface Frame<br />

Let<br />

<br />

xuv (,)<br />

be a <strong>Space</strong>-time Surface Patch parametrized by<br />

two linearly independent families of curves, u , <strong>and</strong> v ,<br />

<br />

xuv (,)<br />

⎡ x1(,)<br />

u v ⎤<br />

x2(,)<br />

u v<br />

= x3(,)<br />

u v<br />

x4(,)<br />

u v<br />

⎢⎣<br />

⎥⎦<br />

,<br />

with continuously differentiable partial derivatives of any<br />

necessary order.<br />

5.1 Tangent along the u -<strong>Curves</strong><br />

<br />

At each point on xuv (,), the Tangent Vector along u is<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

<strong>and</strong> the Unit Tangent Vector along u is<br />

<br />

<br />

∂uxuv<br />

(,)<br />

1<br />

x<br />

= <br />

u ∂ xuv (,)<br />

u<br />

u<br />

u<br />

26


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

5.2 Tangent along the v -<strong>Curves</strong><br />

<br />

At each point on xuv (,), the Tangent Vector along v is<br />

x <br />

(,) u v x <br />

≡∂ (,) u v ,<br />

<strong>and</strong> the Unit Tangent Vector along v is<br />

<br />

<br />

∂vxuv<br />

(,)<br />

1<br />

x<br />

= <br />

v ∂ xuv (,)<br />

v<br />

v<br />

v<br />

5.3 The Metric Tensor at ( uv) ,<br />

g<br />

ij<br />

⎡<br />

<br />

x ⋅x x ⋅x<br />

(,) u v ≡ <br />

⎢x ⋅x x ⋅x<br />

⎣<br />

u u u v<br />

v u v v<br />

⎤<br />

⎥⎦<br />

5.4 The Inverse Metric Tensor at ( uv) ,<br />

⎡<br />

<br />

x<br />

1<br />

v<br />

⋅xv −xu ⋅x<br />

⎤<br />

−<br />

v ij<br />

( gij<br />

) ( u, v) = ≡ g ( u, v)<br />

−xv ⋅xu xu ⋅x<br />

⎣⎢<br />

u ⎦⎥<br />

5.5 Area of parallelogram generated by x <br />

u<br />

, <strong>and</strong><br />

<br />

Area( x , x ) = x × x<br />

u v u v<br />

<br />

x x g g g g<br />

2 2<br />

u<br />

×<br />

v<br />

= det(<br />

ij) =<br />

11 22<br />

−( 12)<br />

x <br />

u<br />

Proof:<br />

<br />

x<br />

u<br />

<br />

× x<br />

v<br />

2<br />

exp<strong>and</strong>ed into its components by 2.1, equals<br />

27


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

g g<br />

11 22 12<br />

2<br />

− ( g )<br />

exp<strong>and</strong>ed into components.<br />

5.6 The Normal Unit Vector at ( uv) ,<br />

<br />

<br />

xu xv xu xv<br />

Nuv (,) × <br />

<br />

<br />

1<br />

× <br />

≡ = <br />

xu×<br />

x<br />

=<br />

v<br />

xu<br />

× xv<br />

g g − ( g )<br />

11 22 12<br />

2<br />

5.7 The Bi-Normal Unit Vector at ( uv) ,<br />

<br />

Buv (,) ≡ 1 × Nuv (,)<br />

x u<br />

<br />

5.8 Buv (,) is in the Tangent Plane<br />

Span{ x u, x v} = { λx u<br />

+ μx<br />

<br />

v<br />

: λ, μ ∈ }.<br />

<br />

<br />

Proof: Buv (,) is normal to Nuv (,).<br />

<br />

5.10 The Tri-Normal unit vector at ( uv) ,<br />

<br />

Wuv (,) ≡ Nuv (,) × Buv (,)<br />

<br />

5.11 {1 , NBW , , } is an Orthonormal Vector System<br />

x<br />

u<br />

<br />

Nuv ( , ) × Buv ( , ) = 1 ( uv , )<br />

x u<br />

28


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

Bus (,) × 1 (,) uv = Nuv (,)<br />

x u<br />

<br />

5.12 1x u<br />

<br />

, <strong>and</strong> 1<br />

x <br />

v<br />

span the Tangent Plane<br />

<br />

Span{1 , 1 } = { λ1 + μ1 : λ, μ ∈ }<br />

x x x x<br />

u v u v<br />

29


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

6.<br />

<strong>Space</strong>-time Surface Curvatures<br />

<br />

Since N ⋅ N = 1,<br />

∂ <br />

⋅ N<br />

<br />

=<br />

u N<br />

0<br />

Thus,<br />

6.1 N <br />

u(,) u v u<br />

N N <br />

≡∂ ⊥ (,) u v , <strong>and</strong><br />

<br />

Nu (,)<br />

<br />

u v has no component along Nuv (,),<br />

<br />

