17.11.2012 Views

This section is available on request - MAN Diesel & Turbo

This section is available on request - MAN Diesel & Turbo

This section is available on request - MAN Diesel & Turbo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MAN</strong> B&W S65ME-C8<br />

Project Guide<br />

Electr<strong>on</strong>ically C<strong>on</strong>trolled<br />

Two�stroke Engines<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> Project Guide <str<strong>on</strong>g>is</str<strong>on</strong>g> intended to provide the informati<strong>on</strong> necessary for the layout of a marine<br />

propulsi<strong>on</strong> plant.<br />

The informati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> to be c<strong>on</strong>sidered as preliminary. It <str<strong>on</strong>g>is</str<strong>on</strong>g> intended for the project stage <strong>on</strong>ly and<br />

subject to modificati<strong>on</strong> in the interest of technical progress. The Project Guide provides the general<br />

technical data <str<strong>on</strong>g>available</str<strong>on</strong>g> at the date of <str<strong>on</strong>g>is</str<strong>on</strong>g>sue.<br />

It should be noted that all figures, values, measurements or informati<strong>on</strong> about performance<br />

stated in th<str<strong>on</strong>g>is</str<strong>on</strong>g> project guide are for guidance <strong>on</strong>ly and should not be used for detailed design<br />

purposes or as a substitute for specific drawings and instructi<strong>on</strong>s prepared for such purposes.<br />

Data updates<br />

Data not finally calculated at the time of <str<strong>on</strong>g>is</str<strong>on</strong>g>sue <str<strong>on</strong>g>is</str<strong>on</strong>g> marked ‘Available <strong>on</strong> <strong>request</strong>’. Such data may<br />

be made <str<strong>on</strong>g>available</str<strong>on</strong>g> at a later date, however, for a specific project the data can be <strong>request</strong>ed.<br />

Pages and table entries marked ‘Not applicable’ represent an opti<strong>on</strong>, functi<strong>on</strong> or selecti<strong>on</strong> which<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> not valid.<br />

The latest, most current versi<strong>on</strong> of the individual Project Guide <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> the Internet<br />

at: www.mandiesel.com under ‘Marine’ → ‘Low Speed’.<br />

Extent of Delivery<br />

The final and binding design and outlines are to be supplied by our licensee, the engine maker,<br />

see Chapter 20 of th<str<strong>on</strong>g>is</str<strong>on</strong>g> Project Guide.<br />

In order to facilitate negotiati<strong>on</strong>s between the yard, the engine maker and the customer, a set of<br />

‘Extent of Delivery’ forms <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> in which the basic and the opti<strong>on</strong>al executi<strong>on</strong>s are specified.<br />

Electr<strong>on</strong>ic versi<strong>on</strong>s<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> Project Guide book and the ‘Extent of Delivery’ forms are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> a DVD and can also<br />

be found <strong>on</strong> the Internet at: www.mandiesel.com under ‘Marine’ → ‘Low Speed’, where they can<br />

be downloaded.<br />

4th Editi<strong>on</strong><br />

February 2009<br />

<strong>MAN</strong> B&W S65ME-C8 198 48 05-7.3


<strong>MAN</strong> <strong>Diesel</strong><br />

Teglholmsgade 41<br />

DK�2450 Copenhagen SV<br />

Denmark<br />

Teleph<strong>on</strong>e +45 33 85 11 00<br />

Telefax +45 33 85 10 30<br />

mandiesel-cph@mandiesel.com<br />

www.mandiesel.com<br />

Copyright © 2009 <strong>MAN</strong> <strong>Diesel</strong>, branch of <strong>MAN</strong> <strong>Diesel</strong> SE, Germany, reg<str<strong>on</strong>g>is</str<strong>on</strong>g>tered with the Dan<str<strong>on</strong>g>is</str<strong>on</strong>g>h Commerce and<br />

Companies Agency under CVR Nr.: 31611792, (herein referred to as “<strong>MAN</strong> <strong>Diesel</strong>”).<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> document <str<strong>on</strong>g>is</str<strong>on</strong>g> the product and property of <strong>MAN</strong> <strong>Diesel</strong> and <str<strong>on</strong>g>is</str<strong>on</strong>g> protected by applicable copyright laws.<br />

Subject to modificati<strong>on</strong> in the interest of technical progress. Reproducti<strong>on</strong> permitted provided source <str<strong>on</strong>g>is</str<strong>on</strong>g> given.<br />

7020-0048-01ppr Feb 2009<br />

<strong>MAN</strong> <strong>Diesel</strong> � a member of the <strong>MAN</strong> Group<br />

<strong>MAN</strong> B&W S65ME-C8 198 48 05-7.3


<strong>MAN</strong> B&W<br />

Engine Design ........................................................................ 01<br />

Engine Layout and Load Diagrams, SFOC .............................. 02<br />

<strong>Turbo</strong>charger Choice & Exhaust Gas By-pass ........................ 03<br />

Electricity Producti<strong>on</strong> ............................................................ 04<br />

Installati<strong>on</strong> Aspects ................................................................ 05<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities: Pumps, Coolers & Exhaust Gas ................. 06<br />

Fuel ...................................................................................... 07<br />

Lubricating Oil ...................................................................... 08<br />

Cylinder Lubricati<strong>on</strong> .............................................................. 09<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> Rod Stuffing Box Drain Oil .......................................... 10<br />

Central Cooling Water System ............................................... 11<br />

Seawater Cooling .................................................................. 12<br />

Starting and C<strong>on</strong>trol Air ......................................................... 13<br />

Scavenge Air ......................................................................... 14<br />

Exhaust Gas .......................................................................... 15<br />

Engine C<strong>on</strong>trol System .......................................................... 16<br />

Vibrati<strong>on</strong> Aspects .................................................................. 17<br />

M<strong>on</strong>itoring Systems and Instrumentati<strong>on</strong> .............................. 18<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern, Testing, Spares and Tools ........................... 19<br />

Project Support and Documentati<strong>on</strong> ...................................... 20<br />

Appendix .............................................................................. A<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

C<strong>on</strong>tents


<strong>MAN</strong> B&W C<strong>on</strong>tents<br />

<strong>MAN</strong> B&W S65ME-C8<br />

Chapter Secti<strong>on</strong><br />

01 Engine Design<br />

The ME Engine 1.01 1984614-0.3<br />

Engine type designati<strong>on</strong> 1.02 1983824-3.5<br />

Power, speed, SFOC 1.03 1984606-8.3<br />

Engine power range and fuel oil c<strong>on</strong>sumpti<strong>on</strong> 1.04 1984634-3.3<br />

Compar<str<strong>on</strong>g>is</str<strong>on</strong>g><strong>on</strong> of SFOC for fuel ec<strong>on</strong>omy mode and NOx em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> mode 1.04 1984807-0.0<br />

Performance curves fuel ec<strong>on</strong>omy mode/low NOx em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> mode 1.05 1984808-2.1<br />

ME Engine descripti<strong>on</strong> 1.06 1984613-9.4<br />

Engine cross <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 1.07 1984821-2.1<br />

02 Engine Layout and Load Diagrams, SFOC<br />

Engine layout and load diagrams 2.01 1983833-8.4<br />

Propeller diameter and pitch, influence <strong>on</strong> optimum propeller speed 2.02 1983878-2.5<br />

Layout diagram, sizes 2.03 1983891-2.3<br />

Engine layout diagram and load diagrams 2.04 1983897-3.6<br />

Diagram for actual project 2.05 1984159-8.2<br />

Specific fuel oil c<strong>on</strong>sumpti<strong>on</strong>, ME versus MC engines 2.06 1983836-3.3<br />

SFOC for high efficiency/c<strong>on</strong>venti<strong>on</strong>al turbochargers 2.07 1983845-8.7<br />

SFOC, reference c<strong>on</strong>diti<strong>on</strong>s and guarantee 2.08 1986815-2.0<br />

Examples of graphic calculati<strong>on</strong> of SFOC 2.08 1983837-5.5<br />

SFOC calculati<strong>on</strong>s (80%-85%) 2.09 1984890-5.1<br />

SFOC calculati<strong>on</strong>s, example 2.10 1984891-7.0<br />

Example of matching point 2.10 1984275-9.1<br />

Fuel c<strong>on</strong>sumpti<strong>on</strong> at an arbitrary load 2.11 1983843-4.4<br />

Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> c<strong>on</strong>trol 2.12 1983844-6.5<br />

03 <strong>Turbo</strong>charger Choice & Exhaust Gas By-pass<br />

<strong>Turbo</strong>charger choice 3.01 1984889-5.1<br />

Exhaust gas by-pass 3.02 1984593-4.4<br />

NOx Reducti<strong>on</strong> by SCR 3.03 1985894-7.1<br />

04 Electricity Producti<strong>on</strong><br />

Electricity producti<strong>on</strong> 4.01 1985740-2.0<br />

Designati<strong>on</strong> of PTO 4.01 1985385-5.3<br />

PTO/RCF 4.01 1984300-0.2<br />

Space requirements for side mounted PTO/RCF 4.02 1984915-9.1<br />

Engine preparati<strong>on</strong>s 4.03 1984315-6.2<br />

PTO/BW GCR 4.04 1984316-8.5<br />

Waste Heat Recovery Systems (WHR) 4.05 1986647-4.0<br />

L16/24 Genset data 4.06 1984205-4.4<br />

L21/31Genset data 4.07 1984206-6.4<br />

L23/30H Genset data 4.08 1984207-8.4<br />

L27/38 Genset data 4.09 1984209-1.4<br />

L28/32H Genset data 4.10 1984210-1.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W C<strong>on</strong>tents<br />

<strong>MAN</strong> B&W S65ME-C8<br />

Chapter Secti<strong>on</strong><br />

05 Installati<strong>on</strong> Aspects<br />

Space requirements and overhaul heights 5.01 1984375-4.5<br />

Space requirement 5.02 1984759-0.1<br />

Crane beam for overhaul of turbochargers 5.03 1985476-6.1<br />

Crane beam for turbochargers 5.03 1984848-8.1<br />

Crane beam for overhaul of air cooler 5.03 1984851-1.2<br />

Engine room crane 5.04 1984893-0.0<br />

Overhaul with Double Jib Crane 5.04 1984534-8.2<br />

Double jib crane 5.04 1984541-9.1<br />

Engine outline, galleries and pipe c<strong>on</strong>necti<strong>on</strong>s 5.05 1984715-8.3<br />

Engine and gallery outline 5.06 1984809-4.0<br />

Centre of gravity 5.07 1984897-8.0<br />

Water and oil in engine 5.08 1984900-3.0<br />

Engine pipe c<strong>on</strong>necti<strong>on</strong>s 5.09 1984811-6.0<br />

Counterflanges 5.10 1984812-8.1<br />

Engine seating and holding down bolts 5.11 1984176-5.6<br />

Epoxy chocks Arrangement 5.12 1984814-1.2<br />

Engine seating profile 5.12 1984894-2.2<br />

Engine top bracing 5.13 1984672-5.7<br />

Mechanical top bracing 5.14 1984815-3.0<br />

Hydraulic top bracing arrangement 5.15 1984901-5.0<br />

Comp<strong>on</strong>ents for Engine C<strong>on</strong>trol System 5.16 1984697-7.4<br />

Earthing device 5.17 1984929-2.3<br />

06 L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities: Pumps, Coolers & Exhaust Gas<br />

Calculati<strong>on</strong> of capacities 6.01 1984333-5.2<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities and cooling water systems 6.02 1985042-8.3<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities, S65ME-C/ME-GI 6.03 1984896-6.1<br />

Auxiliary system capacities for derated engines 6.04 1984374-2.2<br />

Pump capacities, pressures and flow velocities 6.04 1984385-0.1<br />

Example 1, Pumps and Cooler Capacity 6.04 1984826-1.1<br />

Freshwater generator 6.04 1984301-2.2<br />

Example 2, Fresh Water Producti<strong>on</strong> 6.04 1984827-3.1<br />

Calculati<strong>on</strong> of exhaust gas amount and temperature 6.04 1984318-1.2<br />

Diagram for change of exhaust gas amount 6.04 1984420-9.1<br />

Exhaust gas correcti<strong>on</strong> formula 6.04 1984320-3.3<br />

Example 3, Expected Exhaust Gas 6.04 1984828-5.1<br />

07 Fuel<br />

Fuel oil system 7.01 1984228-2.6<br />

Fuel oils 7.02 1983880-4.5<br />

Fuel oil pipes and drain pipes 7.03 1983948-9.3<br />

Fuel oil pipe insulati<strong>on</strong> 7.04 1984051-8.3<br />

Comp<strong>on</strong>ents for fuel oil system 7.05 1983951-2.3<br />

Comp<strong>on</strong>ents for fuel oil system, venting box 7.05 1984121-4.1<br />

Water in fuel emulsificati<strong>on</strong> 7.06 1983882-8.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W C<strong>on</strong>tents<br />

<strong>MAN</strong> B&W S65ME-C8<br />

Chapter Secti<strong>on</strong><br />

08 Lubricating Oil<br />

Lubricating and cooling oil system 8.01 1984230-4.2<br />

Hydraulic power supply unit 8.02 1984231-6.1<br />

Lubricating oil pipes for turbochargers 8.03 1984232-8.3<br />

Lubricating oil centrifuges and l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of lubricating oils 8.04 1983886-5.6<br />

Comp<strong>on</strong>ents for lube oil system 8.05 1984239-0.3<br />

Lubricating oil tank 8.06 1984903-9.0<br />

Crankcase venting and bedplate drain pipes 8.07 1984261-5.3<br />

Hydraulic oil back-flushing 8.08 1984829-7.2<br />

Separate system for hydraulic c<strong>on</strong>trol unit 8.09 1984852-3.2<br />

Hydraulic c<strong>on</strong>trol oil system for S65ME-C 8.09 1985151-8.1<br />

09 Cylinder Lubricati<strong>on</strong><br />

Cylinder lubricating oil system 9.01 1984822-4.5<br />

<strong>MAN</strong> B&W Alpha cylinder lubricati<strong>on</strong> system 9.02 1983889-0.7<br />

10 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> Rod Stuffing Box Drain Oil<br />

Stuffing box drain oil system 10.01 1983974-0.4<br />

11 Central Cooling Water System<br />

Central cooling water system 11.01-02 1984696-5.3<br />

Comp<strong>on</strong>ents for central cooling water system 11.03 1983987-2.3<br />

12 Seawater Cooling<br />

Seawater Systems 12.01 1983892-4.4<br />

Seawater cooling system 12.02 1983893-6.4<br />

Seawater cooling pipes 12.03 1983977-6.2<br />

Comp<strong>on</strong>ents for seawater cooling system 12.04 1983981-1.3<br />

Jacket cooling water system 12.05 1983894-8.5<br />

Jacket cooling water pipes 12.06 1983984-7.5<br />

Comp<strong>on</strong>ents for jacket cooling water system 12.07 1984056-7.3<br />

Deaerating tank 12.07 1984063-8.2<br />

Temperature at start of engine 12.08 1983986-0.2<br />

13 Starting and C<strong>on</strong>trol Air<br />

Starting and c<strong>on</strong>trol air system 13.01 1983997-9.2<br />

Comp<strong>on</strong>ents for starting air system 13.02 1986057-8.0<br />

Starting and c<strong>on</strong>trol air pipes 13.03 1984000-4.5<br />

Electric motor for turning gear 13.04 1984133-4.2<br />

14 Scavenge Air<br />

Scavenge air system 14.01 1984004-1.2<br />

Auxiliary blowers 14.02 1984012-4.6<br />

Scavenge air pipes 14.03 1984013-6.1<br />

Electric motor for auxiliary blower 14.04 1984913-5.0<br />

Scavenge air cooler cleaning system 14.05 1984902-7.1<br />

Scavenge air box drain system 14.06 1984032-7.2<br />

Fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing system for scavenge air space 14.07 1984819-0.2<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W C<strong>on</strong>tents<br />

<strong>MAN</strong> B&W S65ME-C8<br />

Chapter Secti<strong>on</strong><br />

15 Exhaust Gas<br />

Exhaust gas system 15.01 1984899-1.2<br />

Exhaust gas pipes 15.02 1986402-9.0<br />

Cleaning systems, <strong>MAN</strong> <strong>Diesel</strong> 15.02 1984071-0.4<br />

Cleaning systems, ABB and Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi 15.02 1984073-4.5<br />

Exhaust gas system for main engine 15.03 1984074-6.3<br />

Comp<strong>on</strong>ents of the exhaust gas system 15.04 1984075-8.6<br />

Exhaust gas silencer 15.04 1984912-3.1<br />

Calculati<strong>on</strong> of exhaust gas back-pressure 15.05 1984094-9.3<br />

Forces and moments at turbocharger 15.06 1984911-1.1<br />

Diameter of exhaust gas pipe 15.07 1984914-7.2<br />

16 Engine C<strong>on</strong>trol System<br />

Engine c<strong>on</strong>trol system ME/ME-C 16.01 1984847-6.5<br />

17 Vibrati<strong>on</strong> Aspects<br />

Vibrati<strong>on</strong> aspects 17.01 1984140-5.2<br />

2nd order moments <strong>on</strong> 5 or 6 cylinder engines 17.02 1984220-8.5<br />

Electric driven moment compensator 17.03 1984222-1.3<br />

Power related unbalance (PRU) 17.04 1984800-8.0<br />

Guide force moments 17.05 1984223-3.3<br />

Guide force moments, data 17.05 1984517-0.5<br />

Axial vibrati<strong>on</strong>s 17.06 1984225-7.4<br />

Critical running 17.06 1984226-9.2<br />

External forces and moments in layout point L1, S65ME-C/ME-GI8 17.07 1984904-0.1<br />

18 M<strong>on</strong>itoring Systems and Instrumentati<strong>on</strong><br />

M<strong>on</strong>itoring systems and instrumentati<strong>on</strong> 18.01 1984580-2.3<br />

PMI system, type PT/S off-line 18.02 1984581-4.4<br />

CoCoS systems 18.03 1984582-6.6<br />

Alarm - Slow Down and Shut Down System 18.04 1984583-8.4<br />

Local instruments 18.05 1984586-3.4<br />

Other alarm functi<strong>on</strong>s 18.06 1984587-5.5<br />

C<strong>on</strong>trol devices 18.06 1986728-9.1<br />

Identificati<strong>on</strong> of Instruments 18.07 1984585-1.5<br />

19 D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern, Testing, Spares and Tools<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, testing, spares and tools 19.01 1984227-0.3<br />

Specificati<strong>on</strong> for painting of main engine 19.02 1984516-9.2<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern 19.03 1984567-2.4<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of masses and dimensi<strong>on</strong>s 19.04 1984763-6.0<br />

Shop test 19.05 1984612-7.4<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of spare parts, unrestricted service 19.06 1986416-2.3<br />

Additi<strong>on</strong>al spares 19.07 1984636-7.5<br />

Wearing parts 19.08 1984637-9.3<br />

Large spare parts, dimensi<strong>on</strong>s and masses 19.09 1984908-8.0<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of standard tools for maintenance 19.10 1984907-6.0<br />

Tool panels 19.11 1984218-6.2<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W C<strong>on</strong>tents<br />

<strong>MAN</strong> B&W S65ME-C8<br />

Chapter Secti<strong>on</strong><br />

20 Project Support and Documentati<strong>on</strong><br />

Engine Selecti<strong>on</strong> Guide and Project Guide 20.01 1984588-7.3<br />

Computer<str<strong>on</strong>g>is</str<strong>on</strong>g>ed engine applicati<strong>on</strong> system 20.02 1984590-9.2<br />

Extent of Delivery 20.03 1984591-0.2<br />

Installati<strong>on</strong> documentati<strong>on</strong> 20.04 1984592-2.2<br />

A Appendix<br />

Symbols for piping A 1983866-2.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W Index<br />

A<br />

C<br />

D<br />

<strong>MAN</strong> B&W S65ME-C8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Secti<strong>on</strong><br />

2nd order moments <strong>on</strong> 5 or 6 cylinder engines 17.02 1984220-8.5<br />

Additi<strong>on</strong>al spares 19.07 1984636-7.5<br />

Alarm - Slow Down and Shut Down System 18.04 1984583-8.4<br />

Auxiliary blowers 14.02 1984012-4.6<br />

Auxiliary system capacities for derated engines 6.04 1984374-2.2<br />

Axial vibrati<strong>on</strong>s 17.06 1984225-7.4<br />

Calculati<strong>on</strong> of capacities 6.01 1984333-5.2<br />

Calculati<strong>on</strong> of exhaust gas amount and temperature 6.04 1984318-1.2<br />

Calculati<strong>on</strong> of exhaust gas back-pressure 15.05 1984094-9.3<br />

Central cooling water system 11.01-02 1984696-5.3<br />

Centre of gravity 5.07 1984897-8.0<br />

Cleaning systems, ABB and Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi 15.02 1984073-4.5<br />

Cleaning systems, <strong>MAN</strong> <strong>Diesel</strong> 15.02 1984071-0.4<br />

CoCoS systems 18.03 1984582-6.6<br />

Compar<str<strong>on</strong>g>is</str<strong>on</strong>g><strong>on</strong> of SFOC for fuel ec<strong>on</strong>omy mode and NOx em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> mode 1.04 1984807-0.0<br />

Comp<strong>on</strong>ents for central cooling water system 11.03 1983987-2.3<br />

Comp<strong>on</strong>ents for Engine C<strong>on</strong>trol System 5.16 1984697-7.4<br />

Comp<strong>on</strong>ents for fuel oil system 7.05 1983951-2.3<br />

Comp<strong>on</strong>ents for fuel oil system, venting box 7.05 1984121-4.1<br />

Comp<strong>on</strong>ents for jacket cooling water system 12.07 1984056-7.3<br />

Comp<strong>on</strong>ents for lube oil system 8.05 1984239-0.3<br />

Comp<strong>on</strong>ents for seawater cooling system 12.04 1983981-1.3<br />

Comp<strong>on</strong>ents for starting air system 13.02 1986057-8.0<br />

Comp<strong>on</strong>ents of the exhaust gas system 15.04 1984075-8.6<br />

Computer<str<strong>on</strong>g>is</str<strong>on</strong>g>ed engine applicati<strong>on</strong> system 20.02 1984590-9.2<br />

C<strong>on</strong>trol devices 18.06 1986728-9.1<br />

Counterflanges 5.10 1984812-8.1<br />

Crane beam for overhaul of air cooler 5.03 1984851-1.2<br />

Crane beam for overhaul of turbochargers 5.03 1985476-6.1<br />

Crane beam for turbochargers 5.03 1984848-8.1<br />

Crankcase venting and bedplate drain pipes 8.07 1984261-5.3<br />

Critical running 17.06 1984226-9.2<br />

Cylinder lubricating oil system 9.01 1984822-4.5<br />

Deaerating tank 12.07 1984063-8.2<br />

Designati<strong>on</strong> of PTO 4.01 1985385-5.3<br />

Diagram for actual project 2.05 1984159-8.2<br />

Diagram for change of exhaust gas amount 6.04 1984420-9.1<br />

Diameter of exhaust gas pipe 15.07 1984914-7.2<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern 19.03 1984567-2.4<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of masses and dimensi<strong>on</strong>s 19.04 1984763-6.0<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, testing, spares and tools 19.01 1984227-0.3<br />

Double jib crane 5.04 1984541-9.1


<strong>MAN</strong> B&W Index<br />

E<br />

F<br />

G<br />

<strong>MAN</strong> B&W S65ME-C8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Secti<strong>on</strong><br />

Earthing device 5.17 1984929-2.3<br />

Electric driven moment compensator 17.03 1984222-1.3<br />

Electric motor for auxiliary blower 14.04 1984913-5.0<br />

Electric motor for turning gear 13.04 1984133-4.2<br />

Electricity producti<strong>on</strong> 4.01 1985740-2.0<br />

Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> c<strong>on</strong>trol 2.12 1983844-6.5<br />

Engine and gallery outline 5.06 1984809-4.0<br />

Engine c<strong>on</strong>trol system ME/ME-C 16.01 1984847-6.5<br />

Engine cross <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 1.07 1984821-2.1<br />

Engine layout and load diagrams 2.01 1983833-8.4<br />

Engine layout diagram and load diagrams 2.04 1983897-3.6<br />

Engine outline, galleries and pipe c<strong>on</strong>necti<strong>on</strong>s 5.05 1984715-8.3<br />

Engine pipe c<strong>on</strong>necti<strong>on</strong>s 5.09 1984811-6.0<br />

Engine power range and fuel oil c<strong>on</strong>sumpti<strong>on</strong> 1.04 1984634-3.3<br />

Engine preparati<strong>on</strong>s 4.03 1984315-6.2<br />

Engine room crane 5.04 1984893-0.0<br />

Engine seating and holding down bolts 5.11 1984176-5.6<br />

Engine seating profile 5.12 1984894-2.2<br />

Engine Selecti<strong>on</strong> Guide and Project Guide 20.01 1984588-7.3<br />

Engine top bracing 5.13 1984672-5.7<br />

Engine type designati<strong>on</strong> 1.02 1983824-3.5<br />

Epoxy chocks Arrangement 5.12 1984814-1.2<br />

Example 1, Pumps and Cooler Capacity 6.04 1984826-1.1<br />

Example 2, Fresh Water Producti<strong>on</strong> 6.04 1984827-3.1<br />

Example 3, Expected Exhaust Gas 6.04 1984828-5.1<br />

Example of matching point 2.10 1984275-9.1<br />

Examples of graphic calculati<strong>on</strong> of SFOC 2.08 1983837-5.5<br />

Exhaust gas by-pass 3.02 1984593-4.4<br />

Exhaust gas correcti<strong>on</strong> formula 6.04 1984320-3.3<br />

Exhaust gas pipes 15.02 1986402-9.0<br />

Exhaust gas silencer 15.04 1984912-3.1<br />

Exhaust gas system 15.01 1984899-1.2<br />

Exhaust gas system for main engine 15.03 1984074-6.3<br />

Extent of Delivery 20.03 1984591-0.2<br />

External forces and moments in layout point L1, S65ME-C/ME-GI8 17.07 1984904-0.1<br />

Fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing system for scavenge air space 14.07 1984819-0.2<br />

Forces and moments at turbocharger 15.06 1984911-1.1<br />

Freshwater generator 6.04 1984301-2.2<br />

Fuel c<strong>on</strong>sumpti<strong>on</strong> at an arbitrary load 2.11 1983843-4.4<br />

Fuel oil pipe insulati<strong>on</strong> 7.04 1984051-8.3<br />

Fuel oil pipes and drain pipes 7.03 1983948-9.3<br />

Fuel oil system 7.01 1984228-2.6<br />

Fuel oils 7.02 1983880-4.5<br />

Guide force moments 17.05 1984223-3.3<br />

Guide force moments, data 17.05 1984517-0.5


<strong>MAN</strong> B&W Index<br />

H<br />

I<br />

L<br />

<strong>MAN</strong> B&W S65ME-C8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Secti<strong>on</strong><br />

Hydraulic c<strong>on</strong>trol oil system for S65ME-C 8.09 1985151-8.1<br />

Hydraulic oil back-flushing 8.08 1984829-7.2<br />

Hydraulic power supply unit 8.02 1984231-6.1<br />

Hydraulic top bracing arrangement 5.15 1984901-5.0<br />

Identificati<strong>on</strong> of Instruments 18.07 1984585-1.5<br />

Installati<strong>on</strong> documentati<strong>on</strong> 20.04 1984592-2.2<br />

Jacket cooling water pipes 12.06 1983984-7.5<br />

Jacket cooling water system 12.05 1983894-8.5<br />

L16/24 Genset data 4.06 1984205-4.4<br />

L21/31Genset data 4.07 1984206-6.4<br />

L23/30H Genset data 4.08 1984207-8.4<br />

L27/38 Genset data 4.09 1984209-1.4<br />

L28/32H Genset data 4.10 1984210-1.4<br />

Large spare parts, dimensi<strong>on</strong>s and masses 19.09 1984908-8.0<br />

Layout diagram, sizes 2.03 1983891-2.3<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities and cooling water systems 6.02 1985042-8.3<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities, S65ME-C/ME-GI 6.03 1984896-6.1<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of spare parts, unrestricted service 19.06 1986416-2.3<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of standard tools for maintenance 19.10 1984907-6.0<br />

Local instruments 18.05 1984586-3.4<br />

Lubricating and cooling oil system 8.01 1984230-4.2<br />

Lubricating oil centrifuges and l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of lubricating oils 8.04 1983886-5.6<br />

Lubricating oil pipes for turbochargers 8.03 1984232-8.3<br />

Lubricating oil tank 8.06 1984903-9.0<br />

M <strong>MAN</strong> B&W Alpha cylinder lubricati<strong>on</strong> system 9.02 1983889-0.7<br />

ME Engine descripti<strong>on</strong> 1.06 1984613-9.4<br />

Mechanical top bracing 5.14 1984815-3.0<br />

M<strong>on</strong>itoring systems and instrumentati<strong>on</strong> 18.01 1984580-2.3<br />

N<br />

O<br />

NOx Reducti<strong>on</strong> by SCR 3.03 1985894-7.1<br />

Other alarm functi<strong>on</strong>s 18.06 1984587-5.5<br />

Overhaul with Double Jib Crane 5.04 1984534-8.2


<strong>MAN</strong> B&W Index<br />

P<br />

S<br />

T<br />

V<br />

<strong>MAN</strong> B&W S65ME-C8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Secti<strong>on</strong><br />

Performance curves fuel ec<strong>on</strong>omy mode/low NOx em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> mode 1.05 1984808-2.1<br />

PMI system, type PT/S off-line 18.02 1984581-4.4<br />

Power related unbalance (PRU) 17.04 1984800-8.0<br />

Power, speed, SFOC 1.03 1984606-8.3<br />

Propeller diameter and pitch, influence <strong>on</strong> optimum propeller speed 2.02 1983878-2.5<br />

PTO/BW GCR 4.04 1984316-8.5<br />

PTO/RCF 4.01 1984300-0.2<br />

Pump capacities, pressures and flow velocities 6.04 1984385-0.1<br />

Scavenge air box drain system 14.06 1984032-7.2<br />

Scavenge air cooler cleaning system 14.05 1984902-7.1<br />

Scavenge air pipes 14.03 1984013-6.1<br />

Scavenge air system 14.01 1984004-1.2<br />

Seawater cooling pipes 12.03 1983977-6.2<br />

Seawater cooling system 12.02 1983893-6.4<br />

Seawater Systems 12.01 1983892-4.4<br />

Separate system for hydraulic c<strong>on</strong>trol unit 8.09 1984852-3.2<br />

SFOC calculati<strong>on</strong>s (80%-85%) 2.09 1984890-5.1<br />

SFOC calculati<strong>on</strong>s, example 2.10 1984891-7.0<br />

SFOC for high efficiency/c<strong>on</strong>venti<strong>on</strong>al turbochargers 2.07 1983845-8.7<br />

SFOC, reference c<strong>on</strong>diti<strong>on</strong>s and guarantee 2.08 1986815-2.0<br />

Shop test 19.05 1984612-7.4<br />

Space requirement 5.02 1984759-0.1<br />

Space requirements and overhaul heights 5.01 1984375-4.5<br />

Space requirements for side mounted PTO/RCF 4.02 1984915-9.1<br />

Specific fuel oil c<strong>on</strong>sumpti<strong>on</strong>, ME versus MC engines 2.06 1983836-3.3<br />

Specificati<strong>on</strong> for painting of main engine 19.02 1984516-9.2<br />

Starting and c<strong>on</strong>trol air pipes 13.03 1984000-4.5<br />

Starting and c<strong>on</strong>trol air system 13.01 1983997-9.2<br />

Stuffing box drain oil system 10.01 1983974-0.4<br />

Symbols for piping A 1983866-2.3<br />

Temperature at start of engine 12.08 1983986-0.2<br />

The ME Engine 1.01 1984614-0.3<br />

Tool panels 19.11 1984218-6.2<br />

<strong>Turbo</strong>charger choice 3.01 1984889-5.1<br />

Vibrati<strong>on</strong> aspects 17.01 1984140-5.2<br />

W Waste Heat Recovery Systems (WHR) 4.05 1986647-4.0<br />

Water and oil in engine 5.08 1984900-3.0<br />

Water in fuel emulsificati<strong>on</strong> 7.06 1983882-8.3<br />

Wearing parts 19.08 1984637-9.3


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Engine Design<br />

1


<strong>MAN</strong> B&W 1.01<br />

The ME Engine<br />

The ever valid requirement of ship operators <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

to obtain the lowest total operati<strong>on</strong>al costs, and<br />

especially the lowest possible specific fuel oil<br />

c<strong>on</strong>sumpti<strong>on</strong> at any load, and under the prevailing<br />

operating c<strong>on</strong>diti<strong>on</strong>s.<br />

However, low�speed two�stroke main engines of<br />

the MC type, with a chain driven camshaft, have<br />

limited flexibility with regard to fuel injecti<strong>on</strong> and<br />

exhaust valve activati<strong>on</strong>, which are the two most<br />

important factors in adjusting the engine to match<br />

the prevailing operating c<strong>on</strong>diti<strong>on</strong>s.<br />

A system with electr<strong>on</strong>ically c<strong>on</strong>trolled hydraulic<br />

activati<strong>on</strong> provides the required flexibility, and<br />

such systems form the core of the ME ‘Engine<br />

C<strong>on</strong>trol System’, described later in detail in Chapter<br />

6.<br />

C<strong>on</strong>cept of the ME engine<br />

The ME engine c<strong>on</strong>cept c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a hydraulicmechanical<br />

system for activati<strong>on</strong> of the fuel injecti<strong>on</strong><br />

and the exhaust valves. The actuators are<br />

electr<strong>on</strong>ically c<strong>on</strong>trolled by a number of c<strong>on</strong>trol<br />

units forming the complete Engine C<strong>on</strong>trol System.<br />

<strong>MAN</strong> <strong>Diesel</strong> has specifically developed both the<br />

hardware and the software in�house, in order to<br />

obtain an integrated soluti<strong>on</strong> for the Engine C<strong>on</strong>trol<br />

System.<br />

The fuel pressure booster c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a simple<br />

plunger powered by a hydraulic p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> activated<br />

by oil pressure. The oil pressure <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled by<br />

an electr<strong>on</strong>ically c<strong>on</strong>trolled proporti<strong>on</strong>al valve.<br />

The exhaust valve <str<strong>on</strong>g>is</str<strong>on</strong>g> opened hydraulically, just<br />

as <strong>on</strong> the MC engines, but the camshaft�driven<br />

mechanical actuator has been replaced by a<br />

two�stage exhaust valve actuator activated by the<br />

c<strong>on</strong>trol oil from an electr<strong>on</strong>ically c<strong>on</strong>trolled proporti<strong>on</strong>al<br />

valve. The exhaust valves are closed by<br />

the ‘air spring’, just as <strong>on</strong> the MC engines.<br />

Page of 2<br />

In the hydraulic system, the normal lube oil <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

used as the medium. It <str<strong>on</strong>g>is</str<strong>on</strong>g> filtered and pressur<str<strong>on</strong>g>is</str<strong>on</strong>g>ed<br />

by a Hydraulic Power Supply unit mounted <strong>on</strong> the<br />

engine (4 40 60) or placed in the engine room,<br />

opti<strong>on</strong> 4 40 660.<br />

The starting valves are opened pneumatically by<br />

electr<strong>on</strong>ically c<strong>on</strong>trolled ‘On/Off’ valves, which<br />

make it possible to d<str<strong>on</strong>g>is</str<strong>on</strong>g>pense with the mechanically<br />

activated starting air d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributor.<br />

By electr<strong>on</strong>ic c<strong>on</strong>trol of the above valves according<br />

to the measured instantaneous crankshaft<br />

positi<strong>on</strong>, the Engine C<strong>on</strong>trol System fully c<strong>on</strong>trols<br />

the combusti<strong>on</strong> process.<br />

System flexibility <str<strong>on</strong>g>is</str<strong>on</strong>g> obtained by means of different<br />

‘Engine running modes’, which are selected either<br />

automatically, depending <strong>on</strong> the operating c<strong>on</strong>diti<strong>on</strong>s,<br />

or manually by the operator to meet specific<br />

goals, such as ‘Fuel ec<strong>on</strong>omomy mode’ to comply<br />

with IMO NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> limitati<strong>on</strong> or ‘Low NO x<br />

em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> mode’.<br />

ME Advantages<br />

The advantages of the ME range of engines are<br />

quite comprehensive, as seen below:<br />

• Lower SFOC and better performance parameters<br />

thanks to variable electr<strong>on</strong>ically c<strong>on</strong>trolled<br />

timing of fuel injecti<strong>on</strong> and exhaust valves at any<br />

load<br />

• Appropriate fuel injecti<strong>on</strong> pressure and rate<br />

shaping at any load<br />

• Improved em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> character<str<strong>on</strong>g>is</str<strong>on</strong>g>tics, with lower<br />

NOx and smokeless operati<strong>on</strong><br />

• Easy change of operating mode during operati<strong>on</strong><br />

• Simplicity of mechanical system with well­<br />

proven simple fuel injecti<strong>on</strong> technology familiar<br />

to any crew<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 46 14�0.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 1.01<br />

• C<strong>on</strong>trol system with more prec<str<strong>on</strong>g>is</str<strong>on</strong>g>e timing, giving<br />

better engine balance with equalized thermal<br />

load in and between cylinders<br />

• System compr<str<strong>on</strong>g>is</str<strong>on</strong>g>ing performance, adequate<br />

m<strong>on</strong>itoring and diagnostics of engine for l<strong>on</strong>ger<br />

time between overhauls<br />

• Lower rpm possible for manoeuvring<br />

• Better accelerati<strong>on</strong>, astern and crash stop performance<br />

• Integrated Alpha Cylinder Lubricators<br />

• Up�gradable to software development over the<br />

lifetime of the engine<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> a natural c<strong>on</strong>sequence of the above that<br />

many more features and operating modes are feasible<br />

with our fully integrated c<strong>on</strong>trol system and,<br />

as such, will be retrofittable and eventually offered<br />

to owners of ME engines.<br />

Differences between MC/MC-C and<br />

ME/ME-C engines<br />

The electro�hydraulic c<strong>on</strong>trol mechan<str<strong>on</strong>g>is</str<strong>on</strong>g>ms of the<br />

ME engine replace the following comp<strong>on</strong>ents of<br />

the c<strong>on</strong>venti<strong>on</strong>al MC engine:<br />

• Chain drive for camshaft<br />

• Camshaft with fuel cams, exhaust cams and<br />

indicator cams<br />

• Fuel pump actuating gear, including roller<br />

guides and reversing mechan<str<strong>on</strong>g>is</str<strong>on</strong>g>m<br />

• C<strong>on</strong>venti<strong>on</strong>al fuel pressure booster and VIT system<br />

• Exhaust valve actuating gear and roller guides<br />

• Engine driven starting air d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributor<br />

• Electr<strong>on</strong>ic governor with actuator<br />

• Regulating shaft<br />

• Engine side c<strong>on</strong>trol c<strong>on</strong>sole<br />

• Mechanical cylinder lubricators.<br />

Page 2 of 2<br />

The new Engine C<strong>on</strong>trol System of the ME engine<br />

compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es:<br />

• C<strong>on</strong>trol units<br />

• Hydraulic power supply unit<br />

• Hydraulic cylinder units, including:<br />

• Electr<strong>on</strong>ically c<strong>on</strong>trolled fuel injecti<strong>on</strong>, and<br />

• Electr<strong>on</strong>ically c<strong>on</strong>trolled exhaust valve activati<strong>on</strong><br />

• Electr<strong>on</strong>ically c<strong>on</strong>trolled starting air valves<br />

• Electr<strong>on</strong>ically c<strong>on</strong>trolled auxiliary blowers<br />

• Integrated electr<strong>on</strong>ic governor functi<strong>on</strong>s<br />

• Tacho system<br />

• Electr<strong>on</strong>ically c<strong>on</strong>trolled Alpha lubricators<br />

• Local Operating Panel (LOP)<br />

• <strong>MAN</strong> <strong>Diesel</strong> PMI system, type PT/S off�line,<br />

cylinder pressure m<strong>on</strong>itoring system.<br />

The system can be further extended by opti<strong>on</strong>al<br />

systems, such as:<br />

• C<strong>on</strong>diti<strong>on</strong> M<strong>on</strong>itoring System, CoCoS�EDS<br />

<strong>on</strong>�line<br />

The main features of the ME engine are described<br />

<strong>on</strong> the following pages.<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 46 14�0.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 1.02<br />

Engine Type Designati<strong>on</strong><br />

6 S 70 M E�B/C/GI7<br />

Mark versi<strong>on</strong><br />

Design C Compact engine<br />

Page of<br />

C<strong>on</strong>cept E Electr<strong>on</strong>ically c<strong>on</strong>trolled<br />

Engine programme<br />

Diameter of p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> in cm<br />

Stroke/bore ratio<br />

Number of cylinders<br />

B Exhaust valve c<strong>on</strong>trolled<br />

by camshaft<br />

GI Gas Injecti<strong>on</strong><br />

S Super l<strong>on</strong>g stroke<br />

L L<strong>on</strong>g stroke<br />

K Short stroke<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME�B engines 198 38 24�3.5


<strong>MAN</strong> B&W 1.03<br />

Power and Speed with Fuel and Lubricating Oil C<strong>on</strong>sumpti<strong>on</strong><br />

<strong>MAN</strong> B&W S65ME-C8/ME-GI8<br />

Bore: 650 mm<br />

Stroke: 2,730 mm<br />

Power and speed with fuel c<strong>on</strong>sumpti<strong>on</strong><br />

Cyl. L 1 kW<br />

5 14,350<br />

6 17,220<br />

7 20,090<br />

8 22,960<br />

*) Guiding Equivalent Energy C<strong>on</strong>sumpti<strong>on</strong>, see Secti<strong>on</strong> 1.04<br />

Fig. 1.03.01 Power and speed with fuel c<strong>on</strong>sumpti<strong>on</strong> (expressed in SFOC and heat rate)<br />

Lubricating oil c<strong>on</strong>sumpti<strong>on</strong><br />

2,870<br />

2,450<br />

2,290<br />

1,960<br />

kW/cyl.<br />

Oil c<strong>on</strong>sumpti<strong>on</strong><br />

Approx. g/kWh<br />

System oil 0. 5<br />

Cylinder oil, <strong>MAN</strong> B&W Alpha cylinder lubricator 0.7<br />

L3<br />

L4<br />

Page of<br />

<strong>MAN</strong> B&W S65ME-C8/ME-GI8 198 46 06-8.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

L1<br />

L2<br />

81 95 r/min<br />

20.0 169 7,220<br />

16.0 162 6,920<br />

mep SFOC heat rate *)<br />

bar g/kWh kJ/kWh


<strong>MAN</strong> B&W 1.04<br />

Engine Power Range and Fuel Oil C<strong>on</strong>sumpti<strong>on</strong><br />

Engine Power<br />

The following tables c<strong>on</strong>tain data regarding the<br />

power, speed and specific fuel oil c<strong>on</strong>sumpti<strong>on</strong> of<br />

the engine.<br />

Engine power <str<strong>on</strong>g>is</str<strong>on</strong>g> specified in kW for each cylinder<br />

number and layout points L , L 2 , L 3 and L 4 :<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>crepancies between kW and metric horsepower<br />

( BHP = 75 kpm/s = 0.7355 kW) are a c<strong>on</strong>sequence<br />

of the rounding off of the BHP values.<br />

L designates nominal maximum c<strong>on</strong>tinuous rating<br />

(nominal MCR), at 00% engine power and 00%<br />

engine speed.<br />

L , L and L designate layout points at the other<br />

2 3 4<br />

three corners of the layout area, chosen for easy<br />

reference.<br />

�����<br />

��<br />

��<br />

� �<br />

� �<br />

�����<br />

178 51 48�9.0<br />

Fig. 1.04.01: Layout diagram for engine power and speed<br />

Overload corresp<strong>on</strong>ds to 0% of the power at<br />

MCR, and may be permitted for a limited period of<br />

<strong>on</strong>e hour every 2 hours.<br />

The engine power figures given in the tables remain<br />

valid up to tropical c<strong>on</strong>diti<strong>on</strong>s at sea level as<br />

stated in IACS M28 ( 978), i.e.:<br />

Blower inlet temperature ................................ 45 °C<br />

Blower inlet pressure ............................. 000 mbar<br />

Seawater temperature .................................... 32 °C<br />

Relative humidity ..............................................60%<br />

Page of 2<br />

Specific fuel oil c<strong>on</strong>sumpti<strong>on</strong> (SFOC)<br />

Specific fuel oil c<strong>on</strong>sumpti<strong>on</strong> values refer to brake<br />

power, and the following reference c<strong>on</strong>diti<strong>on</strong>s:<br />

ISO 3046/ �2002:<br />

Blower inlet temperature ................................. 25°C<br />

Blower inlet pressure ............................. 000 mbar<br />

Charge air coolant temperature ..................... 25 °C<br />

Fuel oil lower calorific value ............... 42,700 kJ/kg<br />

(~ 0,200 kcal/kg)<br />

Although the engine will develop the power specified<br />

up to tropical ambient c<strong>on</strong>diti<strong>on</strong>s, specific<br />

fuel oil c<strong>on</strong>sumpti<strong>on</strong> varies with ambient c<strong>on</strong>diti<strong>on</strong>s<br />

and fuel oil lower calorific value. For calculati<strong>on</strong><br />

of these changes, see Chapter 2.<br />

SFOC guarantee<br />

The figures given in th<str<strong>on</strong>g>is</str<strong>on</strong>g> project guide represent<br />

the values obtained when the engine and turbocharger<br />

are matched with a view to obtaining the<br />

lowest possible SFOC values and in compliance<br />

with the IMO NO em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> limitati<strong>on</strong>s, i.e. the<br />

x<br />

so�called ‘fuel ec<strong>on</strong>omy mode’.<br />

The Specific Fuel Oil C<strong>on</strong>sumpti<strong>on</strong> (SFOC) <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

guaranteed for <strong>on</strong>e engine load (power�speed<br />

combinati<strong>on</strong>), th<str<strong>on</strong>g>is</str<strong>on</strong>g> being the specified MCR rating.<br />

