06.06.2015 Views

the case of the Bohai Bay Basin - CAGS

the case of the Bohai Bay Basin - CAGS

the case of the Bohai Bay Basin - CAGS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CO 2 sequestration in saline aquifers:<br />

<strong>the</strong> <strong>case</strong> <strong>of</strong> <strong>the</strong> <strong>Bohai</strong> <strong>Bay</strong> <strong>Basin</strong><br />

Pr<strong>of</strong>. Dr. Pang Zhonghe<br />

Institute <strong>of</strong> Geology and Geophysics, Chinese<br />

Academy <strong>of</strong> Sciences,Beijing, Beijing, 100029 CHINA<br />

z.pang@mail.iggcas.ac.cn<br />

http://www.isoh2o.org/


Outline<br />

What’s s CO 2 Geological Sequestration ?<br />

Overview <strong>of</strong> CO 2 sequestration in China<br />

Case study—an example from <strong>the</strong><br />

<strong>Bohai</strong> <strong>Bay</strong> <strong>Basin</strong> (BBB), China<br />

Future work: saline aquifer science


What’s CO 2 Geological Sequestration ?


Overview <strong>of</strong> CO 2 saline aquifer<br />

sequestration in China<br />

• Scientific research and field test on CO 2<br />

geological sequestration<br />

• CO 2 Geological Sequestration Atlas<br />

• Projects <strong>of</strong> CO 2 sequestration in deep saline<br />

aquifers<br />

• CO 2 Capture, Utilization and Sequestration<br />

(CCUS)


Scientific research on CO 2 geological<br />

C-14 sampling at a test well<br />

sequestration<br />

Water-rock interaction lab simulation


CO 2 solution: properties and transport at microscale<br />

and super-critical conditions<br />

Magneto-suspension balance


Cap-rock mechanics<br />

Bursting pressure


Natural analogue study ---CO 2 gas field<br />

Characteristics and geological significance sandstone with dawsonite


CO 2 sequestration numerical simulation<br />

Spatial<br />

distribution <strong>of</strong><br />

CO 2 mineral<br />

trapping per<br />

m3 media ,<br />

from W.<br />

Zhang et al.,<br />

2009


25<br />

20<br />

15<br />

10<br />

5<br />

mmol/l<br />

initial solution<br />

nCO2=27.82mmol<br />

0<br />

Ca+2 K+ Na+ Mg+2 F- Cl- SO4-2 HCO3-<br />

Changes <strong>of</strong> chemical constitutes <strong>of</strong> formation before and after CO 2<br />

injection, Y.<br />

Li et al., 2010


CO 2 Geological Sequestration Atlas<br />

The National CO2 Storage Capacity and Suitability Assessment<br />

Project which is in charged by <strong>the</strong> Institute <strong>of</strong> Hydrogeology and<br />

Engineering Geology Techniques, Chinese Geological Survey is<br />

implemented since 2010.<br />

‣National CO2 storage capacity and suitability assessment<br />

and mapping (1:5,000,000)<br />

‣Candidate sedimentary basins for CO2 sequestration<br />

assessment and mapping (1:1,000,000);<br />

‣Demonstration project <strong>of</strong> CO2 sequestration in deep saline<br />

formation in Ordos basin


Geological map <strong>of</strong> sedimentary basins for CO2 sequestration<br />

in China (1:5,000,000)<br />

(IHEGT, CGS)


Sources: IHEG, CGS<br />

Crust stability <strong>of</strong> sedimentary basins for CO2 sequestration<br />

in China 91:5,000,000)


CO 2 sequestration in deep saline aquifers<br />

BBB<br />

Songliao basin<br />

(EOR)<br />

Ordos basin<br />

(Shenhua)


CO 2 Capture, Utilization and Sequestration<br />

(CCUS) progresses<br />

CO2-EOR ( e.g. Songliao basin)<br />

CO2-ECBMR (e.g. Qinshui basin)<br />

CO2 capture progresses in Clean Coal Technology<br />

(HuaNeng) and Transformation from coal to oil<br />

technology (ShenHua )<br />

CO2-EATER


CO2-EOR<br />

• CO2-EOR: CO2- Enhanced Oil Recovery<br />

• It has been carried out field testing in Jiangsu,<br />

Zhongyuan, Daqing, Shengli and Jilin oilfield and<br />

corresponding results such as injection technology,<br />

gas/water ratio, CO2 solubility in oil have obtained .<br />

Conceptual model


CO2-ECBMR<br />

CO2-ECBMR:CO2- Enhanced CoalBed Methane<br />

Conceptual<br />

Recovery<br />

model<br />

Results from Qinshui <strong>Basin</strong> indicate that single well CH4<br />

production output is 2.8-15times <strong>of</strong> that <strong>of</strong> before CO2 injection<br />

and total 192.8t liquid CO2 has been injected in <strong>the</strong> test and<br />

during reproduction period, about 30-40t CO2 go out <strong>of</strong> testing<br />

well (Ye et al., 2007).