Nv (,) u v ⊥ N(,), u v <strong>and</strong><br />

<br />

Nv (,)<br />

<br />

u v has no component along Nuv (,),<br />

Similarly,<br />

<br />

6.2 Wu (,) u v ⊥ W(,)<br />

u v , <strong>and</strong><br />

<br />

Wu (,)<br />

<br />

u v has no component along Wuv (,),<br />

<br />

Wv (,) u v ⊥ W(,), u v <strong>and</strong><br />

<br />

Wv (,)<br />

<br />

u v has no component along Wuv (,),<br />

<br />

Since x ⋅ N = 0,<br />

u<br />

<br />

x ⋅ N + x ⋅ N =<br />

uu u u<br />

0 .<br />

30


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

Therefore,<br />

6.3<br />

<br />

x<br />

<br />

( u, v) ⋅ N( u, v) = −x ( u, v) ⋅N ( u, v)<br />

uu u u<br />

<br />

x (,) uv ⋅ Nuv (,) = −x (,) uv ⋅N(,)<br />

uv<br />

uv u v<br />

<br />

x (,) u v ⋅ N(,) u v = −x (,) u v ⋅N (,) u v<br />

vu v u<br />

<br />

x (,) u v ⋅ N(,) u v = −x (,) u v ⋅N (,) u v<br />

vv v v<br />

<br />

Since x ⋅ W = 0 ,<br />

u<br />

<br />

x ⋅ W + x ⋅ W =<br />

uu u u<br />

0 .<br />

Therefore,<br />

6.4<br />

<br />

x<br />

<br />

(,) u v ⋅ W(,) u v = −x (,) u v ⋅W (,) u v<br />

uu u u<br />

<br />

x (,) uv ⋅ Wuv (,) = −x (,) uv ⋅W(,)<br />

uv<br />

uv u v<br />

<br />

x (,) u v ⋅ W(,) u v = −x (,) u v ⋅W (,) u v<br />

uv v u<br />

<br />

x (,) u v ⋅ W(,) u v = −x (,) u v ⋅W (,) u v<br />

vv v v<br />

<br />

Since N ⋅ W = 0,<br />

N <br />

u<br />

W N <br />

⋅ + ⋅ W<br />

<br />

u<br />

= 0 .<br />

N<br />

W <br />

⋅ + N <br />

⋅ W<br />

<br />

= 0<br />

v<br />

v<br />

Therefore,<br />

31


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

6.5 N ( uv , ) ⋅ Wuv ( , ) = −Nuv ( , ) ⋅W( uv , )<br />

u<br />

N <br />

(,) u v W <br />

(,) u v N <br />

⋅ = − (,) u v ⋅ W <br />

(,) u v<br />

v<br />

u<br />

v<br />

32


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

7.<br />

<strong>Space</strong>-time Surface Equations,<br />

<strong>and</strong> Christoffel Curvatures<br />

Since the <strong>Space</strong>-time Vector Functions<br />

x <br />

uu<br />

, <br />

xuv<br />

= xvu<br />

, x vv<br />

,<br />

<br />

are in Span{ x , x , N <br />

, W<br />

<br />

}, we have<br />

7.1<br />

7.2<br />

7.3<br />

7.4<br />

u<br />

v<br />

<br />

x (,) u v x x ( x N) N ( x W)<br />

W<br />

<br />

1 2<br />

uu<br />

=Γ<br />

11 u<br />

+Γ<br />

11 v<br />

+<br />

uu<br />

⋅ +<br />

uu<br />

⋅<br />

<br />

<br />

<br />

−x ⋅N −x ⋅W<br />

u u u u<br />

<br />

x (,) u v x x ( x N) N ( x W)<br />

W<br />

<br />

1 2<br />

uv<br />

=Γ<br />

12 u<br />

+Γ<br />

12 v<br />

++<br />

uv<br />

⋅ +<br />

uv<br />

⋅<br />

<br />

<br />

<br />

−x ⋅N −x ⋅W<br />

u v u v<br />

<br />

x (,) u v x x ( x N) N ( x W)<br />

W<br />

<br />

1 2<br />

vu<br />

=Γ<br />

21 u<br />

+Γ<br />

21 v<br />

++<br />

vu<br />

⋅ +<br />

vu<br />

⋅<br />

<br />

<br />

<br />

−x ⋅N −x ⋅W<br />

v u v u<br />

<br />

x (,) u v x x ( x N) N ( x W)<br />

W<br />

<br />

1 2<br />

vv<br />

=Γ<br />

22 u<br />

+Γ<br />

22 v<br />

++<br />

vv<br />

⋅ +<br />

vv<br />

⋅<br />

<br />

<br />

<br />

−x ⋅N −x ⋅W<br />

v v v v<br />

where<br />

k<br />

Γ ij<br />

are Christoffel Curvatures.<br />

<br />

Since ∂ x = ∂ x <br />

, the equations for x (,) u v , <strong>and</strong><br />

uv<br />

vu<br />

are the same, <strong>and</strong><br />

uv<br />

<br />

xvu (,) u v<br />

33


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

k<br />

ij<br />

k<br />

ji<br />

Γ = Γ .<br />

The Christoffel Curvatures can be written in terms of the<br />

Metric Tensor. Multiplying each equation by x , <strong>and</strong> by x ,<br />