The guarantee <str<strong>on</strong>g>is</str<strong>on</strong>g> given with a margin of 5%.<br />

If the ‘NO em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> mode’ <str<strong>on</strong>g>is</str<strong>on</strong>g> applied the SFOC <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

x<br />

somewhat higher than for ‘fuel ec<strong>on</strong>omy mode’,<br />

as menti<strong>on</strong>ed in <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 6.0 . An estimati<strong>on</strong> of<br />

the SFOC <str<strong>on</strong>g>is</str<strong>on</strong>g> stated in the following table.<br />

Please note that the SFOC figures for ‘NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong><br />

mode’ are not subject to any guarantee.<br />

Lubricating oil data<br />

The cylinder oil c<strong>on</strong>sumpti<strong>on</strong> figures stated in the<br />

tables are valid under normal c<strong>on</strong>diti<strong>on</strong>s.<br />

During running�in periods and under special c<strong>on</strong>diti<strong>on</strong>s,<br />

feed rates of up to .5 times the stated<br />

values should be used.<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C engines 198 46 34�3.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 1.04<br />

Compar<str<strong>on</strong>g>is</str<strong>on</strong>g><strong>on</strong> of SFOC for ‘Fuel Ec<strong>on</strong>omy Mode’ and ‘NO x Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> Mode’<br />

* Guiding figures not subject to SFOC guarantee<br />

ME engines<br />

Fuel ec<strong>on</strong>omy mode NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> mode*<br />

Page 2 of 2<br />

High efficiency TC C<strong>on</strong>venti<strong>on</strong>al TC High efficiency TC C<strong>on</strong>venti<strong>on</strong>al TC<br />

Load g/kWh Load g/kWh Load g/kWh Load g/kWh<br />

100% 70%* 100% 70%* 100% 70% 100% 70%<br />

S65ME-C 169 164 171 166 S65ME-C 170-171 169-170 172-173 171-172<br />

Fig. 1.04.01: Compar<str<strong>on</strong>g>is</str<strong>on</strong>g><strong>on</strong> of SFOC<br />

S65ME-C 198 48 07-0.0


<strong>MAN</strong> B&W 1.05<br />

Performance Curves<br />

������������<br />

�����������������������<br />

����������������<br />

��������������������<br />

���������������������<br />

�����������������������<br />

���������������������<br />

�����������������������<br />

������������������������<br />

������������������<br />

������������<br />

���<br />

�����<br />

Fig. 1.05.01: Performance curves<br />

Page of<br />

178 52 31-5.1<br />

<strong>MAN</strong> B&W S65ME-C8 198 48 08-2.1<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���<br />

�����<br />

����<br />

�����<br />

���<br />

��<br />

��<br />

��<br />

��������<br />

���<br />

���<br />

���<br />

���<br />

���<br />

���<br />

���<br />

�����<br />

���<br />

���<br />

���<br />

���<br />

���<br />

������<br />

���<br />

����<br />

����<br />

�������������<br />

��������������<br />

����<br />

����<br />

������<br />

���<br />

��<br />

��<br />

��<br />

��<br />

��<br />

���<br />

��������<br />

�<br />

�<br />

�<br />

�<br />

�����


<strong>MAN</strong> B&W 1.06<br />

ME Engine Descripti<strong>on</strong><br />

Please note that engines built by our licensees<br />

are in accordance with <strong>MAN</strong> <strong>Diesel</strong> drawings and<br />

standards but, in certain cases, some local standards<br />

may be applied; however, all spare parts are<br />

interchangeable with <strong>MAN</strong> <strong>Diesel</strong> designed parts.<br />

Some comp<strong>on</strong>ents may differ from <strong>MAN</strong> <strong>Diesel</strong>’s<br />

design because of local producti<strong>on</strong> facilities or<br />

the applicati<strong>on</strong> of local standard comp<strong>on</strong>ents.<br />

In the following, reference <str<strong>on</strong>g>is</str<strong>on</strong>g> made to the item<br />

numbers specified in the ‘Extent of Delivery’ (EoD)<br />

forms, both for the ‘Basic’ delivery extent and for<br />

some ‘Opti<strong>on</strong>s’.<br />

Bedplate and Main Bearing<br />

The bedplate <str<strong>on</strong>g>is</str<strong>on</strong>g> made with the thrust bearing in<br />

the aft end of the engine. The bedplate c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts<br />

of high, welded, l<strong>on</strong>gitudinal girders and welded<br />

cross girders with cast steel bearing supports.<br />

For fitting to the engine seating in the ship, l<strong>on</strong>g,<br />

elastic holding�down bolts, and hydraulic tightening<br />

tools are used.<br />

The bedplate <str<strong>on</strong>g>is</str<strong>on</strong>g> made without taper for engines<br />

mounted <strong>on</strong> epoxy chocks.<br />

The oil pan, which <str<strong>on</strong>g>is</str<strong>on</strong>g> made of steel plate and <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

welded to the bedplate, collects the return oil from<br />

the forced lubricating and cooling oil system. The<br />

oil outlets from the oil pan are normally vertical<br />

and are provided with gratings.<br />

Horiz<strong>on</strong>tal outlets at both ends can be arranged<br />

for some cylinder numbers, however th<str<strong>on</strong>g>is</str<strong>on</strong>g> must be<br />

c<strong>on</strong>firmed by the engine builder.<br />

The main bearings c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>t of thin walled steel<br />

shells lined with bearing metal. The main bearing<br />

bottom shell can be rotated out and in by means<br />

of special tools in combinati<strong>on</strong> with hydraulic<br />

tools for lifting the crankshaft. The shells are kept<br />

in positi<strong>on</strong> by a bearing cap.<br />

Frame Box<br />

Page of 5<br />

The frame box <str<strong>on</strong>g>is</str<strong>on</strong>g> of welded design. On the exhaust<br />

side, it <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with relief valves for each<br />

cylinder while, <strong>on</strong> the manoeuvring side, it <str<strong>on</strong>g>is</str<strong>on</strong>g> provided<br />

with a large hinged door for each cylinder.<br />

The crosshead guides are welded <strong>on</strong> to the frame<br />

box.<br />

The frame box <str<strong>on</strong>g>is</str<strong>on</strong>g> attached to the bedplate with<br />

screws. The bedplate, frame box and cylinder<br />

frame are tightened together by stay bolts.<br />

Cylinder Frame and Stuffing Box<br />

The cylinder frame <str<strong>on</strong>g>is</str<strong>on</strong>g> cast, with the excepti<strong>on</strong> of<br />

the S65ME�C which <str<strong>on</strong>g>is</str<strong>on</strong>g> welded, and <str<strong>on</strong>g>is</str<strong>on</strong>g> provided<br />

with access covers for cleaning the scavenge air<br />

space, if required, and for inspecti<strong>on</strong> of scavenge<br />

ports and p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings from the manoeuvring side.<br />

Together with the cylinder liner it forms the scavenge<br />

air space.<br />

The cylinder frame <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted with pipes for the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

cooling oil inlet. The scavenge air receiver, turbocharger,<br />

air cooler box and gallery brackets are<br />

located <strong>on</strong> the cylinder frame. At the bottom of the<br />

cylinder frame there <str<strong>on</strong>g>is</str<strong>on</strong>g> a p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod stuffing box,<br />

provided with sealing rings for scavenge air, and<br />

with oil scraper rings which prevent crankcase oil<br />

from coming up into the scavenge air space.<br />

Drains from the scavenge air space and the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

rod stuffing box are located at the bottom of the<br />

cylinder frame.<br />

Cylinder Liner<br />

The cylinder liner <str<strong>on</strong>g>is</str<strong>on</strong>g> made of alloyed cast ir<strong>on</strong><br />

and <str<strong>on</strong>g>is</str<strong>on</strong>g> suspended in the cylinder frame with a<br />

low�situated flange. The top of the cylinder liner<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> fitted with a cooling jacket. The cylinder liner<br />

has scavenge ports and drilled holes for cylinder<br />

lubricati<strong>on</strong>.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 46 13�9.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 1.06<br />

Cylinder Cover<br />

The cylinder cover <str<strong>on</strong>g>is</str<strong>on</strong>g> of forged steel, made in <strong>on</strong>e<br />

piece, and has bores for cooling water. It has a<br />

central bore for the exhaust valve, and bores for<br />

the fuel valves, a starting valve and an indicator<br />

valve.<br />

The cylinder cover <str<strong>on</strong>g>is</str<strong>on</strong>g> attached to the cylinder<br />

frame with studs and nuts tightened with hydraulic<br />

jacks.<br />

Crankshaft<br />

The crankshaft <str<strong>on</strong>g>is</str<strong>on</strong>g> of the semi�built type, made<br />

from forged or cast steel throws. At the aft end,<br />

the crankshaft <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with the collar for the<br />

thrust bearing, a flange for fitting the gear wheel<br />

for the step�up gear to the hydraulic power supply<br />

unit if fitted <strong>on</strong> the engine, and the flange for<br />

the turning wheel and for the coupling bolts to an<br />

intermediate shaft.<br />

At the fr<strong>on</strong>t end, the crankshaft <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted with the<br />

collar for the axial vibrati<strong>on</strong> damper and a flange<br />

for the fitting of a tuning wheel. The flange can<br />

also be used for a Power Take Off, if so desired.<br />

Coupling bolts and nuts for joining the crankshaft<br />

together with the intermediate shaft are not normally<br />

supplied.<br />

Thrust Bearing<br />

The propeller thrust <str<strong>on</strong>g>is</str<strong>on</strong>g> transferred through the<br />

thrust collar, the segments, and the bedplate, to<br />

the end chocks and engine seating, and thus to<br />

the ship’s hull.<br />

The thrust bearing <str<strong>on</strong>g>is</str<strong>on</strong>g> located in the aft end of the<br />

engine. The thrust bearing <str<strong>on</strong>g>is</str<strong>on</strong>g> of the B&W�Michell<br />

type, and c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts primarily of a thrust collar <strong>on</strong><br />

the crankshaft, a bearing support, and segments<br />

of steel lined with white metal. The thrust shaft <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

an integrated part of the crankshaft and it <str<strong>on</strong>g>is</str<strong>on</strong>g> lubricated<br />

by the engine’s lubricating oil system.<br />

Step�up Gear<br />

Page of 5<br />

In case of engine driven HPS, the hydraulic oil<br />

pumps are mounted <strong>on</strong> the aft of the engine, and<br />

are driven from the crankshaft via step�up gear.<br />

The step�up gear <str<strong>on</strong>g>is</str<strong>on</strong>g> lubricated from the main engine<br />

system.<br />

Turning Gear and Turning Wheel<br />

The turning wheel <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted to the thrust shaft, and<br />

it <str<strong>on</strong>g>is</str<strong>on</strong>g> driven by a pini<strong>on</strong> <strong>on</strong> the terminal shaft of the<br />

turning gear, which <str<strong>on</strong>g>is</str<strong>on</strong>g> mounted <strong>on</strong> the bedplate.<br />

The turning gear <str<strong>on</strong>g>is</str<strong>on</strong>g> driven by an electric motor<br />

with built�in gear with brake.<br />

A blocking device prevents the main engine from<br />

starting when the turning gear <str<strong>on</strong>g>is</str<strong>on</strong>g> engaged. Engagement<br />

and d<str<strong>on</strong>g>is</str<strong>on</strong>g>engagement of the turning gear<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> effected manually by an axial movement of the<br />

pini<strong>on</strong>.<br />

The c<strong>on</strong>trol device for the turning gear, c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ting<br />

of starter and manual c<strong>on</strong>trol box, can be ordered<br />

as an opti<strong>on</strong>.<br />

Axial Vibrati<strong>on</strong> Damper<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted with an axial vibrati<strong>on</strong> damper,<br />

mounted <strong>on</strong> the fore end of the crankshaft. The<br />

damper c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> and a split�type<br />

housing located forward of the foremost main<br />

bearing. The p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> made as an integrated collar<br />

<strong>on</strong> the main journal, and the housing <str<strong>on</strong>g>is</str<strong>on</strong>g> fixed to<br />

the main bearing support.<br />

Tuning Wheel / Torsi<strong>on</strong>al Vibrati<strong>on</strong> Damper<br />

A tuning wheel or torsi<strong>on</strong>al vibrati<strong>on</strong> damper may<br />

have to be ordered separately, depending <strong>on</strong> the<br />

final torsi<strong>on</strong>al vibrati<strong>on</strong> calculati<strong>on</strong>s.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 46 13�9.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 1.06<br />

C<strong>on</strong>necting Rod<br />

The c<strong>on</strong>necting rod <str<strong>on</strong>g>is</str<strong>on</strong>g> made of forged or cast<br />

steel and provided with bearing caps for the<br />

crosshead and crankpin bearings.<br />

The crosshead and crankpin bearing caps are secured<br />

to the c<strong>on</strong>necting rod with studs and nuts<br />

tightened by means of hydraulic jacks.<br />

The crosshead bearing c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a set of<br />

thin�walled steel shells, lined with bearing metal.<br />

The crosshead bearing cap <str<strong>on</strong>g>is</str<strong>on</strong>g> in <strong>on</strong>e piece, with<br />

an angular cut�out for the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod.<br />

The crankpin bearing <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with thin�walled<br />

steel shells, lined with bearing metal. Lube oil <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

supplied through ducts in the crosshead and c<strong>on</strong>necting<br />

rod.<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

The p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> crown and p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

skirt. The p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> crown <str<strong>on</strong>g>is</str<strong>on</strong>g> made of heat�res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant<br />

steel and has four ring grooves which are<br />

hard�chrome plated <strong>on</strong> both the upper and lower<br />

surfaces of the grooves.<br />

The uppermost p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> ring <str<strong>on</strong>g>is</str<strong>on</strong>g> of the CPR type<br />

(C<strong>on</strong>trolled Pressure Relief), whereas the other<br />

three p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings are with an oblique cut. The uppermost<br />

p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> ring <str<strong>on</strong>g>is</str<strong>on</strong>g> higher than the others. The<br />

p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> skirt <str<strong>on</strong>g>is</str<strong>on</strong>g> of cast ir<strong>on</strong> with a br<strong>on</strong>ze band.<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> Rod<br />

The p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod <str<strong>on</strong>g>is</str<strong>on</strong>g> of forged steel and <str<strong>on</strong>g>is</str<strong>on</strong>g> surfacehardened<br />

<strong>on</strong> the running surface for the stuffing<br />

box. The p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected to the crosshead<br />

with four screws. The p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod has a central<br />

bore which, in c<strong>on</strong>juncti<strong>on</strong> with a cooling oil<br />

pipe, forms the inlet and outlet for cooling oil.<br />

Crosshead<br />

Page of 5<br />

The crosshead <str<strong>on</strong>g>is</str<strong>on</strong>g> of forged steel and <str<strong>on</strong>g>is</str<strong>on</strong>g> provided<br />

with cast steel guide shoes with white metal <strong>on</strong><br />

the running surface.<br />

The telescopic pipe for oil inlet and the pipe for oil<br />

outlet are mounted <strong>on</strong> the guide shoes.<br />

Scavenge Air System<br />

The air intake to the turbocharger takes place<br />

directly from the engine room through the turbocharger<br />

intake silencer. From the turbocharger,<br />

the air <str<strong>on</strong>g>is</str<strong>on</strong>g> led via the charging air pipe, air cooler<br />

and scavenge air receiver to the scavenge ports<br />

of the cylinder liners, see Chapter 4.<br />

Scavenge Air Cooler<br />

For each turbocharger <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted a scavenge air<br />

cooler of the m<strong>on</strong>o�block type designed for seawater<br />

cooling at up to .0 � .5 bar working pressure,<br />

alternatively, a central cooling system can<br />

be chosen with freshwater of maximum 4.5 bar<br />

working pressure.<br />

The scavenge air cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> so designed that the<br />

difference between the scavenge air temperature<br />

and the water inlet temperature at specified MCR<br />

can be kept at about °C.<br />

Auxiliary Blower<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with electrically�driven<br />

scavenge air blowers. The sucti<strong>on</strong> side of the<br />

blowers <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected to the scavenge air space<br />

after the air cooler.<br />

Between the air cooler and the scavenge air receiver,<br />

n<strong>on</strong>�return valves are fitted which automatically<br />

close when the auxiliary blowers supply<br />

the air.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 46 13�9.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 1.06<br />

The auxiliary blowers will start operating c<strong>on</strong>secutively<br />

before the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> started in order to<br />

ensure sufficient scavenge air pressure to obtain<br />

a safe start.<br />

Further informati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> given in Chapter 4.<br />

Exhaust <strong>Turbo</strong>charger<br />

The engines can be fitted with either <strong>MAN</strong> <strong>Diesel</strong>,<br />

ABB or Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbochargers.<br />

The turbocharger choice <str<strong>on</strong>g>is</str<strong>on</strong>g> described in Chapter<br />

, and the exhaust gas system in Chapter 5.<br />

Reversing<br />

Reversing of the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> performed electr<strong>on</strong>ically,<br />

by changing the timing of the fuel injecti<strong>on</strong>, the<br />

exhaust valve activati<strong>on</strong> and the starting valves.<br />

The Hydraulic Power Supply<br />

The hydraulic power supply (HPS) <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted <strong>on</strong> the<br />

aft end, and at the middle for engines with chain<br />

drive located in the middle, ie. large cylinder numbers.<br />

For engines with chain drive aft, the HPS <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

located aft.<br />

Hydraulic Cylinder Unit<br />

The hydraulic cylinder unit (HCU), <strong>on</strong>e per cylinder,<br />

c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a support c<strong>on</strong>sole <strong>on</strong> which a d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributor<br />

block <str<strong>on</strong>g>is</str<strong>on</strong>g> mounted. The d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributor block <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted<br />

with a number of accumulators to ensure that<br />

the necessary hydraulic oil peak flow <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g><br />

for the Electr<strong>on</strong>ic Fuel Injecti<strong>on</strong>.<br />

The d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributor block serves as a mechanical support<br />

for the hydraulically activated fuel pressure<br />

booster and the hydraulically activated exhaust<br />

valve actuator.<br />

Fuel Oil Pressure Booster and<br />

Fuel Oil High Pressure Pipes<br />

Page 4 of 5<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with <strong>on</strong>e hydraulically activated<br />

fuel oil pressure booster for each cylinder.<br />

Fuel injecti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> activated by a proporti<strong>on</strong>al valve,<br />

which <str<strong>on</strong>g>is</str<strong>on</strong>g> electr<strong>on</strong>ically c<strong>on</strong>trolled by the Cylinder<br />

C<strong>on</strong>trol Unit.<br />

Further informati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> given in Secti<strong>on</strong> 7.0 .<br />

Fuel Valves and Starting Air Valve<br />

The cylinder cover <str<strong>on</strong>g>is</str<strong>on</strong>g> equipped with two or three<br />

fuel valves, starting air valve, and indicator cock.<br />

The opening of the fuel valves <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled by<br />

the high pressure fuel oil created by the fuel oil<br />

pressure booster, and the valves are closed by a<br />

spring.<br />

An automatic vent slide allows circulati<strong>on</strong> of fuel<br />

oil through the valve and high pressure pipes<br />

when the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> stopped. The vent slide also<br />

prevents the compressi<strong>on</strong> chamber from being<br />

filled up with fuel oil in the event that the valve<br />

spindle sticks. Oil from the vent slide and other<br />

drains <str<strong>on</strong>g>is</str<strong>on</strong>g> led away in a closed system.<br />

The fuel oil high�pressure pipes are equipped with<br />

protective hoses and are neither heated nor insulated.<br />

The mechanically driven starting air d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributor<br />

used <strong>on</strong> the MC engines has been replaced by<br />

<strong>on</strong>e solenoid valve per cylinder, c<strong>on</strong>trolled by the<br />

CCUs of the Engine C<strong>on</strong>trol System.<br />

Slow turning before starting <str<strong>on</strong>g>is</str<strong>on</strong>g> a program incorporated<br />

into the basic Engine C<strong>on</strong>trol System.<br />

The starting air system <str<strong>on</strong>g>is</str<strong>on</strong>g> described in detail in<br />

Secti<strong>on</strong> .0 .<br />

The starting valve <str<strong>on</strong>g>is</str<strong>on</strong>g> opened by c<strong>on</strong>trol air and <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

closed by a spring. The integrated Engine C<strong>on</strong>trol<br />

System c<strong>on</strong>trols the starting valve timing.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 46 13�9.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 1.06<br />

Exhaust Valve<br />

The exhaust valve c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of the valve housing<br />

and the valve spindle. The valve housing <str<strong>on</strong>g>is</str<strong>on</strong>g> made<br />

of cast ir<strong>on</strong> and <str<strong>on</strong>g>is</str<strong>on</strong>g> arranged for water cooling. The<br />

housing <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with a water cooled bottom<br />

piece of steel with a flame hardened seat. The exhaust<br />

valve spindle <str<strong>on</strong>g>is</str<strong>on</strong>g> made of Nim<strong>on</strong>ic. The housing<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> provided with a spindle guide.<br />

The exhaust valve <str<strong>on</strong>g>is</str<strong>on</strong>g> tightened to the cylinder<br />

cover with studs and nuts. The exhaust valve <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

opened hydraulically by the electr<strong>on</strong>ic valve activati<strong>on</strong><br />

system and <str<strong>on</strong>g>is</str<strong>on</strong>g> closed by means of air pressure.<br />

The operati<strong>on</strong> of the exhaust valve <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled<br />

by the proporti<strong>on</strong>al valve which also activates the<br />

fuel injecti<strong>on</strong>.<br />

In operati<strong>on</strong>, the valve spindle slowly rotates, driven<br />

by the exhaust gas acting <strong>on</strong> small vanes fixed<br />

to the spindle.<br />

Indicator Cock<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted with an indicator cock to<br />

which the PMI pressure transducer can be c<strong>on</strong>nected.<br />

<strong>MAN</strong> <strong>Diesel</strong> Alpha Cylinder Lubricator<br />

The electr<strong>on</strong>ically c<strong>on</strong>trolled Alpha cylinder lubricating<br />

oil system, used <strong>on</strong> the MC engines, <str<strong>on</strong>g>is</str<strong>on</strong>g> applied<br />

to the ME engines, and c<strong>on</strong>trolled by the ME<br />

Engine C<strong>on</strong>trol System.<br />

The main advantages of the Alpha cylinder lubricating<br />

oil system, compared with the c<strong>on</strong>venti<strong>on</strong>al<br />

mechanical lubricator, are:<br />

• Improved injecti<strong>on</strong> timing<br />

• Increased dosage flexibility<br />

• C<strong>on</strong>stant injecti<strong>on</strong> pressure<br />

• Improved oil d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributi<strong>on</strong> in the cylinder liner<br />

• Possibility for prelubricati<strong>on</strong> before starting.<br />

Page 5 of 5<br />

More details about the cylinder lubricati<strong>on</strong> system<br />

can be found in Chapter 9.<br />

Gallery Arrangement<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with gallery brackets,<br />

stanchi<strong>on</strong>s, railings and platforms (exclusive of<br />

ladders). The brackets are placed at such a height<br />

as to provide the best possible overhauling and<br />

inspecti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s.<br />

Some main pipes of the engine are suspended<br />

from the gallery brackets, and the topmost gallery<br />

platform <strong>on</strong> the manoeuvring side <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with<br />

overhauling holes for the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong>s.<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> prepared for top bracings <strong>on</strong> the exhaust<br />

side, or <strong>on</strong> the manoeuvring side.<br />

Piping Arrangements<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> delivered with piping arrangements<br />

for:<br />

• Fuel oil<br />

• Heating of fuel oil pipes<br />

• Lubricating oil, p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling oil and<br />

hydraulic oil pipes<br />

• Cylinder lubricating oil<br />

• Cooling water to scavenge air cooler<br />

• Jacket and turbocharger cooling water<br />

• Cleaning of turbocharger<br />

• Fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing in scavenge air space<br />

• Starting air<br />

• C<strong>on</strong>trol air<br />

• Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector<br />

• Various drain pipes.<br />

All piping arrangements are made of steel piping,<br />

except the c<strong>on</strong>trol air and steam heating of fuel<br />

pipes, which are made of copper.<br />

The pipes are provided with sockets for local<br />

instruments, alarm and safety equipment and,<br />

furthermore, with a number of sockets for supplementary<br />

signal equipment. Chapter 8 deals with<br />

the instrumentati<strong>on</strong>.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 46 13�9.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 1.07<br />

Engine Cross Secti<strong>on</strong> of S65ME�C8/S65ME-GI8<br />

Fig.: 1.07.01 Engine cross <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Page of<br />

178 52 23�2.0<br />

<strong>MAN</strong> B&W S65ME-C8/ME-GI8 198 48 21-2.1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W<br />

Engine Layout and Load<br />

Diagrams, SFOC<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

2


<strong>MAN</strong> B&W 2.01<br />

Engine Layout and Load Diagrams<br />

Introducti<strong>on</strong><br />

The effective power ‘P’ of a diesel engine <str<strong>on</strong>g>is</str<strong>on</strong>g> proporti<strong>on</strong>al<br />

to the mean effective pressure p e and<br />

engine speed ‘n’, i.e. when using ‘c’ as a c<strong>on</strong>stant:<br />

P = c x p e x n<br />

so, for c<strong>on</strong>stant mep, the power <str<strong>on</strong>g>is</str<strong>on</strong>g> proporti<strong>on</strong>al to<br />

the speed:<br />

P = c x n (for c<strong>on</strong>stant mep)<br />

When running with a Fixed Pitch Propeller (FPP),<br />

the power may be expressed according to the<br />

propeller law as:<br />

P = c x n 3 (propeller law)<br />

Thus, for the above examples, the power P may<br />

be expressed as a power functi<strong>on</strong> of the speed ‘n’<br />

to the power of ‘i’, i.e.:<br />

P = c x n i<br />

Fig. 2.0 .0 shows the relati<strong>on</strong>ship for the linear<br />

functi<strong>on</strong>s, y = ax + b, using linear scales.<br />

The power functi<strong>on</strong>s P = c x n i will be linear functi<strong>on</strong>s<br />

when using logarithmic scales:<br />

2<br />

0<br />

log (P) = i x log (n) + log (c)<br />

y<br />

0 2<br />

Fig. 2.01.01: Straight lines in linear scales<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B, ME/ME�GI engines<br />

a<br />

b<br />

y=ax+b<br />

x<br />

178 05 40�3.0<br />

y=log(P)<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

i = 0<br />

i =<br />

i = 2<br />

i = 3<br />

Page of 2<br />

Fig. 2.01.02: Power functi<strong>on</strong> curves in logarithmic scales<br />

Thus, propeller curves will be parallel to lines having<br />

the inclinati<strong>on</strong> i = 3, and lines with c<strong>on</strong>stant<br />

mep will be parallel to lines with the inclinati<strong>on</strong> i = .<br />

Therefore, in the Layout Diagrams and Load Diagrams<br />

for diesel engines, logarithmic scales are<br />

used, giving simple diagrams with straight lines.<br />

Propulsi<strong>on</strong> and Engine Running Points<br />

Propeller curve<br />

The relati<strong>on</strong> between power and propeller speed<br />

for a fixed pitch propeller <str<strong>on</strong>g>is</str<strong>on</strong>g> as menti<strong>on</strong>ed above<br />

described by means of the propeller law, i.e. the<br />

third power curve:<br />

P = c x n 3 , in which:<br />

P = engine power for propulsi<strong>on</strong><br />

n = propeller speed<br />

c = c<strong>on</strong>stant<br />

Propeller design point<br />

i<br />

P = n x c<br />

log (P) = i x log (n) + log (c)<br />

x = log (n)<br />

178 05 40�3.1<br />

Normally, estimates of the necessary propeller<br />

power and speed are based <strong>on</strong> theoretical calculati<strong>on</strong>s<br />

for loaded ship, and often experimental<br />

tank tests, both assuming optimum operating<br />

c<strong>on</strong>diti<strong>on</strong>s, i.e. a clean hull and good weather. The<br />

combinati<strong>on</strong> of speed and power obtained may<br />

be called the ship’s propeller design point (PD),<br />

198 38 33�8.4


<strong>MAN</strong> B&W 2.01<br />

placed <strong>on</strong> the light running propeller curve 6. See<br />

below figure. On the other hand, some shipyards,<br />

and/or propeller manufacturers sometimes use a<br />

propeller design point (PD) that incorporates all or<br />

part of the so�called sea margin described below.<br />

Power, % af L<br />

00% = 0, 5<br />

= 0,20<br />

= 0,25 = 0,30<br />

L 3<br />

L 4<br />

2 6<br />

HR<br />

LR<br />

Fig. 2.01.03: Ship propulsi<strong>on</strong> running points and engine<br />

layout<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B, ME/ME�GI engines<br />

L 2<br />

Engine speed, % of L<br />

00%<br />

Engine margin<br />

(SP=90% of MP)<br />

Sea margin<br />

( 5% of PD)<br />

Line 2 Propulsi<strong>on</strong> curve, fouled hull and heavy weather<br />

(heavy running), recommended for engine layout<br />

Line 6 Propulsi<strong>on</strong> curve, clean hull and calm weather (light<br />

running), for propeller layout<br />

MP Specified MCR for propulsi<strong>on</strong><br />

SP C<strong>on</strong>tinuous service rating for propulsi<strong>on</strong><br />

PD Propeller design point<br />

HR Heavy running<br />

LR Light running<br />

Fouled hull<br />

When the ship has sailed for some time, the hull<br />

and propeller become fouled and the hull’s res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

will increase. C<strong>on</strong>sequently, the ship’s<br />

speed will be reduced unless the engine delivers<br />

more power to the propeller, i.e. the propeller will<br />

be further loaded and will be heavy running (HR).<br />

As modern vessels with a relatively high service<br />

speed are prepared with very smooth propeller<br />

and hull surfaces, the gradual fouling after sea<br />

trial will increase the hull’s res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance and make<br />

the propeller heavier running.<br />

MP<br />

Sea margin and heavy weather<br />

SP<br />

PD<br />

PD<br />

L<br />

178 05 41�5.3<br />

If, at the same time the weather <str<strong>on</strong>g>is</str<strong>on</strong>g> bad, with head<br />

winds, the ship’s res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance may increase compared<br />

to operating in calm weather c<strong>on</strong>diti<strong>on</strong>s.<br />

When determining the necessary engine power, it<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> normal practice to add an extra power margin,<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

the so�called sea margin, which <str<strong>on</strong>g>is</str<strong>on</strong>g> traditi<strong>on</strong>ally<br />

about 5% of the propeller design (PD) power.<br />

Engine layout (heavy propeller)<br />

When determining the necessary engine layout<br />

speed that c<strong>on</strong>siders the influence of a heavy running<br />

propeller for operating at high extra ship res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance,<br />

it <str<strong>on</strong>g>is</str<strong>on</strong>g> (compared to line 6) recommended to<br />

choose a heavier propeller line 2. The propeller<br />

curve for clean hull and calm weather line 6 may<br />

then be said to represent a ‘light running’ (LR)<br />

propeller.<br />

Compared to the heavy engine layout line 2, we<br />

recommend using a light running of 3.0�7.0% for<br />

design of the propeller.<br />

Engine margin<br />

Besides the sea margin, a so�called ‘engine margin’<br />

of some 0% or 5% <str<strong>on</strong>g>is</str<strong>on</strong>g> frequently added. The<br />

corresp<strong>on</strong>ding point <str<strong>on</strong>g>is</str<strong>on</strong>g> called the ‘specified MCR<br />

for propulsi<strong>on</strong>’ (MP), and refers to the fact that the<br />

power for point SP <str<strong>on</strong>g>is</str<strong>on</strong>g> 0% or 5% lower than for<br />

point MP.<br />

Point MP <str<strong>on</strong>g>is</str<strong>on</strong>g> identical to the engine’s specified<br />

MCR point (M) unless a main engine driven shaft<br />

generator <str<strong>on</strong>g>is</str<strong>on</strong>g> installed. In such a case, the extra<br />

power demand of the shaft generator must also<br />

be c<strong>on</strong>sidered.<br />

C<strong>on</strong>stant ship speed lines<br />

The c<strong>on</strong>stant ship speed lines ∝, are shown at<br />

the very top of the figure. They indicate the power<br />

required at various propeller speeds in order to<br />

keep the same ship speed. It <str<strong>on</strong>g>is</str<strong>on</strong>g> assumed that, for<br />

each ship speed, the optimum propeller diameter<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> used, taking into c<strong>on</strong>siderati<strong>on</strong> the total propulsi<strong>on</strong><br />

efficiency. See definiti<strong>on</strong> of ∝ in <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 2.02.<br />

Note:<br />

Light/heavy running, fouling and sea margin are<br />

overlapping terms. Light/heavy running of the<br />

propeller refers to hull and propeller deteriorati<strong>on</strong><br />

and heavy weather, whereas sea margin i.e. extra<br />

power to the propeller, refers to the influence of<br />

the wind and the sea. However, the degree of light<br />

running must be decided up<strong>on</strong> experience from<br />

the actual trade and hull design of the vessel.<br />

198 38 33�8.4


<strong>MAN</strong> B&W 2.02<br />

Propeller diameter and pitch, influence <strong>on</strong> the optimum propeller speed<br />

In general, the larger the propeller diameter D,<br />

the lower <str<strong>on</strong>g>is</str<strong>on</strong>g> the optimum propeller speed and the<br />

kW required for a certain design draught and ship<br />

speed, see curve D in the figure below.<br />

The maximum possible propeller diameter depends<br />

<strong>on</strong> the given design draught of the ship,<br />

and the clearance needed between the propeller<br />

and the aft body hull and the keel.<br />

The example shown in the figure <str<strong>on</strong>g>is</str<strong>on</strong>g> an 80,000 dwt<br />

crude oil tanker with a design draught of 2.2 m<br />

and a design speed of 4.5 knots.<br />

When the optimum propeller diameter D <str<strong>on</strong>g>is</str<strong>on</strong>g> increased<br />

from 6.6 m to 7.2. m, the power demand<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> reduced from about 9,290 kW to 8,820 kW, and<br />

the optimum propeller speed <str<strong>on</strong>g>is</str<strong>on</strong>g> reduced from 20<br />

r/min to 00 r/min, corresp<strong>on</strong>ding to the c<strong>on</strong>stant<br />

ship speed coefficient ∝ = 0.28 (see definiti<strong>on</strong> of<br />

∝ in <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 2.02, page 2).<br />

��<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����������<br />

���<br />

����<br />

����<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B, ME/ME�C/ME�GI engines<br />

����<br />

����<br />

�������������������������������<br />

��������������������������<br />

����<br />

����<br />

�<br />

����<br />

����<br />

����<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 2<br />

���������<br />

�����<br />

�� �� �� ��� ��� ��� ��� �����<br />

Fig. 2.02.01: Influence of diameter and pitch <strong>on</strong> propeller design<br />

Once an optimum propeller diameter of maximum<br />

7.2 m has been chosen, the corresp<strong>on</strong>ding optimum<br />

pitch in th<str<strong>on</strong>g>is</str<strong>on</strong>g> point <str<strong>on</strong>g>is</str<strong>on</strong>g> given for the design<br />

speed of 4.5 knots, i.e. P/D = 0.70.<br />

However, if the optimum propeller speed of 00<br />

r/min does not suit the preferred / selected main<br />

engine speed, a change of pitch away from optimum<br />

will <strong>on</strong>ly cause a relatively small extra power<br />

demand, keeping the same maximum propeller<br />

diameter:<br />

• going from 00 to 0 r/min (P/D = 0.62) requires<br />

8,900 kW i.e. an extra power demand of 80 kW.<br />

• going from 00 to 9 r/min (P/D = 0.8 ) requires<br />

8,900 kW i.e. an extra power demand of 80 kW.<br />

In both cases the extra power demand <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly<br />

of 0.9%, and the corresp<strong>on</strong>ding ‘equal speed<br />

curves’ are ∝ =+0. and ∝ =�0. , respectively, so<br />

there <str<strong>on</strong>g>is</str<strong>on</strong>g> a certain interval of propeller speeds in<br />

which the ‘power penalty’ <str<strong>on</strong>g>is</str<strong>on</strong>g> very limited.<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

�<br />

���<br />

����<br />

178 47 03�2.0<br />

198 38 78�2.5


<strong>MAN</strong> B&W 2.02<br />

C<strong>on</strong>stant ship speed lines<br />

The c<strong>on</strong>stant ship speed lines ∝, are shown at<br />

the very top of Fig. 2.02.02. These lines indicate<br />

the power required at various propeller speeds to<br />

keep the same ship speed provided that the optimum<br />

propeller diameter with an optimum pitch<br />

diameter ratio <str<strong>on</strong>g>is</str<strong>on</strong>g> used at any given speed, taking<br />

into c<strong>on</strong>siderati<strong>on</strong> the total propulsi<strong>on</strong> efficiency.<br />

Normally, the following relati<strong>on</strong> between necessary<br />

power and propeller speed can be assumed:<br />

P 2 = P x (n 2/n ) ∝<br />

where:<br />

P = Propulsi<strong>on</strong> power<br />

n = Propeller speed, and<br />

∝= the c<strong>on</strong>stant ship speed coefficient.<br />

For any combinati<strong>on</strong> of power and speed, each<br />

point <strong>on</strong> lines parallel to the ship speed lines gives<br />

the same ship speed.<br />

When such a c<strong>on</strong>stant ship speed line <str<strong>on</strong>g>is</str<strong>on</strong>g> drawn<br />

into the layout diagram through a specified propulsi<strong>on</strong><br />

MCR point ‘MP ’, selected in the layout<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B, ME/ME�C/ME�GI engines<br />

=0, 5<br />

=0,20<br />

=0,25 =0,30<br />

mep<br />

00%<br />

95%<br />

90%<br />

85%<br />

80%<br />

75%<br />

Fig. 2.02.02: Layout diagram and c<strong>on</strong>stant ship speed lines<br />

70%<br />

3<br />

4<br />

C<strong>on</strong>stant ship speed lines<br />

MP 2<br />

Nominal propeller curve<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

area and parallel to <strong>on</strong>e of the ∝�lines, another<br />

specified propulsi<strong>on</strong> MCR point ‘MP 2 ’ up<strong>on</strong> th<str<strong>on</strong>g>is</str<strong>on</strong>g><br />

line can be chosen to give the ship the same<br />

speed for the new combinati<strong>on</strong> of engine power<br />

and speed.<br />

Fig. 2.02.02 shows an example of the required<br />

power speed point MP , through which a c<strong>on</strong>stant<br />

ship speed curve ∝= 0.25 <str<strong>on</strong>g>is</str<strong>on</strong>g> drawn, obtaining<br />

point MP 2 with a lower engine power and a lower<br />

engine speed but achieving the same ship speed.<br />

Provided the optimum pitch/diameter ratio <str<strong>on</strong>g>is</str<strong>on</strong>g> used<br />

for a given propeller diameter the following data<br />

applies when changing the propeller diameter:<br />

for general cargo, bulk carriers and tankers<br />

∝= 0.25 �0.30<br />

and for reefers and c<strong>on</strong>tainer vessels<br />

∝= 0. 5 �0.25<br />

When changing the propeller speed by changing<br />

the pitch diameter ratio, the ∝ c<strong>on</strong>stant will be different,<br />

see above.<br />

MP<br />

=0,25<br />

75% 80% 85% 90% 95% 00% 05%<br />

2<br />

Power<br />

0%<br />

00%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

Engine speed<br />

178 05 66�7.0<br />

198 38 78�2.5


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 2.03<br />

Layout diagram sizes<br />

Power<br />

Power<br />

L 3<br />

L 4<br />

L 3<br />

L 4<br />

ME/ME-C/ME-GI engines<br />

L 1<br />

L 2<br />

Speed<br />

L 1<br />

L 2<br />

Speed<br />

See also Secti<strong>on</strong> 2.05 for actual project.<br />

Fig. 2.03.01<br />

Layout diagram of<br />

100 - 64% power and<br />

100 - 75% speed range<br />

valid for the types:<br />

K90ME S80ME-C<br />

S70ME-C S70ME-GI<br />

S60ME-C S50ME-C<br />

Layout diagram of<br />

100 - 80% power and<br />

100 - 80% speed range<br />

valid for the types:<br />

S90ME-C<br />

Power<br />

Power<br />

Power<br />

L 3<br />

L 4<br />

L 3<br />

L 4<br />

L 3<br />

L 4<br />

L 1<br />

L 2<br />

Speed<br />

L 1<br />

L 2<br />

Speed<br />

L 1<br />

L 2<br />

Speed<br />

Page 1 of 1<br />

Layout diagram of<br />

100 - 80% power and<br />

100 - 85% speed range<br />

valid for the types:<br />

K90ME-C K80ME-C<br />

L70ME-C L60ME-C<br />

S65ME-C<br />

Layout diagram of<br />

100 - 80% power and<br />

100 - 90% speed range<br />

valid for the types:<br />

K98ME K98ME-C<br />

Layout diagram of<br />

100 - 80% power and<br />

100 - 96% speed range<br />

valid for the types:<br />

K108ME-C<br />

178 50 06-4.0<br />

198 38 91-2.3


<strong>MAN</strong> B&W 2.04<br />

Engine Layout and Load Diagram<br />

Engine Layout Diagram<br />

An engine’s layout diagram <str<strong>on</strong>g>is</str<strong>on</strong>g> limited by two c<strong>on</strong>stant<br />

mean effective pressure (mep) lines L – L 3<br />

and L 2 – L 4 , and by two c<strong>on</strong>stant engine speed<br />

lines L – L 2 and L 3 – L 4 . The L point refers to the<br />

engine’s nominal maximum c<strong>on</strong>tinuous rating.<br />

Within the layout area there <str<strong>on</strong>g>is</str<strong>on</strong>g> full freedom to select<br />

the engine’s specified MCR point M which<br />

suits the demand for propeller power and speed<br />

for the ship.<br />

On the horiz<strong>on</strong>tal ax<str<strong>on</strong>g>is</str<strong>on</strong>g> the engine speed and <strong>on</strong><br />

the vertical ax<str<strong>on</strong>g>is</str<strong>on</strong>g> the engine power are shown <strong>on</strong><br />

percentage scales. The scales are logarithmic<br />

which means that, in th<str<strong>on</strong>g>is</str<strong>on</strong>g> diagram, power functi<strong>on</strong><br />

curves like propeller curves (3rd power), c<strong>on</strong>stant<br />

mean effective pressure curves ( st power) and<br />

c<strong>on</strong>stant ship speed curves (0. 5 to 0.30 power)<br />

are straight lines.<br />

Specified maximum c<strong>on</strong>tinuous rating (M)<br />

Based <strong>on</strong> the propulsi<strong>on</strong> and engine running<br />

points, as previously found, the layout diagram<br />

of a relevant main engine may be drawn�in. The<br />

specified MCR point (M) must be inside the limitati<strong>on</strong><br />

lines of the layout diagram; if it <str<strong>on</strong>g>is</str<strong>on</strong>g> not, the propeller<br />

speed will have to be changed or another<br />

main engine type must be chosen.<br />

C<strong>on</strong>tinuous service rating (S)<br />

The c<strong>on</strong>tinuous service rating <str<strong>on</strong>g>is</str<strong>on</strong>g> the power at<br />

which the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> normally assumed to operate,<br />

and point S <str<strong>on</strong>g>is</str<strong>on</strong>g> identical to the service propulsi<strong>on</strong><br />

point (SP) unless a main engine driven shaft generator<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> installed.<br />

Matching point (O)<br />

Page of<br />

For practical reas<strong>on</strong>s we have chosen to use the<br />

designati<strong>on</strong> ‘O’ for the matching point.<br />

The engine matching point (O) <str<strong>on</strong>g>is</str<strong>on</strong>g> placed <strong>on</strong> line<br />

in the load diagram, Fig. 2.04.02, and can be from<br />

85 to 00% of point M’s power, however it has to<br />

be placed inside the layout diagram.<br />

Overload running ( 0% of M) will still be possible.<br />

As the timing of the fuel injecti<strong>on</strong> and the exhaust<br />

valve activati<strong>on</strong> are electr<strong>on</strong>ically optim<str<strong>on</strong>g>is</str<strong>on</strong>g>ed over a<br />

wide operating range of the engine, the selecti<strong>on</strong><br />

of matching point <strong>on</strong>ly has a meaning in c<strong>on</strong>necti<strong>on</strong><br />

with the turbocharger matching and the compressi<strong>on</strong><br />

ratio.<br />

The lowest specific fuel oil c<strong>on</strong>sumpti<strong>on</strong> for ME<br />

engines <str<strong>on</strong>g>is</str<strong>on</strong>g> obtained at 70% of the matching point<br />

(O).<br />

Power<br />

Fig. 2.04.01: Engine layout diagram<br />

178 51 39�4.0<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

L 3<br />

L 4<br />

L<br />

L 2<br />

Speed


<strong>MAN</strong> B&W 2.04<br />

Engine Load Diagram<br />

Definiti<strong>on</strong>s<br />

The engine’s load diagram defines the power and<br />

speed limits for c<strong>on</strong>tinuous as well as overload<br />

operati<strong>on</strong> of an installed engine having a specified<br />

MCR point M that c<strong>on</strong>firms the ship’s specificati<strong>on</strong>.<br />

Point A <str<strong>on</strong>g>is</str<strong>on</strong>g> a 00% speed and power reference<br />

point of the load diagram, and <str<strong>on</strong>g>is</str<strong>on</strong>g> defined as the<br />

point <strong>on</strong> the propeller curve (line ), � the layout<br />

curve of the engine � through the matching point<br />

O, having the specified MCR power. Normally,<br />

point M <str<strong>on</strong>g>is</str<strong>on</strong>g> equal to point A, but in special cases,<br />

for example if a shaft generator <str<strong>on</strong>g>is</str<strong>on</strong>g> installed, point<br />

M may be placed to the right of point A <strong>on</strong> line 7.<br />

However, <strong>MAN</strong> <strong>Diesel</strong> may always c<strong>on</strong>sider point<br />