CO 2 capture progresses (HuaNeng)<br />

Greengen<br />

group Ltd.:<br />

IGCC Power<br />

Plant 2011-<br />

2016, 250MW


IGCC conceptual model<br />

CO 2 storage system<br />

CO 2 capture demonstration project<br />

Clean Coal Technology , from National Science Exhibition <strong>of</strong><br />

The Eleventh Five Year Plan


组 分<br />

mol%<br />

CO2 88.8336<br />

CO 0.0401<br />

H2 0.1853<br />

N2 10.9227<br />

H2O 0.0000<br />

H2S 0.0003<br />

METHA‐01<br />

0.0156<br />

CH4 0.0012<br />

Ar 0.0012<br />

CO 2 Capture technology ( ShenHua )<br />

除 油 器 脱 硫 器 脱 硫 器 净 化 器 电 加 热 器<br />

CO 2<br />

压 缩 机<br />

CO 2<br />

原 料 气<br />

气 液 分 离 器<br />

精 过 滤 器<br />

CO 2 贮 罐<br />

CO 2<br />

液 化 器<br />

CO 2<br />

换 热 器<br />

组 分<br />

mol%<br />

CO2 99.9954<br />

CO 0.0000<br />

装 车 泵<br />

CO 2<br />

深 冷 器<br />

CO 2<br />

精 馏 塔<br />

H2 0.0000<br />

N2 0.0028<br />

H2O 0.0000<br />

H2S 0.0000<br />

20<br />

METHA‐01<br />

0.0011<br />

CH4 0.0005<br />

Ar 0.0001


CO2-EATER<br />

Geo<strong>the</strong>rmal exploitation<br />

• CO2-EATER: Conceptual CO2 Enhanced Aquifer Thermal<br />

CO2 injection model<br />

Energy recovery.<br />

• It means to deal with low reinjectivity <strong>of</strong> sandstone<br />

reservoir for geo<strong>the</strong>rmal water exploration in<br />

sedimentary basins in China.<br />

Aqueous CO2<br />

• It has been verified <strong>the</strong>oretically by experiments and<br />

simulation<br />

Field verification for Tianjin<br />

for CO2-EATER Guantao formation.<br />

is ongoing.<br />

CO2-EATER


Case study – Guantao saline aquifer in<br />

<strong>the</strong> <strong>Bohai</strong> <strong>Bay</strong> <strong>Basin</strong> (BBB), China


Location <strong>of</strong> <strong>the</strong> BBB<br />

Latitute:35°~42<br />

°20′<br />

Longitude: 114°30′~<br />

124°<br />

Area: 200,000km 2 , and<br />

40% are <strong>of</strong>fshore


Geological cross section <strong>of</strong> <strong>the</strong> BBB


CO 2 storage capacity assessment <strong>of</strong> deep<br />

saline formations in <strong>the</strong> BBB<br />

The suitable reservoir formations <strong>of</strong> each<br />

depression<br />

Name <strong>of</strong><br />

Depression<br />

Target evaluation<br />

formation<br />

Remarks<br />

Liaodongwan Ng,Ed (<strong>the</strong> upper<br />

& Bozhong<br />

parts) Evaluation depth<br />

ranging from<br />

Jizhong<br />

Ng, Ed<br />

800m to<br />

Liaohe Ng,Es 2<br />

,Es 4<br />

Huanghua Ng,Es 1<br />

,Es 2<br />

3500m<br />

Jiyang&Changwei Ng,Ed 1<br />

,Es 2<br />

,Es 3<br />

subsurface<br />

Linqing Ng,Es 4


Guantao formation (Ng) is a excellent reservoir for CO 2 sequestration<br />

for its physical properties and regional distribution over <strong>the</strong> basin.<br />