The First Equation gives<br />

<br />

x x x x x x<br />

,<br />

1<br />

2<br />

1 2<br />

uu<br />

⋅<br />

u<br />

= Γ11 u<br />

⋅<br />

u<br />

+ Γ11<br />

v<br />

⋅<br />

u<br />

<br />

∂u( xu⋅xu)<br />

g11 g12<br />

<br />

g11<br />

<br />

,<br />

1 2<br />

xuu ⋅ xv = Γ11 xu ⋅ xv + Γ11<br />

xv ⋅xv<br />

<br />

( )<br />

1<br />

<br />

∂u xu⋅xv − ∂ ( )<br />

g<br />

2 v<br />

xu⋅xu<br />

12<br />

g22<br />

<br />

g12 g11<br />

u<br />

v<br />

7.5<br />

7.6<br />

g<br />

1<br />

2 11, u 12<br />

g<br />

1<br />

1 12, u<br />

− g<br />

2 11, v<br />

g22<br />

11 2<br />

g11g22 − ( g12)<br />

Γ =<br />

g<br />

1<br />

11 2 11, u<br />

g<br />

1<br />

12<br />

g<br />

2<br />

12, u<br />

− g<br />

2 11, v<br />

11 2<br />

g11g22 − ( g12)<br />

Γ =<br />

g<br />

g<br />

The Second (or Third) Equation gives<br />

<br />

x x x x x x<br />

,<br />

1<br />

2<br />

1 2<br />

uv<br />

⋅<br />

u<br />

= Γ12 u<br />

⋅<br />

u<br />

+ Γ12<br />

v<br />

⋅<br />

u<br />

<br />

∂v( xu⋅xu)<br />

g11 g12<br />

<br />

g11<br />

34


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

<br />

x x x x x x<br />

,<br />

1<br />

2<br />

1 2<br />

uv<br />

⋅<br />

v<br />

= Γ12 u<br />

⋅<br />

v<br />

+ Γ12<br />

v<br />

⋅<br />

v<br />

<br />

∂u( xv⋅xv)<br />

g12 g22<br />

<br />

g22<br />

7.7<br />

7.8<br />

g<br />

1<br />

2 11, v 12<br />

1<br />

g<br />

1 2 22, u<br />

g 22 1<br />

12 2 21<br />

g11g22 − ( g12)<br />

Γ = = Γ<br />

g<br />

1<br />

11 2 11, v<br />

g<br />

1<br />

2 12<br />

g<br />

2 22, u 2<br />

12 2 21<br />

g11g22 − ( g12)<br />

Γ = = Γ<br />

g<br />

g<br />

The Fourth Equation gives<br />

<br />

,<br />

1 2<br />

xvv ⋅ xu = Γ22 xu ⋅ xu + Γ22<br />

xv ⋅xu<br />

<br />

( )<br />

1<br />

<br />

∂v xu⋅xv − ∂ ( )<br />

g<br />

2 u<br />

xv⋅xv<br />

11<br />

g12<br />

<br />

g12 g22<br />

<br />

x x x x x x<br />

,<br />

1<br />

2<br />

1 2<br />

vv<br />

⋅<br />

v<br />

= Γ22 u<br />

⋅<br />

v<br />

+ Γ22<br />

v<br />

⋅<br />

v<br />

<br />

∂v( xv⋅xv)<br />

g12 g22<br />

<br />

g22<br />

7.9<br />

g − g g<br />

1<br />

12, v 2 22, u 12<br />

1<br />

g<br />

1<br />

2 22, v<br />

g 22<br />

22 2<br />

g11g22 − ( g12)<br />

Γ =<br />

35


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

7.10<br />

g g − g<br />

1<br />

11 12, v 2 22, u<br />

g<br />

1<br />

2 12<br />

g<br />

2 22, v<br />

22 2<br />

g11g22 − ( g12)<br />

Γ =<br />

36


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

8.<br />

<strong>Space</strong>-time Normals Equations,<br />

<strong>and</strong> Curvatures<br />

Since the <strong>Space</strong>-time Vector Functions<br />