A as the engine’s MCR for shop test.<br />

In most cases, the points M and A are identical.<br />

The service points of the installed engine incorporate<br />

the engine power required for ship propulsi<strong>on</strong><br />

and shaft generator, if installed.<br />

Engine shaft power, % of A<br />

110<br />

105<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

7<br />

5<br />

4<br />

1 2 6<br />

8 4 1<br />

2<br />

A=M<br />

7<br />

5<br />

40<br />

60 65 70 75 80 85 90 95 100 105 110<br />

A 00% reference point<br />

M Specified MCR<br />

O Matching point<br />

Fig. 2.04.02: Standard engine load diagram<br />

6<br />

O<br />

Engine speed, % of A<br />

Regarding ‘i’ in the power functi<strong>on</strong> P = c x n i , see page 2.0<br />

3<br />

9<br />

178 05 42�7.3<br />

Page 2 of<br />

Operating curves and limits for c<strong>on</strong>tinuous<br />

operati<strong>on</strong><br />

The c<strong>on</strong>tinuous service range <str<strong>on</strong>g>is</str<strong>on</strong>g> limited by four<br />

lines:<br />

4, 5, 7 and 3 (9), see Fig. 2.04.02. The propeller<br />

curves, line , 2 and 6 in the load diagram are also<br />

described below.<br />

Line 1:<br />

Propeller curve through specified MCR (M), engine<br />

layout curve (i = 3).<br />

Line 2:<br />

Propeller curve, fouled hull and heavy weather<br />

– heavy running (i = 3).<br />

Line 3 and line 9:<br />

Line 3 represents the maximum acceptable speed<br />

for c<strong>on</strong>tinuous operati<strong>on</strong>, i.e. 05% of A.<br />

During trial c<strong>on</strong>diti<strong>on</strong>s the maximum speed may<br />

be extended to 07% of A, see line 9.<br />

The above limits may in general be extended to<br />

05% and during trial c<strong>on</strong>diti<strong>on</strong>s to 07% of the<br />

nominal L speed of the engine, provided the torsi<strong>on</strong>al<br />

vibrati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s permit.<br />

The overspeed set�point <str<strong>on</strong>g>is</str<strong>on</strong>g> 09% of the speed<br />

in A, however, it may be moved to 09% of the<br />

nominal speed in L , provided that torsi<strong>on</strong>al vibrati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s permit.<br />

Running at low load above 00% of the nominal L<br />

speed of the engine <str<strong>on</strong>g>is</str<strong>on</strong>g>, however, to be avoided for<br />

extended periods. Only plants with c<strong>on</strong>trollable<br />

pitch propellers can reach th<str<strong>on</strong>g>is</str<strong>on</strong>g> light running area.<br />

Line 4:<br />

Represents the limit at which an ample air supply<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> for combusti<strong>on</strong> and imposes a limitati<strong>on</strong><br />

<strong>on</strong> the maximum combinati<strong>on</strong> of torque and<br />

speed (i = 2).<br />

Line 5:<br />

Represents the maximum mean effective pressure<br />

level (mep), which can be accepted for c<strong>on</strong>tinuous<br />

operati<strong>on</strong> (i = ).<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 2.04<br />

Line 6:<br />

Propeller curve, clean hull and calm weather<br />

– light running, used for propeller layout/design<br />

(i = 3).<br />

Line 7:<br />

Represents the maximum power for c<strong>on</strong>tinuous<br />

operati<strong>on</strong> (i = 0).<br />

Limits for overload operati<strong>on</strong><br />

The overload service range <str<strong>on</strong>g>is</str<strong>on</strong>g> limited as follows:<br />

Line 8:<br />

Represents the overload operati<strong>on</strong> limitati<strong>on</strong>s.<br />

The area between lines 4, 5, 7 and the heavy<br />

dashed line 8 <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> for overload running for<br />

limited periods <strong>on</strong>ly ( hour per 2 hours).<br />

Line 9:<br />

Speed limit at sea trial.<br />

The area between lines 4, 5, 7 and the heavy<br />

dashed line 8 <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> for overload running for<br />

limited periods <strong>on</strong>ly ( hour per 2 hours).<br />

Limits for low load running<br />

As the fuel injecti<strong>on</strong> and exhaust gas valve timing<br />

are optim<str<strong>on</strong>g>is</str<strong>on</strong>g>ed automatically over the entire<br />

power range, the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> able to operate down<br />

to around 5% of the nominal L speed.<br />

Recommendati<strong>on</strong><br />

Page 3 of<br />

C<strong>on</strong>tinuous operati<strong>on</strong> without limitati<strong>on</strong>s <str<strong>on</strong>g>is</str<strong>on</strong>g> allowed<br />

<strong>on</strong>ly within the area limited by lines 4, 5, 7<br />

and 3 of the load diagram, except for CP propeller<br />

plants menti<strong>on</strong>ed in the previous <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g>.<br />

The area between lines 4 and <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> for<br />

operati<strong>on</strong> in shallow waters, heavy weather and<br />

during accelerati<strong>on</strong>, i.e. for n<strong>on</strong>�steady operati<strong>on</strong><br />

without any strict time limitati<strong>on</strong>. After some<br />

time in operati<strong>on</strong>, the ship’s hull and propeller<br />

will be fouled, resulting in heavier running of the<br />

propeller, i.e. the propeller curve will move to the<br />

left from line 6 towards line 2, and extra power <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

required for propulsi<strong>on</strong> in order to keep the ship’s<br />

speed.<br />

In calm weather c<strong>on</strong>diti<strong>on</strong>s, the extent of heavy<br />

running of the propeller will indicate the need for<br />

cleaning the hull and possibly pol<str<strong>on</strong>g>is</str<strong>on</strong>g>hing the propeller.<br />

Once the specified MCR (and the matching point)<br />

have been chosen, the capacities of the auxiliary<br />

equipment will be adapted to the specified MCR,<br />

and the turbocharger specificati<strong>on</strong> and the compressi<strong>on</strong><br />

ratio will be selected.<br />

If the specified MCR (and/or the matching point)<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> to be increased later <strong>on</strong>, th<str<strong>on</strong>g>is</str<strong>on</strong>g> may involve<br />

a change of the pump and cooler capacities,<br />

change of the fuel valve nozzles, adjusting of the<br />

cylinder liner cooling, as well as rematching of the<br />

turbocharger or even a change to a larger size of<br />

turbocharger. In some cases it can also require<br />

larger dimensi<strong>on</strong>s of the piping systems.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> therefore of utmost importance to c<strong>on</strong>sider,<br />

already at the project stage, if the specificati<strong>on</strong><br />

should be prepared for a later power increase.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> to be indicated in the Extent of Delivery.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 2.04<br />

Page 4 of<br />

Extended load diagram for ships operating in extreme heavy running c<strong>on</strong>diti<strong>on</strong>s<br />

When a ship with fixed pitch propeller <str<strong>on</strong>g>is</str<strong>on</strong>g> operating<br />

in normal sea service, it will in general be<br />

operating in the hatched area around the design<br />

propeller curve 6, as shown <strong>on</strong> the standard load<br />

diagram in Fig. 2.04.02.<br />

Sometimes, when operating in heavy weather, the<br />

fixed pitch propeller performance will be more<br />

heavy running, i.e. for equal power absorpti<strong>on</strong> of<br />

the propeller, the propeller speed will be lower<br />

and the propeller curve will move to the left.<br />

As the low speed main engines are directly coupled<br />

to the propeller, the engine has to follow the<br />

propeller performance, i.e. also in heavy running<br />

propeller situati<strong>on</strong>s. For th<str<strong>on</strong>g>is</str<strong>on</strong>g> type of operati<strong>on</strong>,<br />

there <str<strong>on</strong>g>is</str<strong>on</strong>g> normally enough margin in the load area<br />

between line 6 and the normal torque/speed limitati<strong>on</strong><br />

line 4, see Fig. 2.04.02. To the left of line 4<br />

in torque�rich operati<strong>on</strong>, the engine will lack air<br />

from the turbocharger to the combusti<strong>on</strong> process,<br />

i.e. the heat load limits may be exceeded and<br />

bearing loads might also become too high.<br />

For some special ships and operating c<strong>on</strong>diti<strong>on</strong>s,<br />

it would be an advantage � when occasi<strong>on</strong>ally<br />

needed � to be able to operate the propeller/main<br />

engine as much as possible to the left of line 6,<br />

but inside the torque/speed limit, line 4.<br />

Such cases could be for:<br />

• ships sailing in areas with very heavy weather<br />

• ships operating in ice<br />

• ships with two fixed pitch propellers/two main<br />

engines, where <strong>on</strong>e propeller/<strong>on</strong>e engine <str<strong>on</strong>g>is</str<strong>on</strong>g> declutched<br />

for <strong>on</strong>e or the other reas<strong>on</strong>.<br />

The increase of the operating speed range between<br />

line 6 and line 4 of the standard load diagram,<br />

see Fig. 2.04.02, may be carried out as<br />

shown for the following engine Example with an<br />

extended load diagram for speed derated engine<br />

with increased light running:<br />

• Extended load diagram for speed derated engines<br />

with increased light running.<br />

Extended load diagram for speed derated engines<br />

with increased light running<br />

The maximum speed limit (line 3) of the engines <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

05% of the SMCR (Specified Maximum C<strong>on</strong>tinuous<br />

Rating) speed, as shown in Fig. 2.04.02.<br />

However, for speed and, thereby, power derated<br />

engines it <str<strong>on</strong>g>is</str<strong>on</strong>g> possible to extend the maximum<br />

speed limit to 05% of the engine’s nominal MCR<br />

speed, line 3’, but <strong>on</strong>ly provided that the torsi<strong>on</strong>al<br />

vibrati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s permit th<str<strong>on</strong>g>is</str<strong>on</strong>g>. Thus, the shafting,<br />

with regard to torsi<strong>on</strong>al vibrati<strong>on</strong>s, has to be<br />

approved by the classificati<strong>on</strong> society in questi<strong>on</strong>,<br />

based <strong>on</strong> the extended maximum speed limit.<br />

When choosing an increased light running to be<br />

used for the design of the propeller, the load diagram<br />

area may be extended from line 3 to line 3’,<br />

as shown in Fig. 2.04.03, and the propeller/main<br />

engine operating curve 6 may have a corresp<strong>on</strong>dingly<br />

increased heavy running margin before exceeding<br />

the torque/speed limit, line 4.<br />

A corresp<strong>on</strong>ding slight reducti<strong>on</strong> of the propeller<br />

efficiency may be the result, due to the higher<br />

propeller design speed used.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 2.04<br />

���<br />

���<br />

��<br />

��<br />

��<br />

��<br />

��<br />

�����������������������<br />

�����������������������<br />

�����������������������<br />

����������������������������<br />

������<br />

��������<br />

���������<br />

��� ���<br />

� �<br />

�<br />

������<br />

���������<br />

��<br />

�� �� �� �� �� �� �� �� �� ��� ��� ��� ��� ���<br />

������������<br />

������������<br />

�<br />

�<br />

� �<br />

�� �<br />

����������������<br />

������������<br />

� �<br />

��<br />

� �<br />

� � �<br />

�������������������������<br />

Line : Propeller curve through matching point (O) � layout<br />

curve for engine<br />

Line 2: Heavy propeller curve<br />

� fouled hull and heavy seas<br />

Line 3: Speed limit<br />

Line 3’: Extended speed limit, provided torsi<strong>on</strong>al vibrati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s permit<br />

Line 4: Torque/speed limit<br />

Line 5: Mean effective pressure limit<br />

Line 6: Increased light running propeller curve<br />

� clean hull and calm weather<br />

� layout curve for propeller<br />

Line 7: Power limit for c<strong>on</strong>tinuous running<br />

178 52 25�6.0<br />

Fig. 2.04.03: Extended load diagram for speed derated<br />

engine with increased light running<br />

Page 5 of<br />

Examples of the use of the Load Diagram<br />

In the following are some examples illustrating the<br />

flexibility of the layout and load diagrams and the<br />

significant influence of the choice of the matching<br />

point O.<br />

• Example shows how to place the load diagram<br />

for an engine without shaft generator coupled to<br />

a fixed pitch propeller.<br />

• Example 2 are diagrams for the same c<strong>on</strong>figurati<strong>on</strong>,<br />

but choosing a matching point <strong>on</strong> the left<br />

of the heavy running propeller curve (2) providing<br />

an extra engine margin for heavy running<br />

similar to the case in Fig. 2.04.03.<br />

• Example 3 shows the same layout for an engine<br />

with fixed pitch propeller (example ), but with a<br />

shaft generator.<br />

• Example 4 <str<strong>on</strong>g>is</str<strong>on</strong>g> a special case of example 3, where<br />

the specified MCR <str<strong>on</strong>g>is</str<strong>on</strong>g> placed near the top of the<br />

layout diagram.<br />

In th<str<strong>on</strong>g>is</str<strong>on</strong>g> case the shaft generator <str<strong>on</strong>g>is</str<strong>on</strong>g> cut off,<br />

and the GenSets used when the engine runs<br />

at specified MCR. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> makes it possible to<br />

choose a smaller engine with a lower power output.<br />

• Example 5 shows diagrams for an engine<br />

coupled to a c<strong>on</strong>trollable pitch propeller, with or<br />

without a shaft generator.<br />

• Example 6 shows where to place the matching<br />

point for an engine coupled to a c<strong>on</strong>trollable<br />

pitch propeller.<br />

For a specific project, the layout diagram for actual<br />

project shown later in th<str<strong>on</strong>g>is</str<strong>on</strong>g> chapter may be used<br />

for c<strong>on</strong>structi<strong>on</strong> of the actual load diagram.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 2.04<br />

Page 6 of<br />

Example 1:<br />

Normal running c<strong>on</strong>diti<strong>on</strong>s. Engine coupled to fixed pitch propeller (FPP) and without shaft generator<br />

������������� �<br />

���� �<br />

�<br />

�<br />

� � �<br />

� �<br />

� �<br />

�<br />

������<br />

�<br />

����<br />

�<br />

���������������������<br />

������������������������<br />

����������������������<br />

�������������������� �<br />

�<br />

�<br />

����<br />

� �<br />

� �<br />

M Specified MCR of engine<br />

S C<strong>on</strong>tinuous service rating of engine<br />

O Matching point of engine<br />

A Reference point of load diagram<br />

MP Specified MCR for propulsi<strong>on</strong><br />

SP C<strong>on</strong>tinuous service rating of propulsi<strong>on</strong><br />

Example 1, Layout diagram for normal running c<strong>on</strong>diti<strong>on</strong>s,<br />

engine with FPP, without shaft generator<br />

For ME engines, the matching point O and its<br />

propeller curve will normally be selected <strong>on</strong> the<br />

engine service curve 2.<br />

Point A <str<strong>on</strong>g>is</str<strong>on</strong>g> then found at the inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> between<br />

propeller curve (2) and the c<strong>on</strong>stant power curve<br />

through M, line 7. In th<str<strong>on</strong>g>is</str<strong>on</strong>g> case point A <str<strong>on</strong>g>is</str<strong>on</strong>g> equal to<br />

point M.<br />

������������� �<br />

�������������������� �<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����<br />

� �<br />

� �<br />

����� ���<br />

� �<br />

�<br />

�<br />

���<br />

�<br />

�<br />

�<br />

���������������������<br />

������������������������<br />

����������������������<br />

�<br />

� �<br />

����<br />

� �<br />

��� �<br />

� �<br />

Point A of load diagram <str<strong>on</strong>g>is</str<strong>on</strong>g> found:<br />

Line Propeller curve through matching point (O)<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> equal to line 2<br />

Line 7 C<strong>on</strong>stant power line through specified MCR (M)<br />

Point A Inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> between line and 7<br />

178 55 82-5.0<br />

Example 1, Load diagram for normal running c<strong>on</strong>diti<strong>on</strong>s,<br />

engine with FPP, without shaft generator<br />

Once point A has been found in the layout diagram,<br />

the load diagram can be drawn, as shown<br />

in the figure, and hence the actual load limitati<strong>on</strong><br />

lines of the diesel engine may be found by using<br />

the inclinati<strong>on</strong>s from the c<strong>on</strong>structi<strong>on</strong> lines and<br />

the %�figures stated.


<strong>MAN</strong> B&W 2.04<br />

Page 7 of<br />

Example 2:<br />

Special running c<strong>on</strong>diti<strong>on</strong>s. Engine coupled to fixed pitch propeller (FPP) and without shaft generator<br />

������������� �<br />

���� �<br />

� �<br />

� �<br />

�<br />

�<br />

� � �<br />

�������������������� �<br />

�<br />

�<br />

� � �<br />

����<br />

���� �<br />

���������������������<br />

������������������������<br />

����������������������<br />

����<br />

� �<br />

� �<br />

M Specified MCR of engine<br />

S C<strong>on</strong>tinuous service rating of engine<br />

O Matching point of engine<br />

A Reference point of load diagram<br />

MP Specified MCR for propulsi<strong>on</strong><br />

SP C<strong>on</strong>tinuous service rating of propulsi<strong>on</strong><br />

Example 2, Layout diagram for special running<br />

c<strong>on</strong>diti<strong>on</strong>s, engine with FPP, without shaft generator<br />

In th<str<strong>on</strong>g>is</str<strong>on</strong>g> case, the matching point O has been selected<br />

more to the left than in example , providing<br />

an extra engine margin for heavy running operati<strong>on</strong><br />

in heavy weather c<strong>on</strong>diti<strong>on</strong>s. In principle,<br />

the light running margin has been increased for<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> case.<br />

������������� �<br />

�������������������� �<br />

���������������������<br />

������������������������<br />

����������������������<br />

Point A of load diagram <str<strong>on</strong>g>is</str<strong>on</strong>g> found:<br />

Line Propeller curve through matching point (O)<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> equal to line 2<br />

Line 7 C<strong>on</strong>stant power line through specified MCR (M)<br />

Point A Inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> between line and 7<br />

178 55 83-7.0<br />

Example 2, Load diagram for special running c<strong>on</strong>diti<strong>on</strong>s,<br />

engine with FPP, without shaft generator<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����<br />

� �<br />

� �<br />

�<br />

����� ���<br />

� � �<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

����<br />

� �<br />

��� �<br />

� �<br />


<strong>MAN</strong> B&W 2.04<br />

Page 8 of<br />

Example 3:<br />

Normal running c<strong>on</strong>diti<strong>on</strong>s. Engine coupled to fixed pitch propeller (FPP) and with shaft generator<br />

������������� �<br />

���� �<br />

�<br />

�<br />

� � �<br />

� �<br />

� �<br />

������<br />

�������<br />

�����<br />

� � �<br />

�������������������� �<br />

���<br />

�<br />

�<br />

� ��<br />

���������������������������<br />

����������������������<br />

����<br />

M Specified MCR of engine<br />

S C<strong>on</strong>tinuous service rating of engine<br />

O Matching point of engine<br />

A Reference point of load diagram<br />

MP Specified MCR for propulsi<strong>on</strong><br />

SP C<strong>on</strong>tinuous service rating of propulsi<strong>on</strong><br />

SG Shaft generator power<br />

Example 3, Layout diagram for normal running c<strong>on</strong>diti<strong>on</strong>s,<br />

engine with FPP and with shaft generator<br />

In example 3 a shaft generator (SG) <str<strong>on</strong>g>is</str<strong>on</strong>g> installed,<br />

and therefore the service power of the engine also<br />

has to incorporate the extra shaft power required<br />

for the shaft generator’s electrical power producti<strong>on</strong>.<br />

In the figure, the engine service curve shown for<br />

heavy running incorporates th<str<strong>on</strong>g>is</str<strong>on</strong>g> extra power.<br />

��<br />

��<br />

��<br />

� �<br />

� �<br />

������������� �<br />

�������������������� �<br />

Point A of load diagram <str<strong>on</strong>g>is</str<strong>on</strong>g> found:<br />

Line Propeller curve through matching point (O)<br />

Line 7 C<strong>on</strong>stant power line through specified MCR (M)<br />

Point A Inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> between line and 7<br />

178 55 84-9.0<br />

Example 3, Load diagram for normal running c<strong>on</strong>diti<strong>on</strong>s,<br />

engine with FPP and with shaft generator<br />

The matching point O will normally be chosen <strong>on</strong><br />

the propeller curve (~ the engine service curve)<br />

through point M.<br />

Point A <str<strong>on</strong>g>is</str<strong>on</strong>g> then found in the same way as in example<br />

and the load diagram can be drawn as<br />

shown in the figure.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����<br />

������������������������<br />

���������������������<br />

�������������������<br />

���������<br />

� �<br />

� �<br />

�<br />

� � �<br />

����� ���<br />

���<br />

�<br />

�<br />

�<br />

��<br />

��<br />

���������������������������<br />

����������������������<br />

�<br />

�<br />

����<br />

� �<br />

��� �<br />

� �<br />


<strong>MAN</strong> B&W 2.04<br />

Page 9 of<br />

Example 4:<br />

Special running c<strong>on</strong>diti<strong>on</strong>s. Engine coupled to fixed pitch propeller (FPP) and with shaft generator<br />

������������� �<br />

����<br />

� �<br />

� �<br />

�<br />

�<br />

�<br />

� � �<br />

������<br />

�������<br />

�����<br />

� � �<br />

����������������<br />

���������������<br />

�����������������<br />

�������������������� �<br />

�<br />

�<br />

�<br />

���<br />

��<br />

��<br />

����<br />

M Specified MCR of engine<br />

S C<strong>on</strong>tinuous service rating of engine<br />

O Matching point of engine<br />

A Reference point of load diagram<br />

MP Specified MCR for propulsi<strong>on</strong><br />

SP C<strong>on</strong>tinuous service rating of propulsi<strong>on</strong><br />

SG Shaft generator<br />

Example 4. Layout diagram for special running c<strong>on</strong>diti<strong>on</strong>s,<br />

engine with FPP and with shaft generator<br />

Also for th<str<strong>on</strong>g>is</str<strong>on</strong>g> special case in example 4, a shaft<br />

generator <str<strong>on</strong>g>is</str<strong>on</strong>g> installed but, compared to example 3,<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> case has a specified MCR for propulsi<strong>on</strong>, MP,<br />

placed at the top of the layout diagram.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> involves that the intended specified MCR of<br />

the engine M’ will be placed outside the top of the<br />

layout diagram.<br />

One soluti<strong>on</strong> could be to choose a larger diesel<br />

engine with an extra cylinder, but another and<br />

cheaper soluti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> to reduce the electrical power<br />

producti<strong>on</strong> of the shaft generator when running in<br />

the upper propulsi<strong>on</strong> power range.<br />

��<br />

� �<br />

�<br />

� �<br />

������������� �<br />

����������������<br />

���������������<br />

�����������������<br />

Point A of load diagram <str<strong>on</strong>g>is</str<strong>on</strong>g> found:<br />

Line Propeller curve through matching point (O)<br />

or point S<br />

Point A Inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> between line and line L – L 3<br />

Point M Located <strong>on</strong> c<strong>on</strong>stant power line 7<br />

through point A and with MP’s speed.<br />

178 55 85-0.1<br />

Example 4. Load diagram for special running c<strong>on</strong>diti<strong>on</strong>s,<br />

engine with FPP and with shaft generator<br />

In choosing the latter soluti<strong>on</strong>, the required specified<br />

MCR power can be reduced from point M’ to<br />

point M as shown. Therefore, when running in the<br />

upper propulsi<strong>on</strong> power range, a diesel generator<br />

has to take over all or part of the electrical power<br />

producti<strong>on</strong>.<br />

However, such a situati<strong>on</strong> will seldom occur, as<br />

ships are rather infrequently running in the upper<br />

propulsi<strong>on</strong> power range.<br />

Point A, having the highest possible power, <str<strong>on</strong>g>is</str<strong>on</strong>g> then<br />

found at the inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> of line L – L 3 with line<br />

and the corresp<strong>on</strong>ding load diagram <str<strong>on</strong>g>is</str<strong>on</strong>g> drawn.<br />

Point M <str<strong>on</strong>g>is</str<strong>on</strong>g> found <strong>on</strong> line 7 at MP’s speed.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����<br />

�������������������������������<br />

����������������������<br />

���������������������<br />

� �<br />

� �<br />

�<br />

� � �<br />

�������������������� �<br />

����� ���<br />

�<br />

�<br />

�<br />

���<br />

��<br />

��<br />

��<br />

����<br />

� �<br />

�<br />

��� �<br />

� �<br />

� �


<strong>MAN</strong> B&W 2.04<br />

Example 5:<br />

Engine coupled to c<strong>on</strong>trollable pitch propeller (CPP) with or without shaft generator<br />

�����<br />

� �<br />

� �<br />

�<br />

�<br />

�<br />

� � �<br />

�<br />

���������������������<br />

����������������������<br />

����������<br />

����� ���<br />

�<br />

���<br />

�<br />

�<br />

�<br />

���������� ����������<br />

�<br />

�<br />

� �<br />

��� �<br />

� �<br />

����������������������<br />

��������������������������<br />

�������������������<br />

������������<br />

M Specified MCR of engine<br />

O Matching point of engine<br />

A Reference point of load diagram<br />

S C<strong>on</strong>tinous service rating of engine<br />

Example 5: Engine with C<strong>on</strong>trollable Pitch Propeller<br />

(CPP), with or without shaft generator<br />

178 55 86-2.0<br />

Layout diagram � without shaft generator<br />

If a c<strong>on</strong>trollable pitch propeller (CPP) <str<strong>on</strong>g>is</str<strong>on</strong>g> applied,<br />

the combinator curve (of the propeller) will normally<br />

be selected for loaded ship including sea<br />

margin.<br />

The combinator curve may for a given propeller<br />

speed have a given propeller pitch, and th<str<strong>on</strong>g>is</str<strong>on</strong>g> may<br />

be heavy running in heavy weather like for a fixed<br />

pitch propeller.<br />

Therefore it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended to use a light running<br />

combinator curve (the dotted curve) as<br />

shown in the figure to obtain an increased operati<strong>on</strong><br />

margin of the diesel engine in heavy weather<br />

to the limit indicated by curves 4 and 5.<br />

Page 0 of<br />

Layout diagram � with shaft generator<br />

The hatched area shows the recommended speed<br />

range between 00% and 96.7% of the specified<br />

MCR speed for an engine with shaft generator<br />

running at c<strong>on</strong>stant speed.<br />

The service point S can be located at any point<br />

within the hatched area.<br />

The procedure shown in examples 3 and 4 for<br />

engines with FPP can also be applied here for engines<br />

with CPP running with a combinator curve.<br />

The matching point<br />

O may be chosen <strong>on</strong> the propeller curve through<br />

point A = M with a matching point from 85 to<br />

00% of the specified MCR as menti<strong>on</strong>ed before<br />

in the <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> dealing with matching point O.<br />

Load diagram<br />

Therefore, when the engine’s specified MCR point<br />

(M) has been chosen including engine margin,<br />

sea margin and the power for a shaft generator, if<br />

installed, point M may be used as point A of the<br />

load diagram, which can then be drawn.<br />

The positi<strong>on</strong> of the combinator curve ensures the<br />

maximum load range within the permitted speed<br />

range for engine operati<strong>on</strong>, and it still leaves a<br />

reas<strong>on</strong>able margin to the limit indicated by curves<br />

4 and 5.<br />

Example 6 will give a more detailed descripti<strong>on</strong> of<br />

how to run c<strong>on</strong>stant speed with a CP propeller.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 2.04<br />

Example 6:<br />

Engines running at c<strong>on</strong>stant speed with c<strong>on</strong>trollable<br />

pitch propeller (CPP)<br />

Fig. A C<strong>on</strong>stant speed curve through M, normal<br />

and correct locati<strong>on</strong> of the matching point O<br />

Irrespective of whether the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> operating <strong>on</strong><br />

a propeller curve or <strong>on</strong> a c<strong>on</strong>stant speed curve<br />

through M, the matching point O must be located<br />

<strong>on</strong> the propeller curve through the specified MCR<br />

point M or, in special cases, to the left of point M.<br />

The reas<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> that the propeller curve through<br />

the matching point O <str<strong>on</strong>g>is</str<strong>on</strong>g> the layout curve of the<br />

engine, and the inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> between curve and<br />

the maximum power line 7 through point M <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

equal to 00% power and 00% speed, point A of<br />

the load diagram � in th<str<strong>on</strong>g>is</str<strong>on</strong>g> case A=M.<br />

In Fig. A the matching point O has been placed<br />

correctly, and the step�up gear and the shaft generator,<br />

if installed, may be synchr<strong>on</strong><str<strong>on</strong>g>is</str<strong>on</strong>g>ed <strong>on</strong> the<br />

c<strong>on</strong>stant speed curve through M.<br />

Fig. B: C<strong>on</strong>stant speed curve through M, wr<strong>on</strong>g<br />

positi<strong>on</strong> of matching point O<br />

If the engine has been service�matched at point O<br />

<strong>on</strong> a c<strong>on</strong>stant speed curve through point M, then<br />

the specified MCR point M would be placed outside<br />

the load diagram, and th<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> not perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible.<br />

Fig. C: Recommended c<strong>on</strong>stant speed running<br />

curve, lower than speed M<br />

In th<str<strong>on</strong>g>is</str<strong>on</strong>g> case it <str<strong>on</strong>g>is</str<strong>on</strong>g> assumed that a shaft generator,<br />

if installed, <str<strong>on</strong>g>is</str<strong>on</strong>g> synchr<strong>on</strong><str<strong>on</strong>g>is</str<strong>on</strong>g>ed at a lower c<strong>on</strong>stant<br />

main engine speed (for example with speed equal<br />

to O or lower) at which improved CP propeller efficiency<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> obtained for part load running.<br />

In th<str<strong>on</strong>g>is</str<strong>on</strong>g> layout example where an improved CP propeller<br />

efficiency <str<strong>on</strong>g>is</str<strong>on</strong>g> obtained during extended periods<br />

of part load running, the step�up gear and the<br />

shaft generator have to be designed for the lower<br />

c<strong>on</strong>stant engine speed that <str<strong>on</strong>g>is</str<strong>on</strong>g> applied.<br />

Engine speed<br />

Page of<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 97-3.6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Power<br />

4<br />

C<strong>on</strong>stant speed service<br />

curve through M<br />

Fig. A: Normal procedure<br />

C<strong>on</strong>stant speed service<br />

curve through M<br />

Fig. B: Wr<strong>on</strong>g procedure<br />

C<strong>on</strong>stant speed service<br />

curve with a speed lower<br />

than M<br />

Fig. C: Recommended procedure<br />

Logarithmic scales<br />

4<br />

4<br />

1<br />

1<br />

5<br />

5<br />

1<br />

5<br />

A=M<br />

O<br />

A=M<br />

M A<br />

M: Specified MCR<br />

O: Matching point<br />

A: 00% power and speed of load diagram (normally A=M)<br />

178 19 69�9.0<br />

Example 6:<br />

Positi<strong>on</strong> of matching point O for engines running<br />

at c<strong>on</strong>stant speed.<br />

O<br />

O<br />

7<br />

7<br />

3<br />

3<br />

7<br />

3


<strong>MAN</strong> B&W 2.05<br />

Diagram for actual project<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> figure c<strong>on</strong>tains a layout diagram that can<br />

be used for c<strong>on</strong>structing the load diagram for an<br />

actual project, using the %�figures stated and the<br />

inclinati<strong>on</strong>s of the lines.<br />

�������������� ��<br />

�����<br />

�����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

���� ���� ���� ���� ���� ���� ����� ����� �����<br />

Fig. 2.05.01: C<strong>on</strong>structi<strong>on</strong> of layout diagram<br />

<strong>MAN</strong> B&W S90MC-C/ME-C8, K90MC/ME-C6, S80ME-C9, S80MC-C/ME-C8,<br />

K80MC-C/ME-C6, S70MC-C/ME-C/ME-GI8, S65ME-C/ME-GI8,<br />

S60MC-C/ME-C/ME-GI8, L60MC-C/ME-C7/8, S50MC-C/ME-C8,<br />

S50ME-B8/9, S46MC-C8, S42/35MC7, S35/40ME-B9, L35/S26MC6<br />

��<br />

��<br />

��<br />

��<br />

�� ��<br />

� �<br />

� �<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������ ����<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��� ��<br />

� �<br />

���������������������� ��<br />

Page of<br />

178 06 37-5.3<br />

198 41 59-8.2


<strong>MAN</strong> B&W 2.06<br />

Specific Fuel Oil C<strong>on</strong>sumpti<strong>on</strong>, ME versus MC engines<br />

As previously menti<strong>on</strong>ed the main feature of the<br />

ME engine <str<strong>on</strong>g>is</str<strong>on</strong>g> that the fuel injecti<strong>on</strong> and the exhaust<br />

valve timing are optim<str<strong>on</strong>g>is</str<strong>on</strong>g>ed automatically<br />

over the entire power range, and with a minimum<br />

speed down to around 5% of the L speed.<br />

Comparing the specific fuel oil comsumpti<strong>on</strong><br />

(SFOC) of the ME and the MC engines, it can be<br />

seen from the figure below that the great advantage<br />

of the ME engine <str<strong>on</strong>g>is</str<strong>on</strong>g> a lower SFOC at part<br />

loads.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> also noted that the lowest SFOC for the ME<br />

engine <str<strong>on</strong>g>is</str<strong>on</strong>g> at 70% of O, whereas it was at 80% of O<br />

for the MC engine.<br />

Fig. 2.06.01: Example of part load SFOC curves for ME and MC with fixed pitch propeller<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI<br />

SFOC<br />

g/kWh<br />

+3<br />

+2<br />

+1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

MC<br />

ME<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

For the ME engine <strong>on</strong>ly the turbocharger matching<br />

and the compressi<strong>on</strong> ratio (shims under the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

rod) remain as variables to be determined by the<br />

engine maker / <strong>MAN</strong> <strong>Diesel</strong>.<br />

The calculati<strong>on</strong> of the expected specific fuel oil<br />

c<strong>on</strong>sumpti<strong>on</strong> (SFOC) can be carried out by means<br />

of the following figures for fixed pitch propeller<br />

and for c<strong>on</strong>trollable pitch propeller, c<strong>on</strong>stant<br />

speed. Throughout the whole load area the SFOC<br />

of the engine depends <strong>on</strong> where the matching<br />

point (O) <str<strong>on</strong>g>is</str<strong>on</strong>g> chosen.<br />

-5<br />

50% 60% 70% 80% 90% 100% 110%<br />

Engine power, % of matching point O<br />

198 97 38�9.2<br />

198 38 36-3.3


<strong>MAN</strong> B&W 2.07<br />

SFOC for High Efficiency/C<strong>on</strong>venti<strong>on</strong>al <strong>Turbo</strong>chargers<br />

All engine types are as standard fitted with high<br />

efficiency turbochargers (EoD: 4 59 04) but can<br />

alternatively use c<strong>on</strong>venti<strong>on</strong>al turbochargers, opti<strong>on</strong>:<br />

4 59 07.<br />

The high efficiency turbocharger <str<strong>on</strong>g>is</str<strong>on</strong>g> applied to the<br />

engine in the basic design with the view to obtaining<br />

the lowest possible Specific Fuel Oil C<strong>on</strong>sumpti<strong>on</strong><br />

(SFOC) values, see curve A, Fig. 2.07.0 .<br />

With a c<strong>on</strong>venti<strong>on</strong>al turbocharger the amount of<br />

air required for combusti<strong>on</strong> purposes can, however,<br />

be adjusted to provide a higher exhaust gas<br />

����<br />

��������<br />

��<br />

<strong>MAN</strong> B&W S70ME�C/ME�GI, L70ME�C, S65ME�C/ME�GI,<br />

S60ME�C/ME�GI, L60ME�C, S50ME�C<br />

�<br />

�������������������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

temperature, if th<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> needed for the exhaust gas<br />

boiler.<br />

The matching of the engine and the turbocharging<br />

system <str<strong>on</strong>g>is</str<strong>on</strong>g> then modified, thus increasing the exhaust<br />

gas temperature by 20 °C.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> modificati<strong>on</strong> will lead to a 7�8% reducti<strong>on</strong> in<br />

the exhaust gas amount, and involve an SFOC<br />

penalty of 2 g/kWh, see curve B, Fig. 2.07.0 .<br />

���������������<br />

������������<br />

��� ��� ��� ��� ��� ����<br />

�����������������������������������<br />

Fig. 2.07.01: Example of part load SFOC curves for high efficiency and c<strong>on</strong>venti<strong>on</strong>al turbochargers<br />

�<br />

�<br />

198 96 82�4.8<br />

198 38 45�8.7


<strong>MAN</strong> B&W 2.08<br />

SFOC reference c<strong>on</strong>diti<strong>on</strong>s and guarantee<br />

SFOC at reference c<strong>on</strong>diti<strong>on</strong>s<br />

The SFOC <str<strong>on</strong>g>is</str<strong>on</strong>g> given in g/kWh based <strong>on</strong> the<br />

reference ambient c<strong>on</strong>diti<strong>on</strong>s stated in ISO<br />

3046:2002(E) and ISO 5550:2002(E):<br />

,000 mbar ambient air pressure<br />

25 °C ambient air temperature<br />

25 °C scavenge air coolant temperature<br />

and <str<strong>on</strong>g>is</str<strong>on</strong>g> related to a fuel oil with a lower calorific<br />

value of 42,700 kJ/kg (~ 0,200 kcal/kg).<br />

Any d<str<strong>on</strong>g>is</str<strong>on</strong>g>crepancies between g/kWh and g/BHPh<br />

are due to the rounding of numbers for the latter.<br />

For lower calorific values and for ambient c<strong>on</strong>diti<strong>on</strong>s<br />

that are different from the ISO reference<br />

c<strong>on</strong>diti<strong>on</strong>s, the SFOC will be adjusted according<br />

to the c<strong>on</strong>versi<strong>on</strong> factors in the table below.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI/ME-B engines<br />

K98MC/MC-C6/7, S90MC-C7/8, K90MC-C6, S80MC6,<br />

S80MC-C7/8, K80MC-C6, S70MC6, S60MC6, S50MC6,<br />

S46MC-C6/7, S42MC7, S35MC7, L35MC6, S26MC6<br />

With<br />

pmax adjusted<br />

SFOC<br />

change<br />

Without<br />

pmax adjusted<br />

SFOC<br />

change<br />

Parameter<br />

C<strong>on</strong>diti<strong>on</strong><br />

change<br />

Scav. air coolant<br />

temperature<br />

per 0 °C r<str<strong>on</strong>g>is</str<strong>on</strong>g>e + 0.60% + 0.4 %<br />

Blower inlet tem-<br />

per 0 °C r<str<strong>on</strong>g>is</str<strong>on</strong>g>e<br />

perature<br />

+ 0.20% + 0.7 %<br />

Blower inlet<br />

pressure<br />

per 0 mbar<br />

r<str<strong>on</strong>g>is</str<strong>on</strong>g>e<br />

� 0.02% � 0.05%<br />

Fuel oil lower<br />

calorific value<br />

r<str<strong>on</strong>g>is</str<strong>on</strong>g>e %<br />

(42,700 kJ/kg)<br />

� .00% � .00%<br />

With for instance °C increase of the scavenge<br />

air coolant temperature, a corresp<strong>on</strong>ding °C increase<br />

of the scavenge air temperature will occur<br />

and involves an SFOC increase of 0.06% if p max <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

adjusted to the same value.<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

SFOC guarantee<br />

Page of 2<br />

The SFOC guarantee refers to the above ISO<br />

reference c<strong>on</strong>diti<strong>on</strong>s and lower calorific value. It<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> guaranteed for the power�speed combinati<strong>on</strong><br />

in the matching point (O) and the engine running<br />

‘Fuel ec<strong>on</strong>omy mode’ in compliance with IMO NO x<br />

em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> limitati<strong>on</strong>s.<br />

The SFOC guarantee <str<strong>on</strong>g>is</str<strong>on</strong>g> given with a tolerance<br />

of 5%<br />

Recommended cooling water temperature<br />

during normal operati<strong>on</strong><br />

In general, it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended to operate the main<br />

engine with the lowest possible cooling water<br />

temperature to the air coolers, as th<str<strong>on</strong>g>is</str<strong>on</strong>g> will reduce<br />

the fuel c<strong>on</strong>sumpti<strong>on</strong> of the engine, i.e. the engine<br />

performance will be improved.<br />

However, shipyards often specify a c<strong>on</strong>stant<br />

(maximum) central cooling water temperature<br />

of 36 °C, not <strong>on</strong>ly for tropical ambient temperature<br />

c<strong>on</strong>diti<strong>on</strong>s, but also for lower ambient temperature<br />

c<strong>on</strong>diti<strong>on</strong>s. The purpose <str<strong>on</strong>g>is</str<strong>on</strong>g> probably to<br />

reduce the electric power c<strong>on</strong>sumpti<strong>on</strong> of the<br />

cooling water pumps and/or to reduce water c<strong>on</strong>densati<strong>on</strong><br />

in the air coolers.<br />

Thus, when operating with 36 °C cooling water<br />

instead of for example 0 °C (to the air coolers),<br />

the specific fuel oil c<strong>on</strong>sumpti<strong>on</strong> will increase by<br />

approx. 2 g/kWh.<br />

198 68 15-2.0


<strong>MAN</strong> B&W 2.08<br />

Examples of graphic calculati<strong>on</strong> of SFOC<br />

The following diagrams b and c valid for fixed<br />

pitch propeller and c<strong>on</strong>stant speed, respectively,<br />

show the reducti<strong>on</strong> of SFOC in g/kWh, relative to<br />

the SFOC for the nominal MCR L 1 rating.<br />

The solid lines are valid at 100, 70 and 50% of the<br />

matching point (O).<br />

Point O <str<strong>on</strong>g>is</str<strong>on</strong>g> drawn into the above�menti<strong>on</strong>ed Diagram<br />

b or c. A straight line al<strong>on</strong>g the c<strong>on</strong>stant<br />

mep curves (parallel to L 1 �L 3 ) <str<strong>on</strong>g>is</str<strong>on</strong>g> drawn through<br />

point O. The inter<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g>s of th<str<strong>on</strong>g>is</str<strong>on</strong>g> line and the<br />

curves indicate the reducti<strong>on</strong> in specific fuel oil<br />

c<strong>on</strong>sumpti<strong>on</strong> at 100, 70 and 50% of the matching<br />

point, related to the SFOC stated for the nominal<br />

MCR L 1 rating.<br />

An example of the calculated SFOC curves for<br />

an engine with fixed pitch propeller are shown in<br />

Diagram a, and are valid for two alternative engine<br />

ratings:<br />

• Matching point O 1 , at 100% of M<br />

• Matching point O at 90% of M<br />

See fig. .10.01.<br />

90% <str<strong>on</strong>g>is</str<strong>on</strong>g> a typical chosen matching point, randomly<br />

chosen between 85�100% in order to reduce<br />

SFOC at part load running.<br />

Page of<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 38 37-5.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 2.09<br />

SFOC Calculati<strong>on</strong>s for S65ME-C<br />

Fig. 2.09.01: SFOC for S65ME-C<br />

SFOC<br />

g/kWh<br />

+4<br />

+3<br />

+2<br />

+1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

Diagram a<br />

Part Load SFOC curve<br />

Nominal SFOC<br />

Page 1 of 2<br />

Data at nominel MCR (L 1 ) SFOC at nominal MCR (L 1 )<br />

High effiency T/C C<strong>on</strong>venti<strong>on</strong>al T/C<br />

Engine kW r/min g/kWh g/kWh<br />

5S65ME-C 14,350 95 169 172<br />

6S65ME-C 17,220 95 169 172<br />

7S65ME-C 20,090 95 169 172<br />

8S65ME-C 22,960 95 169 172<br />

Data matching point (O):<br />

cyl. No.<br />

Power: 100% of (O) kW<br />

Speed: 100% of (O) r/min<br />

SFOC found: g/kWh<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

-11<br />

-12<br />

-13<br />

-14<br />

-15<br />

-16<br />

40% 50% 60% 70% 80% 90% 100% 110%<br />

Engine power, % of matching point 0<br />

178 23 44-9.1<br />

S65ME-C/ME-GI 198 48 90-5.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 2.09<br />

Diagram b<br />

Reducti<strong>on</strong> of SFOC in g/kWh relative to the nominal in L1 50% matching 70% matching point 100% matching point<br />

point<br />

-10-11<br />

-12 -2<br />

-3 -4 -5 -6 -7 -5 -6 -7 -8 -9 0 -1 -2 -3 -4 -5 -6 -7<br />

Diagram b<br />

Reducti<strong>on</strong> of SFOC in g/kWh relative to the nominal in L1 50% matching 70% matching point 100% matching point<br />

point<br />

-9-10 -1 -2 -3 -4 -5 -6 -5 -6 -7 -8 0 -1 -2 -3 -4 -5 -6 -7<br />

=0.15<br />

=0.20<br />

=0.20 =0.20<br />

mep<br />

100%<br />

95%<br />

90%<br />

85%<br />

80%<br />

Fig. 2.09.02: SFOC for S65ME-C with fixed fixed fixed pitch pitch pitch propeller propeller<br />

propeller<br />

-11-12<br />

Fig. 2.09.03: SFOC for S65ME-C with c<strong>on</strong>stant c<strong>on</strong>stant speed<br />

speed<br />

=0.15<br />

=0.20<br />

=0.20 =0.20<br />

mep<br />

100%<br />

95%<br />

90%<br />

85%<br />

80%<br />

C<strong>on</strong>stant ship speed lines<br />

Nominal propeller curve<br />

75% 80% 85% 90% 95% 100% 105%<br />

C<strong>on</strong>stant ship speed lines<br />

75% 80% 85% 90% 95% 100% 105%<br />

Page 2 of 2<br />

Power, % of L 1<br />

S65ME-C/ME-GI 198 48 90-5.1<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

Speed, % of L 1<br />

178 50 92-4.0<br />

Power, % of L 1<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

Speed, % of L 1<br />

178 26 95-9.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 2.10<br />

SFOC calculati<strong>on</strong>s, example<br />

Data at nominel MCR (L 1 ): 7S65ME-C<br />

Power 100% 20,090 kW<br />

Speed 100%<br />

Nominal SFOC:<br />

95 r/min<br />

• High efficiency turbocharger 169 g/kWh<br />

• C<strong>on</strong>venti<strong>on</strong>al turbocharger 171 g/kWh<br />

M 1 power <str<strong>on</strong>g>is</str<strong>on</strong>g> selected as 85% of L 1 = 17,077 kW<br />

M 1 speed <str<strong>on</strong>g>is</str<strong>on</strong>g> selected as 97% of L 1 = 92.2 r/min<br />