Normal depth<br />

range <strong>of</strong> Ng<br />

Porosity vs depth (a) and permeability vs depth <strong>of</strong> Guantao<br />

formation in Jiyang Depression


CO 2 storage capacity evaluation <strong>of</strong> <strong>the</strong> deep saline<br />

aquifers in <strong>the</strong> BBB<br />

Depression name<br />

Solubility trapping<br />

(Mt)<br />

Residual trapping<br />

(Mt)<br />

Total (Mt)<br />

Liaohe 4991.68 18.77 5010.46<br />

Liaodongwan&<br />

Bozhong<br />

42937.27 200.33 43137.60<br />

Jizhong 19019.40 649.31 19668.71<br />

Huanghua 24354.06 749.18 25103.25<br />

Jiyang&Changwei 23152.05 82.21 23234.25<br />

Linqing 33505.63 82.21 33587.84<br />

total 147960.10 1782.01 149742.11


Suitability assessment <strong>of</strong> CO 2 sequestration<br />

in <strong>the</strong> BBB<br />

‣ CO2 geological storage size (or scale) assessment<br />

‣ safety assessment<br />

‣ geo<strong>the</strong>rmal conditions assessment<br />

‣ hydrogeological conditions assessment<br />

‣ resources utilization conflicts assessment (oil & gas,<br />

geo<strong>the</strong>rmal resources)<br />

‣……..


CO2 geological storage size (or scale) assessment<br />

CO2 emission D level sources CO2 distribution storage capacity in <strong>the</strong> assessment BBB <strong>of</strong> <strong>the</strong> BBB


Safety Assessment<br />

Map <strong>of</strong> historical earthquakes<br />

distributions and crust stability


Geo<strong>the</strong>rmal conditions assessment<br />

Heat flow values distribution in Geo<strong>the</strong>rmal BBB gradient distribution in <strong>the</strong> BBB


Saline water distribution in <strong>the</strong> BBB


Resources utilization conflicts<br />

Oil distribution in Coal Geo<strong>the</strong>rmal BBB distribution water in utilization <strong>the</strong> BBB distribution in <strong>the</strong> BBB


Map <strong>of</strong> preferential zone <strong>of</strong> CO 2<br />

sequestration and<br />

corresponding capacity <strong>of</strong> each depression<br />

By consideration <strong>of</strong><br />

factors, e.g. CO 2<br />

storage size, resources<br />

utilization conflicts,<br />

safety assessment,<br />

CO 2 capacity and<br />

geo<strong>the</strong>rmal &<br />

hydrogeological<br />

conditions, some<br />

much more<br />

preferential zones for<br />

CO 2 sequestration are<br />

figured out.


Characterization <strong>of</strong> Guantao test in Beitang<br />

sag, BBB<br />

Beitang<br />

sag


Location <strong>of</strong> test site in Beitang sag in <strong>the</strong> BBB and cross-section map<br />

Hydrogeological parameters <strong>of</strong> <strong>the</strong> Injection well:<br />

• Porosity: 22.75~36.05%;<br />

• Permeability: 435.12×10 -3 ~1483.18×10 -3 μm 2<br />

• Max. yield: 112.78m 3 /h<br />

• Well head temperature: 57.5℃<br />

• water type: Cl·HCO3-Na<br />

• TDS:1693.1mg/L<br />

•pH:7.71


Field observation and sampling<br />

Nm<br />

446-1225m<br />

Ng<br />

1813.78-1815.78m<br />

Drilling cores sampling and Characterization <strong>of</strong><br />

<strong>the</strong> reservoir (Ng) and caprock (Nm)


Study <strong>of</strong> stratigraphic sequence<br />

Caprock ( Q+ Nm)<br />

Sedimentary<br />

sequence and dia-<br />

genesis <strong>of</strong> <strong>the</strong><br />

reservoir rock have<br />

been studies to help<br />

evaluate porosity<br />

and permeability<br />

distribution in <strong>the</strong><br />

reservoir<br />

Testing formation (Ng Ⅲ)