are in<br />

N u<br />

, N v<br />

,<br />

<br />

Span{ xu, xv, W <br />

}, we have<br />

<br />

<br />

N (,) u v =Ω x +Ω x + MW<br />

8.1<br />

u 11 u 12 v 1<br />

<br />

<br />

N u v x x M W<br />

8.2<br />

v(,)<br />

=Ω<br />

21 u<br />

+Ω<br />

22 v<br />

+<br />

2<br />

Multiplying each equation by x , <strong>and</strong> by x ,<br />

The First Equation gives<br />

<br />

Nu ⋅ xu = Ω11( xu ⋅ xu) + Ω12(<br />

xv ⋅xu)<br />

<br />

8.3<br />

g<br />

u<br />

11 12<br />

<br />

N ⋅ x = Ω ( x ⋅ x ) + Ω ( x ⋅x<br />

)<br />

<br />

u v 11 u v 12 v v<br />

g<br />

g<br />

12 22<br />

<br />

Nu<br />

⋅ xu<br />

g<br />

<br />

N ⋅ x g<br />

12<br />

u v 22<br />

11 2<br />

g11g22 − ( g12)<br />

Ω =<br />

v<br />

g<br />

37


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

8.4<br />

<br />

g11<br />

Nu<br />

⋅ x<br />

<br />

g N ⋅ x<br />

12 u v<br />

12 2<br />

g11g22 − ( g12)<br />

Ω =<br />

u<br />

The Second Equation gives<br />

<br />

Nv ⋅ xu = Ω21( xu ⋅ xu) + Ω22(<br />

xv ⋅xu)<br />

<br />

8.5<br />

8.6<br />

g<br />

11 12<br />

<br />

Nv ⋅ xv = Ω21( xu ⋅ xv) + Ω22(<br />

xv ⋅xv)<br />

<br />

g<br />

12 22<br />

<br />

Nv<br />

⋅ xu<br />

g<br />

<br />

N ⋅ x g<br />

12<br />

v v 22<br />

21 2<br />

g11g22 − ( g12)<br />

Ω =<br />

<br />

g11<br />

Nv<br />

⋅ x<br />

<br />

g N ⋅ x<br />

12 v v<br />

22 2<br />

g11g22 − ( g12)<br />

Ω =<br />

u<br />

g<br />

g<br />

Since the <strong>Space</strong>-time Vector Functions<br />

are in<br />

W u<br />

, W v<br />

,<br />

Span{ x <br />

, x <br />

, N <br />

} , we have<br />

u<br />

v<br />

<br />

<br />

W (,) u v =Λ x +Λ x −M N<br />

8.7<br />

u 11 u 12 v 1<br />

<br />

<br />

W (,) u v =Λ x +Λ x −M N<br />

8.8<br />

v 21 u 22 v 2<br />

38


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

The First Equation gives<br />

<br />

Wu ⋅ xu = Λ11( xu ⋅ xu) + Λ12(<br />

xv ⋅xu)<br />

<br />

8.9<br />

8.10<br />

g<br />

11 12<br />

<br />

Wu ⋅ xv = Λ11( xu ⋅ xv) + Λ12(<br />

xv ⋅xv)<br />

<br />

g<br />

12 22<br />

<br />

Wu<br />

⋅ xu<br />

g<br />

<br />

W ⋅ x g<br />

12<br />

u v 22<br />

11 2<br />

g11g22 − ( g12)<br />

Λ =<br />

<br />

g11<br />

Wu<br />

⋅ x<br />

<br />

g W ⋅ x<br />

12 u v<br />

12 2<br />

g11g22 − ( g12)<br />

Λ =<br />

The Second Equation gives<br />

<br />

Wv ⋅ xu = Λ21( xu ⋅ xu) + Λ22(<br />

xv ⋅xu)<br />

<br />

8.11<br />

g<br />

u<br />

11 12<br />

<br />

Wv ⋅ xv = Λ21( xu ⋅ xv) + Λ22(<br />

xv ⋅xv)<br />

<br />

g<br />

12 22<br />

<br />

Wv<br />

⋅ xu<br />

g<br />

<br />

W ⋅ x g<br />

12<br />

v v 22<br />

21 2<br />

g11g22 − ( g12)<br />

Λ =<br />

g<br />

g<br />

g<br />

g<br />

39