M 2 <str<strong>on</strong>g>is</str<strong>on</strong>g> in th<str<strong>on</strong>g>is</str<strong>on</strong>g> example selected <strong>on</strong> the same<br />

propeller curve as M 1<br />

If the power of M 2 were selected as 76.5% of<br />

L 1 = 15,369 kW and the corresp<strong>on</strong>ding speed <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

93.7% of that in L 1 = 89.0 r/min<br />

The savings in g/kWh compared to SFOC in L 1 :<br />

Power in Matching point<br />

SFOC<br />

saving<br />

M = 85% 1<br />

1<br />

2<br />

85% x 100% = 85.0%<br />

85% x 70% = 59.5%<br />

4.3<br />

9.3<br />

of L1 3 85% x 50% = 42.5% 5.1<br />

4 76.5% x 100% = 76.5%<br />

M = 76.5% 2 5 76.5% x 70% = 53.6%<br />

6.4<br />

11.4<br />

of L1 6 76.5% x 50% = 38.3% 6.6<br />

Page 1 of 2<br />

Data of specified MCR = M1 M2 Power 17,077 15,369 kW<br />

Speed 92.2 89.0 r/min<br />

SFOC found: 164.7 162.5 g/kWh<br />

SFOC<br />

g/kWh<br />

+4<br />

-16<br />

30%<br />

Diagram a<br />

Part Load SFOC curve<br />

Nominal SFOC<br />

40% 50% 60% 70% 80% 90% 100% 110%<br />

42.5<br />

59.5<br />

% of nominal MCR (L 1)<br />

85<br />

Fig. 2.10.01: Examples of SFOC for different specified MCR points for 7S65ME-C with fixed pitch propeller,<br />

high efficiency turbocharger<br />

178 50 91-2.2<br />

S65ME-C/ME-GI 198 48 91-7.0<br />

+3<br />

+2<br />

+1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

-11<br />

-12<br />

-13<br />

-14<br />

-15<br />

6<br />

3<br />

5<br />

2<br />

38.3 53.6<br />

M 2<br />

4<br />

76.5<br />

M 1<br />

1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 2.10<br />

Example of matching point<br />

Diagram b<br />

Reducti<strong>on</strong> of SFOC in g/kWh relative to the nominal in L1 50% matching 70% matching point 100% matching point<br />

point<br />

-12 -2<br />

-3 -4 -5 -6 -7 -5 -6 -7 -8 -9 0 -1 -2 -3 -4 -5 -6 -7<br />

3<br />

6<br />

-10-11<br />

Fig. 2.10.03: SFOC for engine with c<strong>on</strong>stant c<strong>on</strong>stant c<strong>on</strong>stant speed<br />

speed<br />

2<br />

5<br />

1<br />

4<br />

=0.15<br />

=0.20<br />

=0.20 =0.20<br />

mep<br />

100%<br />

95%<br />

90%<br />

85%<br />

80%<br />

C<strong>on</strong>stant ship speed lines<br />

Nominal propeller curve<br />

Fig. 2.10.02: SFOC for engine with fixed fixed pitch pitch pitch propeller propeller and matching point at 85% L1 Diagram b<br />

Reducti<strong>on</strong> of SFOC in g/kWh relative to the nominal in L1 50% matching 70% matching point 100% matching point<br />

point<br />

-11-12<br />

-9-10 -1 -2 -3 -4 -5 -6 -5 -6 -7 -8 0 -1 -2 -3 -4 -5 -6 -7<br />

=0.15<br />

=0.20<br />

=0.20 =0.20<br />

mep<br />

100%<br />

95%<br />

90%<br />

85%<br />

80%<br />

75% 80% 85% 90% 95% 100% 105%<br />

Page 2 of 2<br />

Power, % of L 1<br />

K90ME-C, K80ME-C, L70ME-C, S65ME-C/ME-GI, L60ME-C 198 42 75-9.1<br />

M 2<br />

C<strong>on</strong>stant ship speed lines<br />

75% 80% 85% 90% 95% 100% 105%<br />

M 1<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

Speed, % of L 1<br />

178 50 90-0.0<br />

Power, % of L 1<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

Speed, % of L 1<br />

178 26 95-9.1


<strong>MAN</strong> B&W 2.11<br />

Fuel C<strong>on</strong>sumpti<strong>on</strong> at an Arbitrary Load<br />

Once the matching point (O) of the engine has<br />

been chosen, the specific fuel oil c<strong>on</strong>sumpti<strong>on</strong> at<br />

an arbitrary point S , S 2 or S 3 can be estimated<br />

based <strong>on</strong> the SFOC at point ‘ ’ and ‘2’.<br />

These SFOC values can be calculated by using<br />

the graphs for the relevant engine type for the<br />

propeller curve I and for the c<strong>on</strong>stant speed curve<br />

II, giving the SFOC at points and 2, respectively.<br />

Next the SFOC for point S can be calculated as<br />

an interpolati<strong>on</strong> between the SFOC in points ‘ ’<br />

and ‘2’, and for point S 3 as an extrapolati<strong>on</strong>.<br />

Fig. 2.11.01: SFOC at an arbitrary load<br />

Page of<br />

The SFOC curve through points S 2 , <strong>on</strong> the left<br />

of point , <str<strong>on</strong>g>is</str<strong>on</strong>g> symmetrical about point , i.e. at<br />

speeds lower than that of point , the SFOC will<br />

also increase.<br />

The above�menti<strong>on</strong>ed method provides <strong>on</strong>ly an<br />

approximate value. A more prec<str<strong>on</strong>g>is</str<strong>on</strong>g>e indicati<strong>on</strong> of<br />

the expected SFOC at any load can be calculated<br />

by using our computer program. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> a service<br />

which <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> to our customers <strong>on</strong> <strong>request</strong>.<br />

������ � �� � ���<br />

��� ��� ���� ����<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI/ME-B engines 198 38 43-4.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

�<br />

���<br />

�<br />

�<br />

� � � � � �<br />

� �<br />

� ��<br />

����<br />

����<br />

���<br />

���<br />

���<br />

������ � �� �<br />

198 95 96�2.2


<strong>MAN</strong> B&W 2.12<br />

Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> C<strong>on</strong>trol<br />

IMO NO x Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> Limits<br />

All ME, ME-B, ME-C and ME-GI engines are, as<br />

standard, delivered in compliance with the IMO<br />

speed dependent NO x limit, measured according<br />

to ISO 8 78 Test Cycles E2/E3 for Heavy Duty<br />

<strong>Diesel</strong> Engines.<br />

NO Reducti<strong>on</strong> Methods<br />

x<br />

The NO c<strong>on</strong>tent in the exhaust gas can be re-<br />

x<br />

duced with primary and/or sec<strong>on</strong>dary reducti<strong>on</strong><br />

methods.<br />

The primary methods affect the combusti<strong>on</strong> process<br />

directly by reducing the maximum combusti<strong>on</strong><br />

temperature, whereas the sec<strong>on</strong>dary methods<br />

are means of reducing the em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> level<br />

without changing the engine performance, using<br />

external equipment.<br />

0�30% NO Reducti<strong>on</strong><br />

x<br />

The ME engines can be delivered with several operati<strong>on</strong><br />

modes: 4 06 062, 4 06 063, 4 06 064,<br />

4 06 065, 4 06 066.<br />

These operati<strong>on</strong> modes may include a ‘Low NO x<br />

mode’ for operati<strong>on</strong> in, for instance, areas with<br />

restricti<strong>on</strong> in NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong>.<br />

For further informati<strong>on</strong> <strong>on</strong> engine operati<strong>on</strong><br />

modes, see Extend of Delivery.<br />

30�50% NO Reducti<strong>on</strong><br />

x<br />

Water emulsificati<strong>on</strong> of the heavy fuel oil <str<strong>on</strong>g>is</str<strong>on</strong>g> a well<br />

proven primary method. The type of homogenizer<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> either ultras<strong>on</strong>ic or mechanical, using water<br />

from the freshwater generator and the water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t<br />

catcher. The pressure of the homogen<str<strong>on</strong>g>is</str<strong>on</strong>g>ed fuel<br />

has to be increased to prevent the formati<strong>on</strong> of<br />

the steam and cavitati<strong>on</strong>. It may be necessary to<br />

modify some of the engine comp<strong>on</strong>ents such as<br />

the fuel oil pressure booster, fuel injecti<strong>on</strong> valves<br />

and the engine c<strong>on</strong>trol system.<br />

Page of<br />

Up to 95�98% NO Reducti<strong>on</strong><br />

x<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> reducti<strong>on</strong> can be achieved by means of<br />

sec<strong>on</strong>dary methods, such as the SCR (Selective<br />

Catalytic Reducti<strong>on</strong>), which involves an<br />

after�treatment of the exhaust gas, see Secti<strong>on</strong><br />

3.02.<br />

Plants designed according to th<str<strong>on</strong>g>is</str<strong>on</strong>g> method have<br />

been in service since 990 <strong>on</strong> four vessels, using<br />

Haldor Topsøe catalysts and amm<strong>on</strong>ia as the reducing<br />

agent, urea can also be used.<br />

The compact SCR unit can be located separately<br />

in the engine room or horiz<strong>on</strong>tally <strong>on</strong> top of the<br />

engine. The compact SCR reactor <str<strong>on</strong>g>is</str<strong>on</strong>g> mounted<br />

before the turbocharger(s) in order to have the<br />

optimum working temperature for the catalyst.<br />

However attenti<strong>on</strong> have to be given to the type of<br />

HFO to be used.<br />

For further informati<strong>on</strong> about the pollutants of the<br />

exhaust gas see our publicati<strong>on</strong>s:<br />

Exhaust Gas Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> C<strong>on</strong>trol Today and Tomorrow<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

<strong>MAN</strong> B&W MC/MC-C/ME/ME-B/ME�C/ME�GI engines 198 38 44�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

<strong>Turbo</strong>charger Choice &<br />

Exhaust Gas By-pass<br />

3


<strong>MAN</strong> B&W 3.01<br />

<strong>Turbo</strong>charger Choice<br />

The MC/ME engines are designed for the applicati<strong>on</strong><br />

of either <strong>MAN</strong> <strong>Diesel</strong>, ABB or Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi (MHI)<br />

turbochargers.<br />

The turbocharger choice <str<strong>on</strong>g>is</str<strong>on</strong>g> made with a view to<br />

obtaining the lowest possible Specific Fuel Oil<br />

C<strong>on</strong>sumpti<strong>on</strong> (SFOC) values at the nominal MCR<br />

by applying high efficiency turbochargers.<br />

The engines are, as standard, equipped with as<br />

few turbochargers as possible, see the table in<br />

Fig. 3.0 .0 .<br />

One more turbocharger can be applied, than the<br />

number stated in the tables, if th<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> desirable<br />

due to space requirements, or for other reas<strong>on</strong>s.<br />

Additi<strong>on</strong>al costs are to be expected.<br />

Fig. 3.01.01: High / C<strong>on</strong>venti<strong>on</strong>al efficiency turbochargers<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

The data specified in the printed editi<strong>on</strong> are valid<br />

at the time of publ<str<strong>on</strong>g>is</str<strong>on</strong>g>hing.<br />

However, for the latest up to date data, we recommend<br />

the ‘<strong>Turbo</strong>charger selecti<strong>on</strong>’ programme <strong>on</strong><br />

the Internet, which can be used to identify a l<str<strong>on</strong>g>is</str<strong>on</strong>g>t<br />

of applicable turbochargers for a specific engine<br />

layout.<br />

The programme will always be updated in c<strong>on</strong>necti<strong>on</strong><br />

with the latest informati<strong>on</strong> from the<br />

<strong>Turbo</strong>charger makers. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at:<br />

www.mandiesel.com, under ‘<strong>Turbo</strong>charger’ →<br />

‘Overview’ → ‘<strong>Turbo</strong>charger selecti<strong>on</strong>’.<br />

For informati<strong>on</strong> about turbocharger arrangement<br />

and cleaning systems, see Secti<strong>on</strong> 5.0 .<br />

High efficiency turbochargers for the <strong>MAN</strong> B&W S65ME-C/ME-GI8 engines � L output<br />

1<br />

Cyl. <strong>MAN</strong> (TCA) ABB (TPL) MHI (MET)<br />

5 x TCA77-20 x TPL80-B 2/CL x MET7 MA<br />

6 x TCA88-20 x TPL85-B 4 x MET83MA<br />

7 x TCA88-20 x TPL85-B 5 x MET83MA<br />

8 x TCA88-25 x TPL85-B 6 2 x MET66MA<br />

C<strong>on</strong>venti<strong>on</strong>al turbochargers for the <strong>MAN</strong> B&W S65ME-C/ME-GI8 engines � L output<br />

1<br />

Cyl. <strong>MAN</strong> (TCA) ABB (TPL) MHI (MET)<br />

5 x TCA77-20 x TPL80-B 2 x MET66MA<br />

6 x TCA77-20 x TPL80-B 2/CL x MET7 MA<br />

7 x TCA88-20 x TPL85-B 5 x MET83MA<br />

8 x TCA88-20 x TPL85-B 5 x MET83MA<br />

198 48 89-5.1


<strong>MAN</strong> B&W 3.02<br />

Exhaust Gas By�pass<br />

Extreme Ambient C<strong>on</strong>diti<strong>on</strong>s<br />

As menti<strong>on</strong>ed in Chapter , the engine power figures<br />

are valid for tropical c<strong>on</strong>diti<strong>on</strong>s at sea level:<br />

45 °C air at 000 mbar and 32 °C sea water,<br />

whereas the reference fuel c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> given<br />

at ISO c<strong>on</strong>diti<strong>on</strong>s: 25 °C air at 000 mbar and<br />

25 °C charge air coolant temperature.<br />

Marine diesel engines are, however, exposed to<br />

greatly varying climatic temperatures winter and<br />

summer in arctic as well as tropical areas. These<br />

variati<strong>on</strong>s cause changes of the scavenge air<br />

pressure, the maximum combusti<strong>on</strong> pressure, the<br />

exhaust gas amount and temperatures as well as<br />

the specific fuel oil c<strong>on</strong>sumpti<strong>on</strong>.<br />

For further informati<strong>on</strong> about the possible countermeasures,<br />

please refer to our publicati<strong>on</strong> titled:<br />

Influence of Ambient Temperature C<strong>on</strong>diti<strong>on</strong>s<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at: www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

Arctic running c<strong>on</strong>diti<strong>on</strong><br />

For air inlet temperatures below � 0 °C the precauti<strong>on</strong>s<br />

to be taken depend very much <strong>on</strong> the<br />

operating profile of the vessel. The following alternative<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>e of the possible countermeasures.<br />

The selecti<strong>on</strong> of countermeasures, however, must<br />

be evaluated in each individual case.<br />

<strong>MAN</strong> B&W S80MC6/C-C/ME-C7/8, K80MC-C6/ME-C6/9,<br />

S70MC6/MC-C/ME-C/ME-G7/8, L70MC-C/ME-C7/8,<br />

S60MEC6/MC-C/ME-C/ME-GI7/8, L60MC-C/ME-C7/8,<br />

S50MC6/MC-C/ME-C7/8/ME-B8/9, S46MC-C7/8, S42MC7,<br />

S40ME-B9, S35MC7, L35MC6, S26MC6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Exhaust gas receiver with variable<br />

by�pass<br />

opti<strong>on</strong>: 4 60 8<br />

Page of 2<br />

Compensati<strong>on</strong> for low ambient temperature can<br />

be obtained by using exhaust gas by�pass system.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> arrangement ensures that <strong>on</strong>ly part of the exhaust<br />

gas goes via the turbine of the turbocharger,<br />

thus supplying less energy to the compressor<br />

which, in turn, reduces the air supply to the engine.<br />

Please note that if an exhaust gas by�pass <str<strong>on</strong>g>is</str<strong>on</strong>g> applied<br />

the turbocharger size and specificati<strong>on</strong> has<br />

to be determined by other means than stated in<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> Chapter.<br />

Emergency Running C<strong>on</strong>diti<strong>on</strong><br />

Exhaust gas receiver with total by�pass flange<br />

and blank counterflange<br />

Opti<strong>on</strong>: 4 60 9<br />

By�pass of the total amount of exhaust gas round<br />

the turbocharger <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly used for emergency running<br />

in the event of turbocharger failure <strong>on</strong> engines,<br />

see Fig. 3.02.0 .<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> enables the engine to run at a higher load<br />

with <strong>on</strong>ly <strong>on</strong>e turbocharger under emergency c<strong>on</strong>diti<strong>on</strong>s.<br />

The engine’s exhaust gas receiver will in<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> case be fitted with a by�pass flange of approximately<br />

the same diameter as the inlet pipe<br />

to the turbocharger. The emergency pipe <str<strong>on</strong>g>is</str<strong>on</strong>g> yard’s<br />

delivery.<br />

198 45 93�4.4


<strong>MAN</strong> B&W 3.02<br />

<strong>Turbo</strong>charger<br />

<strong>MAN</strong> B&W S80MC6/C-C/ME-C7/8, K80MC-C6/ME-C6/9,<br />

S70MC6/MC-C/ME-C/ME-G7/8, L70MC-C/ME-C7/8,<br />

S60MEC6/MC-C/ME-C/ME-GI7/8, L60MC-C/ME-C7/8,<br />

S50MC6/MC-C/ME-C7/8/ME-B8/9, S46MC-C7/8, S42MC7,<br />

S40ME-B9, S35MC7, L35MC6, S26MC6<br />

By-pass flange<br />

Exhaust receiver<br />

178 06 72�1.1<br />

Fig. 3.02.01: Total by�pass of exhaust for emergency<br />

running<br />

Centre of cylinder<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

198 45 93�4.4


<strong>MAN</strong> B&W 3.03<br />

NO x Reducti<strong>on</strong> by SCR<br />

The NO x in the exhaust gas can be reduced with<br />

primary or sec<strong>on</strong>dary reducti<strong>on</strong> methods. Primary<br />

methods affect the engine combusti<strong>on</strong> process<br />

directly, whereas sec<strong>on</strong>dary methods reduce the<br />

em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> level without changing the engine performance<br />

using equipment that does not form<br />

part of the engine itself.<br />

For further informati<strong>on</strong> about em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> c<strong>on</strong>trol we<br />

refer to our publicati<strong>on</strong>:<br />

Exhaust Gas Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> C<strong>on</strong>trol Today and Tomorrow<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

Engine with Selective Catalytic Reducti<strong>on</strong> System<br />

Opti<strong>on</strong>: 4 60 35<br />

If a reducti<strong>on</strong> between 50 and 98% of NO x <str<strong>on</strong>g>is</str<strong>on</strong>g> required,<br />

the Selective Catalytic Reducti<strong>on</strong> (SCR)<br />

system has to be applied by adding amm<strong>on</strong>ia or<br />

urea to the exhaust gas before it enters a catalytic<br />

c<strong>on</strong>verter.<br />

The exhaust gas must be mixed with amm<strong>on</strong>ia before<br />

passing through the catalyst, and in order to<br />

encourage the chemical reacti<strong>on</strong> the temperature<br />

level has to be between 300 and 400 °C. During<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> process the NO x <str<strong>on</strong>g>is</str<strong>on</strong>g> reduced to N 2 and water.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> means that the SCR unit has to be located<br />

before the turbocharger <strong>on</strong> two�stroke engines<br />

because of their high thermal efficiency and thereby<br />

a relatively low exhaust gas temperature.<br />

The amount of amm<strong>on</strong>ia injected into the exhaust<br />

gas <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled by a process computer<br />

and <str<strong>on</strong>g>is</str<strong>on</strong>g> based <strong>on</strong> the NO x producti<strong>on</strong> at different<br />

loads measured during the testbed running. Fig.<br />

3.03.0 .<br />

As the amm<strong>on</strong>ia <str<strong>on</strong>g>is</str<strong>on</strong>g> a combustible gas, it <str<strong>on</strong>g>is</str<strong>on</strong>g> supplied<br />

through a double�walled pipe system, with<br />

appropriate venting and fitted with an amm<strong>on</strong>ia<br />

leak detector (Fig. 3.03.0 ) which shows a simplified<br />

system layout of the SCR installati<strong>on</strong>.<br />

<strong>MAN</strong> B&W MC/MC-C/ME/ME-C/ME-GI/ME-B Engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 2<br />

198 58 94-7.1


<strong>MAN</strong> B&W 3.03<br />

Air<br />

Orifice<br />

Air<br />

Process<br />

computer<br />

Air outlet<br />

Engine<br />

Static mixer<br />

Fig. 3.03.01: Layout of SCR system<br />

<strong>MAN</strong> B&W MC/MC-C/ME/ME-C/ME-GI/ME-B Engines<br />

Air intake<br />

SCR reactor<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Evaporator<br />

Support<br />

Preheating and sealing oil<br />

Exhaust gas outlet<br />

Amm<strong>on</strong>ia<br />

tank<br />

Deck<br />

NO and O analysers<br />

x 2<br />

High efficiency turbocharger<br />

Page 2 of 2<br />

198 99 27�1.0<br />

198 58 94-7.1


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Electricity Producti<strong>on</strong><br />

4


<strong>MAN</strong> B&W 4.01<br />

Electricity Producti<strong>on</strong><br />

Introducti<strong>on</strong><br />

Next to power for propulsi<strong>on</strong>, electricity producti<strong>on</strong><br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> the largest fuel c<strong>on</strong>sumer <strong>on</strong> board. The<br />

electricity <str<strong>on</strong>g>is</str<strong>on</strong>g> produced by using <strong>on</strong>e or more of the<br />

following types of machinery, either running al<strong>on</strong>e<br />

or in parallel:<br />

• Auxiliary diesel generating sets<br />

• Main engine driven generators<br />

• Steam driven turbogenerators<br />

• Emergency diesel generating sets.<br />

The machinery installed should be selected <strong>on</strong> the<br />

bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of an ec<strong>on</strong>omic evaluati<strong>on</strong> of first cost, operating<br />

costs, and the demand for man�hours for<br />

maintenance.<br />

In the following, technical informati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> given regarding<br />

main engine driven generators (PTO) and<br />

the auxiliary diesel generating sets produced by<br />

<strong>MAN</strong> <strong>Diesel</strong>.<br />

The possibility of using a turbogenerator driven by<br />

the steam produced by an exhaust gas boiler can<br />

be evaluated based <strong>on</strong> the exhaust gas data.<br />

Power Take Off<br />

With a generator coupled to a Power Take Off<br />

(PTO) from the main engine, electrical power<br />

can be produced based <strong>on</strong> the main engine’s<br />

low SFOC and the use of heavy fuel oil. Several<br />

standard<str<strong>on</strong>g>is</str<strong>on</strong>g>ed PTO systems are <str<strong>on</strong>g>available</str<strong>on</strong>g>, see Fig.<br />

4.0 .0 and the de�signati<strong>on</strong>s in Fig. 4.0 .02:<br />

• PTO/RCF<br />

(Power Take Off/RENK C<strong>on</strong>stant Frequency):<br />

Generator giving c<strong>on</strong>stant frequency, based <strong>on</strong><br />

mechanical�hydraulical speed c<strong>on</strong>trol.<br />

• PTO/CFE<br />

(Power Take Off/C<strong>on</strong>stant Frequency Electrical):<br />

Generator giving c<strong>on</strong>stant frequency, based <strong>on</strong><br />

electrical frequency c<strong>on</strong>trol.<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8, S60MC-C/ME-C/ME-GI7/8, S60MC6,<br />

L60MC-C/ME-C7/8, S50MC-C/ME-C7/8, S50MC6, S50ME-B8/9<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 6<br />

• PTO/GCR<br />

(Power Take Off/Gear C<strong>on</strong>stant Ratio):<br />

Generator coupled to a c<strong>on</strong>stant ratio step�up<br />

gear, used <strong>on</strong>ly for engines running at c<strong>on</strong>stant<br />

speed.<br />

The DMG/CFE (Direct Mounted Generator/C<strong>on</strong>stant<br />

Frequency Electrical) and the SMG/CFE<br />

(Shaft Mounted Generator/C<strong>on</strong>stant Frequency<br />

Electrical) are special designs within the PTO/CFE<br />

group in which the generator <str<strong>on</strong>g>is</str<strong>on</strong>g> coupled directly to<br />

the main engine crankshaft and the intermediate<br />

shaft, respectively, without a gear. The electrical<br />

output of the generator <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled by electrical<br />

frequency c<strong>on</strong>trol.<br />

Within each PTO system, several designs are<br />

<str<strong>on</strong>g>available</str<strong>on</strong>g>, depending <strong>on</strong> the positi<strong>on</strong>ing of the<br />

gear:<br />

• BW I:<br />

Gear with a vertical generator mounted <strong>on</strong>to the<br />

fore end of the diesel engine, without any c<strong>on</strong>necti<strong>on</strong>s<br />

to the ship structure.<br />

• BW II:<br />

A free�standing gear mounted <strong>on</strong> the tank top<br />

and c<strong>on</strong>nected to the fore end of the diesel engine,<br />

with a vertical or horiz<strong>on</strong>tal generator.<br />

• BW III:<br />

A crankshaft gear mounted <strong>on</strong>to the fore end<br />

of the diesel engine, with a side�mounted<br />

generator without any c<strong>on</strong>necti<strong>on</strong>s to the ship<br />

structure.<br />

• BW IV:<br />

A free�standing step�up gear c<strong>on</strong>nected to the<br />

intermediate shaft, with a horiz<strong>on</strong>tal generator.<br />

The most popular of the gear based alternatives<br />

are the BW III/RCF types for plants with a fixed<br />

pitch propeller (FPP) and the BW IV/GCR for<br />

plants with a c<strong>on</strong>trollable pitch propeller (CPP).<br />

The BW III/RCF requires no separate seating in<br />

the ship and <strong>on</strong>ly little attenti<strong>on</strong> from the shipyard<br />

with respect to alignment.<br />

198 57 40-2.0


<strong>MAN</strong> B&W 4.01<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 6<br />

� � � � � �����<br />

�������������������������������������������������� ������� �������� ���������������<br />

� ��� ��� ��������� ���������� �����<br />

� � � � ��������������������<br />

� ��� ��� ���������� ������������ �����<br />

�������<br />

� ��� ��� ����������� ���������� �����<br />

� ��� ��� ���������� ������������ �����<br />

� ��� ��� �������� ���������� �����<br />

�������<br />

� ��� ��� �������� ������������ �����<br />

� � �� ��������� ���������� ��<br />

� � � � ��������������������<br />

� � �� ���������� ������������ ��<br />

�������<br />

� � �� ����������� ���������� ��<br />

� � ��� ���������� ������������ ��<br />

Fig. 4.01.01: Types of PTO<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8, S60MC-C/ME-C/ME-GI7/8, S60MC6,<br />

L60MC-C/ME-C7/8, S50MC-C/ME-C7/8, S50MC6, S50ME-B8/9<br />

178 19 66�3.1<br />

198 57 40-2.0


<strong>MAN</strong> B&W 4.01<br />

Designati<strong>on</strong> of PTO<br />

For further informati<strong>on</strong>, please refer to our publicati<strong>on</strong><br />

titled:<br />

Shaft Generators for MC and ME engines<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at: www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

Power take off:<br />

BW III S60ME�C7/RCF 700�60<br />

Fig. 4.01.02: Example of designati<strong>on</strong> of PTO<br />

<strong>MAN</strong> B&W L/S70ME-C/ME-GI7/8,<br />

S65ME-C/ME-GI8, S60ME-C/ME-GI7/8,<br />

L60ME-C7/8, S50ME-C7/8, S50ME-B8/9<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

50: 50 Hz<br />

60: 60 Hz<br />

kW <strong>on</strong> generator terminals<br />

RCF: Renk c<strong>on</strong>stant frequency unit<br />

CFE: Electrically frequency c<strong>on</strong>trolled unit<br />

GCR: Step�up gear with c<strong>on</strong>stant ratio<br />

Mark versi<strong>on</strong><br />

Engine type <strong>on</strong> which it <str<strong>on</strong>g>is</str<strong>on</strong>g> applied<br />

Layout of PTO: See Fig. 4.01.01<br />

Make: <strong>MAN</strong> <strong>Diesel</strong><br />

Page of 6<br />

178 06 49�0.0<br />

178 39 55�6.0<br />

198 53 85-5.3


<strong>MAN</strong> B&W 4.01<br />

PTO/RCF<br />

Side mounted generator, BWIII/RCF<br />

(Fig. .01.01, Alternative 3)<br />

The PTO/RCF generator systems have been developed<br />

in close cooperati<strong>on</strong> with the German<br />

gear manufacturer RENK. A complete package<br />

soluti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> offered, compr<str<strong>on</strong>g>is</str<strong>on</strong>g>ing a flexible coupling,<br />

a step�up gear, an epicyclic, variable�ratio gear<br />

with built�in clutch, hydraulic pump and motor,<br />

and a standard generator, see Fig. .01.03.<br />

For marine engines with c<strong>on</strong>trollable pitch propellers<br />

running at c<strong>on</strong>stant engine speed, the<br />

hydraulic system can be d<str<strong>on</strong>g>is</str<strong>on</strong>g>pensed with, i.e. a<br />

PTO/GCR design <str<strong>on</strong>g>is</str<strong>on</strong>g> normally used.<br />

Fig. .01.03 shows the principles of the PTO/RCF<br />

arrangement. As can be seen, a step�up gear box<br />

(called crankshaft gear) with three gear wheels<br />

�������������<br />

����������������<br />

����������������<br />

����������������<br />

���������������<br />

��������������<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, L70MC�C/ME-C7/8, S70MC6,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C/ME-C7/8, S50MC6, S50ME-B8/9<br />

�����������<br />

�����������������<br />

���������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 6<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> bolted directly to the frame box of the main<br />

engine. The bearings of the three gear wheels<br />

are mounted in the gear box so that the weight of<br />

the wheels <str<strong>on</strong>g>is</str<strong>on</strong>g> not carried by the crankshaft. In the<br />

frame box, between the crankcase and the gear<br />

drive, space <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> for tuning wheel, counterweights,<br />

axial vibrati<strong>on</strong> damper, etc.<br />

The first gear wheel <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected to the crankshaft<br />

via a special flexible coupling made in <strong>on</strong>e<br />

piece with a tooth coupling driving the crankshaft<br />

gear, thus <str<strong>on</strong>g>is</str<strong>on</strong>g>olating it against torsi<strong>on</strong>al and axial<br />

vibrati<strong>on</strong>s.<br />

By means of a simple arrangement, the shaft in<br />

the crankshaft gear carrying the first gear wheel<br />

and the female part of the toothed coupling can<br />

be moved forward, thus d<str<strong>on</strong>g>is</str<strong>on</strong>g>c<strong>on</strong>necting the two<br />

parts of the toothed coupling.<br />

�������<br />

�������� ���������<br />

����������������<br />

Fig. 4.01.03: Power take off with RENK c<strong>on</strong>stant frequency gear: BW III/RCF, opti<strong>on</strong>: 4 85 253<br />

������������<br />

���������<br />

��������������������<br />

����������<br />

������������������������<br />

178 23 22�2.1<br />

198 43 00�0.2


<strong>MAN</strong> B&W 4.01<br />

The power from the crankshaft gear <str<strong>on</strong>g>is</str<strong>on</strong>g> transferred,<br />

via a multi�d<str<strong>on</strong>g>is</str<strong>on</strong>g>c clutch, to an epicyclic<br />

variable�ratio gear and the generator. These are<br />

mounted <strong>on</strong> a comm<strong>on</strong> bedplate, bolted to brackets<br />

integrated with the engine bedplate.<br />

The BWIII/RCF unit <str<strong>on</strong>g>is</str<strong>on</strong>g> an epicyclic gear with a<br />

hydrostatic superpositi<strong>on</strong> drive. The hydrostatic<br />

input drives the annulus of the epicyclic gear in<br />

either directi<strong>on</strong> of rotati<strong>on</strong>, hence c<strong>on</strong>tinuously<br />

varying the gearing ratio to keep the generator<br />

speed c<strong>on</strong>stant throughout an engine speed<br />

variati<strong>on</strong> of 30%. In the standard layout, th<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

between 100% and 70% of the engine speed at<br />

specified MCR, but it can be placed in a lower<br />

range if required.<br />

The input power to the gear <str<strong>on</strong>g>is</str<strong>on</strong>g> divided into two<br />

paths – <strong>on</strong>e mechanical and the other hydrostatic<br />

– and the epicyclic differential combines the<br />

power of the two paths and transmits the combined<br />

power to the output shaft, c<strong>on</strong>nected to the<br />

generator. The gear <str<strong>on</strong>g>is</str<strong>on</strong>g> equipped with a hydrostatic<br />

motor driven by a pump, and c<strong>on</strong>trolled by an<br />

electr<strong>on</strong>ic c<strong>on</strong>trol unit. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> keeps the generator<br />

speed c<strong>on</strong>stant during single running as well as<br />

when running in parallel with other generators.<br />

The multi�d<str<strong>on</strong>g>is</str<strong>on</strong>g>c clutch, integrated into the gear input<br />

shaft, permits the engaging and d<str<strong>on</strong>g>is</str<strong>on</strong>g>engaging<br />

of the epicyclic gear, and thus the generator, from<br />

the main engine during operati<strong>on</strong>.<br />

An electr<strong>on</strong>ic c<strong>on</strong>trol system with a RENK c<strong>on</strong>troller<br />

ensures that the c<strong>on</strong>trol signals to the main<br />

electrical switchboard are identical to those for<br />

the normal auxiliary generator sets. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> applies<br />

to ships with automatic synchr<strong>on</strong><str<strong>on</strong>g>is</str<strong>on</strong>g>ing and load<br />

sharing, as well as to ships with manual switchboard<br />

operati<strong>on</strong>.<br />

Internal c<strong>on</strong>trol circuits and interlocking functi<strong>on</strong>s<br />

between the epicyclic gear and the electr<strong>on</strong>ic<br />

c<strong>on</strong>trol box provide automatic c<strong>on</strong>trol of the functi<strong>on</strong>s<br />

necessary for the reliable operati<strong>on</strong> and<br />

protecti<strong>on</strong> of the BWIII/RCF unit. If any m<strong>on</strong>itored<br />

value exceeds the normal operati<strong>on</strong> limits, a warning<br />

or an alarm <str<strong>on</strong>g>is</str<strong>on</strong>g> given depending up<strong>on</strong> the origin,<br />

severity and the extent of deviati<strong>on</strong> from the<br />

perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible values. The cause of a warning or an<br />

alarm <str<strong>on</strong>g>is</str<strong>on</strong>g> shown <strong>on</strong> a digital d<str<strong>on</strong>g>is</str<strong>on</strong>g>play.<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, L70MC�C/ME-C7/8, S70MC6,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C/ME-C7/8, S50MC6, S50ME-B8/9<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Extent of delivery for BWIII/RCF units<br />

Page of 6<br />

The delivery compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es a complete unit ready to<br />

be built�<strong>on</strong> to the main engine. Fig. .02.01 shows<br />

the required space and the standard electrical<br />

output range <strong>on</strong> the generator terminals.<br />

Standard sizes of the crankshaft gears and the<br />

RCF units are designed for:<br />

700, 1200, 1800 and 2600 kW, while the generator<br />

sizes of make A. van Kaick are:<br />

Type<br />

DSG<br />

0 V<br />

1800<br />

kVA<br />

60 Hz<br />

r/min<br />

kW<br />

380 V<br />

1 00<br />

kVA<br />

0 Hz<br />

r/min<br />

kW<br />

62 M2� 707 66 627 01<br />

62 L1� 8 68 761 609<br />

62 L2� 1,0 6 8 9 0 7 2<br />

7 M1� 1,271 1,017 1,137 909<br />

7 M2� 1, 32 1,1 6 1,280 1,02<br />

7 L1� 1,6 1 1,321 1, 68 1,17<br />

7 L2� 1,92 1, 39 1,709 1,368<br />

86 K1� 1,9 2 1, 1,8 1, 7<br />

86 M1� 2,3 1,876 2,1 8 1,718<br />

86 L2� 2,792 2,23 2, 2 2,033<br />

99 K1� 3,222 2, 78 2,989 2,391<br />

In the event that a larger generator <str<strong>on</strong>g>is</str<strong>on</strong>g> required,<br />

please c<strong>on</strong>tact <strong>MAN</strong> <strong>Diesel</strong>.<br />

178 34 89�3.1<br />

If a main engine speed other than the nominal <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

required as a bas<str<strong>on</strong>g>is</str<strong>on</strong>g> for the PTO operati<strong>on</strong>, it must<br />

be taken into c<strong>on</strong>siderati<strong>on</strong> when determining the<br />

ratio of the crankshaft gear. However, it has no<br />

influence <strong>on</strong> the space required for the gears and<br />

the generator.<br />

The PTO can be operated as a motor (PTI) as well<br />

as a generator by making some minor modificati<strong>on</strong>s.<br />

198 43 00�0.2


<strong>MAN</strong> B&W 4.01<br />

Yard deliveries are:<br />

1. Cooling water pipes to the built�<strong>on</strong> lubricating<br />

oil cooling system, including the valves.<br />

2. Electrical power supply to the lubricating oil<br />

stand�by pump built <strong>on</strong> to the RCF unit.<br />

3. Wiring between the generator and the operator<br />

c<strong>on</strong>trol panel in the switchboard.<br />

. An external permanent lubricating oil filling�up<br />

c<strong>on</strong>necti<strong>on</strong> can be establ<str<strong>on</strong>g>is</str<strong>on</strong>g>hed in c<strong>on</strong>necti<strong>on</strong><br />

with the RCF unit. The system <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig.<br />

.03.03 ‘Lubricating oil system for RCF gear’.<br />

The dosage tank and the pertaining piping<br />

are to be delivered by the yard. The size of the<br />

dosage tank <str<strong>on</strong>g>is</str<strong>on</strong>g> stated in the table for RCF gear<br />

in ‘Necessary capacities for PTO/RCF’ (Fig.<br />

.03.02).<br />

The necessary preparati<strong>on</strong>s to be made <strong>on</strong><br />

the engine are specified in Figs. .03.01a and<br />

.03.01b.<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, L70MC�C/ME-C7/8, S70MC6,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C/ME-C7/8, S50MC6, S50ME-B8/9<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 6 of 6<br />

Additi<strong>on</strong>al capacities required for BWIII/RCF<br />

The capacities stated in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’ for<br />

the main engine in questi<strong>on</strong> are to be increased<br />

by the additi<strong>on</strong>al capacities for the crankshaft<br />

gear and the RCF gear stated in Fig. .03.02.<br />

198 43 00�0.2


<strong>MAN</strong> B&W 4.02<br />

�<br />

�<br />

�<br />

�<br />

�<br />

The stated kW at the generator terminals <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> between 70% and 00% of the engine speed at specified MCR<br />

Space requirements have to be investigated case by case <strong>on</strong> plants with 2600 kW generator.<br />

Dimensi<strong>on</strong> H: <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly valid for A. van Kaick generator type DSG, enclosure IP23,<br />

frequency = 60 Hz, speed = 800 r/min<br />

Fig. 4.02.01: Space requirement for side mounted generator PTO/RCF type BWlll S65-C/RCF<br />

� � �<br />

kW generator<br />

700 kW 1200 kW 1800 kW 2600 kW<br />

A 2,867 2,867 3,007 3,007<br />

B 632 632 632 632<br />

C 3,527 3,527 3,807 3,807<br />

D 3,923 3,923 4,203 4,203<br />

F ,682 ,802 ,922 2,032<br />

G 2,470 2,470 2,830 2,830<br />

H 2,028 2,530 2,9 5 4,235<br />

S 390 450 530 620<br />

System mass (kg) with generator:<br />

23,750 27,500 39, 00 52,550<br />

System mass (kg) without generator:<br />

2 ,750 24,850 34,800 47,350<br />

Page of<br />

178 36 29-6.1<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8 198 49 15-9.1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 4.03<br />

Engine preparati<strong>on</strong>s for PTO<br />

��<br />

��<br />

��<br />

�� �� ��<br />

����������<br />

��������<br />

�������<br />

������������<br />

� �<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, S70MC6, L70MC�C/ME-C7/8,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C7/8, S50MC6, S50ME-B8/9<br />

��<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

��<br />

�<br />

�<br />

�<br />

����������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 6<br />

���������������<br />

Fig. 4.03.01a: Engine preparati<strong>on</strong>s for PTO 178 57 15-7.0<br />

��<br />

��<br />

�<br />

��<br />

��<br />

��<br />

198 43 15�6.2


<strong>MAN</strong> B&W 4.03<br />

Pos.<br />

Special face <strong>on</strong> bedplate and frame box<br />

Ribs and brackets for supporting the face and machined blocks for alignment of gear or stator housing<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, S70MC6, L70MC�C/ME-C7/8,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C7/8, S50MC6, S50ME-B8/9<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 6<br />

3 Machined washers placed <strong>on</strong> frame box part of face to ensure that it <str<strong>on</strong>g>is</str<strong>on</strong>g> flush with the face <strong>on</strong> the bedplate<br />

4 Rubber gasket placed <strong>on</strong> frame box part of face<br />

5 Shim placed <strong>on</strong> frame box part of face to ensure that it <str<strong>on</strong>g>is</str<strong>on</strong>g> flush with the face of the bedplate<br />

6 D<str<strong>on</strong>g>is</str<strong>on</strong>g>tance tubes and l<strong>on</strong>g bolts<br />

7 Threaded hole size, number and size of spring pins and bolts to be made in agreement with PTO maker<br />

8 Flange of crankshaft, normally the standard executi<strong>on</strong> can be used<br />

9 Studs and nuts for crankshaft flange<br />

0 Free flange end at lubricating oil inlet pipe (incl. blank flange)<br />

Oil outlet flange welded to bedplate (incl. blank flange)<br />

Face for brackets<br />

3 Brackets<br />

4 Studs for mounting the brackets<br />

5 Studs, nuts and shims for mounting of RCF�/generator unit <strong>on</strong> the brackets<br />

6 Shims, studs and nuts for c<strong>on</strong>necti<strong>on</strong> between crankshaft gear and RCF�/generator unit<br />

7 Engine cover with c<strong>on</strong>necting bolts to bedplate/frame box to be used for shop test without PTO<br />

8 Intermediate shaft between crankshaft and PTO<br />

9 Oil sealing for intermediate shaft<br />

0 Engine cover with hole for intermediate shaft and c<strong>on</strong>necting bolts to bedplate/frame box<br />

Plug box for electr<strong>on</strong>ic measuring instrument for checking c<strong>on</strong>diti<strong>on</strong> of axial vibrati<strong>on</strong> damper<br />

Tacho encoder for ME c<strong>on</strong>trol system or Alpha lubricati<strong>on</strong> system <strong>on</strong> MC engine<br />

3 Tacho trigger ring for ME c<strong>on</strong>trol system or Alpha lubricati<strong>on</strong> system <strong>on</strong> MC engine<br />

Pos. no: 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3<br />

BWIII/RCF A A A A B A B A A A A A B B A A A<br />

BWIII/CFE A A A A B A B A A A A A B B A A A<br />

BWII/RCF A A A A A A A<br />

BWII/CFE A A A A A A A<br />

BWI/RCF A A A A B A B A A A<br />

BWI/CFE A A A A B A B A A A A A<br />

DMG/CFE A A A B C A B A A A<br />

A: Preparati<strong>on</strong>s to be carried out by engine builder<br />

B: Parts supplied by PTO�maker<br />

C: See text of pos. no.<br />

Fig. 4.03.01b: Engine preparati<strong>on</strong>s for PTO<br />

178 89 34�2.0<br />

198 43 15�6.2


<strong>MAN</strong> B&W 4.03<br />

Crankshaft gear lubricated from the main engine lubricating oil system<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, S70MC6, L70MC�C/ME-C7/8,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C7/8, S50MC6, S50ME-B8/9<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 3 of 6<br />

The figures are to be added to the main engine capacity l<str<strong>on</strong>g>is</str<strong>on</strong>g>t:<br />

Nominal output of generator kW 700 , 00 ,800 ,600<br />

Lubricating oil flow m3 /h 4. 4. 4.9 6.<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW . 0.8 3 . 45.0<br />

RCF gear with separate lubricating oil system:<br />

Nominal output of generator kW 700 , 00 ,800 ,600<br />

Cooling water quantity m3 /h 4. . 30.0 39.0<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 55 9 34 80<br />

El. power for oil pump kW .0 5.0 8.0 .0<br />

Dosage tank capacity m3 0.40 0.5 0.69 0.95<br />

El. power for Renk�c<strong>on</strong>troller 4V DC ± 0%, 8 amp<br />

From main engine:<br />

Design lube oil pressure: . 5 bar<br />

Lube oil pressure at crankshaft gear: min. bar<br />

Lube oil working temperature: 50 °C<br />

Lube oil type: SAE 30<br />

Fig. 4.03.02: Necessary capacities for PTO/RCF, BW III/RCF system<br />

C/D<br />

From purifier<br />

The dimensi<strong>on</strong>s<br />

of dosage tank<br />

depend <strong>on</strong> actual<br />

type of gear<br />

Main<br />

engine<br />

S S<br />

Lube oil<br />

bottom tank<br />

Fig. 4.03.03: Lubricating oil system for RCF gear<br />

To purifier<br />

DR<br />

DS<br />

C/D<br />

Cooling water inlet temperature: 36 °C<br />

Pressure drop across cooler: approximately 0.5 bar<br />

Fill pipe for lube oil system store tank (~ø3 )<br />

Drain pipe to lube oil system drain tank (~ø40)<br />

Electric cable between Renk terminal at gearbox<br />

and operator c<strong>on</strong>trol panel in switchboard: Cable<br />

type FMGCG 9 x x 0.5<br />

Engine<br />

oil<br />

Deck<br />

Filling pipe<br />

To main engine<br />

The letters refer to the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of flanges’,<br />

which will be extended by the engine builder,<br />

when PTO systems are built <strong>on</strong> the main engine<br />

178 33 85�0.0<br />

178 25 23�5.0<br />

198 43 15�6.2


<strong>MAN</strong> B&W 4.03<br />

DMG/CFE Generators<br />

Opti<strong>on</strong>: 4 85 259<br />

Fig. 4.0 .0 alternative 5, shows the DMG/CFE<br />

(Direct Mounted Generator/C<strong>on</strong>stant Frequency<br />

Electrical) which <str<strong>on</strong>g>is</str<strong>on</strong>g> a low speed generator with<br />

its rotor mounted directly <strong>on</strong> the crankshaft and<br />

its stator bolted <strong>on</strong> to the frame box as shown in<br />

Figs. 4.03.04 and 4.03.05.<br />

The DMG/CFE <str<strong>on</strong>g>is</str<strong>on</strong>g> separated from the crankcase<br />

by a plate and a labyrinth stuffing box.<br />

The DMG/CFE system has been developed in cooperati<strong>on</strong><br />

with the German generator manufacturers<br />

Siemens and AEG, but similar types of generator<br />

can be supplied by others, e.g. Fuji, Taiyo<br />

and N<str<strong>on</strong>g>is</str<strong>on</strong>g>h<str<strong>on</strong>g>is</str<strong>on</strong>g>hiba in Japan.<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, S70MC6, L70MC�C/ME-C7/8,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C7/8, S50MC6, S50ME-B8/9<br />