Thin section analysis <strong>of</strong> <strong>the</strong> rocks<br />

Caprock<br />

Reservoir rock


Mineral composition <strong>of</strong> <strong>the</strong> rocks(XRD)<br />

[MG001.asc] MG001, YANGFENGTIAN<br />

[NM001.asc] NM001, YANGFENGTIAN<br />

4000<br />

3000<br />

Intensity(Counts)<br />

3000<br />

2000<br />

Intensity(Counts)<br />

2500<br />

2000<br />

1500<br />

1000<br />

1000<br />

500<br />

0<br />

46-1322> Clinochlore-1MIIb - Mg5Al(Si,Al)4O10(OH)8<br />

07-0025> Muscovite-1M, syn - KAl2Si3AlO10(OH)2<br />

19-0932> Microcline, intermediate - KAlSi3O8<br />

09-0466> Albite, ordered - NaAlSi3O8<br />

46-1045> Quartz, syn - SiO2<br />

20-0481> Magnesiohornblende - (Ca,Na)2.26(Mg,Fe,Al)5.15(Si,Al)8O22(OH)2<br />

10 20 30 40 50 60<br />

Theta(deg)<br />

0<br />

46-1322> Clinochlore-1MIIb - Mg5Al(Si,Al)4O10(OH)8<br />

29-1498> Montmorillonite-15A - Na0.3(Al,Mg)2Si4O10(OH)2!4H2O<br />

14-0164> Kaolinite-1A - Al2Si2O5(OH)4<br />

07-0025> Muscovite-1M, syn - KAl2Si3AlO10(OH)2<br />

19-0932> Microcline, intermediate - KAlSi3O8<br />

09-0466> Albite, ordered - NaAlSi3O8<br />

46-1045> Quartz, syn - SiO2<br />

05-0586> Calcite, syn - CaCO3<br />

10 20 30 40 50 60<br />

Theta(deg)<br />

Samples<br />

Quartz<br />

Albite<br />

Microclin<br />

e<br />

Mineral composition %<br />

Biotite Chlorite Smectite O<strong>the</strong>rs<br />

Ng-1814m 55 12 6 3 2 _ Hornblende 3<br />

Ng-1813.78m 60 13 10 3 2 +kaolinite trace _<br />

Nm-1225m 30 13 8 4 4+kaolinite 1 trace Dolomite 16<br />

Nm-888m 45 20 10 3 2+ kaolinite trace Calcite 15<br />

Nm-965m 40 19 8 3 3+ kaolinite trace Dolomite 10+Calcite<br />

13


Chemical composition <strong>of</strong> <strong>the</strong> rocks(XRF)<br />

composition SiO2 TiO2<br />

Al2O<br />

3<br />

Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI TOTAL FeO<br />

samples (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)<br />

Ng-1814m<br />

Ng-<br />

1813.78m<br />

Nm-1225m<br />

Nm-888m<br />

Nm-965m<br />

76.3<br />

4<br />

76.8<br />

2<br />

55.0<br />

8<br />

65.4<br />

3<br />

65.0<br />

3<br />

0.27 11.13 2.26 0.03 1.09 1.23 2.48 2.73 0.09 1.94 99.59 1.02<br />

0.24 10.93 2.09 0.03 1.34 1.32 2.23 2.32 0.06 2.40 99.78 0.95<br />

0.67 13.55 5.21 0.08 5.48 4.99 1.58 2.68 0.12<br />

10.5<br />

2<br />

99.96 2.42<br />

0.60 13.85 3.83 0.31 1.12 4.04 2.06 3.05 0.13 5.62 100.04 0.31<br />

0.57 13.21 4.42 0.06 2.07 4.06 2.14 3.04 0.17 5.23 100.00 0.64


Formation water sampling<br />

• On site measurements: pH, EC,TDS, Eh, DO, Fe2+,Fe3+<br />

• 2H, 18O, 3H, 13C, 14C, 87Sr/86Sr<br />

• Major ions, trace elements, SiO2


Hydrochemistry <strong>of</strong> formation waters<br />

40<br />

Cl + SO4=><br />

60<br />

80<br />

80<br />

E<br />

60<br />


Isotopic composition <strong>of</strong> formation waters from<br />

Guantao formation, <strong>Bohai</strong> <strong>Bay</strong> <strong>Basin</strong>.