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

8.12<br />

<br />

g11<br />

Wv<br />

⋅ x<br />

<br />

g W ⋅ x<br />

12 v v<br />

22 2<br />

g11g22 − ( g12)<br />

Λ =<br />

u<br />

8.13 Differential Equations of a <strong>Space</strong>-<strong>Time</strong> Surface<br />

1 2<br />

⎡<br />

<br />

<br />

xuu(,)<br />

u v ⎤ ⎡<br />

<br />

Γ11 Γ11<br />

−xu ⋅Nu −xu ⋅W<br />

⎤<br />

u<br />

<br />

<br />

1 2<br />

xuv(,)<br />

u v <br />

Γ12 Γ12<br />

−xu ⋅Nv −xu ⋅W<br />

v<br />

x (,) 1 2<br />

vu<br />

u v <br />

<br />

Γ21 Γ21<br />

−xv ⋅Nu −xv ⋅W<br />

⎡<br />

<br />

u<br />

xu<br />

⎤<br />

<br />

x (,) 1 2<br />

vv<br />

u v <br />

Γ22 Γ22<br />

−xv ⋅Nv −xv<br />

⋅W<br />

<br />

x<br />

<br />

v<br />

=<br />

v<br />

<br />

Nu(,)<br />

u v<br />

<br />

<br />

11 12<br />

0 Nu<br />

W<br />

N<br />

Ω Ω ⋅ Nv(,)<br />

u v<br />

<br />

<br />

<br />

21 22<br />

0 N W<br />

v<br />

W<br />

⎥<br />

Ω Ω ⋅ ⎥⎣⎢ ⎥⎦<br />

Wu<br />

(,) u v<br />

<br />

<br />

Λ11 Λ12<br />

−Nu<br />

⋅W<br />

0<br />

Wv<br />

(,) u v<br />

<br />

⎢⎣<br />

⎥⎦<br />

⎢Λ21 Λ22<br />

−Nv<br />

⋅W<br />

0 ⎥<br />

⎣<br />

⎦<br />

40


<strong>Gauge</strong> Institute Journal,<br />

H. Vic Dannon<br />

References<br />

[Dan] Victor Dannon, “Integral Characterizations <strong>and</strong> the Theory of<br />

<strong>Curves</strong>”, Proceedings of the American Mathematical Society, Volume<br />

81, Number 4, April 1981;<br />

[Dan1] H. Vic Dannon, “Infinitesimals” in <strong>Gauge</strong> Institute Journal<br />

Vol.6 No 4, November 2010;<br />

[Dan2] H. Vic Dannon, “Infinitesimal Calculus” in <strong>Gauge</strong> Institute<br />

Journal Vol.7 No 4, November 2011;<br />

[Dan3] H. Vic Dannon, “Infinitesimal Vector Calculus” posted to<br />

www.gauge-<strong>institute</strong>.<strong>org</strong> December, 2011;<br />

[Dan4] H. Vic Dannon, “4-space Curl is a 4-Vector” posted to<br />

www.gauge-<strong>institute</strong>.<strong>org</strong>, January, 2012;<br />

[Dan5] H. Vic Dannon, “<strong>Space</strong>-time Electrodynamics, <strong>and</strong> Magnetic<br />

Monopoles” posted to www.gauge-<strong>institute</strong>.<strong>org</strong>, June, 2013;<br />

[Gauss] Karl Friedrich Gauss, “General Investigations of Curved<br />

<strong>Surfaces</strong>” Raven Press, 1965.<br />

[Kuhnel] Wolfgang Kuhnel, “Differential Geometry <strong>Curves</strong>-<strong>Surfaces</strong>-<br />

Manifolds” AMS, 2002.<br />

[Lipschutz] Martin Lipschutz, “Differential Geometry” Schaum’s, 1969.<br />

[Spiegel] Murray R. Spiegel, “Mathematical H<strong>and</strong>book of Formulas<br />

<strong>and</strong> Tables”, Schaum’s, 1968.<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!