Oil seal cover<br />

Synchr<strong>on</strong>ous<br />

c<strong>on</strong>denser<br />

Static frequency c<strong>on</strong>verter system<br />

Rotor<br />

Stator housing<br />

Fig. 4.03.04: Standard engine, with direct mounted generator (DMG/CFE)<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 4 of 6<br />

For generators in the normal output range, the<br />

mass of the rotor can normally be carried by the<br />

foremost main bearing without exceeding the perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible<br />

bearing load (see Fig. 4.03.05), but th<str<strong>on</strong>g>is</str<strong>on</strong>g><br />

must be checked by the engine manufacturer in<br />

each case.<br />

If the perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible load <strong>on</strong> the foremost main bearing<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> exceeded, e.g. because a tuning wheel<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> needed, th<str<strong>on</strong>g>is</str<strong>on</strong>g> does not preclude the use of a<br />

DMG/CFE.<br />

Cubicles:<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>tributor<br />

C<strong>on</strong>verter<br />

Excitati<strong>on</strong><br />

C<strong>on</strong>trol<br />

Cooler<br />

To switchboard<br />

Support<br />

bearing<br />

178 06 73�3.1<br />

198 43 15�6.2


<strong>MAN</strong> B&W 4.03<br />

Air cooler<br />

Pole wheel<br />

Stator shell<br />

Stuffing box<br />

Standard engine, with direct<br />

mounted generator (DMG/CFE)<br />

Crankshaft<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, S70MC6, L70MC�C/ME-C7/8,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C7/8, S50MC6, S50ME-B8/9<br />

Main bearing No.<br />

Support<br />

bearing<br />

Pole wheel<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Air cooler<br />

Tuning wheel<br />

Fig. 4.03.05: Standard engine, with direct mounted generator and tuning wheel<br />

<strong>Diesel</strong> engine<br />

Excitati<strong>on</strong> c<strong>on</strong>verter<br />

Fig. 4.03.06: Diagram of DMG/CFE with static c<strong>on</strong>verter<br />

Mains, c<strong>on</strong>stant frequency<br />

DMG<br />

Static c<strong>on</strong>verter<br />

Stator shell<br />

Stuffing box<br />

Standard engine, with direct mounted<br />

generator and tuning wheel<br />

Crankshaft<br />

Synchr<strong>on</strong>ous<br />

c<strong>on</strong>denser<br />

G<br />

Page 5 of 6<br />

Main bearing No.<br />

Smoothing reactor<br />

178 06 63�7.1<br />

178 56 55�3.1<br />

198 43 15�6.2


<strong>MAN</strong> B&W 4.03<br />

In such a case, the problem <str<strong>on</strong>g>is</str<strong>on</strong>g> solved by installing<br />

a small, elastically supported bearing in fr<strong>on</strong>t of<br />

the stator housing, as shown in Fig. 4.03.05.<br />

As the DMG type <str<strong>on</strong>g>is</str<strong>on</strong>g> directly c<strong>on</strong>nected to the<br />

crankshaft, it has a very low rotati<strong>on</strong>al speed and,<br />

c<strong>on</strong>sequently, the electric output current has a<br />

low frequency – normally of the order of 5 Hz.<br />

Therefore, it <str<strong>on</strong>g>is</str<strong>on</strong>g> necessary to use a static frequency<br />

c<strong>on</strong>verter between the DMG and the main<br />

switchboard. The DMG/CFE <str<strong>on</strong>g>is</str<strong>on</strong>g>, as standard, laid<br />

out for operati<strong>on</strong> with full output between 00%<br />

and 70% and with reduced output between 70%<br />

and 50% of the engine speed at specified MCR.<br />

Static c<strong>on</strong>verter<br />

The static frequency c<strong>on</strong>verter system (see Fig.<br />

4.03.06) c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a static part, i.e. thyr<str<strong>on</strong>g>is</str<strong>on</strong>g>tors and<br />

c<strong>on</strong>trol equipment, and a rotary electric machine.<br />

The DMG produces a three�phase alternating<br />

current with a low frequency, which varies in accordance<br />

with the main engine speed. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> alternating<br />

current <str<strong>on</strong>g>is</str<strong>on</strong>g> rectified and led to a thyr<str<strong>on</strong>g>is</str<strong>on</strong>g>tor inverter<br />

producing a three�phase alternating current<br />

with c<strong>on</strong>stant frequency.<br />

Since the frequency c<strong>on</strong>verter system uses a DC<br />

intermediate link, no reactive power can be supplied<br />

to the electric mains. To supply th<str<strong>on</strong>g>is</str<strong>on</strong>g> reactive<br />

power, a synchr<strong>on</strong>ous c<strong>on</strong>denser <str<strong>on</strong>g>is</str<strong>on</strong>g> used. The<br />

synchr<strong>on</strong>ous c<strong>on</strong>denser c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of an ordinary<br />

synchr<strong>on</strong>ous generator coupled to the electric<br />

mains.<br />

Extent of delivery for DMG/CFE units<br />

The delivery extent <str<strong>on</strong>g>is</str<strong>on</strong>g> a generator fully built�<strong>on</strong><br />

to the main engine including the synchr<strong>on</strong>ous<br />

c<strong>on</strong>denser unit and the static c<strong>on</strong>verter cubicles<br />

which are to be installed in the engine room.<br />

The DMG/CFE can, with a small modificati<strong>on</strong>,<br />

be operated both as a generator and as a motor<br />

(PTI).<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC-C/ME/ME-C6/7,<br />

S90MC-C/ME-C7/8, K90ME/ME-C9, K90MC-C/ME-C6, S80MC6,<br />

S80MC-C7/8, S80ME-C7/8/9, K80ME-C9, K80MC-C/ME-C6,<br />

S70MC�C/ME-C/ME-GI7/8, S70MC6, L70MC�C/ME-C7/8,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC-C7/8, S50MC6, S50ME-B8/9<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Yard deliveries are:<br />

Page 6 of 6<br />

. Installati<strong>on</strong>, i.e. seating in the ship for the synchr<strong>on</strong>ous<br />

c<strong>on</strong>denser unit and for the static<br />

c<strong>on</strong>verter cubicles<br />

. Cooling water pipes to the generator if water<br />

cooling <str<strong>on</strong>g>is</str<strong>on</strong>g> applied<br />

3. Cabling.<br />

The necessary preparati<strong>on</strong>s to be made <strong>on</strong><br />

the engine are specified in Figs. 4.03.0 a and<br />

4.03.0 b.<br />

SMG/CFE Generators<br />

The PTO SMG/CFE (see Fig. 4.0 .0 alternative 6)<br />

has the same working principle as the PTO DMG/<br />

CFE, but instead of being located <strong>on</strong> the fr<strong>on</strong>t end<br />

of the engine, the alternator <str<strong>on</strong>g>is</str<strong>on</strong>g> installed aft of the<br />

engine, with the rotor integrated <strong>on</strong> the intermediate<br />

shaft.<br />

In additi<strong>on</strong> to the yard deliveries menti<strong>on</strong>ed for the<br />

PTO DMG/CFE, the shipyard must also provide<br />

the foundati<strong>on</strong> for the stator housing in the case<br />

of the PTO SMG/CFE.<br />

The engine needs no preparati<strong>on</strong> for the installati<strong>on</strong><br />

of th<str<strong>on</strong>g>is</str<strong>on</strong>g> PTO system.<br />

198 43 15�6.2


<strong>MAN</strong> B&W 4.04<br />

PTO type: BW II/GCR<br />

Power Take Off/Gear C<strong>on</strong>stant Ratio<br />

The PTO system type BWII/GCR illustrated in Fig.<br />

4.0 .0 alternative 5 can generate electrical power<br />

<strong>on</strong> board ships equipped with a c<strong>on</strong>trollable pitch<br />

propeller, running at c<strong>on</strong>stant speed.<br />

The PTO unit <str<strong>on</strong>g>is</str<strong>on</strong>g> mounted <strong>on</strong> the tank top at the<br />

fore end of the engine see Fig. 4.04.0 . The PTO<br />

generator <str<strong>on</strong>g>is</str<strong>on</strong>g> activated at sea, taking over the electrical<br />

power producti<strong>on</strong> <strong>on</strong> board when the main<br />

engine speed has stabil<str<strong>on</strong>g>is</str<strong>on</strong>g>ed at a level corresp<strong>on</strong>ding<br />

to the generator frequency required <strong>on</strong> board.<br />

The installati<strong>on</strong> length in fr<strong>on</strong>t of the engine, and<br />

thus the engine room length requirement, naturally<br />

exceeds the length of the engine aft end<br />

mounted shaft generator arrangements. However,<br />

there <str<strong>on</strong>g>is</str<strong>on</strong>g> some scope for limiting the space requirement,<br />

depending <strong>on</strong> the c<strong>on</strong>figurati<strong>on</strong> chosen.<br />

Fig. 4.04.01: Power Take Off (PTO) BW II/GCR<br />

<strong>MAN</strong> B&W S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC6, S50MC-C/ME-C7/8,<br />

S50ME-B8/9, S46MC-C7/8, S42MC7, S40ME-B9,<br />

S35ME-B9, S35MC7, L35MC6, S26MC6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

PTO type: BW IV/GCR<br />

Page of 3<br />

Power Take Off/Gear C<strong>on</strong>stant Ratio<br />

The shaft generator system, type PTO BW IV/<br />

GCR, installed in the shaft line (Fig. 4.0 .0 alternative<br />

6) can generate power <strong>on</strong> board ships<br />

equipped with a c<strong>on</strong>trollable pitch propeller running<br />

at c<strong>on</strong>stant speed.<br />

The PTO system can be delivered as a tunnel gear<br />

with hollow flexible coupling or, alternatively, as<br />

a generator step�up gear with thrust bearing and<br />

flexible coupling integrated in the shaft line.<br />

The main engine needs no special preparati<strong>on</strong> for<br />

mounting these types of PTO systems as they are<br />

c<strong>on</strong>nected to the intermediate shaft.<br />

The PTO system installed in the shaft line can also<br />

be installed <strong>on</strong> ships equipped with a fixed pitch<br />

propeller or c<strong>on</strong>trollable pitch propeller running in<br />

Support bearing, if required<br />

Generator<br />

Elastic coupling<br />

Step-up gear<br />

178 18 22�5.0<br />

198 43 16�8.5


<strong>MAN</strong> B&W 4.04<br />

combinator mode. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> will, however, require an<br />

additi<strong>on</strong>al RENK C<strong>on</strong>stant Frequency gear (Fig.<br />

4.0 .0 alternative ) or additi<strong>on</strong>al electrical equipment<br />

for maintaining the c<strong>on</strong>stant frequency of<br />

the generated electric power.<br />

Tunnel gear with hollow flexible coupling<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> PTO system <str<strong>on</strong>g>is</str<strong>on</strong>g> normally installed <strong>on</strong> ships<br />

with a minor electrical power take off load compared<br />

to the propulsi<strong>on</strong> power, up to approximately<br />

5% of the engine power.<br />

The hollow flexible coupling <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly to be dimensi<strong>on</strong>ed<br />

for the maximum electrical load of the power take off<br />

system and th<str<strong>on</strong>g>is</str<strong>on</strong>g> gives an ec<strong>on</strong>omic advantage for minor<br />

power take off loads compared to the system with an<br />

ordinary flexible coupling integrated in the shaft line.<br />

The hollow flexible coupling c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of flexible<br />

segments and c<strong>on</strong>necting pieces, which allow<br />

replacement of the coupling segments without<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>mounting the shaft line, see Fig. 4.04.0 .<br />

Fig. 4.04.02: BW IV/GCR, tunnel gear<br />

<strong>MAN</strong> B&W S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC6, S50MC-C/ME-C7/8,<br />

S50ME-B8/9, S46MC-C7/8, S42MC7, S40ME-B9,<br />

S35ME-B9, S35MC7, L35MC6, S26MC6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 3<br />

Generator step�up gear and flexible coupling<br />

integrated in the shaft line<br />

For higher power take off loads, a generator<br />

step�up gear and flexible coupling integrated in<br />

the shaft line may be chosen due to first costs of<br />

gear and coupling.<br />

The flexible coupling integrated in the shaft line<br />

will transfer the total engine load for both propulsi<strong>on</strong><br />

and electrical power and must be dimensi<strong>on</strong>ed<br />

accordingly.<br />

The flexible coupling cannot transfer the thrust<br />

from the propeller and it <str<strong>on</strong>g>is</str<strong>on</strong>g>, therefore, necessary<br />

to make the gear�box with an integrated thrust<br />

bearing.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> type of PTO system <str<strong>on</strong>g>is</str<strong>on</strong>g> typically installed <strong>on</strong><br />

ships with large electrical power c<strong>on</strong>sumpti<strong>on</strong>,<br />

e.g. shuttle tankers.<br />

198 43 16�8.5


<strong>MAN</strong> B&W 4.04<br />

Auxiliary Propulsi<strong>on</strong> System/Take Home System<br />

From time to time an Auxiliary Propulsi<strong>on</strong> System/<br />

Take Home System capable of driving the CP propeller<br />

by using the shaft generator as an electric<br />

motor <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>request</strong>ed.<br />

<strong>MAN</strong> <strong>Diesel</strong> can offer a soluti<strong>on</strong> where the<br />

CP propeller <str<strong>on</strong>g>is</str<strong>on</strong>g> driven by the alternator via a<br />

two�speed tunnel gear box. The electric power <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

produced by a number of GenSets. The main engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> d<str<strong>on</strong>g>is</str<strong>on</strong>g>engaged by a clutch (RENK KAZ) made<br />

as an integral part of the shafting. The clutch <str<strong>on</strong>g>is</str<strong>on</strong>g> installed<br />

between the tunnel gear box and the main<br />

engine, and c<strong>on</strong>ical bolts are used to c<strong>on</strong>nect and<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>c<strong>on</strong>nect the main engine and the shafting.<br />

See Figure 4.04.03.<br />

A thrust bearing, which transfers the auxiliary propulsi<strong>on</strong><br />

propeller thrust to the engine thrust bearing<br />

when the clutch <str<strong>on</strong>g>is</str<strong>on</strong>g> d<str<strong>on</strong>g>is</str<strong>on</strong>g>engaged, <str<strong>on</strong>g>is</str<strong>on</strong>g> built into the<br />

RENK KAZ clutch. When the clutch <str<strong>on</strong>g>is</str<strong>on</strong>g> engaged,<br />

the thrust <str<strong>on</strong>g>is</str<strong>on</strong>g> transferred statically to the engine<br />

thrust bearing through the thrust bearing built into<br />

the clutch.<br />

������������������<br />

���������������������<br />

Fig. 4.04.03: Auxiliary propulsi<strong>on</strong> system<br />

<strong>MAN</strong> B&W S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8, S50MC6, S50MC-C/ME-C7/8,<br />

S50ME-B8/9, S46MC-C7/8, S42MC7, S40ME-B9,<br />

S35ME-B9, S35MC7, L35MC6, S26MC6<br />

��������������������<br />

���������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 3 of 3<br />

To obtain high propeller efficiency in the auxiliary<br />

propulsi<strong>on</strong> mode, and thus also to minim<str<strong>on</strong>g>is</str<strong>on</strong>g>e the<br />

auxiliary power required, a two�speed tunnel gear,<br />

which provides lower propeller speed in the auxiliary<br />

propulsi<strong>on</strong> mode, <str<strong>on</strong>g>is</str<strong>on</strong>g> used.<br />

The two�speed tunnel gear box <str<strong>on</strong>g>is</str<strong>on</strong>g> made with a<br />

fricti<strong>on</strong> clutch which allows the propeller to be<br />

clutched in at full alternator/motor speed where<br />

the full torque <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g>. The alternator/motor <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

started in the de�clutched c<strong>on</strong>diti<strong>on</strong> with a start<br />

transformer.<br />

The system can quickly establ<str<strong>on</strong>g>is</str<strong>on</strong>g>h auxiliary propulsi<strong>on</strong><br />

from the engine c<strong>on</strong>trol room and/or bridge,<br />

even with unmanned engine room.<br />

Re�establ<str<strong>on</strong>g>is</str<strong>on</strong>g>hment of normal operati<strong>on</strong> requires<br />

attendance in the engine room and can be d<strong>on</strong>e<br />

within a few minutes.<br />

������������������������<br />

�����������������<br />

���������������<br />

�����������<br />

178 57 16-9.0<br />

198 43 16�8.5


<strong>MAN</strong> B&W<br />

Waste Heat Recovery Systems (WHR)<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> not applicable<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

4.05<br />

Page of<br />

198 66 47-4.0


<strong>MAN</strong> <strong>Diesel</strong> 4.06<br />

L16/24 GenSet Data<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C,<br />

70 → 60 ME�GI/50 → 35 ME-B<br />

Bore: 160 mm Stroke: 240 mm<br />

Power layout<br />

1,200 r/min 60 Hz 1,000 r/min 50 Hz<br />

Eng. kW Gen. kW Eng. kW Gen. kW<br />

5L 6/24 500 475 450 430<br />

6L 6/24 660 625 540 5 5<br />

7L 6/24 770 730 630 600<br />

8L 6/24 880 835 720 685<br />

9L 6/24 990 940 8 0 770<br />

No. of Cyls. A (mm) * B (mm) * C (mm) H (mm)<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 3<br />

**Dry weight<br />

GenSet (t)<br />

5 ( ,000 r/min) 2,75 ,400 4, 5 2,226 9.5<br />

5 ( ,200 r/min) 2,75 ,400 4, 5 2,226 9.5<br />

6 ( ,000 r/min) 3,026 ,490 4,5 6 2,226 0.5<br />

6 ( ,200 r/min) 3,026 ,490 4,5 6 2,226 0.5<br />

7 ( ,000 r/min) 3,30 ,585 4,886 2,226 .4<br />

7 ( ,200 r/min) 3,30 ,585 4,886 2,266 .4<br />

8 ( ,000 r/min) 3,576 ,680 5,256 2,266 2.4<br />

8 ( ,200 r/min) 3,576 ,680 5,256 2,266 2.4<br />

9 ( ,000 r/min) 3,85 ,680 5,53 2,266 3.<br />

9 ( ,200 r/min) 3,85 ,680 5,53 2,266 3.<br />

P Free passage between the engines, width 600 mm and height 2,000 mm<br />

Q Min. d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between engines: ,800 mm<br />

* Depending <strong>on</strong> alternator<br />

** Weight incl. standard alternator (based <strong>on</strong> a Leroy Somer alternator)<br />

All dimensi<strong>on</strong>s and masses are approximate and subject to change without prior notice.<br />

Fig. 4.06.01: Power and outline of L16/24<br />

A<br />

C<br />

B<br />

H<br />

P<br />

830 000<br />

Q<br />

178 23 03�1.0<br />

178 33 87�4.3<br />

198 42 05�4.4


<strong>MAN</strong> <strong>Diesel</strong> 4.06<br />

L16/24 GenSet Data<br />

Fig. 4.06.02a: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L16/24 1,000 rpm<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C,<br />

70 → 60 ME�GI/50 → 35 ME-B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 3<br />

Cyl. 5 6 7 8 9<br />

Max. c<strong>on</strong>tinuous rating at 1,000 rpm kW 450 540 630 720 8 0<br />

Engine Driven Pumps:<br />

H.T. cooling water pump (2.0 bar)** m 3 /h 0.9 2.7 4.5 6.3 8.<br />

L.T. cooling water pump ( .7 bar)** m 3 /h 5.7 8.9 22.0 25. 28.3<br />

Lubricating oil (3-5.0 bar) m 3 /h 2 23 24 26 28<br />

External Pumps:<br />

<strong>Diesel</strong> oil pump (5 bar at fuel oil inlet A ) m³/h 0.3 0.38 0.44 0.50 0.57<br />

Fuel oil supply pump (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m³/h 0. 5 0. 8 0.22 0.25 0.28<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h 0.32 0.38 0.45 0.5 0.57<br />

Cooling Capacities:<br />

Lubricating oil kW 79 95 0 26 42<br />

Charge air L.T. kW 43 5 60 68 77<br />

*Flow L.T. at 36°C inlet and 44°C outlet m 3 /h 3. 5.7 8.4 2 .0 23.6<br />

Jacket cooling kW 07 29 50 7 93<br />

Charge air H.T kW 07 29 50 7 93<br />

Gas Data:<br />

Exhaust gas flow kg/h 3,32 3,985 4,649 5,3 4 5,978<br />

Exhaust gas temp. °C 330 330 330 330 330<br />

Max. allowable back press. bar 0.025 0.025 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 3,23 3,877 4,523 5, 70 5,8 6<br />

Starting Air System:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 0.47 0.56 0.65 0.75 0.84<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 0.80 0.96 . 2 .28 .44<br />

Heat Radiati<strong>on</strong>:<br />

Engine kW 3 5 7 9<br />

Alternator kW (see separate data from the alternator maker)<br />

The stated heat balances are based <strong>on</strong> tropical c<strong>on</strong>diti<strong>on</strong>s, the flows are based <strong>on</strong> ISO ambient c<strong>on</strong>diti<strong>on</strong>.<br />

* The outlet temperature of the H.T. water <str<strong>on</strong>g>is</str<strong>on</strong>g> fixed to 80°C, and<br />

44°C for L.T. water. At different inlet temperatures the flow will<br />

change accordingly.<br />

Example: if the inlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> 25°C, then the L.T.<br />

flow will change to (44-36)/(44-25)* 00 = 42% of the original flow.<br />

If the temperature r<str<strong>on</strong>g>is</str<strong>on</strong>g>es above 36°C, then the L.T. outlet will r<str<strong>on</strong>g>is</str<strong>on</strong>g>e<br />

accordingly.<br />

** Max. perm<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> inlet pressure 2.0 bar.<br />

178 56 53-3.0<br />

198 42 05�4.4


<strong>MAN</strong> <strong>Diesel</strong> 4.06<br />

L16/24 GenSet Data<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C,<br />

70 → 60 ME�GI/50 → 35 ME-B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 3 of 3<br />

Cyl. 5 6 7 8 9<br />

Max c<strong>on</strong>tinues rating 1,200 rpm kW 500 660 770 880 990<br />

Engine driven pumps:<br />

LT cooling water pump 2 bar m³/h 27 27 27 27 27<br />

HT cooling water pump 2 bar m³/h 27 27 27 27 27<br />

Lubricating oil main pump 8 bar m³/h 2 2 35 35 35<br />

Separate pumps:<br />

Max. Delivery pressure of cooling water pumps bar 2.5 2.5 2.5 2.5 2.5<br />

<strong>Diesel</strong> oil pump (5 bar at fuel oil inlet A ) m³/h 0.35 0.46 0.54 0.6 0.69<br />

Fuel oil supply pump (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m³/h 0. 7 0.22 0.26 0.30 0.34<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h 0.35 0.46 0.54 0.62 0.70<br />

Cooling capacity:<br />

Lubricating oil kW 79 03 22 40 59<br />

Charge air LT kW 40 57 70 82 95<br />

Total LT system kW 9 60 92 222 254<br />

Flow LT at 36°C inlet and 44°C outlet m³/h 3 7 2 24 27<br />

Jacket cooling kW 9 62 9 220 249<br />

Charge air HT kW 23 69 90 2 230<br />

Total HT system kW 242 33 38 43 479<br />

Flow HT at 44°Cinlet and 80°C outlet m³/h 6 8 9 0<br />

Total from engine kW 36 49 573 653 733<br />

LT flow at 36°C inlet m³/h 3 7 2 24 27<br />

LT temp. Outlet engine<br />

(at 36°C and string cooling water system)<br />

°C 60 6 60 60 59<br />

Gas Data:<br />

Exhaust gas flow kg/h 3,400 4,600 5,500 6,200 7,000<br />

Exhaust gas temp. °C 330 340 340 340 340<br />

Max. Allowable back press. bar 0.025 0.025 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 3,280 4,500 5,300 6,000 6,800<br />

Starting Air System:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 0.47 0.56 0.65 0.75 0.84<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 0.80 0.96 . 2 .28 .44<br />

Heat Radiati<strong>on</strong>:<br />

Engine kW 9 3 5 8 2<br />

Alternator kW (see separate data from the alternator maker)<br />

The stated heat balances are based <strong>on</strong> tropical c<strong>on</strong>diti<strong>on</strong>s.The exhaust gas data (exhaust gas flow, exhaust gas temp.<br />

and air c<strong>on</strong>sumpti<strong>on</strong>). are based <strong>on</strong> ISO ambient c<strong>on</strong>diti<strong>on</strong>.<br />

* The outlet temperature of the HT water <str<strong>on</strong>g>is</str<strong>on</strong>g> fixed to 80°C, and 44°C for the LT water<br />

At different inlet temperature the flow will change accordingly.<br />

Example: If the inlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> 25°C then the LT flow will change to (44-36)/(44-25)* 00 = 42% of the original flow.<br />

If the temperature r<str<strong>on</strong>g>is</str<strong>on</strong>g>es above 36°C, then the L.T. outlet will r<str<strong>on</strong>g>is</str<strong>on</strong>g>e acordingly.<br />

Fig. 4.06.02b: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L16/24 1,200 rpm<br />

198 42 05�4.4


<strong>MAN</strong> <strong>Diesel</strong> 4.07<br />

L21/31 GenSet Data<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C, 70<br />

→ 60 ME�GI, 50 → 35 ME�B<br />

Bore: 210 mm Stroke: 310 mm<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Power layout<br />

900 r/min 60 Hz 1,000 r/min 50 Hz<br />

Eng. kW Gen. kW Eng. kW Gen. kW<br />

5L2 /3 ,000 950 ,000 950<br />

6L2 /3 ,320 ,254 ,320 ,254<br />

7L2 /3 ,540 ,463 ,540 ,463<br />

8L2 /3 ,760 ,672 ,760 ,672<br />

9L2 /3 ,980 ,88 ,980 ,88<br />

� �<br />

Fig. 4.07.01: Power and outline of L21/31<br />

�<br />

Cyl. no A (mm) * B (mm) * C (mm) H (mm)<br />

P Free passage between the engines, width 600 mm and height 2000 mm.<br />

Q Min. d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between engines: 2400 mm (without gallery) and 2600 mm (with galley)<br />

* Depending <strong>on</strong> alternator<br />

** Weight incl. standard alternator (based <strong>on</strong> a Uljanik alternator)<br />

All dimensi<strong>on</strong>s and masses are approximate, and subject to changes without prior notice.<br />

�<br />

�<br />

����� �����<br />

�<br />

Page of 3<br />

178 23 04�3.2<br />

**Dry weight<br />

GenSet (t)<br />

5 (900 rpm) 3,959 ,820 5,680 3, 80 2 .5<br />

5 ( 000 rpm) 3,959 ,870 5,730 3, 80 2 .5<br />

6 (900 rpm) 4,3 4 ,870 6,086 3, 80 23.7<br />

6 ( 000 rpm) 4,3 4 2,000 6,2 6 3, 80 23.7<br />

7 (900 rpm) 4,669 ,970 6,760 3, 80 25.9<br />

7 ( 000 rpm) 4,669 ,970 6,537 3, 80 25.9<br />

8 (900 rpm) 5,024 2,250 7,2 0 3,287 28.5<br />

8 ( 000 rpm) 5,024 2,250 7, 76 3,287 28.5<br />

9 (900 rpm) 5,379 2,400 7,660 3,287 30.9<br />

9 ( 000 rpm) 5,379 2,400 7,660 3,287 30.9<br />

198 42 06�6.4


<strong>MAN</strong> <strong>Diesel</strong> 4.07<br />

L21/31 GenSet Data<br />

Fig. 4.07.02a: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L21/31, 900 rpm<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C, 70<br />

→ 60 ME�GI, 50 → 35 ME�B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 3<br />

Cyl. 5 6 7 8 9<br />

Maximum c<strong>on</strong>tinuous rating at 900 rpm kW 950 ,320 ,540 ,760 ,980<br />

Engine-driven pumps:<br />

LT cooling water pump ( -2.5 bar) m³/h 55 55 55 55 55<br />

HT cooling water pump ( -2.5 bar) m³/h 55 55 55 55 55<br />

Lubricating oil pump (3-5 bar) m³/h 3 3 4 4 4<br />

External pumps:<br />

Max. delivery pressure of cooling water pumps bar 2.5 2.5 2.5 2.5 2.5<br />

<strong>Diesel</strong> oil pump (5 bar at fuel oil inlet A ) m³/h 0.65 0.9 .06 .2 .36<br />

Fuel oil supply pump (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m³/h 0.32 0.44 0.52 0.59 0.67<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h 0.66 0.92 .07 .23 .38<br />

Cooling capacities:<br />

Lubricating oil kW 95 58 89 2 8 247<br />

LT charge air kW 8 3 3 366 4 8 468<br />

Total LT system kW 3 3 47 555 636 7 5<br />

LT flow at 36°C inlet and 44°C outlet* m³/h 27.0 44.0 48. 5 .9 54.0<br />

Jacket cooling kW 54 274 326 376 427<br />

HT charge air kW 20 337 383 429 475<br />

Total HT system kW 355 6 709 805 902<br />

HT flow at 44°C inlet and 80°C outlet* m³/h 8.5 9.8 22.6 25.3 27.9<br />

Total from engine kW 668 082 264 44 6 7<br />

LT flow from engine at 36°C inlet m³/h 27.0 43.5 47.6 5 .3 53.5<br />

LT outlet temperature from engine at 36°C inlet °C 55 58 59 6 63<br />

( -string cooling water system )<br />

Gas data:<br />

Exhaust gas flow kg/h 6,679 9,600 ,200 2,800 4,400<br />

Exhaust gas temperature at turbine outlet °C 335 348 348 348 348<br />

Maximum allowable back pressure bar 0.025 0.025 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 6,489 9,330 0,900 2,400 4,000<br />

Starting air system:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start incl. air for jet ass<str<strong>on</strong>g>is</str<strong>on</strong>g>t Nm³ .0 .2 .4 .6 .8<br />

Heat radiati<strong>on</strong>:<br />

Engine kW 49 50 54 58<br />

Alternator kW ( See separate data from alternator maker )<br />

The stated heat balances are based <strong>on</strong> 00% load and tropical<br />

c<strong>on</strong>diti<strong>on</strong>.<br />

The mass flows and exhaust gas temperature are based <strong>on</strong> ISO<br />

ambient c<strong>on</strong>diti<strong>on</strong>.<br />

* The outlet temperature of the HT water <str<strong>on</strong>g>is</str<strong>on</strong>g> fixed to 80°C, and<br />

44°C for the LT water.<br />

At different inlet temperature the flow will change accordingly.<br />

Example: If the inlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> 25°C then the LT flow will<br />

change to (44-36)/(44-25)* 00 = 42% of the original flow.<br />

The HT flow will not change.<br />

17856 53-3.0<br />

198 42 06�6.4


<strong>MAN</strong> <strong>Diesel</strong> 4.07<br />

L21/31 GenSet Data<br />

Fig. 4.07.02a: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L21/31, 1,000 rpm<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C, 70<br />

→ 60 ME�GI, 50 → 35 ME�B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 3 of 3<br />

Cyl. 5 6 7 8 9<br />

Maximum c<strong>on</strong>tinuous rating at 1000 rpm kW ,000 ,320 ,540 ,760 ,980<br />

Engine-driven pumps:<br />

LT cooling water pump ( -2.5 bar) m³/h 6 6 6 6 6<br />

HT cooling water pump ( -2.5 bar) m³/h 6 6 6 6 6<br />

Lubricating oil pump (3-5 bar) m³/h 34 34 46 46 46<br />

External pumps:<br />

Max. delivery pressure of cooling water pumps bar 2.5 2.5 2.5 2.5 2.5<br />

<strong>Diesel</strong> oil pump (5 bar at fuel oil inlet A ) m³/h 0.69 0.92 .08 .23 .38<br />

Fuel oil supply pump (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m³/h 0.34 0.45 0.53 0.60 0.68<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h 0.70 0.93 .09 .25 .40<br />

Cooling capacities:<br />

Lubricating oil kW 206 62 92 222 252<br />

LT charge air kW 25 333 388 443 499<br />

Total LT system kW 33 495 580 665 75<br />

LT flow at 36°C inlet and 44°C outlet* m³/h 35.5 47.8 52. 56.2 60.5<br />

Jacket cooling kW 63 280 332 383 435<br />

HT charge air kW 2 2 36 4 460 509<br />

Total HT system kW 374 64 743 843 944<br />

HT flow at 44°C inlet and 80°C outlet* m³/h 8.9 20.9 23.9 26.7 29.5<br />

Total from engine kW 705 36 323 508 695<br />

LT flow from engine at 36°C inlet m³/h 35.5 47.2 5 .5 55.6 59.9<br />

LT outlet temperature from engine at 36°C inlet °C 53 57 59 60 6<br />

( -string cooling water system)<br />

Gas data:<br />

Exhaust gas flow kg/h 6,920 0,200 ,900 3,600 5,300<br />

Exhaust gas temperature at turbine outlet °C 335 333 333 333 333<br />

Maximum allowable back pressure bar 0.025 0.025 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 6,720 9,940 ,600 3,200 4,900<br />

Starting air system:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start incl. air for jet ass<str<strong>on</strong>g>is</str<strong>on</strong>g>t Nm³ .0 .2 .4 .6 .8<br />

Heat radiati<strong>on</strong>:<br />

Engine kW 2 47 50 54 56<br />

Alternator kW ( See separate data from alternator maker )<br />

The stated heat balances are based <strong>on</strong> 00% load and tropical<br />

c<strong>on</strong>diti<strong>on</strong>.<br />

The mass flows and exhaust gas temperature are based <strong>on</strong> ISO<br />

ambient c<strong>on</strong>diti<strong>on</strong>.<br />

* The outlet temperature of the HT water <str<strong>on</strong>g>is</str<strong>on</strong>g> fixed to 80°C, and<br />

44°C for the LT water.<br />

At different inlet temperature the flow will change accordingly.<br />

Example: If the inlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> 25°C then the LT flow will<br />

change to (44-36)/(44-25)* 00 = 42% of the original flow.<br />

The HT flow will not change.<br />

17856 53-3.0<br />

198 42 06�6.4


<strong>MAN</strong> <strong>Diesel</strong> 4.08<br />

L23/30H GenSet Data<br />

P Free passage between the engines, width 600 mm and height 2,000 mm<br />

Q Min. d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between engines: 2,250 mm<br />

* Depending <strong>on</strong> alternator<br />

** Weight includes a standard alternator, make A. van Kaick<br />

All dimensi<strong>on</strong>s and masses are approximate and subject to change without prior notice.<br />

Fig. 4.08.01: Power and outline of L23/30H<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C, 70 → 60<br />

ME�GI, 50 → 35 ME-B<br />

A<br />

Bore: 225 mm Stroke: 300 mm<br />

C<br />

B<br />

Power layout<br />

720 r/min 60 Hz 750 r/min 50 Hz 900 r/min 60 Hz<br />

Eng. kW Gen. kW Eng. kW Gen. kW Eng. kW Gen. kW<br />

5L23/30H 650 620 675 640<br />

6L23/30H 780 740 8 0 770 960 9 0<br />

7L23/30H 9 0 865 945 900 , 20 ,065<br />

8L23/30H ,040 990 ,080 ,025 ,280 ,2 5<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

H<br />

,270<br />

P<br />

Q<br />

Page of 3<br />

No. of Cyls. A (mm) * B (mm) * C (mm) H (mm)<br />

**Dry weight<br />

GenSet (t)<br />

5 (720 r/min) 3,369 2, 55 5,524 2,383 8.0<br />

5 (750 r/min) 3,369 2, 55 5,524 2,383 8.0<br />

6 (720 r/min) 3,738 2,265 6,004 2,383 9.7<br />

6 (750 r/min) 3,738 2,265 6,004 2,383 9.7<br />

6 (900 r/min) 3,738 2,265 6,004 2,8 5 2 .0<br />

7 (720 r/min) 4, 09 2,395 6,504 2,8 5 2 .4<br />

7 (750 r/min) 4, 09 2,395 6,504 2,8 5 2 .4<br />

7 (900 r/min) 4, 09 2,395 6,504 2,8 5 22.8<br />

8 (720 r/min) 4,475 2,480 6,959 2,8 5 23.5<br />

8 (750 r/min) 4,475 2,480 6,959 2,8 5 23.5<br />

8 (900 r/min) 4,475 2,340 6,8 5 2,8 5 24.5<br />

,600<br />

178 23 06�7.0<br />

178 34 53�7.1<br />

198 42 07�8.4


<strong>MAN</strong> <strong>Diesel</strong> 4.08<br />

L23/30H GenSet Data<br />

Fig. 4.08.02a: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L23/30H, 720/750 rpm<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C, 70 → 60<br />

ME�GI, 50 → 35 ME-B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 3<br />

Cyl. 5-ECR 5 6 7 8<br />

Max. c<strong>on</strong>tinuous rating at 720/750 RPM kW 525/550 650/675 780/8 0 9 0/945 ,040/ ,080<br />

Engine-driven Pumps:<br />

Fuel oil feed pump (5.5-7.5 bar) m 3 /h . 0 .0 .0 .0 .0<br />

L.T. cooling water pump ( -2.5 bar) m 3 /h 55 55 55 55 55<br />

H.T. cooling water pump ( -2.5 bar) m 3 /h 36 36 36 36 36<br />

Lub. oil main pump (3-5 bar) m 3 /h 6 6 6 20 20<br />

Separate Pumps:<br />

<strong>Diesel</strong> oil pump (4 bar at fuel oil inlet A ) m³/h 0.36/0.38 0.46/0.48 0.55/0.57 0.64/0.67 0.73/0.76<br />

Fuel oil supply pump *** (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m 3 /h 0. 8/0. 9 0.22/0.23 0.27/0.28 0.3 /0.33 0.36/0.37<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h 0.37/0.39 0.46/0.48 0.56/0.58 0.65/0.67 0.74/0.77<br />

L.T. cooling water pump* ( -2.5 bar) m 3 /h 35 35 42 48 55<br />

L.T. cooling water pump** ( -2.5 bar) m 3 /h 48 48 54 60 73<br />

H.T. cooling water pump ( -2.5 bar) m 3 /h 20 20 24 28 32<br />

Lub. oil stand-by pump (3-5 bar) m 3 /h 4.0 4.0 5.0 6.0 7.0<br />

Cooling Capacities:<br />

Lubricating Oil:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 63 69 84 98 2<br />

L.T. cooling water quantity* m3 /h 4.6 5.3 6.4 7.5 8.5<br />

L.T. cooling water quantity** m3 /h 8 8 8 8 25<br />

Lub. oil temp. inlet cooler °C 67 67 67 67 67<br />

L.T. cooling water temp. inlet cooler<br />

Charge Air:<br />

°C 36 36 36 36 36<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 56 25 299 348 395<br />

L.T. cooling water quantity m3 /h 30 30 36 42 48<br />

L.T. cooling water inlet cooler °C 36 36 36 36 36<br />

Jacket Cooling:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 54 82 2 9 257 294<br />

H.T. cooling water quantity m 3 /h 20 20 24 28 32<br />

H.T. cooling water temp. inlet cooler °C 77 77 77 77 77<br />

Gas Data:<br />

Exhaust gas flow kg/h 4,3 0 5,5 0 6,620 7,720 8,820<br />

Exhaust gas temp. °C 3 0 3 0 3 0 3 0 3 0<br />

Max. allowable back. press. bar 0.025 0.025 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/s . 7 .49 .79 2.09 2.39<br />

Starting Air System:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 3 2.0 2.0 2.0 2.0 2.0<br />

Heat Radiati<strong>on</strong>:<br />

Engine kW 9 2 25 29 34<br />

Generator kW (See separate data from generator maker)<br />

The stated heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>, capacities of gas and engine-driven pumps are given at 720 RPM. Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> gas and pump capacities<br />

at 750 RPM are 4% higher than stated. If L.T. cooling are sea water, the L.T. inlet <str<strong>on</strong>g>is</str<strong>on</strong>g> 32° C instead of 36°C.<br />

Based <strong>on</strong> tropical c<strong>on</strong>diti<strong>on</strong>s, except for exhaust flow and air c<strong>on</strong>sumpti<strong>on</strong> which are based <strong>on</strong> ISO c<strong>on</strong>diti<strong>on</strong>s.<br />

* Only valid for engines equipped with internal basic cooling water system nos. 1 and 2.<br />

** Only valid for engines equipped with combined coolers, internal basic cooling water system no. 3.<br />

*** To compensate for built <strong>on</strong> pumps, ambient c<strong>on</strong>diti<strong>on</strong>, calorific value and adequate circulati<strong>on</strong>s flow. The ISO fuel oil c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

multiplied by 1.45.<br />

198 42 07�8.4


<strong>MAN</strong> <strong>Diesel</strong> 4.08<br />

L23/30H GenSet Data<br />

Fig. 4.08.02b: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L23/30H, 900 rpm<br />

<strong>MAN</strong> B&W 80 → 26 MC/MC�C, 80 → 50 ME/ME�C, 70 → 60<br />

ME�GI, 50 → 35 ME-B<br />

Cyl. 6 7 8<br />

Max. c<strong>on</strong>tinuous rating at 900 RPM kW 960 , 20 ,280<br />

Engine-driven Pumps:<br />

Fuel oil feed pump (5.5-7.5 bar) m 3 /h .3 .3 .3<br />

L.T. cooling water pump ( -2.5 bar) m 3 /h 69 69 69<br />

H.T. cooling water pump ( -2.5 bar) m 3 /h 45 45 45<br />

Lub. oil main pump (3.5-5 bar) m 3 /h 20 20 20<br />

Separate Pumps:<br />

<strong>Diesel</strong> oil pump (4 bar at fuel oil inlet A ) m³/h 0.69 0.8 0.92<br />

Fuel oil supply pump*** (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m 3 /h 0.34 0.40 0.45<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h 0.70 0.82 0.94<br />

L.T. cooling water pump* ( -2.5 bar) m 3 /h 52 6 70<br />

L.T. cooling water pump** ( -2.5 bar) m 3 /h 63 7 85<br />

H.T. cooling water pump ( -2.5 bar) m 3 /h 30 35 40<br />

Lub. oil stand-by pump (3.5-5 bar) m 3 /h 7 8 9<br />

Cooling Capacities:<br />

Lubricating Oil:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 7 37 58<br />

L.T. cooling water quantity* m 3 /h 7.5 8.8 0.<br />

SW L.T. cooling water quantity** m 3 /h 8 8 25<br />

Lub. oil temp. inlet cooler °C 67 67 67<br />

L.T. cooling water temp. inlet cooler °C 36 36 36<br />

Charge Air:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 369 428 487<br />

L.T. cooling water quantity m 3 /h 46 53 6<br />

L.T. cooling water inlet cooler °C 36 36 36<br />

Jacket Cooling:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 239 28 323<br />

H.T. cooling water quantity m 3 /h 30 35 40<br />

H.T. cooling water temp. inlet cooler °C 77 77 77<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 3 of 3<br />

Gas Data:<br />

Exhaust gas flow kg/h 8,370 9,770 , 60<br />

Exhaust gas temp. °C 325 325 325<br />

Max. allowable back. press. bar 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong><br />

Startiang Air System:<br />

kg/s 2.25 2.62 3.00<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm3 2.0 2.0 2.0<br />

Haeat Radiati<strong>on</strong>:<br />

Engine kW 32 37 42<br />

Generator kW (See separat data from generator maker)<br />

If L.T. cooling are sea water, the L.T. inlet <str<strong>on</strong>g>is</str<strong>on</strong>g> 32° C instead of 36° C.<br />

Based <strong>on</strong> tropical c<strong>on</strong>diti<strong>on</strong>s, except for exhaust flow and air c<strong>on</strong>sumpti<strong>on</strong> which are based <strong>on</strong> ISO c<strong>on</strong>diti<strong>on</strong>s.<br />

* Only valid for engines equipped with internal basic cooling water system nos. 1 and 2.<br />

** Only valid for engines equipped with combined coolers, internal basic cooling water system no. 3.<br />

*** To compensate for built <strong>on</strong> pumps, ambient c<strong>on</strong>diti<strong>on</strong>, calorific value and adequate circulati<strong>on</strong>s flow. The ISO fuel oil c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

multiplied by 1.45.<br />

198 42 07�8.4


<strong>MAN</strong> <strong>Diesel</strong> 4.09<br />

L27/38 GenSet Data<br />

<strong>MAN</strong> B&W 98 → 50 MC/MC�C, 108 → 50 ME/ME�C, 70 → 60<br />

ME�GI, 50 → 35 ME�B<br />

Bore: 270 mm Stroke: 380 mm<br />

Power layout<br />

720 r/min 60 Hz 750 r/min 50 Hz<br />

Eng. kW Gen. kW Eng. kW Gen. kW<br />

5L27/38 ,500 ,440 ,600 ,536<br />

6L27/38 ,980 ,900 ,980 ,900<br />

7L27/38 2,3 0 2,2 8 2,3 0 2,2 8<br />

8L27/38 2,640 2,534 2,640 2,534<br />

9L27/38 2,970 2,85 2,970 2,85<br />

No. of Cyls. A (mm) * B (mm) * C (mm) H (mm)<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 3<br />