CO 2 -water-rock rock interactions<br />

Batch type autoclave (Parr 4575A )<br />

Schematic diagram <strong>of</strong> <strong>the</strong> autoclave<br />

• Batch type reactor exploring into CO 2 -water-rock interactions<br />

• Max. pressure 345bar; max. temperature 500℃; bomb volume: 500ml


Preliminary results (200℃, 200bar, 15d)<br />

[Pn.ASC]<br />

[Fn.ASC]<br />

[Pe.ASC]<br />

[Fe.ASC]<br />

[Pt.ASC]<br />

[Ft.ASC]<br />

4500<br />

4500<br />

4000<br />

4000<br />

3500<br />

3500<br />

3000<br />

0<br />

3000<br />

0<br />

2500<br />

2000<br />

2500<br />

2000<br />

5 10 15 20 25 30<br />

2-Theta(°<br />

d=10.0168<br />

d=7.1437<br />

d=4.4892<br />

d=4.0369<br />

d=3.6687<br />

d=4.2609<br />

d=3.2408 d=3.1918<br />

d=2.5517<br />

d=2.4577<br />

d=2.2823<br />

d=2.1272<br />

d=3.3459<br />

[CWS-F.asc]<br />

45.0<br />

40.0<br />

[CWS-P.asc]<br />

40.0<br />

35.0<br />

30.0<br />

25.0<br />

20.0<br />

Intensity(CPS)<br />

15.0<br />

10.0<br />

d=10.0170<br />

d=7.1447<br />

d=4.4960<br />

d=4.0405<br />

d=3.7715 d=3.7279<br />

d=3.4821<br />

d=4.2590<br />

d=3.2408<br />

d=3.1907<br />

d=2.4590<br />

d=2.2817<br />

d=2.1291<br />

d=3.3459<br />

35.0<br />

30.0<br />

25.0<br />

20.0<br />

Intensity(CPS)<br />

Intensity(CPS)<br />

Intensity(CPS)<br />

1500<br />

1500<br />

1000<br />

1000<br />

500<br />

500<br />

5 10 15 20 25 30<br />

2-Theta(°<br />

5.0<br />

x10^3<br />

10 20 30 40<br />

Theta(°<br />

15.0<br />

10.0<br />

5.0<br />

x10^3<br />

10 20 30 40<br />

Theta(°<br />

Mineral<br />

composition<br />

(%)<br />

Quartz Microcline Plagioclase Smectite<br />

Illit<br />

e<br />

Kaolinite Chlorite<br />

Clay<br />

minerals<br />

Before reaction 61.6 11.2 20.5 4.8 1.3 0.4 0.3 6.7<br />

After reaction 63.3 8.8 20 6.1 1.2 0.4 0.2 7.9


(a)<br />

(b)<br />

SEM micrographs <strong>of</strong> microcline: (a) before reaction; (b) after reaction<br />

(a)<br />

(b)<br />

SEM micrographs <strong>of</strong> albite: (a) before reaction; (b) after reaction


Field monitoring work


Soil gas monitoring<br />

Soil gas sampling and measurement<br />

114 sample have been measured and <strong>the</strong> CO 2<br />

concentration in <strong>the</strong> soil gas<br />

ranges from 1.0~10.4vol% with an average value <strong>of</strong> 2.64vol%.


Microtremor technology monitoring<br />

观 测 台 阵<br />

微 动 观 测 数 据<br />

Power<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

0.1 1 10<br />

Frequency(Hz)<br />

计 算 : 功 率 谱 & 空 间 自 相<br />

关 函 数 i (f, r i ) (i=1,5)<br />

SPAC<br />

Microtre<br />

mor<br />

survey<br />

work flow<br />

Depth<br />

S-W ave Velocity<br />

反 演 S 波 速 度 结 构<br />

Vs1<br />

Vs2<br />

Vs3<br />

反 演<br />

Phase Velocity(km/s)<br />

3.0<br />

2.0<br />

1.0<br />

0.0 1.0 2.0 3.0<br />

Frequency(Hz)<br />

获 得 相 速 度 频 散 曲 线<br />

f<br />

c<br />

拟 合 贝 塞 尔 函 数 , 求 得 x i ;<br />

2 <br />

fr<br />

i<br />

计 算 相 速 度<br />

c<br />

i<br />

<br />

x<br />

i<br />

探 测 成 果<br />

数 据 处 理<br />

V<br />

4<br />

4<br />

ti<br />

Vr<br />

, i<br />

ti<br />

1Vr<br />

, i1<br />

1/4<br />

x, i<br />

(<br />

)<br />

ti<br />

ti<br />

1<br />

Micro-shake cross section<br />

Micro-shake depth measuring<br />

数 据 采 集


Microtremor field measurement layout<br />

Field data collection<br />

points<br />

detection instruments


Hydrogeochemistry monitoring<br />

Water chemistry (including both major and trace<br />

elements)<br />

Isotopes (including δ 18 O H2O , δ 2 H H2O , δ 18<br />

δ 13 C DIC …)<br />

18 O CO2 ,<br />

dissolved gas monitoring<br />

pH, Temperature, Pressure <strong>of</strong> monitoring wells<br />

around


Future work: saline aquifer science<br />

• Deep saline aquifers (DSA): a most promising option for CGS<br />

• Concept: field tests can be onshore, but commercial scale<br />

deployment <strong>of</strong>fshore<br />

• Geochemical response <strong>of</strong> DSA to huge amount <strong>of</strong> CO 2 injection:<br />

future focus!!<br />

• CCUS-Utilizing Utilizing CO 2 while sequestrating it<br />

• CO 2 -EOR<br />

• CO 2 -EATER (enhanced aquifer <strong>the</strong>rmal energy recovery)<br />

A new discipline to emerge:<br />

Saline aquifer science and engineering !


谢 谢 !<br />

Thanks !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!