178 23 07�9.0<br />

**Dry weight<br />

GenSet (t)<br />

5 (720 r/min) 4,346 2,486 6,832 3,705 42.3<br />

5 (750 r/min) 4,346 2,486 6,832 3,705 42.3<br />

6 (720 r/min) 4,79 2,766 7,557 3,705 45.8<br />

6 (750 r/min) 4,79 2,766 7,557 3,7 7 46.<br />

7 (720 r/min) 5,236 2,766 8,002 3,7 7 52.<br />

7 (750 r/min) 5,236 2,766 8,002 3,7 7 52.<br />

8 (720 r/min) 5,68 2,986 8,667 3,7 7 56.3<br />

8 (750 r/min) 5,68 2,986 8,667 3,7 7 58.3<br />

9 (720 r/min) 6, 26 2,986 9, 2 3,797 63.9<br />

9 (750 r/min) 6, 26 2,986 9, 2 3,797 63.9<br />

Fig. 4.09.01: Power and outline of L27/38<br />

A<br />

C<br />

P Free passage between the engines, width 600 mm and height 2,000 mm<br />

Q Min. d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between engines: 2,900 mm (without gallery) and 3, 00 mm (with gallery)<br />

* Depending <strong>on</strong> alternator<br />

** Weight includes a standard alternator<br />

All dimensi<strong>on</strong>s and masses are approximate and subject to change without prior notice.<br />

B<br />

H<br />

,480<br />

P<br />

Q<br />

,770<br />

,285<br />

178 33 89�8.2<br />

198 42 09�1.4


<strong>MAN</strong> <strong>Diesel</strong> 4.09<br />

L27/38 GenSet Data<br />

Fig. 4.09.02a: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L27/38, 720 rpm<br />

<strong>MAN</strong> B&W 98 → 50 MC/MC�C, 108 → 50 ME/ME�C, 70 → 60<br />

ME�GI, 50 → 35 ME�B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 3<br />

Cyl. 5 6 7 8 9<br />

Max c<strong>on</strong>tinues rating 720 RPM kW ,500 ,980 2,3 0 2,640 2,970<br />

Engine driven pumps:<br />

LT cooling water pump (2.5 bar) m³/h 58 58 58 58 58<br />

HT cooling water pump (2.5 bar) m³/h 58 58 58 58 58<br />

Lubricating oil main pump (8 bar) m³/h 64 64 92 92 92<br />

Separate pumps:<br />

Max. Delivery pressure of cooling water pumps bar 2.5 2.5 2.5 2.5 2.5<br />

<strong>Diesel</strong> oil pump (5 bar at fuel oil inlet A ) m³/h .02 .33 .55 .77 2.00<br />

Fuel oil Supply pump (4 bar at d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m³/h 0.50 0.66 0.76 0.87 0.98<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h .03 .35 .57 .80 2.02<br />

Cooling capacity:<br />

Lubricating oil kW 206 283 328 376 420<br />

Charge air LT kW 44 392 436 473 504<br />

Total LT system kW 350 675 764 849 924<br />

Flow LT at 36°C inlet and 44°C outlet m³/h 38 58 58 58 58<br />

Jacket cooling kW 287 486 573 664 754<br />

Charge air HT kW 390 558 640 722 802<br />

Total HT system kW 677 ,044 ,2 3 ,386 ,556<br />

Flow HT at 44°Cinlet and 80°C outlet m³/h 6 22 27 32 38<br />

Total from engine kW ,027 ,7 9 ,977 2,235 2,480<br />

LT flow at 36°C inlet m³/h 38 58 58 58 58<br />

LT temp. Outlet engine °C 59 58 6 64 68<br />

(at 36°C and string cooling water system)<br />

Gas Data:<br />

Exhaust gas flow kg/h 0,476 5,000 7,400 9,900 22,400<br />

Exhaust gas temp. °C 330 295 295 295 295<br />

Max. Allowable back press. bar 0,025 0,025 0,025 0,025 0,025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 0, 77 4,600 7,000 9,400 2 ,800<br />

Starting Air System:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 3 2,5 2,9 3,3 3,8 4,3<br />

Heat Radiati<strong>on</strong>:<br />

Engine kW 53 64 75 68 73<br />

Alternator kW (see separate data from the alternator maker)<br />

The stated heat balances are based <strong>on</strong> tropical c<strong>on</strong>diti<strong>on</strong>s.<br />

The exhaust gas data (exhaust gas flow, exhaust gas temp.<br />

and air c<strong>on</strong>sumpti<strong>on</strong>). are based <strong>on</strong> ISO ambient c<strong>on</strong>diti<strong>on</strong>.<br />

* The outlet temperature of the HT water <str<strong>on</strong>g>is</str<strong>on</strong>g> fixed to 80°C, and<br />

44°C for the LT water<br />

At different inlet temperature the flow will change accordingly.<br />

Example: If the inlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> 25°C then the LT flow will<br />

change to (46-36)/(46-25)* 00 = 53% of the original flow.<br />

The HT flow will not change.<br />

178 48 63�6.1<br />

198 42 09�1.4


<strong>MAN</strong> <strong>Diesel</strong> 4.09<br />

L27/38 GenSet Data<br />

Fig. 4.09.02b: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L27/38, 750 rpm<br />

<strong>MAN</strong> B&W 98 → 50 MC/MC�C, 108 → 50 ME/ME�C, 70 → 60<br />

ME�GI, 50 → 35 ME�B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 3 of 3<br />

Cyl. 5 6 7 8 9<br />

Max c<strong>on</strong>tinues rating 750 RPM kW ,600 ,980 2,3 0 2,640 2,970<br />

Engine driven pumps:<br />

LT cooling water pump 2.5 bar m³/h 70 70 70 70 70<br />

HT cooling water pump 2.5 bar m³/h 70 70 70 70 70<br />

Lubricating oil main pump 8 bar m³/h 66 66 96 96 96<br />

Separate pumps:<br />

Max. Delivery pressure of cooling water pumps bar 2.5 2.5 2.5 2.5 2.5<br />

<strong>Diesel</strong> oil pump (5 bar at fuel oil inlet A ) m³/h . 0 .34 .57 .79 2.0<br />

Fuel oil supply pump (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m³/h 0.54 0.66 0.77 0.88 0.99<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h . .36 .59 .8 2.04<br />

Cooling capacity:<br />

Lubricating oil kW 2 7 283 328 376 420<br />

Charge air LT kW 55 392 436 473 504<br />

Total LT system kW 372 675 764 849 924<br />

Flow LT at 36°C inlet and 44°C outlet m³/h 40 70 70 70 70<br />

Jacket cooling kW 402 486 573 664 754<br />

Charge air HT kW 457 558 640 722 802<br />

Total HT system kW 859 ,044 ,2 3 ,386 ,556<br />

Flow HT at 44°Cinlet and 80°C outlet m³/h 2 22 27 32 38<br />

Total from engine kW ,23 ,7 9 ,977 2,235 2,480<br />

LT flow at 36°C inlet m³/h 40 70 70 70 70<br />

LT temp. Outlet engine °C 62 55 58 6 64<br />

(at 36°C and string cooling water system)<br />

Gas Data:<br />

Exhaust gas flow kg/h ,693 5,000 7,400 9,900 22,400<br />

Exhaust gas temp. °C 330 305 305 305 305<br />

Max. Allowable back press. bar 0.025 0.025 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h ,662 4,600 7,000 9,400 2 ,800<br />

Starting Air System:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 3 2.5 2.9 3.3 3.8 4.3<br />

Heat Radiati<strong>on</strong>:<br />

Engine kW 54 64 75 68 73<br />

Alternator kW (see separate data from the alternator maker)<br />

The stated heat balances are based <strong>on</strong> tropical c<strong>on</strong>diti<strong>on</strong>s.<br />

The exhaust gas data (exhaust gas flow, exhaust gas temp.<br />

and air c<strong>on</strong>sumpti<strong>on</strong>). are based <strong>on</strong> ISO ambient c<strong>on</strong>diti<strong>on</strong>.<br />

* The outlet temperature of the HT water <str<strong>on</strong>g>is</str<strong>on</strong>g> fixed to 80°C, and<br />

44°C for the LT water<br />

At different inlet temperature the flow will change accordingly.<br />

Example: If the inlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> 25°C then the LT flow will<br />

change to (46-36)/(46-25)* 00 = 53% of the original flow.<br />

The HT flow will not change.<br />

178 48 63�6.1<br />

198 42 09�1.4


<strong>MAN</strong> <strong>Diesel</strong> 4.10<br />

L28/32H GenSet Data<br />

<strong>MAN</strong> B&W 98 → 50 MC/MC�C, 108 → 50 ME/ME�C,<br />

70 → 60 ME�GI, 50 → 35 ME�B<br />

Bore: 280 mm Stroke: 320 mm<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Power layout<br />

720 r/min 60 Hz 750 r/min 50 Hz<br />

Eng. kW Gen. kW Eng. kW Gen. kW<br />

5L28/32H ,050 ,000 , 00 ,045<br />

6L28/32H ,260 ,200 ,320 ,255<br />

7L28/32H ,470 ,400 ,540 ,465<br />

8L28/32H ,680 ,600 ,760 ,670<br />

9L28/32H ,890 ,800 ,980 ,880<br />

No. of Cyls. A (mm) * B (mm) * C (mm) H (mm)<br />

Page of 2<br />

178 23 09�2.0<br />

**Dry weight<br />

GenSet (t)<br />

5 (720 r/min) 4,279 2,400 6,679 3, 84 32.6<br />

5 (750 r/min) 4,279 2,400 6,679 3, 84 32.6<br />

6 (720 r/min) 4,759 2,5 0 7,269 3, 84 36.3<br />

6 (750 r/min) 4,759 2,5 0 7,269 3, 84 36.3<br />

7 (720 r/min) 5,499 2,680 8, 79 3,374 39.4<br />

7 (750 r/min) 5,499 2,680 8, 79 3,374 39.4<br />

8 (720 r/min) 5,979 2,770 8,749 3,374 40.7<br />

8 (750 r/min) 5,979 2,770 8,749 3,374 40.7<br />

9 (720 r/min) 6, 99 2,690 8,889 3,534 47.<br />

9 (750 r/min) 6, 99 2,690 8,889 3,534 47.<br />

P Free passage between the engines, width 600 mm and height 2,000 mm<br />

Q Min. d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between engines: 2,655 mm (without gallery) and 2,850 mm (with gallery)<br />

* Depending <strong>on</strong> alternator<br />

** Weight includes a standard alternator, make A. van Kaick<br />

Fig. 4.10.01: Power and outline of L28/32H<br />

A<br />

C<br />

B<br />

H P<br />

,490<br />

Q<br />

,800<br />

, 26<br />

178 33 92�1.3<br />

198 42 10�1.4


<strong>MAN</strong> <strong>Diesel</strong> 4.10<br />

L28/32H GenSet Data<br />

Max. c<strong>on</strong>tinuous rating at<br />

Fig. 4.10.02: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities for L28/32H<br />

<strong>MAN</strong> B&W 98 → 50 MC/MC�C, 108 → 50 ME/ME�C,<br />

70 → 60 ME�GI, 50 → 35 ME�B<br />

720/<br />

750 RPM kW<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

Cyl. 5-ECR 5 6 7 8 9<br />

Engine-driven Pumps:<br />

Fuel oil feed pump (5.5-7.5 bar) m 3 /h .4 .4 .4 .4 .4 .4<br />

L.T. cooling water pump ( -2.5 bar) m 3 /h 45 45 60 75 75 75<br />

H.T. cooling water pump ( -2.5 bar) m 3 /h 45 45 45 60 60 60<br />

Lub. oil main pump (3-5 bar) m 3 /h 23 23 23 3 3 3<br />

875/<br />

925<br />

Separate Pumps:<br />

<strong>Diesel</strong> oil Pump (4 bar at fuel oil inlet A ) m³/h 0.60/0.64 0.73/0.77 0.88/0.92 .02/ .08 . 7/ .23 .32/ .38<br />

Fuel oil supply pump *** (4 bar d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pressure) m 3 /h 0.29/0.3 0.36/0.38 0.43/0.45 0.50/0.53 0.57/0.60 0.64/0.68<br />

Fuel oil circulating pump (8 bar at fuel oil inlet A ) m³/h 0.6 /0.65 0.74/0.78 0.89/0.93 .04/ .09 . 8/ .25 .33/ .40<br />

L.T. cooling water pump* ( -2.5 bar) m 3 /h 45 45 54 65 77 89<br />

L.T. cooling water pump** ( -2.5 bar) m 3 /h 65 65 73 95 05 5<br />

H.T. cooling water pump ( -2.5 bar) m 3 /h 37 37 45 50 55 60<br />

Lub. oil stand-by pump (3-5 bar) m 3 /h 22 22 23 25 27 28<br />

Cooling Capacities:<br />

Lubricating Oil:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 9 05 27 49 72 94<br />

L.T. cooling water quantity* m3 /h 6.4 7.8 9.4 .0 2.7 4.4<br />

SW L.T. cooling water quantity** m3 /h 28 28 28 40 40 40<br />

Lub. oil temp. inlet cooler °C 67 67 67 67 67 67<br />

L.T. cooling water temp. inlet cooler °C 36 36 36 36 36 36<br />

Charge Air:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 305 393 467 54 6 4 687<br />

L.T. cooling water quantity m 3 /h 37 37 45 55 65 75<br />

L.T. cooling water inlet cooler °C 36 36 36 36 36 36<br />

Jacket Cooling:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 2 264 320 375 432 489<br />

H.T. cooling water quantity m 3 /h 37 37 45 50 55 60<br />

H.T. cooling water temp. inlet cooler °C 77 77 77 77 77 77<br />

Gas Data:<br />

Exhaust gas flow kg/h 7,7 0 9,260 , 0 2,970 4,820 6,670<br />

Exhaust gas temp. °C 305 305 305 305 305 305<br />

Max. allowable back. press. bar 0.025 0.025 0.025 0.025 0.025 0.025<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/s 2.09 2.5 3.02 3.52 4.02 4.53<br />

Starting Air System:<br />

Air c<strong>on</strong>sumpti<strong>on</strong> per start Nm 3 2.5 2.5 2.5 2.5 2.5 2.5<br />

Heat Radiati<strong>on</strong>:<br />

Engine kW 22 26 32 38 44 50<br />

Generator kW (See separat data from generator maker)<br />

The stated heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>, capacities of gas and engine-driven pumps are given at 720 RPM. Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> gas and pump capacities<br />

at 750 RPM are 4% higher than stated. If L.T. cooling are sea water, the L.T. inlet <str<strong>on</strong>g>is</str<strong>on</strong>g> 32° C instead of 36°C.<br />

Based <strong>on</strong> tropical c<strong>on</strong>diti<strong>on</strong>s, except for exhaust flow and air c<strong>on</strong>sumpti<strong>on</strong> which are based <strong>on</strong> ISO c<strong>on</strong>diti<strong>on</strong>s.<br />

* Only valid for engines equipped with internal basic cooling water system nos. and 2.<br />

** Only valid for engines equipped with combined coolers, internal basic cooling water system no. 3.<br />

*** To compensate for built <strong>on</strong> pumps, ambient c<strong>on</strong>diti<strong>on</strong>, calorific value and adequate circulati<strong>on</strong>s flow. The ISO fuel oil c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> multiplied by .45.<br />

,050/<br />

, 00<br />

,260/<br />

,320<br />

,470/<br />

,540<br />

,680/<br />

,760<br />

,890/<br />

,980<br />

198 42 10�1.4


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Installati<strong>on</strong> Aspects<br />

5


<strong>MAN</strong> B&W 5.01<br />

Space requirements and overhaul heights<br />

Space Requirements for the Engine<br />

The space requirements stated in Secti<strong>on</strong> 5.02<br />

are valid for engines rated at nominal MCR (L ).<br />

The additi<strong>on</strong>al space needed for engines<br />

equipped with PTO <str<strong>on</strong>g>is</str<strong>on</strong>g> stated in Chapter 4.<br />

If, during the project stage, the outer dimensi<strong>on</strong>s<br />

of the turbocharger seem to cause problems, it<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> possible, for the same number of cylinders, to<br />

use turbochargers with smaller dimensi<strong>on</strong>s by<br />

increasing the indicated number of turbochargers<br />

by <strong>on</strong>e, see Chapter 3.<br />

Overhaul of Engine<br />

The d<str<strong>on</strong>g>is</str<strong>on</strong>g>tances stated from the centre of the crankshaft<br />

to the crane hook are for the normal lifting<br />

procedure and the reduced height lifting procedure<br />

(involving tilting of main comp<strong>on</strong>ents). The<br />

lifting capacity of a normal engine room crane can<br />

be found in Fig. 5.04.0 .<br />

The area covered by the engine room crane shall<br />

be wide enough to reach any heavy spare part required<br />

in the engine room.<br />

A lower overhaul height <str<strong>on</strong>g>is</str<strong>on</strong>g>, however, <str<strong>on</strong>g>available</str<strong>on</strong>g> by<br />

using the <strong>MAN</strong> B&W Double�Jib crane, built by<br />

Dan<str<strong>on</strong>g>is</str<strong>on</strong>g>h Crane Building A/S, shown in Figs. 5.04.02<br />

and 5.04.03.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME�C/ME�GI/ME-B engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

Please note that the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance ‘E’ in Fig. 5.02.0 ,<br />

given for a double�jib crane <str<strong>on</strong>g>is</str<strong>on</strong>g> from the centre<br />

of the crankshaft to the lower edge of the deck<br />

beam.<br />

A special crane beam for d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling the turbocharger<br />

must be fitted. The lifting capacity of the<br />

crane beam for d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling the turbocharger <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

stated in Secti<strong>on</strong> 5.03.<br />

The overhaul tools for the engine are designed<br />

to be used with a crane hook according to DIN<br />

5400, June 990, material class M and load capacity<br />

Am and dimensi<strong>on</strong>s of the single hook<br />

type according to DIN 540 , part .<br />

The total length of the engine at the crankshaft<br />

level may vary depending <strong>on</strong> the equipment to<br />

be fitted <strong>on</strong> the fore end of the engine, such as<br />

adjustable counterweights, tuning wheel, moment<br />

compensators or PTO.<br />

Please note that the latest versi<strong>on</strong> of the dimensi<strong>on</strong>ed<br />

drawing <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> for download<br />

at www.mandiesel.com under ‘Marine’ → ‘Low<br />

Speed’ → ‘Installati<strong>on</strong> Drawings’. First choose<br />

engine series, then engine type and select ‘Outline<br />

drawing’ for the actual number of cylinders<br />

and type of turbocharger installati<strong>on</strong> in the l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of<br />

drawings <str<strong>on</strong>g>available</str<strong>on</strong>g> for download.<br />

198 43 75�4.5


<strong>MAN</strong> B&W 5.02<br />

Space Requirements<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong><br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

198 47 59-0.1


<strong>MAN</strong> B&W 5.03<br />

Crane beam for overhaul of turbocharger<br />

Main engine/aft cylinder<br />

HB<br />

a<br />

Crane beam for<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling of<br />

comp<strong>on</strong>ents<br />

Gas outlet flange<br />

Fig. 5.03.01a: Required height and d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

For the overhaul of a turbocharger, a crane beam<br />

with trolleys <str<strong>on</strong>g>is</str<strong>on</strong>g> required at each end of the turbocharger.<br />

Two trolleys are to be <str<strong>on</strong>g>available</str<strong>on</strong>g> at the compressor<br />

end and <strong>on</strong>e trolley <str<strong>on</strong>g>is</str<strong>on</strong>g> needed at the gas inlet end.<br />

Crane beam no. <str<strong>on</strong>g>is</str<strong>on</strong>g> for d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling of turbocharger<br />

comp<strong>on</strong>ents.<br />

Crane beam no. 2 <str<strong>on</strong>g>is</str<strong>on</strong>g> for transporting turbocharger<br />

comp<strong>on</strong>ents.<br />

See Figs. 5.03.0 a and 5.03.02.<br />

The crane beams can be omitted if the main engine<br />

room crane also covers the turbocharger<br />

area.<br />

The crane beams are used and dimensi<strong>on</strong>ed for<br />

lifting the following comp<strong>on</strong>ents:<br />

• Exhaust gas inlet casing<br />

• <strong>Turbo</strong>charger inlet silencer<br />

• Compressor casing<br />

• Turbine rotor with bearings<br />

<strong>MAN</strong> B&W S80MC-C9, S70MC-C8/ME-C7/ME-GI7,<br />

S70MC6, L70MC-C8/ME-C7, S65ME-C8/ME-GI8<br />

Crane beam<br />

Crane hook<br />

<strong>Turbo</strong>charger<br />

Crane beam for<br />

transportati<strong>on</strong> of<br />

comp<strong>on</strong>ents<br />

b<br />

Engine room side<br />

178 52 34�0.1<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

<strong>MAN</strong> B&W<br />

Units TCA77 TCA88<br />

W kg 2,000 3,000<br />

HB mm ,800 2,000<br />

b m 800 ,000<br />

ABB<br />

Units TPL80 TPL85<br />

W kg ,500 3,000<br />

HB mm ,900 2,200<br />

b m 800 ,000<br />

Page of 3<br />

Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi<br />

Units MET66 MET71 MET83<br />

W kg ,500 ,800 2,700<br />

HB mm ,800 ,800 2,200<br />

b m 800 800 800<br />

The figures ‘a’ are stated <strong>on</strong> the ‘Engine and Gallery Outline’<br />

drawing, Secti<strong>on</strong> 5.06.<br />

Fig. 5.03.01b: Required height and d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance and weight<br />

The crane beams are to be placed in relati<strong>on</strong><br />

to the turbocharger(s) so that the comp<strong>on</strong>ents<br />

around the gas outlet casing can be removed in<br />

c<strong>on</strong>necti<strong>on</strong> with overhaul of the turbocharger(s).<br />

The crane beam can be bolted to brackets that<br />

are fastened to the ship structure or to columns<br />

that are located <strong>on</strong> the top platform of the engine.<br />

The lifting capacity of the crane beam for the<br />

heaviest comp<strong>on</strong>ent ‘W’, <str<strong>on</strong>g>is</str<strong>on</strong>g> indicated in Fig.<br />

5.03.0 b for the various turbocharger makes. The<br />

crane beam shall be dimensi<strong>on</strong>ed for lifting the<br />

weight ‘W’ with a deflecti<strong>on</strong> of some 5 mm <strong>on</strong>ly.<br />

HB indicates the positi<strong>on</strong> of the crane hook in the<br />

vertical plane related to the centre of the turbocharger.<br />

HB and b also specifies the minimum<br />

space for d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling.<br />

For engines with the turbocharger(s) located <strong>on</strong><br />

the exhaust side, EoD No. 4 59 22, the letter<br />

‘a’ indicates the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between vertical centrelines<br />

of the engine and the turbocharger.<br />

198 54 76-6.1


<strong>MAN</strong> B&W 5.03<br />

Crane beam for turbochargers<br />

<strong>MAN</strong> B&W 60MC�C/ME�C, S65ME�C, 70MC�C/ME�C, S/K80MC�C/ME�C,<br />

90MC/MC�C/ME/ME�C, 98MC/MC�C/ME/ME�C<br />

�������������������������������������������<br />

����������������������������������������<br />

������<br />

Fig. 5.03.02: Crane beam for turbocharger<br />

����������������������������������������<br />

�������������������������������������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 3<br />

178 52 74�6.0<br />

198 48 48�8.1


<strong>MAN</strong> B&W 5.03<br />

Crane beam for overhaul of air cooler<br />

Fig.: 5.03.03: Crane beam for overhaul of air cooler<br />

Overhaul/exchange of charge air cooler.<br />

The text and figure are for guidance <strong>on</strong>ly.<br />

Valid for air cooler design for the following engines<br />

with more than <strong>on</strong>e turbochargers mounted<br />

<strong>on</strong> the exhaust side:<br />

• 60MC/MC�C/ME�C<br />

• S65ME�C<br />

• 70MC/MC�C/ME�C<br />

• 80MC/MC�C/ME�C<br />

• 90MC�C/ME/ME�C<br />

• 98MC/MC�C/ME/ME�C<br />

1. D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantle all the pipes in the area around the<br />

air cooler.<br />

2. D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantle all the pipes around the inlet cover<br />

for the cooler.<br />

<strong>MAN</strong> B&W 60MC/MC�C/ME�C, S65ME�C, 70MC/MC�C/ME�C,<br />

80MC/MC�C/ME�C, 90MC�C/ME/ME�C, 98MC/MC�C/ME/ME�C<br />

� � �<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

�<br />

�<br />

�<br />

�����������������<br />

��<br />

Page of<br />

178 52 73�4.0<br />

. Take out the cooler insert by using the above<br />

placed crane beam mounted <strong>on</strong> the engine.<br />

4. Turn the cooler insert to an upright positi<strong>on</strong>.<br />

5. D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantle the platforms below the air cooler.<br />

6. Lower down the cooler insert between the gallery<br />

brackets and down to the engine room<br />

floor.<br />

Make sure that the cooler insert <str<strong>on</strong>g>is</str<strong>on</strong>g> supported,<br />

e.g. <strong>on</strong> a wooden support.<br />

7. Move the air cooler insert to an area covered<br />

by the engine room crane using the lifting<br />

beam mounted below the lower gallery of the<br />

engine.<br />

8. By using the engine room crane the air cooler<br />

insert can be lifted out of the engine room.<br />

198 48 51�1.2


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.04<br />

Engine room crane<br />

Spares<br />

Normal crane<br />

Engine<br />

room hatch<br />

Crankshaft<br />

Base line<br />

Fig. 5.04.01: Engine room crane<br />

Weight in kg including<br />

lifting tools<br />

Cylinder<br />

cover<br />

complete<br />

with<br />

exhaust<br />

valve<br />

Cylinder<br />

liner<br />

with<br />

cooling<br />

jacket<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

with<br />

p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

rod and<br />

stuffing<br />

box<br />

A<br />

B1/B2 1)<br />

A<br />

2)<br />

Crane capacity<br />

in t<strong>on</strong>s selected in<br />

accordance with<br />

DIN and JIS standard<br />

capacities<br />

Normal<br />

crane<br />

<strong>MAN</strong><br />

B&W<br />

Double-<br />

Jib<br />

Crane<br />

Deck<br />

Deck beam<br />

D<br />

Crankshaft<br />

Base line<br />

Recommended<br />

area to be covered<br />

by the engine room<br />

crane<br />

Minimum area to<br />

be covered by the<br />

engine room crane<br />

Crane<br />

operating<br />

width<br />

in mm<br />

A<br />

Minimum<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

<strong>MAN</strong> B&W Double-Jib Crane<br />

Page 1 of 3<br />

S65ME-C/ME-GI 198 48 93-0.0<br />

A<br />

C<br />

Deck<br />

Deck beam<br />

178 23 34-2.0<br />

1) The lifting tools for the engine are designed to fit together<br />

with a standard crane hook with a lifting capacity in accordance<br />

with the figure stated in the table. If a larger crane<br />

hook <str<strong>on</strong>g>is</str<strong>on</strong>g> used, it may not fit directly to the overhaul tools,<br />

and the use of an intermediate shackle or similar between<br />

the lifting tool and the crane hook will affect the requirements<br />

for the minimum lifting height in the engine room<br />

(dimensi<strong>on</strong> B)<br />

2) The hatched area shows the height where an <strong>MAN</strong> B&W<br />

Double-Jib Crane has to be used.<br />

Normal crane<br />

Height to crane hook<br />

in mm for:<br />

Normal<br />

lifting<br />

procedure<br />

Reduced<br />

height lifting<br />

procedure<br />

involving tilting<br />

of main<br />

comp<strong>on</strong>ents<br />

(opti<strong>on</strong>)<br />

<strong>MAN</strong> B&W Double-Jib Crane<br />

C<br />

Minimum height<br />

from centreline<br />

crankshaft to<br />

underside deck<br />

beam<br />

Building-in height<br />

in mm<br />

D<br />

Additi<strong>on</strong>al height<br />

required for<br />

removal of<br />

exhaust valve<br />

without removing<br />

any exhaust<br />

valve stud<br />

3,680 4,340 2,040 5.0 2x2.5 2,850 11,600 10,600 10,400 600<br />

The crane hook travelling area must cover at least<br />

the full length of the engine and a width in accordance<br />

with dimensi<strong>on</strong> A given <strong>on</strong> the drawing, see<br />

cross-hatched area.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> furthermore recommended that the engine room<br />

crane can be used for transport of heavy spare parts<br />

from the engine room hatch to the spare part stores<br />

and to the engine. See example <strong>on</strong> th<str<strong>on</strong>g>is</str<strong>on</strong>g> drawing.<br />

B1<br />

Minimum<br />

height from<br />

centreline<br />

crankshaft<br />

to<br />

centreline<br />

crane hook<br />

B1<br />

Minimum<br />

height from<br />

centreline<br />

crankshaft to<br />

underside<br />

deck beam<br />

The crane hook should at least be able to reach<br />

down to a level corresp<strong>on</strong>ding to the centreline of<br />

the crankshaft.<br />

For overhaul of the turbocharger(s), trolley mounted<br />

chain ho<str<strong>on</strong>g>is</str<strong>on</strong>g>ts must be installed <strong>on</strong> a separate crane<br />

beam or, alternatively, in combinati<strong>on</strong> with the engine<br />

room crane structure, see ‘Crane beam for overhaul<br />

of turbocharger’ with informati<strong>on</strong> about the required<br />

lifting capacity for overhaul of turbocharger(s).


<strong>MAN</strong> B&W 5.04<br />

Overhaul with <strong>MAN</strong> B&W Double�Jib crane<br />

The Double�Jib crane<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> from:<br />

Dan<str<strong>on</strong>g>is</str<strong>on</strong>g>h Crane Building A/S<br />

P.O. Box 54<br />

Østerlandsvej<br />

DK�9 40 Nibe, Denmark<br />

Teleph<strong>on</strong>e: + 45 98 35 31 33<br />

Telefax: + 45 98 35 30 33<br />

E�mail: dcb@dcb.dk<br />

Fig. 5.04.02: Overhaul with Double�Jib crane<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B/ME/ME�C/ME�GI engines<br />

Deck beam<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

<strong>MAN</strong> B&W Double-Jib Crane<br />

Centreline crankshaft<br />

Page of 3<br />

178 24 86�3.0<br />

198 45 34�8.2


<strong>MAN</strong> B&W 5.04<br />

<strong>MAN</strong> B&W Double�Jib Crane<br />

���������<br />

��������������������<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> crane <str<strong>on</strong>g>is</str<strong>on</strong>g> adapted to the special tool for low overhaul.<br />

Dimensi<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

Fig. 5.04.03: <strong>MAN</strong> B&W Double�Jib crane, opti<strong>on</strong>: 4 88 701<br />

��<br />

Page of<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME�C/ ME-GI/ME-B engines 198 45 41�9.1<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

178 37 30-1.0


<strong>MAN</strong> B&W 5.05<br />

Engine Outline, Galleries and Pipe C<strong>on</strong>necti<strong>on</strong>s<br />

Engine Outline<br />

The total length of the engine at the crankshaft<br />

level may vary depending <strong>on</strong> the equipment to<br />

be fitted <strong>on</strong> the fore end of the engine, such as<br />

adjustable counterweights, tuning wheel, moment<br />

compensators or PTO, which are shown as alternatives<br />

in Secti<strong>on</strong> 5.06<br />

Engine Masses and Centre of Gravity<br />

The partial and total engine masses appear from<br />

<str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 9.04, ‘D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern’, to which the<br />

masses of water and oil in the engine, Secti<strong>on</strong><br />

5.08, are to be added. The centre of gravity <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

shown in Secti<strong>on</strong> 5.07, in both cases including the<br />

water and oil in the engine, but without moment<br />

compensators or PTO.<br />

Gallery Outline<br />

Secti<strong>on</strong> 5.06 show the gallery outline for engines<br />

rated at nominal MCR (L ).<br />

Engine Pipe C<strong>on</strong>necti<strong>on</strong>s<br />

The positi<strong>on</strong>s of the external pipe c<strong>on</strong>necti<strong>on</strong>s <strong>on</strong><br />

the engine are stated in Secti<strong>on</strong> 5.09, and the corresp<strong>on</strong>ding<br />

l<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of counterflanges for pipes and<br />

turbocharger in Secti<strong>on</strong> 5. 0.<br />

The flange c<strong>on</strong>necti<strong>on</strong> <strong>on</strong> the turbocharger gas<br />

outlet <str<strong>on</strong>g>is</str<strong>on</strong>g> rectangular, but a transiti<strong>on</strong> piece to a circular<br />

form can be supplied as an opti<strong>on</strong>: 4 60 60 .<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B/ME/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

198 47 15�8.3


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.06<br />

Engine and Gallery Outline<br />

S65ME-C<br />

�����<br />

�����<br />

�����<br />

Fig. 5.06.01: Engine outline 7S65ME-C with <strong>on</strong>e turbocharger TCA88-20<br />

����������<br />

����� �����<br />

�����<br />

������������������������������������������������<br />

���������������������������������������������������������������<br />

�����<br />

���<br />

������<br />

�����<br />

�����<br />

������<br />

Page 1 of 3<br />

178 52 10-0.0a<br />

198 48 09-4.0


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.06<br />

6,850<br />

4,170<br />

2,700<br />

Fig. 5.06.02: Engine outline 7S65ME-C with <strong>on</strong>e turbocharger TCA88-20<br />

S65ME-C<br />

3,160<br />

0 0<br />

2,800<br />

2,062<br />

1,374<br />

0 0<br />

1,560<br />

2,190<br />

3,400<br />

5,050<br />

5,300<br />

9,710<br />

8,865<br />

7,380<br />

6,140<br />

2,700<br />

750<br />

1,410<br />

2,160<br />

CYL.1<br />

1,084<br />

AFT CYL.<br />

Page 2 of 3<br />

178 52 10-0.0b<br />

198 48 09-4.0


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.06<br />

S65ME-C<br />

3,560<br />

2,358<br />

Upper platform 2 holes for<br />

p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> overhauling<br />

500x45°<br />

2,160<br />

800x45°<br />

Lower platform<br />

400<br />

400<br />

472<br />

1,072<br />

2,000<br />

2,700<br />

1,500<br />

Fig. 5.06.03: Gallery outline 7S65ME-C with <strong>on</strong>e turbocharger TCA88-20<br />

Y<br />

Y<br />

T<br />

T<br />

Air<br />

cooler<br />

1,500<br />

858<br />

1,500<br />

2,000<br />

500x45°<br />

3,655<br />

500x45°<br />

2,650<br />

3,655<br />

3,160<br />

5,300<br />

2,800<br />

5,050<br />

Page 3 of 3<br />

178 52 11-2.0<br />

198 48 09-4.0


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.07<br />

Centre of Gravity<br />

No. of cylinders 6 7 8<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>tance X mm 2,900 3,795 4,000<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>tance Y mm 2,800 2,800 2,800<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>tance Z mm * 130 130 130<br />

Dry mass t<strong>on</strong> 418 470 530<br />

All dimensi<strong>on</strong>s are approximate<br />

*) Depends <strong>on</strong> turbocharger and scavenge air cooler make, type and locati<strong>on</strong>.<br />

Fig. 5.07.01: Data for centre of gravity<br />

X<br />

CL cyl. 1<br />

Page 1 of 1<br />

Centre of<br />

gravity<br />

178 52 35-2.0<br />

S65ME-C/ME-GI 198 48 97-8.0<br />

Z<br />

Y


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.08<br />

Mass of Water and Oil<br />

No. of<br />

cylinders<br />

5<br />

6<br />

7<br />

8<br />

Jacket cooling<br />

water<br />

kg<br />

870<br />

1,060<br />

1,230<br />

1,390<br />

Mass of water and oil in engine in service<br />

Mass of water Mass of oil<br />

Scavenge air Total<br />

Engine * Oil pan<br />

cooling water<br />

system<br />

kg<br />

kg<br />

kg<br />

kg<br />

500<br />

500<br />

600<br />

870<br />

* The stated values are <strong>on</strong>ly valid for horiz<strong>on</strong>tal engine.<br />

Fig. 5.08.01: Water and oil in engine<br />

1,370<br />

1,560<br />

1,830<br />

2,260<br />

640<br />

770<br />

970<br />

1,100<br />

740<br />

1,045<br />

935<br />

1,180<br />

Page 1 of 1<br />

S65ME-C/ME-GI 198 49 00-3.0<br />

Total<br />

kg<br />

1,380<br />

1,815<br />

1,905<br />

2,280


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.09<br />

Engine Pipe C<strong>on</strong>necti<strong>on</strong>s<br />

AV<br />

K,L<br />

RU<br />

AH<br />

AE<br />

A<br />

AR<br />

1,800<br />

2,406<br />

1,550<br />

1,740<br />

600<br />

795<br />

890<br />

AFT<br />

CYL.<br />

AP<br />

250<br />

294<br />

AS<br />

AL<br />

AN<br />

300<br />

S<br />

P<br />

N<br />

270<br />

AK<br />

Page 1 of 3<br />

S65ME-C/ME-GI 198 48 11-6.0<br />

AM<br />

300 600<br />

595<br />

E<br />

5,420<br />

4,265<br />

3,718<br />

Fig. 5.09.01: Engine pipe c<strong>on</strong>necti<strong>on</strong>s 7S65ME-C with <strong>on</strong>e turbocharger TCA88-20<br />

S<br />

AB<br />

216<br />

1, 084<br />

CYL.1<br />

910<br />

AE<br />

178 52 13-6.0a


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.09<br />

6,244 (AD)<br />

6,171 (X,F)<br />

6,020 (BX,BF)<br />

6,195 (AC)<br />

6,185 (AF)<br />

6,155 (AT)<br />

6,065 (BD)<br />

F<br />

1,610<br />

BX<br />

X<br />

AT<br />

7,095<br />

5,580<br />

4,305<br />

3,357<br />

555<br />

1,225<br />

0<br />

AD<br />

AE<br />

AG<br />

2,504<br />

2,354<br />

BV<br />

BC<br />

RW<br />

864<br />

1,480<br />

Page 2 of 3<br />

S65ME-C/ME-GI 198 48 11-6.0<br />

AR<br />

0<br />

0<br />

48<br />

M<br />

2,050<br />

RU<br />

300<br />

1,585<br />

1,287<br />

410<br />

711<br />

1,158<br />

S<br />

K L<br />

2,248<br />

2,482<br />

AL,AM<br />

AE<br />

A<br />

AK<br />

2,600<br />

2,505<br />

AN,AP<br />

AH<br />

AV<br />

2,310 (AL,AM)<br />

2,354 (AE)<br />

2,412 (AS)<br />

Fig. 5.09.02: Engine pipe c<strong>on</strong>necti<strong>on</strong>s 7S65ME-C with <strong>on</strong>e turbocharger TCA88-20<br />

2,330<br />

BD<br />

2,215<br />

895<br />

AC<br />

AF<br />

BF<br />

2,065<br />

F<br />

2,550<br />

E<br />

3,513<br />

AB<br />

AS<br />

3,400<br />

3,695<br />

P<br />

4,400<br />

N<br />

D<br />

9,285<br />

8,810<br />

8,481<br />

7,380<br />

6,025 (AN,AP)<br />

5,966 (A)<br />

5,945 (L,K)<br />

5,845 (AH)<br />

5,670 (P)<br />

5,270 (N)<br />

3,890 (AK)<br />

3,742 (RU)<br />

2,995<br />

996 (AV)<br />

859 (AL,AM)<br />

555 (AE)<br />

433 (AS)<br />

0<br />

178 52 13-6.0b


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 5.09<br />

F,X<br />

AD<br />

BX,BF<br />

982<br />

963<br />

AC<br />

AE<br />

M<br />

BV<br />

FORE.<br />

800<br />

910<br />

CYL.1<br />

698<br />

Fig. 5.09.03: Engine pipe c<strong>on</strong>necti<strong>on</strong>s 7S65ME-C with <strong>on</strong>e turbocharger TCA88-20<br />

435<br />

AG<br />

AG AE<br />

Page 3 of 3<br />

178 52 13-6.0c<br />

S65ME-C/ME-GI 198 48 11-6.0<br />

1,084<br />

700<br />

1,171<br />

700<br />

RW<br />

1,995<br />

BC<br />

AT<br />

AT<br />

936<br />

AF<br />

BD


<strong>MAN</strong> B&W 5.10<br />

Counterflanges<br />

Reference<br />

Cylinder<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8<br />

Flange Bolts<br />

Diam. PCD Thickn. Diam. No.<br />

mm mm mm mm<br />

Descripti<strong>on</strong><br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 2<br />

A 4�8 Flange for pipe 68.3x7. Starting air inlet<br />

BC 4�8 Coupling for 20 mm pipe Safety and c<strong>on</strong>trol air inlet<br />

D See figures, drawing, page 2 Exhaust gas outlet<br />

E TCA88 220 80 8 M 6 4<br />

Venting of lub.oil d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge pipe for <strong>MAN</strong> <strong>Diesel</strong> and ABB<br />

TPL turbocharger<br />

F 4�8 65 25 20 M 6 4 Fuel oil outlet<br />

K<br />

4�6<br />

7�8<br />

250<br />

285<br />

2 0<br />

240<br />

22<br />

24<br />

M 6<br />

M20<br />

8<br />

8<br />

Jacket cooling water inlet<br />

L<br />

4�6<br />

7�8<br />

250<br />

285<br />

2 0<br />

240<br />

22<br />

24<br />

M 6<br />

M20<br />

8<br />

8<br />

Jacket cooling water outlet<br />

M 4�8 5 85 6 M 2 4 Cooling water de�arati<strong>on</strong><br />

N<br />

4�5<br />

6�8<br />

340<br />

395<br />

295<br />

350<br />

24<br />

28<br />

M20<br />

M20<br />

8<br />

2<br />

Cooling water inlet to air cooler (Sea water)<br />

P<br />

4�5<br />

6�8<br />

340<br />

395<br />

295<br />

350<br />

24<br />

28<br />

M20<br />

M20<br />

8<br />

2<br />

Cooling water outlet from air cooler (Sea water)<br />

N<br />

4�6<br />

7�8<br />

285<br />

340<br />

240<br />

295<br />

24<br />

24<br />

M20<br />

M20<br />

8<br />

2<br />

Cooling water inlet to air cooler (central cooling)<br />

P<br />

4�6<br />

7<br />

285<br />

340<br />

240<br />

295<br />

24<br />

24<br />

M20<br />

M20<br />

8<br />

2<br />

Cooling water outlet from air cooler (central cooling)<br />

S 4�8 See special drawing of oil outlet System oil outlet to bottom tank<br />

RU<br />

4�5<br />

6�8<br />

395<br />

445<br />

350<br />

400<br />

28<br />

28<br />

M20<br />

M20<br />

2<br />

2<br />

Lubricating & cooling oil (system oil)<br />

X 4�8 200 60 20 M 6 8 Fuel oil inlet<br />

AB<br />

x<br />

TCA88<br />

250 2 0 22 M 6 8<br />

Lubricating oil outlet from turbocharger<br />

<strong>MAN</strong> <strong>Diesel</strong>, MHI MET and ABB TPL<br />

AC 4�8 Coupling for 25 mm pipe Lubricating oil inlet to cylinder lubricators<br />

AD 4�8 5 85 4 M 2 4 Fuel oil from umbrella sealing<br />

AE 4�8 40 00 6 M 6 4 Drain from bedplate / cleaning turbocharger<br />

AF 4�8 40 00 6 M 6 4 Fuel oil to draintank<br />

AG 4�8 40 00 6 M 6 4 Drain oil from p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod stuffing boxes<br />

AH 4�8 40 00 6 M 6 4 Fresh cooling water drain<br />

AK 4�8 Coupling for 30 mm pipe Inlet cleaning air cooler<br />

AL xA/C 50 0 8 M 6 4 Drain air cooler / water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher<br />

AL 2xA/C 65 25 20 M 6 4 Drain air cooler / water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher<br />

AM xA/C 50 0 8 M 6 4 Drain air cooler to chemical cleaning tank<br />

AM 2xA/C 65 25 20 M 6 4 Drain air cooler to chemical cleaning tank<br />

AN 4�8 Coupling for 30 mm pipe Water inlet for cleaning of turbochanger<br />

AP 4�8 Coupling for 30 mm pipe Air inlet for dry cleaning of turbocharger<br />

AR 4�8 65 25 8 M 6 4 Oil vapour d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge<br />

198 48 12-8.1


<strong>MAN</strong> B&W 5.10<br />

Reference<br />

Cylinder<br />

Fig. 5.10.01: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of counterflanges<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8<br />

Flange Bolts<br />

Diam. PCD Thickn. Diam. No.<br />

mm mm mm mm<br />

Descripti<strong>on</strong><br />

AS 4�8 Coupling for 30 mm pipe Cooling water drain air cooler<br />

AT 4�8 Coupling for 30 mm pipe Extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing of fire in scavenge air box<br />

AV 4�8 85 45 8 M 6 4 Drain from scavenge air box to closed drain tank<br />

BD 4�8 Coupling for 6 mm pipe Fresh water outlet for heating fuel oil drain pipes<br />

BX 4�8 Coupling for 6 mm pipe Steam inlet for heating fuel oil pipes<br />

BF 4�8 Coupling for 6 mm pipe Steam outlet for heating fuel oil pipes<br />

BV 6-9 Coupling for 6 mm pipe Steam inlet for cleaning of drain scavenge air box<br />

DX 6-9 20 95 2 M 2 4 Drain air cooler after water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher<br />

RW 6-9 220 80 22 M 6 8 System oil back flushing<br />

���<br />

���<br />

�����������������<br />

�����<br />

�����<br />

�����<br />

����� ���<br />

���<br />

���<br />

�����<br />

�����<br />

���<br />

���<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���<br />

������<br />

��<br />

Page 2 of 2<br />

178 52 14�8.1<br />

198 48 12-8.1


<strong>MAN</strong> B&W 5.11<br />

Engine Seating and Holding Down Bolts<br />

Please note that the latest versi<strong>on</strong> of most of the<br />

drawings of th<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> for download<br />

at www.mandiesel.com under ‘Marine’ → ‘Low<br />

Speed’ → ‘Installati<strong>on</strong> Drawings’. First choose engine<br />

series, then engine type and select ‘Engine<br />

seating’ in the general <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> of the l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of drawings<br />

<str<strong>on</strong>g>available</str<strong>on</strong>g> for download.<br />

Engine Seating and Arrangement of<br />

Holding Down Bolts<br />

The dimensi<strong>on</strong>s of the seating stated in Figs.<br />

5. 2.0 and 5. 2.02 are for guidance <strong>on</strong>ly.<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> designed for mounting <strong>on</strong> epoxy<br />

chocks, EoD 4 82 02, in which case the underside<br />

of the bedplate’s lower flanges has no taper.<br />

The epoxy types approved by <strong>MAN</strong> <strong>Diesel</strong> are:<br />

• ‘Chockfast Orange PR 6 0 TCF’ from<br />

ITW Philadelphia Resins Corporati<strong>on</strong>, USA<br />

• ‘Durasin’ from Daemmstoff<br />

Industrie Korea Ltd<br />

• ‘Epocast 36’ from<br />

H.A. Springer - Kiel, Germany.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-C/ME�GI/ME�B engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

198 41 76�5.6


<strong>MAN</strong> B&W 5.12<br />

Epoxy Chocks Arrangement<br />

���<br />

���<br />

��<br />

�����<br />

�<br />

� �<br />

� �<br />

��<br />

����������������������������������������������������������������������<br />

��������������������������������������������������������������������<br />

�����������������������������<br />

�����<br />

��������<br />

�������<br />

���<br />

�����<br />

�����<br />

�����<br />

������������������<br />

���������������<br />

����������������<br />

����������������<br />

������������<br />

� �<br />

��������������������������������������������������������������������������<br />

�����������������<br />

��������������������������<br />

For details of chocks and bolts see special drawings.<br />

For securing of supporting chocks see special<br />

drawing.<br />

���<br />

�������������<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> drawing may, subject to the written c<strong>on</strong>sent of<br />

the actual engine builder c<strong>on</strong>cerned, be used as a<br />

bas<str<strong>on</strong>g>is</str<strong>on</strong>g> for marking�off and drilling the holes for holding<br />

down bolts in the top plates, provided that:<br />

���<br />

�������<br />

�������<br />

�����������<br />

���������������������������������������<br />

Fig. 5.12.01: Arrangement of epoxy chocks and holding down bolts<br />

��<br />

���<br />

�������<br />

�������<br />

�������������������������������������������������������<br />

��<br />

���<br />

���<br />

���<br />

�������<br />

��������<br />

�����������������<br />

Page of 3<br />

) The engine builder drills the holes for holding<br />

down bolts in the bedplate while observing the<br />

toleranced locati<strong>on</strong>s indicated <strong>on</strong> <strong>MAN</strong> B&W<br />

drawings for machining the bedplate<br />

2) The shipyard drills the holes for holding down<br />

bolts in the top plates while observing the toleranced<br />

locati<strong>on</strong>s given <strong>on</strong> the present drawing<br />

3) The holding down bolts are made in accordance<br />

with <strong>MAN</strong> B&W drawings of these bolts.<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI 198 48 14-1.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��������<br />

����� ���<br />

�������<br />

�������<br />

���<br />

�������<br />

�������<br />

�������<br />

���<br />

���<br />

��������<br />

��<br />

���<br />

��� ���<br />

��������<br />

��������������������<br />

�������������������������<br />

�������������������������<br />

���<br />

����� ���<br />

�����<br />

���<br />

�������<br />

�������<br />

�����<br />

�����<br />

�����<br />

�����<br />

����������<br />

�����<br />

����<br />

�����<br />

178 52 16-1.2


<strong>MAN</strong> B&W 5.12<br />

Engine Seating Profile<br />

�<br />

�����������������������������������������������������������<br />

���������������������������������������������������������<br />

�����������������������������������������������������<br />

��<br />

��<br />

���<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

Fig.5.12.02a: Profile of engine seating with vertical oil outlet<br />

���<br />

Holding down bolts, opti<strong>on</strong>: 4 8 60 include:<br />

1. Protecting cap<br />

. Spherical nut<br />

3. Spherical washer<br />

���<br />

��<br />

���<br />

� � �<br />

���<br />

���<br />

��<br />

��<br />

������������<br />

�����<br />

Page of 3<br />

178 52 32-7.1<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI 198 48 94-2.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�����<br />

�����<br />

�������<br />

�����<br />

��<br />

�����<br />

�����<br />

�����<br />

�����<br />

�����<br />

��������������������������������������������������������������������<br />

���������������������������������������������������������<br />

��<br />

���<br />

���<br />

������������������������������<br />

�����������������������������<br />

����������������������������<br />

���������������������<br />

�����������<br />

��<br />

4. D<str<strong>on</strong>g>is</str<strong>on</strong>g>tance pipe<br />

5. Round nut<br />

6. Holding down bolt<br />

���������������������<br />

�� ���<br />

����<br />

���<br />

���<br />

�����������������


<strong>MAN</strong> B&W 5.12<br />

�����������<br />

����������<br />

������������<br />

�<br />

�<br />

Fig. 5.12.02b: Profile of engine seating, end chocks, opti<strong>on</strong>: 4 82 620<br />

����������<br />

���<br />

�������������������<br />

���������������<br />

�����������<br />

���������<br />

� � � � � � � �<br />

Fig. 5.12.02c: Profile of engine seating, end chocks, opti<strong>on</strong>: 4 82 610<br />

��<br />

Page 3 of 3<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI 198 48 94-2.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���<br />

Side chock brackets, opti<strong>on</strong>: 4 8 6 includes:<br />

1. Side chock brackets<br />

Side chock liners, opti<strong>on</strong>: 4 8 6 0 includes:<br />

. Liner for side chock<br />

3. Lock plate<br />

4. Washer<br />

5. Hexag<strong>on</strong> socket set screw<br />

�<br />

���������<br />

�<br />

� �<br />

End chock bolts, opti<strong>on</strong>: 4 8 610 includes:<br />

1. Stud for end chock bolt<br />

. Round nut<br />

3. Round nut<br />

4. Spherical washer<br />

5. Spherical washer<br />

6. Protecting cap<br />

End chock liner, opti<strong>on</strong>: 4 8 61 includes:<br />

7. Liner for end chock<br />

End chock brackets, opti<strong>on</strong>: 4 8 614 includes:<br />

8. End chock bracket<br />

�<br />

178 57 34-8.0<br />

178 57 25-3.0


<strong>MAN</strong> B&W 5.13<br />

Engine Top Bracing<br />

The so-called guide force moments are caused<br />

by the transverse reacti<strong>on</strong> forces acting <strong>on</strong> the<br />

crossheads due to the c<strong>on</strong>necting rod and crankshaft<br />

mechan<str<strong>on</strong>g>is</str<strong>on</strong>g>m. When the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> of a cylinder<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> not exactly in its top or bottom positi<strong>on</strong> the gas<br />

force from the combusti<strong>on</strong>, transferred through<br />

the c<strong>on</strong>necting rod, will have a comp<strong>on</strong>ent acting<br />

<strong>on</strong> the crosshead and the crankshaft perpendicularly<br />

to the ax<str<strong>on</strong>g>is</str<strong>on</strong>g> of the cylinder. Its resultant <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

acting <strong>on</strong> the guide shoe and together they form a<br />

guide force moment.<br />

The moments may excite engine vibrati<strong>on</strong>s moving<br />

the engine top athwart ships and causing a<br />

rocking (excited by H-moment) or tw<str<strong>on</strong>g>is</str<strong>on</strong>g>ting (excited<br />

by X-moment) movement of the engine. For engines<br />

with less than seven cylinders, th<str<strong>on</strong>g>is</str<strong>on</strong>g> guide<br />

force moment tends to rock the engine in the<br />

transverse directi<strong>on</strong>, and for engines with seven<br />

cylinders or more, it tends to tw<str<strong>on</strong>g>is</str<strong>on</strong>g>t the engine.<br />

The guide force moments are harmless to the<br />

engine except when res<strong>on</strong>ance vibrati<strong>on</strong>s occur<br />

in the engine/double bottom system. They may,<br />

however, cause annoying vibrati<strong>on</strong>s in the superstructure<br />

and/or engine room, if proper countermeasures<br />

are not taken.<br />

As a detailed calculati<strong>on</strong> of th<str<strong>on</strong>g>is</str<strong>on</strong>g> system <str<strong>on</strong>g>is</str<strong>on</strong>g> normally<br />

not <str<strong>on</strong>g>available</str<strong>on</strong>g>, <strong>MAN</strong> <strong>Diesel</strong> recommends that top<br />

bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> installed between the engine’s upper<br />

platform brackets and the casing side.<br />

However, the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> not needed in all<br />

cases. In some cases the vibrati<strong>on</strong> level <str<strong>on</strong>g>is</str<strong>on</strong>g> lower if<br />

the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> not installed. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> has normally<br />

to be checked by measurements, i.e. with and<br />

without top bracing.<br />

If a vibrati<strong>on</strong> measurement in the first vessel of a<br />

series shows that the vibrati<strong>on</strong> level <str<strong>on</strong>g>is</str<strong>on</strong>g> acceptable<br />

without the top bracing, we have no objecti<strong>on</strong> to<br />

the top bracing being removed and the rest of<br />

the series produced without top bracing. It <str<strong>on</strong>g>is</str<strong>on</strong>g> our<br />

experience that especially the 7-cylinder engine<br />

will often have a lower vibrati<strong>on</strong> level without top<br />

bracing.<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 2<br />

Without top bracing, the natural frequency of<br />

the vibrating system compr<str<strong>on</strong>g>is</str<strong>on</strong>g>ing engine, ship’s<br />

bottom, and ship’s side <str<strong>on</strong>g>is</str<strong>on</strong>g> often so low that res<strong>on</strong>ance<br />

with the excitati<strong>on</strong> source (the guide force<br />

moment) can occur close to the normal speed<br />

range, resulting in the r<str<strong>on</strong>g>is</str<strong>on</strong>g>k of vibrati<strong>on</strong>.<br />

With top bracing, such a res<strong>on</strong>ance will occur<br />

above the normal speed range, as the natural frequencies<br />

of the double bottom/main engine system<br />

will increase. The impact of vibrati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> thus<br />

lowered.<br />

The top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> normally installed <strong>on</strong> the exhaust<br />

side of the engine, but can alternatively be<br />

installed <strong>on</strong> the manoeuvring side. A combinati<strong>on</strong><br />

of exhaust side and manoeuvring side installati<strong>on</strong><br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> also possible.<br />

The top bracing system <str<strong>on</strong>g>is</str<strong>on</strong>g> installed either as a<br />

mechanical top bracing or a hydraulic top bracing.<br />

Both systems are described below.<br />

Mechanical top bracing<br />

The mechanical top bracing compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es stiff c<strong>on</strong>necti<strong>on</strong>s<br />

between the engine and the hull.<br />

The top bracing stiffener c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a double<br />

bar tightened with fricti<strong>on</strong> shims at each end of<br />

the mounting positi<strong>on</strong>s. The fricti<strong>on</strong> shims allow<br />

the top bracing stiffener to move in case of<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>placements caused by thermal expansi<strong>on</strong> of<br />

the engine or different loading c<strong>on</strong>diti<strong>on</strong>s of the<br />

vessel. Furthermore, the tightening <str<strong>on</strong>g>is</str<strong>on</strong>g> made with a<br />

well-defined force <strong>on</strong> the fricti<strong>on</strong> shims, using d<str<strong>on</strong>g>is</str<strong>on</strong>g>c<br />

springs, to prevent overloading of the system in<br />

case of an excessive vibrati<strong>on</strong> level.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 46 72�5.7


<strong>MAN</strong> B&W 5.13<br />

The mechanical top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> to be made by the<br />

shipyard in accordance with <strong>MAN</strong> <strong>Diesel</strong> instructi<strong>on</strong>s.<br />

�<br />

Fig. 5.13.01: Mechanical top bracing stiffener.<br />

Opti<strong>on</strong>: 4 83 112<br />

Hydraulic top bracing<br />

178 23 61-6.1<br />

The hydraulic top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> an alternative to the<br />

mechanical top bracing used mainly <strong>on</strong> engines<br />

with a cylinder bore of 50 or more. The installati<strong>on</strong><br />

normally features two, four or six independently<br />

working top bracing units.<br />

The top bracing unit c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a single-acting hydraulic<br />

cylinder with a hydraulic c<strong>on</strong>trol unit and an<br />

accumulator mounted directly <strong>on</strong> the cylinder unit.<br />

The top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled by an automatic<br />

switch in a c<strong>on</strong>trol panel, which activates the top<br />

bracing when the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> running. It <str<strong>on</strong>g>is</str<strong>on</strong>g> possible<br />

to programme the switch to choose a certain<br />

rpm range, at which the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> active. For<br />

service purposes, manual c<strong>on</strong>trol from the c<strong>on</strong>trol<br />

panel <str<strong>on</strong>g>is</str<strong>on</strong>g> also possible.<br />

When active, the hydraulic cylinder provides a<br />

pressure <strong>on</strong> the engine in proporti<strong>on</strong> to the vibrati<strong>on</strong><br />

level. When the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between the hull and<br />

engine increases, oil flows into the cylinder under<br />

pressure from the accumulator. When the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

decreases, a n<strong>on</strong>-return valve prevents the<br />

oil from flowing back to the accumulator, and the<br />

pressure r<str<strong>on</strong>g>is</str<strong>on</strong>g>es. If the pressure reaches a preset<br />

maximum value, a relief valve allows the oil to flow<br />

back to the accumulator, hereby maintaining the<br />

force <strong>on</strong> the engine below the specified value.<br />

��<br />

�<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

By a different pre-setting of the relief valve, the<br />

top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> delivered in a low-pressure versi<strong>on</strong><br />

(26 bar) or a high-pressure versi<strong>on</strong> (40 bar).<br />

The top bracing unit <str<strong>on</strong>g>is</str<strong>on</strong>g> designed to allow d<str<strong>on</strong>g>is</str<strong>on</strong>g>placements<br />

between the hull and engine caused<br />

by thermal expansi<strong>on</strong> of the engine or different<br />

loading c<strong>on</strong>diti<strong>on</strong>s of the vessel.<br />

���������������<br />

����������������������<br />

�������������<br />

178 57 48-8.0<br />

Fig. 5.13.02: Outline of a hydraulic top bracing unit.<br />

The unit <str<strong>on</strong>g>is</str<strong>on</strong>g> installed with the oil accumulator pointing<br />

either up or down. Opti<strong>on</strong>: 4 83 123<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 46 72�5.7<br />

���<br />

���<br />

���������<br />

���<br />

��<br />

���<br />

�����������<br />

���<br />

���


<strong>MAN</strong> B&W 5.14<br />

Mechanical Top Bracing<br />

2,320 (P)<br />

Fig. 5.14: Mechanical top bracing arrangement<br />

2,320 (P)<br />

4,260 (Q)<br />

Min. (R)<br />

6,020<br />

0<br />

4,260 (Q)<br />

Min. (R)<br />

6,020<br />

0<br />

Page of<br />

Horiz<strong>on</strong>tal d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between top bracing fix point<br />

and cyl.<br />

a = 542<br />

b = ,626<br />

c = 2,7 0<br />

d = 3,794<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> symbol indicates<br />

that the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

attached at point P<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> symbol indicates<br />

that the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

attached at point P<br />

Cylinder number<br />

Cylinder T/C number<br />

2 3 4 5 6<br />

e = 4,878<br />

f = 5,962<br />

g = 7,046<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> symbol indicates<br />

that the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

attached at point Q<br />

<strong>Turbo</strong>charger<br />

Chain box<br />

a 0 a b e f<br />

a 0 a c e f<br />

T/C<br />

g<br />

2<br />

T/C<br />

3 4 5 6<br />

2 3 4 5 6 7<br />

a 0 a c e f g<br />

T/C<br />

2 3 4 5 6 7<br />

178 52 17�3.0<br />

Horiz<strong>on</strong>tal vibrati<strong>on</strong>s <strong>on</strong> top of engine are caused<br />

by the guide force moments. For 4�7 cylinder<br />

engines the H�moment <str<strong>on</strong>g>is</str<strong>on</strong>g> the major excitati<strong>on</strong><br />

source and for larger cylinder numbers an<br />

X�moment <str<strong>on</strong>g>is</str<strong>on</strong>g> the major excitati<strong>on</strong> source.<br />

For engines with vibrati<strong>on</strong>s excited by an<br />

X�moment, bracing at the centre of the engine are<br />

of <strong>on</strong>ly minor importance.<br />

Top bracing should <strong>on</strong>ly be installed <strong>on</strong> <strong>on</strong>e side,<br />

either the exhaust side or the manoeuvring side.<br />

If top bracing has to be installed <strong>on</strong> manoeuvring<br />

side, please c<strong>on</strong>tact <strong>MAN</strong> <strong>Diesel</strong>.<br />

If the minimum built�in length can not be fulfilled,<br />

please c<strong>on</strong>tact <strong>MAN</strong> <strong>Diesel</strong> or our local representative.<br />

The complete arrangement to be delivered by the<br />

shipyard.<br />

<strong>Turbo</strong>charger Q R<br />

TCA88�20 4,260 5,545<br />

<strong>MAN</strong> B&W S65ME�C/ME�GI8A 198 48 15�3.0<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

CL Cyl.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> symbol indicates<br />

that the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

attached at point Q<br />

<strong>Turbo</strong>charger<br />

Chain box<br />

a 0 a b e f<br />

CL Cyl.


<strong>MAN</strong> B&W 5.15<br />

Hydraulic Top Bracing Arrangement<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

0<br />

Fig. 5.15.01: Hydraulic top bracing data<br />

<strong>MAN</strong> B&W S65ME�C/ME�GI8<br />

4,635<br />

5,135<br />

5,135<br />

5,775<br />

542<br />

0<br />

542<br />

5,962<br />

7,046<br />

542<br />

0<br />

542<br />

4,878<br />

5,962<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

Top bracing should <strong>on</strong>ly be installed <strong>on</strong> <strong>on</strong>e side,<br />

either the exhaust side or the manoeuvring side.<br />

If top bracing has to be installed <strong>on</strong> manoeuvring<br />

side, please c<strong>on</strong>tact <strong>MAN</strong> <strong>Diesel</strong>.<br />

As the rigidity of the casing structure to which<br />

the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> attached <str<strong>on</strong>g>is</str<strong>on</strong>g> most important, it<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> recommended that the top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> attached<br />

directly into a deck.<br />

Required rigidity of the casing side<br />

In the axial directi<strong>on</strong> of the hydraulic top bracing:<br />

Force per bracing ......................................... 27 kN<br />

Max. corresp<strong>on</strong>ding<br />

deflecti<strong>on</strong> of casing side ...........................0.36 mm<br />

In the horiz<strong>on</strong>tal and vertical directi<strong>on</strong> of the hydraulic<br />

top bracing:<br />

6,010<br />

Force per bracing ...........................................22 kN<br />

Max. corresp<strong>on</strong>ding<br />

deflecti<strong>on</strong> of casing side ............................. 2.0 mm<br />

0<br />

178 52 38�8.0<br />

198 49 01�5.0


<strong>MAN</strong> B&W 5.16<br />

Comp<strong>on</strong>ents for Engine C<strong>on</strong>trol System<br />

Installati<strong>on</strong> of ECS in the Engine C<strong>on</strong>trol Room<br />

The following items are to be installed in the ECR<br />

(Engine C<strong>on</strong>trol Room):<br />

• 2 pcs EICU (Engine Interface C<strong>on</strong>trol Unit)<br />

( pcs <strong>on</strong>ly for ME-B engines)<br />

• pcs MOP (Main Operating Panel)<br />

Touch d<str<strong>on</strong>g>is</str<strong>on</strong>g>play, 5”<br />

PC unit<br />

• pcs Track ball for MOP<br />

• pcs PMI system<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>play, 9”<br />

PC unit<br />

• pcs Back�up MOP<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>play, 5”<br />

PC unit<br />

Keyboard<br />

• pcs Printer<br />

• pcs Ethernet Hub<br />

�������������<br />

�������������<br />

����������<br />

������������<br />

����������������<br />

����� �����<br />

������������ ���<br />

����������<br />

����������<br />

�������<br />

Page of 4<br />

The EICU functi<strong>on</strong>s as an interface unit to ECR<br />

related systems such as AMS (Alarm and M<strong>on</strong>itoring<br />

System), RCS (Remote C<strong>on</strong>trol System) and<br />

Safety System. On ME-B engines the EICU also<br />

c<strong>on</strong>trols the HPS.<br />

The MOP <str<strong>on</strong>g>is</str<strong>on</strong>g> the operator’s interface to the ECS.<br />

From there the operator can c<strong>on</strong>trol and see status<br />

of the engine and the ECS. The MOP <str<strong>on</strong>g>is</str<strong>on</strong>g> a PC<br />

with a flat touch screen.<br />

The Back�up MOP c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of a PC unit with<br />

keyboard and d<str<strong>on</strong>g>is</str<strong>on</strong>g>play and serves as a back�up in<br />

case the MOP should break down.<br />

The PMI offline system <str<strong>on</strong>g>is</str<strong>on</strong>g> equipped with a standard<br />

PC. The PMI system serves as a pressure<br />

analyse system. See Secti<strong>on</strong> 8.02.<br />

Opti<strong>on</strong>al items to be mounted in the ECR include<br />

the CoCoS�EDS which can be purchased separately<br />

and applied <strong>on</strong> the PC for the PMI offline<br />

system. See Secti<strong>on</strong> 8.03.<br />

����������<br />

��������������������������������������������������<br />

�������������<br />

Fig. 5.16.01 Network and PC comp<strong>on</strong>ents for the ME/ME-B Engine C<strong>on</strong>trol System<br />

178 57 50-3.0<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI/ME�B engines 198 46 97�7.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 5.16<br />

MOP (Main Operating Panel)<br />

Track ball<br />

���<br />

���<br />

����<br />

���<br />

Fig. 5.16.02 MOP and track ball for the ME/ME-B Engine C<strong>on</strong>trol System<br />

��<br />

���<br />

Page 2 of 4<br />

178 57 48-1.0<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI/ME�B engines 198 46 97�7.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�����<br />

��<br />

��<br />

��


<strong>MAN</strong> B&W 5.16<br />

EICU (Engine Interface C<strong>on</strong>trol Unit) Cabinet<br />

MOP PC unit<br />

���<br />

��<br />

������<br />

���<br />

�����<br />

���<br />

��� ���<br />

Fig. 5.16.03 The EICU cabinet and MOP PC unit for the ME/ME-B Engine C<strong>on</strong>trol System<br />

Page 3 of 4<br />

178 50 14�7.1<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI/ME�B engines 198 46 97�7.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���<br />

�������<br />

���<br />

���<br />

������<br />

��������������������������������<br />

����������������������������


<strong>MAN</strong> B&W 5.16<br />

PC parts for PMI/CoCoS<br />

19” D<str<strong>on</strong>g>is</str<strong>on</strong>g>play<br />

PC unit<br />

���<br />

Printer<br />

���<br />

���<br />

������<br />

���<br />

���<br />

Fig. 5.16.04 PMI/CoCoS PC unit, d<str<strong>on</strong>g>is</str<strong>on</strong>g>play and printer for the ME/ME-B Engine C<strong>on</strong>trol System<br />

���<br />

Page 4 of 4<br />

178 57 49-3.0<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI/ME�B engines 198 46 97�7.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���<br />

���<br />

��� ���


<strong>MAN</strong> B&W 5.17<br />

Shaftline Earthing Device<br />

Scope and field of applicati<strong>on</strong><br />

A difference in the electrical potential between the<br />

hull and the propeller shaft will be generated due<br />

to the difference in materials and to the propeller<br />

being immersed in sea water.<br />

In some cases, the difference in the electrical<br />

potential has caused spark erosi<strong>on</strong> <strong>on</strong> the thrust,<br />

main bearings and journals of the crankshaft of<br />

the engine.<br />

In order to reduce the electrical potential between<br />

the crankshaft and the hull and thus prevent spark<br />

erosi<strong>on</strong>, a highly efficient shaftline earthing device<br />

must be installed.<br />

The shaftline earthing device should be able to<br />

keep the electrical potential difference below 50<br />

mV DC, and a shaft-to-hull m<strong>on</strong>itoring equipment<br />

with an mV-meter and with an output signal to the<br />

alarm system must be installed so that the potential<br />

and thus the correct functi<strong>on</strong> of the shaftline<br />

earthing device can be m<strong>on</strong>itored.<br />

Note that <strong>on</strong>ly <strong>on</strong>e shaftline earthing device <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

needed in the propeller shaft system.<br />

Fig. 5.17.01<br />

������������<br />

�����������<br />

���������<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B/ME/ME�C engines<br />

���������<br />

��������������<br />

���������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Design descripti<strong>on</strong> of the shaftline<br />

earthing device<br />

Page 1 of 3<br />

The shaftline earthing device c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of two silver<br />

slip rings, two arrangements for holding brushes<br />

including c<strong>on</strong>necting cables and m<strong>on</strong>itoring<br />

equipment with an mV-meter and an output signal<br />

for alarm.<br />

The slip rings should be made of solid silver or<br />

back-up rings of cobber with a silver layer all over.<br />

The expected life span of the silver layer <strong>on</strong> the<br />

slip rings should be minimum 5 years.<br />

The brushes should be made of minimum 80%<br />

silver and 20% graphite to ensure a sufficiently<br />

electrical c<strong>on</strong>ducting capability.<br />

Res<str<strong>on</strong>g>is</str<strong>on</strong>g>tivity of the silver should be less than 0.1μ<br />

Ohm x m. The total res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance from the shaft to<br />

the hull must not exceed 0.005 Ohm. For a wellfuncti<strong>on</strong>ing<br />

shaftline earthing device, the res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> expected to be approximately 0.001 Ohm.<br />

�����<br />

���������<br />

�����������<br />

����������<br />

���������<br />

�������������<br />

������������<br />

�����������<br />

�����<br />

���������<br />

�����������<br />

�����<br />

��������<br />

������<br />

079 21 82-1.2.1.0<br />

198 49 29�2.3


<strong>MAN</strong> B&W 5.17<br />

A cable with a cross <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> not less than 45 mm²<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> used for cabling the shaftline earthing device to<br />

the hull. The length of the cable to the hull should<br />

be as short as possible.<br />

M<strong>on</strong>itoring equipment should have a 4-20 mA<br />

signal for alarm and a two range mV-meter with<br />

a switch for changing range. Primary range from<br />

0 mV to 50 -150 mV DC, and sec<strong>on</strong>dary range<br />

from 0 mV to 300-1500 mV DC.<br />

������<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B/ME/ME�C engines<br />

���������<br />

���������������<br />

�������������������<br />

�������������������������<br />

����������<br />

���������<br />

���������������<br />

�������<br />

������������������ ��������������������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

�������������<br />

��������������<br />

Page 2 of 3<br />

When the shaftline earthing device <str<strong>on</strong>g>is</str<strong>on</strong>g> working<br />

correctly, the electrical potential will normally be<br />

within the range of 10-50 mV DC. The alarm setpoints<br />

should be 5 mV for a low alarm and 80 mV<br />

for a high alarm. The alarm signals with an alarm<br />

delay of 30 sec<strong>on</strong>ds and an alarm cut-off, when<br />

the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> stopped, must be c<strong>on</strong>nected to the<br />

alarm system.<br />

C<strong>on</strong>necti<strong>on</strong> of cables as shown <strong>on</strong> the sketch,<br />

Fig. 5.17.01.<br />

079 21 82-1.2.2.0<br />

Fig. 5.17.02: The shaftline earthing device slip rings must be fitted <strong>on</strong> the foremost intermediate shaft as close to the<br />

engine as possible<br />

198 49 29�2.3


<strong>MAN</strong> B&W 5.17<br />

Suppliers<br />

������<br />

Supplier ref. no. 1386:<br />

BAC Corrosi<strong>on</strong> C<strong>on</strong>trol A/S<br />

Faeroevej 7-9<br />

DK-4681 Herfoelge, Denmark<br />

Teleph<strong>on</strong>e: +45 70 26 89 00<br />

Telefax: +45 70 26 97 00<br />

Email: info@bacbera.dk<br />

Website: www.bacbera.dk<br />

Supplier ref. no. 1606:<br />

<strong>MAN</strong> B&W MC/MC�C, ME-B/ME/ME�C engines<br />

���������<br />

���������������<br />

������������������<br />

��������������������������<br />

M. G. Duff Marie Limited<br />

1 Timberlaine Estate<br />

Gravel Lane, Quarry Lane, Chichester<br />

West Sussex, PO19 8PP, England<br />

Teleph<strong>on</strong>e: +44 1243 533 336<br />

Telefax: +44 1243 533 422<br />

Email: sales@mgduff.co.uk<br />

Website: www.mgduff.co.uk<br />

�������������������<br />

�������������������������<br />

����������<br />

���������<br />

���������������<br />

�������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

�������������������������<br />

���������������������������<br />

����������������������<br />

�������������<br />

��������������<br />

Page 3 of 3<br />

079 21 82-1.2.3.0<br />

Fig. 5.17.03: When a generator <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted, the shaftline earthing device must be placed between the generator and the<br />

engine<br />

198 49 29�2.3


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities:<br />

Pumps, Coolers &<br />

Exhaust Gas<br />

6


<strong>MAN</strong> B&W 6.01<br />

Calculati<strong>on</strong> of L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities and Exhaust Gas Data<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> chapter describes the necessary auxiliary machinery<br />

capacities to be used for a nominally rated<br />

engine. The capacities given are valid for seawater<br />

cooling system and central cooling water system,<br />

respectively. For derated engine, i.e. with a specified<br />

MCR and/or matching point different from the<br />

nominally rated MCR point, the l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities<br />

will be different from the nominal capacities.<br />

Nomenclature<br />

�����<br />

������<br />

��<br />

Page of<br />

Furthermore, am<strong>on</strong>g others, the exhaust gas data<br />

depends <strong>on</strong> the ambient temperature c<strong>on</strong>diti<strong>on</strong>s.<br />

Based <strong>on</strong> examples for a derated engine, the way<br />

of how to calculate the derated capacities, freshwater<br />

producti<strong>on</strong> and exhaust gas amounts and<br />

temperatures will be described in details.<br />

In the following descripti<strong>on</strong> and examples of the auxiliary machinery capacities, freshwater generator pro-<br />

Engine ratings Point / Index Power Speed<br />

Nominal MCR point L PL nL Specified MCR point M PM nM Matching point O PO nO Service point S PS nS Parameters<br />

Q = Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong><br />

V = Volume flow<br />

M = Mass flow<br />

T = Temperature<br />

air<br />

Cooler index<br />

scavenge air cooler<br />

lub lube oil cooler<br />

jw jacket water cooler<br />

cent central cooler<br />

Fig. 6.01.02: Nomenclature of coolers and volume flows, etc.<br />

Engine c<strong>on</strong>figurati<strong>on</strong>s related to SFOC<br />

ME/ME�C engines 198 43 33�5.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

��<br />

�<br />

��<br />

��<br />

��<br />

��<br />

�������������������������<br />

sw<br />

Flow index<br />

seawater flow<br />

cw cooling/central water flow<br />

exh exhaust gas<br />

fw freshwater<br />

For S70ME�C/ME�GI, L70ME�C, S65ME�C/ME�GI, S60ME�C/ME�GI, L60ME�C, S50ME�C<br />

The engine type <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> in the following two<br />

versi<strong>on</strong>s with respect to the efficiency of the turbocharger:<br />

• A) With high efficiency turbocharger, case A:<br />

which <str<strong>on</strong>g>is</str<strong>on</strong>g> the basic design and for which the l<str<strong>on</strong>g>is</str<strong>on</strong>g>ts<br />

of capacities Secti<strong>on</strong> 6.03 are calculated.<br />

• B) With c<strong>on</strong>venti<strong>on</strong>al turbocharger, case B:<br />

Which <str<strong>on</strong>g>is</str<strong>on</strong>g> an opti<strong>on</strong>al design (EoD No. 4 59 07)<br />

if a higher exhaust gas temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> required<br />

for the exhaust gas boiler. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> modificati<strong>on</strong><br />

will lead to a 7�8% reducti<strong>on</strong> in the exhaust gas<br />

amount and a temperature increase of about<br />

20°C. The SFOC penalty will be 2 g/kWh, see<br />

example in Fig. 6.0 .03. The corresp<strong>on</strong>ding l<str<strong>on</strong>g>is</str<strong>on</strong>g>ts<br />

of capacities are shown in Secti<strong>on</strong> 6.03.<br />

����������������������������<br />

��<br />

���� ���� ���� ���� ���� ����� �����<br />

�������������������<br />

198 96 82�4.5<br />

Fig. 6.01.03: SFOC curves for (A) high efficiency and<br />

(B) c<strong>on</strong>venti<strong>on</strong>al turbochargers, respectively<br />

�<br />


<strong>MAN</strong> B&W 6.02<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities and Cooling Water Systems<br />

The L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities c<strong>on</strong>tain data regarding the<br />

necessary capacities of the auxiliary machinery<br />

for the main engine <strong>on</strong>ly, and refer to a nominally<br />

rated engine. Complying with IMO Tier I NO x limitati<strong>on</strong>s.<br />

The heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> figures include 0% extra<br />

margin for overload running except for the scavenge<br />

air cooler, which <str<strong>on</strong>g>is</str<strong>on</strong>g> an integrated part of the<br />

diesel engine.<br />

Cooling Water Systems<br />

The capacities given in the tables are based <strong>on</strong><br />

tropical ambient reference c<strong>on</strong>diti<strong>on</strong>s and refer to<br />

engines with high efficiency/c<strong>on</strong>venti<strong>on</strong>al turbocharger<br />

running at nominal MCR (L ) for:<br />

• Seawater cooling system,<br />

See diagram, Fig. 6.02.0 and nominal capacities<br />

in Fig. 6.03.0<br />

• Central cooling water system,<br />

See diagram, Fig. 6.02.02 and nominal capacities<br />

in Fig. 6.03.0<br />

Seawater<br />

32 C<br />

Fig. 6.02.01: Diagram for seawater cooling system<br />

Seawater outlet<br />

Seawater inlet<br />

32 C<br />

45 C<br />

Central<br />

cooler<br />

<strong>MAN</strong> B&W MC, MC-C, ME, ME-B, ME-C, ME-GI engines<br />

Scavenge air cooler<br />

Lubricating oil cooler<br />

Central coolant<br />

36 C<br />

Fig. 6.02.02: Diagram for central cooling water system<br />

38 C<br />

Scavenge<br />

air<br />

cooler (s)<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

The capacities for the starting air receivers and<br />

the compressors are stated in Fig. 6.03.0 .<br />

Heat radiati<strong>on</strong> and air c<strong>on</strong>sumpti<strong>on</strong><br />

The radiati<strong>on</strong> and c<strong>on</strong>vecti<strong>on</strong> heat losses to the<br />

engine room <str<strong>on</strong>g>is</str<strong>on</strong>g> around % of the engine nominal<br />

power (kW in L ).<br />

The air c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> approximately 98.2%<br />

of the calculated exhaust gas amount, ie.<br />

M air = M exh x 0.982.<br />

Flanges <strong>on</strong> engine, etc.<br />

The locati<strong>on</strong> of the flanges <strong>on</strong> the engine are<br />

shown in: ‘Engine pipe c<strong>on</strong>necti<strong>on</strong>s’, and the flanges<br />

are identified by reference letters stated in the<br />

‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of flanges’; both can be found in Chapter 5.<br />

The diagrams use the ‘Basic symbols for piping’,<br />

whereas the symbols for instrumentati<strong>on</strong> according<br />

to ‘ISO 2 9� ’ and ‘ISO 2 9�2’ and the instrumentati<strong>on</strong><br />

l<str<strong>on</strong>g>is</str<strong>on</strong>g>t found in Appendix A.<br />

Jacket water cooler<br />

45 C<br />

80 C<br />

Jaket<br />

water<br />

cooler<br />

Lubricating<br />

oil<br />

cooler<br />

43 C<br />

Seawater outlet<br />

80 C<br />

178 11 26�4.1<br />

178 11 27�6.1<br />

198 50 42-8.3


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.03<br />

Page 1 of 5<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities, S65ME-C/ME-GI, High efficiency T/C and seawater cooling system<br />

Pumps<br />

Coolers<br />

Cyl. 5 6 7 8<br />

Nominal MCR at 95.0 r/min kW 14,350 17,220 20,090 22,960<br />

Fuel oil circulating pump m 3 /h 5.7 6.8 8.0 9.1<br />

Fuel oil supply pump m 3 /h 3.6 4.3 5.0 5.7<br />

Jacket cooling pump m 3 /h 1) 120 145 165 190<br />

2) 120 145 165 190<br />

3) 120 145 165 190<br />

Seawater cooling pump* m 3 /h 1) 465 560 650 740<br />

2) 465 560 650 750<br />

3) 465 560 650 740<br />

Main lubricating oil pump* m 3 /h 1) 285 345 400 460<br />

2) 285 345 400 460<br />

3) 290 345 400 460<br />

Scavenge air cooler(s):<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx. kW 5,860 7,030 8,200 9,370<br />

Seawater quantity m 3 /h 305 366 427 488<br />

Lubricating oil cooler:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.* kW 1) 1,130 1,360 1,570 1,860<br />

2) 1,150 1,420 1,620 1,900<br />

3) 1,140 1,380 1,580 1,830<br />

Lubricating oil flow* m 3 /h See above ‘Main lubricating oil pump’<br />

Seawater quantity m 3 /h 1) 160 194 223 252<br />

2) 160 194 223 262<br />

3) 160 194 223 252<br />

Jacket water cooler:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx. kW 1) 2,080 2,490 2,910 3,320<br />

2) 2,080 2,490 2,910 3,320<br />

3) 2,080 2,490 2,910 3,320<br />

Jacket cooling water qty. m 3 /h See above ‘Jacket cooling pump’<br />

Seawater quantity m 3 /h See above ‘Seawater quantity’<br />

Fuel oil heater kW 150 180 210 240<br />

Exhaust gas amount at 245º C**<br />

at ISO ambient c<strong>on</strong>diti<strong>on</strong>s kg/h 133,000 159,600 186,200 212,800<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 36.3 43.5 50.8 58.0<br />

* For main engine arrangements with built-<strong>on</strong> power take-off (PTO) of an <strong>MAN</strong> B&W recommended type and/or torsi<strong>on</strong>al vibrati<strong>on</strong><br />

damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specificati<strong>on</strong><br />

1) Engines with <strong>MAN</strong> B&W turbochargers, type TCA 3) Engines with Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbochargers<br />

2) Engines with <strong>MAN</strong> B&W turbochargers, type TPL<br />

Fig. 6.03.01a: High efficiency turbocharger and seawater cooling system stated at the nominal MCR power (L 1 )<br />

for engines complying with IMO’s NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> limitati<strong>on</strong>s<br />

S65ME-C/ME-GI 198 48 96-6.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.03<br />

Pumps<br />

Coolers<br />

Page 2 of 5<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities, S65ME-C/ME-GI, High efficiency T/C and central cooling water system<br />

Cyl. 5 6 7 8<br />

, Nominal MCR at 95.0 r/min kW 14,350 17,220 20,090 22,960<br />

Fuel oil circulating pump m3 /h 5.7 6.8 8.0 9.1<br />

Fuel oil supply pump m3 /h 3.6 4.3 5.0 5.7<br />

Jacket cooling pump m3 /h 1) 120 145 165 190<br />

2) 120 145 165 190<br />

3) 120 145 165 190<br />

Central cooling pump* m3 /h 1) 360 430 500 580<br />

2) 360 435 500 580<br />

3) 360 430 500 570<br />

Seawater cooling pump* m3 /h 1) 445 530 620 710<br />

2) 445 540 620 720<br />

3) 445 530 620 710<br />

Main lubricating oil pump* m3 /h 1) 285 345 400 460<br />

2) 285 345 400 460<br />

3)<br />

Scavenge air cooler(s):<br />

290 345 400 460<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.<br />

Lubricating oil cooler:<br />

kW 5,820 6,980 8,140 9,310<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.* kW 1) 1,130 1,360 1,570 1,860<br />

2) 1,150 1,420 1,620 1,900<br />

3) 1,140 1,380 1,580 1,830<br />

Lubricating oil flow m3 /h See above ‘Main lubricating oil pump’<br />

Central cooling water qty. m3 /h 1) 155 184 213 252<br />

2) 155 189 213 252<br />

Jacket water cooler:<br />

3) 155 184 213 242<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx. kW 1) 2,080 2,490 2,910 3,320<br />

2) 2,080 2,490 2,910 3,320<br />

3) 2,080 2,490 2,910 3,320<br />

Jacket cooling water qty. m3 /h See above ‘Jacket cooling pump’<br />

Central cooling water qty. m3 Central cooler:<br />

/h See above ‘Central cooling water quantity’ for lube oil<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.* kW 1) 9,030 10,830 12,620 14,490<br />

2) 9,050 10,890 12,670 14,530<br />

3) 9,040 10,850 12,630 14,460<br />

Central cooling water qty. m3 /h See above ‘Central cooling pump’<br />

Seawater quantity m3 /h See above ‘Seawater cooling pump’<br />

Fuel oil heater kW 150 180 210 240<br />

Exhaust gas amount at 245º C**<br />

at ISO ambient c<strong>on</strong>diti<strong>on</strong>s kg/h 133,000 159,600 186,200 212,800<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 36.3 43.5 50.8 58.0<br />

* For main engine arrangements with built-<strong>on</strong> power take-off (PTO) of an <strong>MAN</strong> B&W recommended type and/or torsi<strong>on</strong>al vibrati<strong>on</strong><br />

damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specificati<strong>on</strong><br />

1) Engines with <strong>MAN</strong> B&W turbochargers, type TCA 3) Engines with Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbochargers<br />

2) Engines with <strong>MAN</strong> B&W turbochargers, type TPL<br />

Fig. 6.03.02a: High efficiency turbocharger and central cooling water system stated at the nominal MCR power (L 1 )<br />

for engines complying with IMO’s NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> limitati<strong>on</strong>s<br />

S65ME-C/ME-GI 198 48 96-6.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.03<br />

Pumps<br />

Coolers<br />

Fig. 6.03.01b: C<strong>on</strong>venti<strong>on</strong>al turbocharger and seawater cooling system stated at the nominal MCR power (L 1 )<br />

for engines complying with IMO’s NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> limitati<strong>on</strong>s<br />

Page 3 of 5<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities, S65ME-C/ME-GI, C<strong>on</strong>venti<strong>on</strong>al T/C and seawater cooling system<br />

Cyl. 5 6 7 8<br />

Nominal , MCR at 95.0 r/min kW 14,350 17,220 20,090 22,960<br />

Fuel oil circulating pump m3 /h 5.8 6.9 8.1 9.2<br />

Fuel oil supply pump m3 /h 3.6 4.3 5.1 5.8<br />

Jacket cooling pump m3 /h 1) 120 145 165 190<br />

2) 120 145 165 190<br />

3) 120 145 165 190<br />

Seawater cooling pump* m3 /h 1) 450 540 630 720<br />

2) 450 540 630 720<br />

3) 450 540 630 720<br />

Main lubricating oil pump* m3 /h 1) 285 340 400 455<br />

2) 285 345 400 455<br />

3)<br />

Scavenge air cooler(s):<br />

285 340 400 455<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx. kW 5,570 6,690 7,800 8,910<br />

Seawater flow m3 Lubricating oil cooler:<br />

/h 290 348 406 464<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.* kW 1) 1,130 1,340 1,570 1,770<br />

2) 1,150 1,420 1,620 1,820<br />

3) 1,120 1,350 1,580 1,790<br />

Lubricating oil flow m3 /h See above ‘Main lubricating oil pump’<br />

Central cooling water qty. m3 /h 1) 160 192 224 256<br />

2) 160 192 224 256<br />

Jacket water cooler:<br />

3) 160 192 224 256<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx. kW 1) 2,080 2,490 2,910 3,320<br />

2) 2,080 2,490 2,910 3,320<br />

3) 2,080 2,490 2,910 3,320<br />

Jacket cooling water qty. m3 /h See above ‘Jacket cooling pump’<br />

Seawater quantity m3 /h See above ‘Seawater cooling pump’<br />

Fuel oil heater kW 150 180 210 240<br />

Exhaust gas amount at 265º C**<br />

at ISO ambient c<strong>on</strong>diti<strong>on</strong>s kg/h 123,000 147,600 172,200 196,800<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 33.5 40.2 46.9 53.6<br />

* For main engine arrangements with built-<strong>on</strong> power take-off (PTO) of an <strong>MAN</strong> B&W recommended type and/or torsi<strong>on</strong>al vibrati<strong>on</strong><br />

damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specificati<strong>on</strong><br />

1) Engines with <strong>MAN</strong> B&W turbochargers, type TCA 3) Engines with Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbochargers<br />

2) Engines with <strong>MAN</strong> B&W turbochargers, type TPL<br />

S65ME-C/ME-GI 198 48 96-6.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.03<br />

Pumps<br />

Coolers<br />

Page 4 of 5<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities, S65ME-C/ME-GI, C<strong>on</strong>venti<strong>on</strong>al T/C and central cooling water system<br />

Cyl. 5 6 7 8<br />

, Nominal MCR at 95.0 r/min kW 14,350 17,220 20,090 22,960<br />

Fuel oil circulating pump m3 /h 5.8 6.9 8.1 9.2<br />

Fuel oil supply pump m3 /h 3.6 4.3 5.1 5.8<br />

Jacket cooling pump m3 /h 1) 120 145 165 190<br />

2) 120 145 165 190<br />

3) 120 145 165 190<br />

Central cooling pump* m3 /h 1) 350 415 485 560<br />

2) 350 420 490 560<br />

3) 350 420 490 560<br />

Seawater cooling pump* m3 /h 1) 430 520 600 690<br />

2) 430 520 600 690<br />

3) 430 520 600 690<br />

Main lubricating oil pump* m3 /h 1) 285 340 400 455<br />

2) 285 345 400 455<br />

3)<br />

Scavenge air cooler(s):<br />

285 340 400 455<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.<br />

Lubricating oil cooler:<br />

kW 5,540 6,650 7,750 8,860<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.* kW 1) 1,130 1,340 1,570 1,770<br />

2) 1,150 1,420 1,620 1,820<br />

3) 1,120 1,350 1,580 1,790<br />

Lubricating oil flow m3 /h See above ‘Main lubricating oil pump’<br />

Central cooling water qty. m3 /h 1) 155 181 212 248<br />

2) 155 186 217 248<br />

Jacket water cooler:<br />

3) 155 186 217 248<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx. kW 1) 2,080 2,490 2,910 3,320<br />

2) 2,080 2,490 2,910 3,320<br />

3) 2,080 2,490 2,910 3,320<br />

Jacket cooling water qty. m3 /h See above ‘Jacket cooling pump’<br />

Central cooling water qty. m3 Central cooler:<br />

/h See above ‘Central cooling water quantity’ for lube oil<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> approx.* kW 1) 8,750 10,480 12,230 13,950<br />

2) 8,770 10,560 12,280 14,000<br />

3) 8,740 10,490 12,240 13,970<br />

Central cooling water qty. m3 /h See above ‘Central cooling water pump’<br />

Seawater quantity m3 /h See above ‘Seawater cooling pump’<br />

Fuel oil heater kW 150 180 210 240<br />

Exhaust gas amount at 265º C**<br />

at ISO ambient c<strong>on</strong>diti<strong>on</strong>s kg/h 123,000 147,600 172,200 196,800<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/h 33.5 40.2 46.9 53.6<br />

* For main engine arrangements with built-<strong>on</strong> power take-off (PTO) of an <strong>MAN</strong> B&W recommended type and/or torsi<strong>on</strong>al vibrati<strong>on</strong><br />

damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specificati<strong>on</strong><br />

1) Engines with <strong>MAN</strong> B&W turbochargers, type TCA 3) Engines with Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbochargers<br />

2) Engines with <strong>MAN</strong> B&W turbochargers, type TPL<br />

Fig. 6.03.02b: C<strong>on</strong>venti<strong>on</strong>al turbocharger and central cooling water system stated at the nominal MCR power (L 1 )<br />

for engines complying with IMO’s NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> limitati<strong>on</strong>s<br />

S65ME-C/ME-GI 198 48 96-6.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.03<br />

Capacities of starting air receivers and compressors for S65ME-C/ME-GI<br />

Starting air system: 30 bar (gauge)<br />

Cylinder No. 5 6 7 8<br />

Fig.: 6.03.03: Capacities of starting air receivers and compressors for main engine S65ME-C<br />

Page 5 of 5<br />

Reversible engine, 12 starts<br />

Receiver volume m3 2 x 6.5 2 x 7.0 2 x 7.0 2 x 7.0<br />

Compressor capacity, total Nm3 /h 390 420 420 420<br />

N<strong>on</strong>-reversible engine, 6 starts<br />

Receiver volume m3 2 x 3.5 2 x 3.5 2 x 3.5 2 x 4.0<br />

Compressor capacity, total Nm3 /h 210 210 210 240<br />

178 45 67-7.1<br />

S65ME-C/ME-GI 198 48 96-6.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

Auxiliary Machinery Capacities<br />

The dimensi<strong>on</strong>ing of heat exchangers (coolers) and<br />

pumps for derated engines can be calculated <strong>on</strong><br />

the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of the heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> values found by<br />

using the following descripti<strong>on</strong> and diagrams. Those<br />

for the nominal MCR (L 1 ), may also be used if<br />

wanted.<br />

The nomenclature of the basic engine rratings and<br />

coolers, etc. used in th<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig.<br />

6.01.01 and 6.01.02.<br />

Cooler heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>s<br />

For the specified MCR (M) the following three diagrams<br />

in Figs. 6.04.01, 6.04.02 and 6.04.03 show reducti<strong>on</strong><br />

factors for the corresp<strong>on</strong>ding heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>s for the<br />

coolers, relative to the values stated in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities’<br />

valid for nominal MCR (L 1 ).<br />

L 3<br />

L 4<br />

Q air%<br />

Q air% = 100 x (P M /P L1 ) 1.68 x (n M /n L1 ) – 0.83 x k O<br />

k O = 1 + 0.27 x (1 – P O /P M )<br />

Specified MCR power, % of L 1<br />

65%<br />

178 51 00-9.0<br />

Fig. 6.04.01: Scavenge air cooler, heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> Q air% in<br />

point M, in % of the L 1 value Q air, L1 and valid for P O = P M .<br />

If matching point O lower than M, an extra correcti<strong>on</strong> k O<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> used<br />

P M%<br />

110%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

80% 85% 90% 95% 100% 105% 110% nM% M<br />

L1 100%<br />

90%<br />

80%<br />

70%<br />

L2 Specified MCR engine speed, % of L 1<br />

Page 1 of 12<br />

The percentage power (P M% ) and speed (n M% ) of L 1<br />

ie: P M% = P M /P L1 x 100%<br />

n M% = n M /n L1 x 100%<br />

for specified MCR (M) of the derated engine <str<strong>on</strong>g>is</str<strong>on</strong>g> used<br />

as input in the above-menti<strong>on</strong>ed diagrams, giving<br />

the % heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> figures relative to those in<br />

the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities’,<br />

Specified MCR power, % af L 1<br />

Q = e jw% (– 0.0811 x ln (n M% ) + 0.8072 x ln (P ) + 1.2614)<br />

M%<br />

178 51 01-0.0<br />

Fig. 6.04.02: Jacket water cooler, heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> Q jw% in<br />

point M, in % of the L 1 value Q jw, L1<br />

Q lub% = 67.3009 x ln (n M% ) + 7.6304 x ln (P M% )<br />

- 245.0714<br />

178 50 02-2.0<br />

Fig. 6.04.03: Lubricating oil cooler, heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> Q lub%<br />

in point M, in % of the L 1 value Q lub, L1<br />

K90ME-C, K80ME-C, L70ME-C, S65ME-C, L60ME-C 198 43 74-2.2<br />

90%<br />

86%<br />

82%<br />

78%<br />

Q jw%<br />

94%<br />

O<br />

98%<br />

P M%<br />

110%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

80% 85% 90% 95% 100% 105% n M%<br />

88%<br />

90% 92% 94%<br />

Q lub%<br />

M<br />

L 1<br />

Specified MCR engine speed, % of L 1<br />

Specified MCR power, % af L 1<br />

96%<br />

98% L 1<br />

80% 85% 90% 95% 100% 105% n M%<br />

M<br />

Specified MCR engine speed, % of L 1<br />

P M%<br />

110%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

The derated cooler capacities may then be found<br />

by means of following equati<strong>on</strong>s:<br />

Q = Q air, M air, L1 x (Q / 100)<br />

air%<br />

Q = Q jw, M jw, L1 x (Q / 100)<br />

jw%<br />

Q = Q lub, M lub, L1 x (Q / 100)<br />

lub%<br />

and for a central cooling water system the central<br />

cooler heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

Q = Q + Q + Q cent,M air,M jw,M lub,M<br />

Pump capacities<br />

The pump capacities given in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities’<br />

refer to engines rated at nominal MCR (L 1 ). For<br />

lower rated engines, <strong>on</strong>ly a marginal saving in the<br />

pump capacities <str<strong>on</strong>g>is</str<strong>on</strong>g> obtainable.<br />

To ensure proper lubricati<strong>on</strong>, the lubricating oil pump<br />

must remain unchanged.<br />

Also, the fuel oil circulating and supply pumps should<br />

remain unchanged.<br />

In order to ensure reliable starting, the starting air<br />

compressors and the starting air receivers must also<br />

remain unchanged.<br />

The jacket cooling water pump capacity <str<strong>on</strong>g>is</str<strong>on</strong>g> relatively<br />

low. Practically no saving <str<strong>on</strong>g>is</str<strong>on</strong>g> possible, and it <str<strong>on</strong>g>is</str<strong>on</strong>g> therefore<br />

unchanged.<br />

Seawater cooling system<br />

The derated seawater pump capacity <str<strong>on</strong>g>is</str<strong>on</strong>g> equal to<br />

the sum of the below found derated seawater flow<br />

capacities through the scavenge air and lube oil<br />

coolers, as these are c<strong>on</strong>nected in parallel.<br />

The seawater flow capacity for each of the scavenge<br />

air, lube oil and jacket water coolers can be<br />

reduced proporti<strong>on</strong>ally to the reduced heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>s<br />

found in Figs. 6.04.01, 6.04.02 and 6.04.03,<br />

respectively i.e. as follows:<br />

V = V sw,air,M sw,air,L1 x (Q / 100)<br />

air%<br />

V = V sw,lub,M sw,lub.L1 x Q / 100)<br />

lub%<br />

V = V sw,jw,M sw,lub,M<br />

However, regarding the scavenge air cooler(s), the<br />

engine maker has to approve th<str<strong>on</strong>g>is</str<strong>on</strong>g> reducti<strong>on</strong> in order<br />

Page 2 of 12<br />

to avoid too low a water velocity in the scavenge air<br />

cooler pipes.<br />

As the jacket water cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected in series<br />

with the lube oil cooler, the seawater flow capacity<br />

for the latter <str<strong>on</strong>g>is</str<strong>on</strong>g> used also for the jacket water cooler.<br />

Central cooling water system<br />

If a central cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> used, the above still applies,<br />

but the central cooling water capacities are used<br />

instead of the above seawater capacities. The seawater<br />

flow capacity for the central cooler can be<br />

reduced in proporti<strong>on</strong> to the reducti<strong>on</strong> of the total<br />

cooler heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>, i.e. as follows:<br />

V =V cw,air,M<br />

cw,air,L1 x (Q / 100)<br />

air%<br />

=Vcw,lub,L1 x (Q / 100)<br />

lub%<br />

Vcw,lub,M Vcw,jw,M =V cw,lub,M<br />

Vcw,cent,M =V + V cw,air,M cw,lub,M<br />

Vsw,cent,M =Vsw,cent,L1 x Qcent,M / Qcent,L1 Pump pressures<br />

Irrespective of the capacities selected as per the<br />

above guidelines, the below-menti<strong>on</strong>ed pump heads<br />

at the menti<strong>on</strong>ed maximum working temperatures<br />

for each system shall be kept:<br />

Fuel oil supply pump 4 100<br />

Fuel oil circulating pump 6 150<br />

Lubricating oil pump 4.3 70<br />

Seawater pump 2.5 50<br />

Central cooling water pump 2.5 80<br />

Jacket water pump 3.0 100<br />

Flow velocities<br />

Pump<br />

head bar<br />

Max. working<br />

temp. °C<br />

For external pipe c<strong>on</strong>necti<strong>on</strong>s, we prescribe the following<br />

maximum velocities:<br />

Marine diesel oil ......................................... 1.0 m/s<br />

Heavy fuel oil.............................................. 0.6 m/s<br />

Lubricating oil............................................. 1.8 m/s<br />

Cooling water ............................................. 3.0 m/s<br />

L70ME-C, S60ME-C 198 43 85-0.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

Calculati<strong>on</strong> of L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities for Derated Engine<br />

Example 1:<br />

Pump and cooler capacities for a derated 6S65ME-C with high efficiency <strong>MAN</strong> B&W turbocharger,<br />

type TCA with fixed pitch propeller and central cooling water system.<br />

Nominal MCR, (L 1 ) P L1 : 17,220 kW (100%) and 95.0 r/min (100.0%)<br />

Specified MCR, (M) P M : 14,637 kW (85.0%) and 92.2 r/min (97.0%)<br />

Matching point, (O) P O : 13,173 kW (76.5%) and 89.0 r/min (93.7%), P O = 90.0% of P M<br />

The method of calculating the reduced capacities<br />

for point M (n M% = 97.0 and P M% = 85.0) <str<strong>on</strong>g>is</str<strong>on</strong>g> shown<br />

below.<br />

The values valid for the nominal rated engine are<br />

found in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities’, Figs. 6.03.01 and<br />

6.03.02, and are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted together with the result in<br />

the figure <strong>on</strong> the next page.<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> of scavenge air cooler<br />

Fig. 6.04.01 which approximate indicates a Q = air%<br />

78.1% heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>, and corrected for matching<br />

point O lower than M, by applying correcting<br />

factor k , equal 78.1 x (1 + 0.27 x (1 – 0.900)) = 80.2%<br />

O<br />

i.e.:<br />

Q =Q air,M air,L1 x Q / 100<br />

air%<br />

Q air,M = 6,980 x 0.802 = 5,598 kW<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> of jacket water cooler<br />

Fig. 6.04.02 indicates a Q = 87.9% heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipa-<br />

jw%<br />

ti<strong>on</strong>; i.e.:<br />

Q = Q jw,M jw,L1 x Q / 100<br />

jw%<br />

Q jw,M = 2,490 x 0.879 = 2,189 kW<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> of lube oil cooler<br />

Fig. 6.04.03 indicates a Q lub% = 96.7% heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong>;<br />

i.e.:<br />

Q lub,M = Q lub, L1 x Q lub% / 100<br />

Q lub,M = 1,360 x 0.967 = 1,315 kW<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> of central water cooler<br />

Q cent,M = Q air,M + Q jw,M + Q lub, M<br />

Page 3 of 12<br />

Q cent,M = 5,598 + 2,189 + 1,315 = 9,102 kW<br />

Scavenge air coolers:<br />

V = V cw,air,M cw,air,L1 x Q / 100<br />

air%<br />

V cw,air,M = 246 x 0.802 = 197 m 3 /h<br />

Cooling water flow through lubricating oil cooler:<br />

V cw,lub,M = V cw,lub,L1 x Q lub% / 100<br />

V cw,lub,M = 184 x 0.967 = 178 m 3 /h<br />

Cooling water flow through central cooler (Central<br />

cooling water pump):<br />

V cw,cent,M = V cw,air,M + V cw,lub,M<br />

V cw,cent,M = 197 + 178 = 375 m 3 /h<br />

Cooling water flow through jacket water cooler<br />

(as for lube oil cooler):<br />

V cw,jw,M = V cw,lub,M<br />

V cw,jw,M = 178 m 3 /h<br />

Seawater pump for central cooler<br />

As the seawater pump capacity and the central<br />

cooler heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> for the nominal rated engine<br />

found in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities’ are 530 m 3 /h and<br />

10,830 kW the derated seawater pump flow equals:<br />

Seawater pump:<br />

V sw,cent,M = V sw,cent,L1 x Q cent,M / Q cent,L1<br />

530 x 9,102 / 10,830 = 445 m 3 /h<br />

S65ME-C 198 48 26-1.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

Page 4 of 12<br />

Nominal rated engine (L 1 ) Example 1<br />

high efficiency Specified MCR (M)<br />

turbochargers (TCA)<br />

Shaft power at SMCR 17,220 kW 14,637 kW<br />

Engine speed at SMCR at 95.0 r/min at 92.2 r/min<br />

Power of matching point %SMCR 100% 90%<br />

Pumps:<br />

Fuel oil circulating pump m 3 /h 6.8 6.8<br />

Fuel oil supply pump m 3 /h 4.3 4.3<br />

Jacket cooling water pump m 3 /h 145 145<br />

Central cooling water pump m 3 /h 430 375<br />

Seawater pump m 3 /h 530 445<br />

Lubricating oil pump m 3 /h 345 345<br />

Coolers:<br />

Scavenge air cooler<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 6,980 5,598<br />

Central water quantity m 3 /h 246 197<br />

Lub. oil cooler<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 1,360 1,315<br />

Lubricating oil quantity m 3 /h 355 355<br />

Central water quantity m 3 /h 184 178<br />

Jacket water cooler<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 2,490 2,189<br />

Jacket cooling water quantity m 3 /h 145 145<br />

Central water quantity m 3 /h 184 178<br />

Central cooler<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 10,830 9,102<br />

Central water quantity m 3 /h 430 375<br />

Seawater quantity m 3 /h 530 445<br />

Fuel oil heater: kW 180 180<br />

Gases at ISO ambient c<strong>on</strong>diti<strong>on</strong>s*<br />

Exhaust gas amount kg/h 159,000 133,600<br />

Exhaust gas temperature °C 245 238.2<br />

Air c<strong>on</strong>sumpti<strong>on</strong> kg/sec. 43.5 36.4<br />

Starting air system: 30 bar (gauge)<br />

Reversible engine<br />

Receiver volume (12 starts) m 3 2 x 7.0 2 x 7.0<br />

Compressor capacity, total m 3 /h 420 420<br />

N<strong>on</strong>-reversible engine<br />

Receiver volume (6 starts) m 3 2 x 3.5 2 x 3.5<br />

Compressor capacity, total m 3 /h 210 210<br />

Exhaust gas tolerances: temperature –/+ 15 °C and amount +/– 5%<br />

The air c<strong>on</strong>sumpti<strong>on</strong> and exhaust gas figures are expected and refer to 100% specified MCR,<br />

ISO ambient reference c<strong>on</strong>diti<strong>on</strong>s and the exhaust gas back pressure 300 mm WC<br />

The exhaust gas temperatures refer to after turbocharger<br />

* Calculated in example 3, in th<str<strong>on</strong>g>is</str<strong>on</strong>g> chapter<br />

Example 1 – Capacities of derated 6S65ME-C with high efficiency <strong>MAN</strong> B&W turbocharger type TCA and<br />

central cooling water system.<br />

S65ME-C 198 48 26-1.1


<strong>MAN</strong> B&W 6.04<br />

Freshwater Generator<br />

If a freshwater generator <str<strong>on</strong>g>is</str<strong>on</strong>g> installed and <str<strong>on</strong>g>is</str<strong>on</strong>g> util<str<strong>on</strong>g>is</str<strong>on</strong>g>ing<br />

the heat in the jacket water cooling system,<br />

it should be noted that the actual <str<strong>on</strong>g>available</str<strong>on</strong>g> heat<br />

in the jacket cooling water system <str<strong>on</strong>g>is</str<strong>on</strong>g> lower than<br />

indicated by the heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> figures valid for<br />

nominal MCR (L 1 ) given in the L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> because the latter figures are used for<br />

dimensi<strong>on</strong>ing the jacket water cooler and hence<br />

incorporate a safety margin which can be needed<br />

when the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> operating under c<strong>on</strong>diti<strong>on</strong>s<br />

such as, e.g. overload. Normally, th<str<strong>on</strong>g>is</str<strong>on</strong>g> margin <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

10% at nominal MCR.<br />

Calculati<strong>on</strong> Method<br />

For a derated diesel engine, i.e. an engine having<br />

a specified MCR (M) and/or a matching point (O)<br />

different from L 1 , the relative jacket water heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong><br />

for point M and O may be found, as previously<br />

described, by means of Fig. 6.04.02.<br />

Part load correcti<strong>on</strong> factor for jacket<br />

cooling water heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong><br />

kp 1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

FPP<br />

CPP<br />

0 10 20 30 40 0 60 70 80 90 100%<br />

Engine load, % of matching power (O)<br />

FPP : Fixed pitch propeller<br />

FPP : k = 0.742 x p P __ S<br />

PO CPP : k = 0.822 x p P __ S<br />

PO CPP : C<strong>on</strong>trollable pitch propeller, c<strong>on</strong>stant speed<br />

+ 0.2 8<br />

+ 0.178<br />

178 06 64�3.2<br />

Fig. 6.04.04: Correcti<strong>on</strong> factor ‘kp’ for jacket cooling<br />

water heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> at part load, relative to heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong><br />

at matching power<br />

Page of 12<br />

At part load operati<strong>on</strong>, lower than matching power,<br />

the actual jacket water heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> will be<br />

reduced according to the curves for fixed pitch<br />

propeller (FPP) or for c<strong>on</strong>stant speed, c<strong>on</strong>trollable<br />

pitch propeller (CPP), respectively, in Fig. 6.04.04.<br />

With reference to the above, the heat actually<br />

<str<strong>on</strong>g>available</str<strong>on</strong>g> for a derated diesel engine may then be<br />

found as follows:<br />

1. Engine power between matching and specified<br />

power.<br />

For powers between specified MCR (M) and<br />

matching power (O), the diagram Fig. 6.04.02<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> to be used, i.e. giving the percentage correcti<strong>on</strong><br />

factor ‘Q jw% ’ and hence for matching<br />

power P O :<br />

Q = Q x jw,O jw,L1 Q ___ jw%<br />

100<br />

x 0.9 (0.88) [1]<br />

2. Engine power lower than matching power.<br />

For powers lower than the matching power,<br />

the value Q jw,O found for point O by means of<br />

the above equati<strong>on</strong> [1] <str<strong>on</strong>g>is</str<strong>on</strong>g> to be multiplied by<br />

the correcti<strong>on</strong> factor k p found in Fig. 6.04.04<br />

and hence<br />

Q jw = Q jw,O x k p �1 %/0% [2]<br />

where<br />

Q = jacket water heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong><br />

jw<br />

Q = jacket water heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> at nominal<br />

jw,L1<br />

MCR (L ) 1<br />

Q = percentage correcti<strong>on</strong> factor from<br />

jw%<br />

Fig. 6.04.02<br />

Q = jacket water heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> at matching<br />

jw,O<br />

power (O), found by means of equati<strong>on</strong> [1]<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 43 01�2.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

k p<br />

= part load correcti<strong>on</strong> factor from Fig. 6.04.04<br />

0.9 = factor for safety margin of cooler, tropical<br />

ambient c<strong>on</strong>diti<strong>on</strong>s<br />

The heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> assumed to be more or less<br />

independent of the ambient temperature c<strong>on</strong>diti<strong>on</strong>s,<br />

yet the safety margin/ambient c<strong>on</strong>diti<strong>on</strong> factor of<br />

about 0.88 instead of 0.90 will be more accurate for<br />

ambient c<strong>on</strong>diti<strong>on</strong>s corresp<strong>on</strong>ding to ISO temperatures<br />

or lower. The heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> tolerance from<br />

�1 % to 0% stated above <str<strong>on</strong>g>is</str<strong>on</strong>g> based <strong>on</strong> experience.


<strong>MAN</strong> B&W 6.04<br />

�����������<br />

���������<br />

����������<br />

����������<br />

Jacket Cooling Water Temperature C<strong>on</strong>trol<br />

When using a normal freshwater generator of the<br />

single�effect vacuum evaporator type, the freshwater<br />

producti<strong>on</strong> may, for guidance, be estimated<br />

as 0.03 t/24h per 1 kW heat, i.e.:<br />

M fw = 0.03 x Q jw t/24h �1 %/0% [3]<br />

where<br />

M fw <str<strong>on</strong>g>is</str<strong>on</strong>g> the freshwater producti<strong>on</strong> in t<strong>on</strong>s per 24<br />

hours<br />

and<br />

���������������������������<br />

���������<br />

Q jw <str<strong>on</strong>g>is</str<strong>on</strong>g> to be stated in kW<br />

��������<br />

�� ���<br />

���������������������������<br />

��������������<br />

Page 6 of 12<br />

Valve A: ensures that T jw < 8 ° C<br />

Valve B: ensures that T jw > 8 – ° C = 80° C<br />

Valve B and the corresp<strong>on</strong>ding by�pass may be omitted if, for example, the freshwater generator <str<strong>on</strong>g>is</str<strong>on</strong>g> equipped with an automatic<br />

start/stop functi<strong>on</strong> for too low jacket cooling water temperature<br />

If necessary, all the actually <str<strong>on</strong>g>available</str<strong>on</strong>g> jacket cooling water heat may be util<str<strong>on</strong>g>is</str<strong>on</strong>g>ed provided that a special temperature c<strong>on</strong>trol system<br />

ensures that the jacket cooling water temperature at the outlet from the engine does not fall below a certain level<br />

Fig. 6.04.05: Freshwater generators. Jacket cooling water heat recovery flow diagram<br />

�<br />

��������������<br />

�������������<br />

178 23 70�0.0<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 43 01�2.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

������������<br />

������<br />

��������<br />

�����<br />

���������������<br />

���<br />

���<br />

������������������<br />

���<br />

��� � �<br />

�<br />

�����������<br />

If necessary, all the actually <str<strong>on</strong>g>available</str<strong>on</strong>g> jacket cooling<br />

water heat may be used provided that a special<br />

temperature c<strong>on</strong>trol system ensures that the jacket<br />

cooling water temperature at the outlet from the<br />

engine does not fall below a certain level. Such a<br />

temperature c<strong>on</strong>trol system may c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>t, e.g., of a<br />

special by�pass pipe installed in the jacket cooling<br />

water system, see Fig. 6.04.0 , or a special built�in<br />

temperature c<strong>on</strong>trol in the freshwater generator,<br />

e.g., an automatic start/stop functi<strong>on</strong>, or similar.<br />

If such a special temperature c<strong>on</strong>trol <str<strong>on</strong>g>is</str<strong>on</strong>g> not applied,<br />

we recommend limiting the heat util<str<strong>on</strong>g>is</str<strong>on</strong>g>ed to maximum<br />

0% of the heat actually <str<strong>on</strong>g>available</str<strong>on</strong>g> at specified<br />

MCR, and <strong>on</strong>ly using the freshwater generator at<br />

engine loads above 0%. C<strong>on</strong>sidering the cooler<br />

margin of 10% and the minus tolerance of �1 %,<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> heat corresp<strong>on</strong>ds to 0 x(1.00�0.1 )x0.9 = 38%<br />

of the jacket water cooler capacity Q jw,M used for<br />

dimensi<strong>on</strong>ing of the jacket water cooler.


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

Calculati<strong>on</strong> of Freshwater Producti<strong>on</strong> for Derated Engine<br />

Example 2:<br />

Page 7 of 12<br />

Freshwater producti<strong>on</strong> from a derated 6S65ME-C with high efficiency <strong>MAN</strong> B&W turbocharger of TCA type<br />

and with fixed pitch propeller.<br />

Based <strong>on</strong> the engine ratings below, th<str<strong>on</strong>g>is</str<strong>on</strong>g> example will show how to calculate the expected <str<strong>on</strong>g>available</str<strong>on</strong>g> jacket<br />

cooling water heat removed from the diesel engine, together with the corresp<strong>on</strong>ding freshwater producti<strong>on</strong><br />

from a freshwater generator.<br />

The calculati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> made for the service rating (S) of the diesel engine being 80% of the specified MCR.<br />

Nominal MCR, (L ) P : 17,220 kW (100.0%) and 95.0 r/min (100.0%)<br />

1 L1<br />

Specified MCR, (M) P M : 14,637 kW (85.0%) and 92.2 r/min (97.0%)<br />

Matching point, (O) P O : 13,173 kW (76.5%) and 89.0 r/min (93.7%), P O = 90.0% of P M<br />

Service rating, (S) P S : 11,710 kW and 85.6 r/min, P S = 80.0% of P M and P S = 88.9% of P O<br />

Ambient reference c<strong>on</strong>diti<strong>on</strong>s: 20° C air and 18° C cooling water.<br />

The expected <str<strong>on</strong>g>available</str<strong>on</strong>g> jacket cooling water heat at<br />

service rating <str<strong>on</strong>g>is</str<strong>on</strong>g> found as follows:<br />

Q = 2,490 kW from L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities<br />

jw,L1<br />

Q = 81.0% using 76.5% power and 93.7%<br />

jw%<br />

speed for O in Fig. 6.04.02<br />

By means of equati<strong>on</strong> [1], and using factor 0.88 for<br />

actual ambient c<strong>on</strong>diti<strong>on</strong> the heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> in the<br />

matching point (O) <str<strong>on</strong>g>is</str<strong>on</strong>g> found:<br />

Qjw,O =Q x jw,L1 100<br />

x 0.88<br />

= 2,490 x<br />

81.0<br />

x 0.88 = 1,775 kW<br />

100<br />

By means of equati<strong>on</strong> [2], the heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> in the<br />

service point (S) i.e. for 88.9% of matching power,<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> found:<br />

kp Qjw Q jw%<br />

= 0.918 using 88.9% in Fig. 6.05.04<br />

=Q x k = 1,775 x 0.918 = 1,630 kW<br />

jw,O p<br />

-15%/0%<br />

For the service point the corresp<strong>on</strong>ding expected<br />

obtainable freshwater producti<strong>on</strong> from a freshwater<br />

generator of the single´effect vacuum evaporator<br />

type <str<strong>on</strong>g>is</str<strong>on</strong>g> then found from equati<strong>on</strong> [3]:<br />

S65ME-C 198 48 27-3.1<br />

M fw<br />

= 0.03 x Q = 0.03 x 1,630 = 48.9 t/24h<br />

jw<br />

-15%/0%


<strong>MAN</strong> B&W 6.04<br />

Exhaust Gas Amount and Temperature<br />

Influencing factors<br />

The exhaust gas data to be expected in practice<br />

depends, primarily, <strong>on</strong> the following three factors:<br />

a) The specified MCR point of the engine (point M):<br />

P M : power in kW at SMCR point<br />

n M : speed in r/min at SMCR point<br />

and to a certain degree <strong>on</strong> the matching point O<br />

with the percentage power P O% = % of SMCR<br />

power:<br />

P O% = (P O /P M ) x 100%<br />

Calculati<strong>on</strong> Method<br />

To enable the project engineer to estimate the actual<br />

exhaust gas data at an arbitrary service rating,<br />

the following method of calculati<strong>on</strong> may be used.<br />

M exh : exhaust gas amount in kg/h, to be found<br />

T exh : exhaust gas temperature in °C, to be found<br />

M = M x exh L1 P ___ M<br />

PL1 x 1 + ∆m ______ M%<br />

100 x 1 + ∆M _______ amb%<br />

100 x 1 + ∆m _____ s%<br />

100 x P ⎧ ⎫ ⎧<br />

⎫ ⎧ ⎫<br />

____ S%<br />

⎨ ⎬ ⎨<br />

⎬ ⎨ ⎬<br />

⎩ ⎭ ⎩<br />

⎭ ⎩ ⎭ 100<br />

Fig. 6.04.06: Summar<str<strong>on</strong>g>is</str<strong>on</strong>g>ing equati<strong>on</strong>s for exhaust gas amounts and temperatures<br />

The partial calculati<strong>on</strong>s based <strong>on</strong> the influencing<br />

factors are described in the following:<br />

a) Correcti<strong>on</strong> for choice of specified MCR point<br />

When choosing a specified MCR point ‘M’ other<br />

than the nominal MCR point ‘L 1 ’, the resulting<br />

Page of 12<br />

b) The ambient c<strong>on</strong>diti<strong>on</strong>s, and exhaust gas<br />

back�pressure:<br />

T air : actual ambient air temperature, in °C<br />

p bar : actual barometric pressure, in mbar<br />

T CW : actual scavenge air coolant temperature,<br />

in °C<br />

∆p M : exhaust gas back�pressure in mm WC at<br />

specified MCR<br />

c) The c<strong>on</strong>tinuous service rating of the engine<br />

(point S), valid for fixed pitch propeller or c<strong>on</strong>trollable<br />

pitch propeller (c<strong>on</strong>stant engine speed):<br />

P S : c<strong>on</strong>tinuous service rating of engine, in kW<br />

The partial calculati<strong>on</strong>s based <strong>on</strong> the above influencing<br />

factors have been summar<str<strong>on</strong>g>is</str<strong>on</strong>g>ed in equati<strong>on</strong>s<br />

[4] and [5].<br />

kg/h +/�5% [4]<br />

T exh = T L1 + ∆T M + ∆T O + ∆T amb + ∆T S °C �/+15 °C [5]<br />

where, according to ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’, i.e. referring to ISO ambient c<strong>on</strong>diti<strong>on</strong>s and 300 mm WC<br />

back�pressure and specified/matched in L 1 :<br />

M L1 : exhaust gas amount in kg/h at nominal MCR (L 1 )<br />

T L1 : exhaust gas temperature after turbocharger in °C at nominal MCR (L 1 )<br />

changes in specific exhaust gas amount and<br />

temperature are found by using as input in diagrams<br />

the corresp<strong>on</strong>ding percentage values (of<br />

L 1 ) for specified MCR power P M% and speed n M% :<br />

P M% = P M /P L1 x 100%<br />

n M% = n M /n L1 x 100%<br />

<strong>MAN</strong> B&W ME-B, ME/ME�C, ME�GI engines 198 43 18�1.2<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

�������������<br />

�������������� �<br />

��<br />

����<br />

����<br />

���<br />

���<br />

���<br />

���<br />

∆m M% = 14 x ln (P M /P L1 ) – 24 x ln (n M /n L1 )<br />

Fig. 6.04.07: Change of specific exhaust gas amount,<br />

∆m M% in % of L 1 value and independent of P O<br />

∆m M%<br />

∆T M<br />

∆T O<br />

�<br />

�<br />

� ��<br />

��<br />

��� ��� ��� ��� ���� ���� ���� ���<br />

: change of specific exhaust gas amount,<br />

in % of specific gas amount at nominal<br />

MCR (L 1 ), see Fig. 6.04.07.<br />

: change in exhaust gas temperature after<br />

turbocharger relative to the L1 value, in °C,<br />

see Fig. 6.04.08. (P O = P M )<br />

: extra change in exhaust gas temperature<br />

when matching point O lower than 100% M:<br />

P O% = (P O /P M ) x 100%.<br />

∆T O = - 0.3 x (100 - P O% ) [6]<br />

�<br />

�<br />

��<br />

��<br />

��<br />

��<br />

�<br />

���������������������������������� �<br />

178 51 11-7.1<br />

�������������<br />

�������������� �<br />

��<br />

∆T M = 15 x ln (P M /P L1 ) + 45 x ln (n M /n L1 )<br />

Page 9 of 12<br />

Fig. 6.04.08: Change of exhaust gas temperature, ∆T M in<br />

point M, in °C after turbocharger relative to L 1 value and<br />

valid for P O = P M<br />

b) Correcti<strong>on</strong> for actual ambient c<strong>on</strong>diti<strong>on</strong>s and<br />

back-pressure<br />

For ambient c<strong>on</strong>diti<strong>on</strong>s other than ISO 3046/1<br />

1995 (E), and back-pressure other than 300 mm<br />

WC at specified MCR point (M), the correcti<strong>on</strong><br />

factors stated in the table in Fig. 6.04.09 may be<br />

used as a guide, and the corresp<strong>on</strong>ding relative<br />

change in the exhaust gas data may be found<br />

from equati<strong>on</strong>s [7] and [8], shown in Fig. 6.04.10.<br />

Parameter Change Change of Change of<br />

exhaust gas exhaust gas<br />

temperature amount<br />

Blower inlet temperature + 10° C + 16.0° C - 4.1 %<br />

Blower inlet pressure (barometric pressure) + 10 mbar - 0.1° C + 0.3 %<br />

Charge air coolant temperature<br />

(seawater temperature)<br />

+ 10° C + 1.0° C + 1.9 %<br />

Exhaust gas back pressure at the specified MCR point + 100 mm WC + 5.0° C -1.1 %<br />

Fig. 6.04.09: Correcti<strong>on</strong> of exhaust gas data for ambient c<strong>on</strong>diti<strong>on</strong>s and exhaust gas back pressure<br />

178 51 13-0.1<br />

K90ME-C, K80ME-C, L70ME-C, S65ME-C/ME-GI, L60ME-C 198 44 20-9.1<br />

����<br />

����<br />

���<br />

���<br />

���<br />

���<br />

�<br />

�<br />

� �<br />

�����<br />

��� ��� ��� ���<br />

�<br />

�����<br />

�����<br />

���������<br />

�<br />

��<br />

��<br />

���������������������������������� �<br />

�<br />

���� ���� ���� ���


<strong>MAN</strong> B&W 6.04<br />

Page 10 of 12<br />

∆M amb% = � 0.41 x (T air � 25) + 0.03 x (p bar � 1000) + 0.19 x (T CW � 25 ) � 0.011 x (∆p M � 300) % [7]<br />

∆T amb = 1.6 x (T air � 25) � 0.01 x (p bar � 1000) +0.1 x (T CW � 25) + 0.05 x (∆p M � 300) °C [8]<br />

where the following nomenclature <str<strong>on</strong>g>is</str<strong>on</strong>g> used:<br />

∆M amb% : change in exhaust gas amount, in % of amount at ISO c<strong>on</strong>diti<strong>on</strong>s<br />

∆T amb<br />

: change in exhaust gas temperature, in °C compared with temperatures at ISO c<strong>on</strong>diti<strong>on</strong>s<br />

Fig. 6.04.10: Exhaust gas correcti<strong>on</strong> formula for ambient c<strong>on</strong>diti<strong>on</strong>s and exhaust gas back pressure<br />

mS% %<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

50 60 70 80 90 100 110 P S%<br />

Engine load, % specified MCR power<br />

P S% = (P S /P M ) x 100%<br />

∆m S% = 37 x (P S /P M ) 3 � 83 x (P S /P M ) 2 + 31 x (P S /P M ) + 15<br />

Fig. 6.04.11: Change of specific exhaust gas amount,<br />

∆m s% in % at part load, and valid for FPP and CPP<br />

c) Correcti<strong>on</strong> for engine load<br />

Figs. 6.04.11 and 6.04.12 may be used, as<br />

guidance, to determine the relative changes<br />

in the specific exhaust gas data when running<br />

at part load, compared to the values in the<br />

specified MCR point, i.e. using as input P S% =<br />

(P S /P M ) x 100%:<br />

M<br />

50 60 70 80 90 100 110 P S%<br />

Engine load, % specified MCR power<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 43 20�3.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

20<br />

15<br />

10<br />

T S<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

178 24 62�3.0 178 24 63�5.0<br />

P S% = (P S /P M ) x 100%<br />

∆T S = 262 x (P S /P M ) 2 � 413 x (P S /P M ) + 151<br />

Fig. 6.04.12: Change of exhaust gas temperature,<br />

∆T S in °C at part load, and valid for FPP and CPP<br />

∆m s% : change in specific exhaust gas amount,<br />

in % of specific amount at specified MCR<br />

point, see Fig. 6.04.11.<br />

∆T s<br />

: change in exhaust gas temperature, in °C,<br />

see Fig. 6.04.12.<br />

M


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

Calculati<strong>on</strong> of Exhaust Data for Derated Engine<br />

Example 3:<br />

Page 11 of 12<br />

Expected exhaust data for a derated 6S65ME-C with high efficiency turbocharger and with fixed pitch<br />

propeller.<br />

Based <strong>on</strong> the engine ratings below, and by means of an example, th<str<strong>on</strong>g>is</str<strong>on</strong>g> chapter will show how to calculate the<br />

expected exhaust gas amount and temperature at service rating, and for a given ambient reference c<strong>on</strong>diti<strong>on</strong><br />

different from ISO.<br />

The calculati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> made for the service rating (S) being 80%of the specified MCR power of the diesel engine.<br />

Nominal MCR, (L ) 1 P : 17,220 kW (100%) and 95.0 r/min (100.0%)<br />

L1<br />

Specified MCR, (M) P : 14,637 kW (85.0%) and 92.2 r/min (97.0%)<br />

M<br />

Matching point, (O) P : 13,173 kW (76.5%) and 89.0 r/min (93.7%), P = 90.0% of P O O M<br />

Service rating, (S) P : 11,710 kW and 85.6 r/min, P = 80.0% of P S S M<br />

Reference c<strong>on</strong>diti<strong>on</strong>s<br />

Air temperature T air ........................................ 20° C<br />

Scavenge air coolant temperature T CW ......... 18° C<br />

Barometric pressure p bar ..................... 1,013 mbar<br />

Exhaust gas back-pressure<br />

at specified MCR ∆p M ....................... 300 mm WC<br />

a) Correcti<strong>on</strong> for choice of specified MCR point M<br />

and matching point O:<br />

14,637<br />

P = x 100 = 85.0%<br />

M% 17,220<br />

92.2<br />

n = x 100 = 97.0%<br />

M% 95.0<br />

By means of Figs. 6.04.07 and 6.04.08:<br />

∆m = -1.5 %<br />

M%<br />

∆T = -3.8° C<br />

M<br />

As the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> matched in O lower than 100% M,<br />

and P O% = 90.0% of P M<br />

we get by means of equati<strong>on</strong> [6]<br />

∆T O<br />

= - 0.3 x (100 - 90.0) = - 3.0° C<br />

b) Correcti<strong>on</strong> for ambient c<strong>on</strong>diti<strong>on</strong>s and backpressure:<br />

By means of equati<strong>on</strong>s [7] and [8]:<br />

∆M amb% = - 0.41 x (20 - 25) + 0.03 x (1,013 - 1,000)<br />

+ 0.19 x (18 - 25) - 0.011 x (300 - 300) %<br />

∆M amb% = + 1.11%<br />

S65ME-C 198 48 28-5.1<br />

∆T amb<br />

∆T amb<br />

= 1.6 x (20 - 25) - 0.01 x (1,013 - 1,000)<br />

+ 0.1 x (18 - 25) + 0.05 x (300 - 300) °C<br />

= - 8.8° C<br />

c) Correcti<strong>on</strong> for the engine load:<br />

Service rating = 80% of specified MCR power<br />

By means of Figs. 6.04.11 and 6.04.12:<br />

∆m S%<br />

∆T S<br />

= + 5.6%<br />

= - 11.7 °C


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 6.04<br />

Final calculati<strong>on</strong><br />

By means of equati<strong>on</strong>s [4] and [5], the final result <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

found taking the exhaust gas flow M and tempera-<br />

L1<br />

ture T from the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities’:<br />

L1<br />

M L1<br />

= 159,600 kg/h<br />

M = 159,600 x<br />

14,637<br />

x (1 +<br />

-1.5<br />

) x<br />

exh<br />

17,220 100<br />

(1 + 1.11 ) x (1 + 5.6 ) x 80 = 114.100 kg/h<br />

100 100 100<br />

= 114.100 kg/h +/- 5%<br />

M exh<br />

The exhaust gas temperature<br />

T L1<br />

T exh<br />

T exh<br />

= 245° C<br />

= 245 - 3.8 - 3.0 - 8.8 - 11.7 = 217.7° C<br />

= 217.7° C -/+15° C<br />

Exhaust gas data at specified MCR (ISO)<br />

Page 12 of 12<br />

At specified MCR (M), the running point may be in<br />

equati<strong>on</strong>s [4] and [5] c<strong>on</strong>sidered as a service point<br />

where P S% = 100, ∆m s% = 0.0 and ∆T s = 0.0.<br />

For ISO ambient reference c<strong>on</strong>diti<strong>on</strong>s where ∆Mamb% = 0.0 and ∆T = 0.0, the corresp<strong>on</strong>ding calcula-<br />

amb<br />

ti<strong>on</strong>s will be as follows:<br />

14,637 -1.5 0.0<br />

M = 159,600 x x (1 + ) x (1 + )<br />

exh,M 17,220 100 100<br />

0.0 100.0<br />

x (1 + ) x = 133,600 kg/h<br />

100 100<br />

M = 133,600 kg/h +/-5%<br />

exh,M<br />

T exh,M = 245 - 3.8 - 3.0 + 0 + 0 = 238.2° C<br />

T exh,M = 234° C -/+15° C<br />

The air c<strong>on</strong>sumpti<strong>on</strong> will be:<br />

133,600 x 0.982 kg/h = 131,200 kg/h <br />

131,200/3,600 kg/s = 36.4 kg/s<br />

S65ME-C 198 48 28-5.1


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Fuel<br />

7


<strong>MAN</strong> B&W 7.01<br />

Pressur<str<strong>on</strong>g>is</str<strong>on</strong>g>ed Fuel Oil System<br />

The system <str<strong>on</strong>g>is</str<strong>on</strong>g> so arranged that both diesel oil and<br />

heavy fuel oil can be used, see figure 7.0 .0 .<br />

From the service tank the fuel <str<strong>on</strong>g>is</str<strong>on</strong>g> led to an electrically<br />

driven supply pump by means of which a<br />

pressure of approximately 4 bar can be maintained<br />

in the low pressure part of the fuel circulating<br />

system, thus avoiding gasificati<strong>on</strong> of the fuel<br />

in the venting box in the temperature ranges applied.<br />

The venting box <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected to the service tank<br />

via an automatic deaerating valve, which will release<br />

any gases present, but will retain liquids.<br />

From the low pressure part of the fuel system the<br />

fuel oil <str<strong>on</strong>g>is</str<strong>on</strong>g> led to an electrically�driven circulating<br />

pump, which pumps the fuel oil through a heater<br />

and a full flow filter situated immediately before<br />

the inlet to the engine.<br />

The fuel injecti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> performed by the electr<strong>on</strong>ically<br />

c<strong>on</strong>trolled pressure booster located <strong>on</strong> the<br />

Hydraulic Cylinder Unit (HCU), <strong>on</strong>e per cylinder,<br />

which also c<strong>on</strong>tains the actuator for the electr<strong>on</strong>ic<br />

exhaust valve activati<strong>on</strong>.<br />

The Cylinder C<strong>on</strong>trol Units (CCU) of the Engine<br />

C<strong>on</strong>trol System (described in Chapter 6.0 ) calculate<br />

the timing of the fuel injecti<strong>on</strong> and the exhaust<br />

valve activati<strong>on</strong>.<br />

To ensure ample filling of the HCU, the capacity of<br />

the electrically�driven circulating pump <str<strong>on</strong>g>is</str<strong>on</strong>g> higher<br />

than the amount of fuel c<strong>on</strong>sumed by the diesel<br />

engine. Surplus fuel oil <str<strong>on</strong>g>is</str<strong>on</strong>g> recirculated from the engine<br />

through the venting box.<br />

To ensure a c<strong>on</strong>stant fuel pressure to the fuel<br />

injecti<strong>on</strong> pumps during all engine loads, a spring<br />

loaded overflow valve <str<strong>on</strong>g>is</str<strong>on</strong>g> inserted in the fuel oil<br />

system <strong>on</strong> the engine.<br />

The fuel oil pressure measured <strong>on</strong> the engine (at<br />

fuel pump level) should be 7�8 bar, equivalent to a<br />

circulating pump pressure of 0 bar.<br />

Fuel c<strong>on</strong>siderati<strong>on</strong>s<br />

Page of 3<br />

When the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> stopped, the circulating<br />

pump will c<strong>on</strong>tinue to circulate heated heavy fuel<br />

through the fuel oil system <strong>on</strong> the engine, thereby<br />

keeping the fuel pumps heated and the fuel valves<br />

deaerated. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> automatic circulati<strong>on</strong> of preheated<br />

fuel during engine standstill <str<strong>on</strong>g>is</str<strong>on</strong>g> the background for<br />

our recommendati<strong>on</strong>:<br />

C<strong>on</strong>stant operati<strong>on</strong> <strong>on</strong> heavy fuel<br />

In additi<strong>on</strong>, if th<str<strong>on</strong>g>is</str<strong>on</strong>g> recommendati<strong>on</strong> was not followed,<br />

there would be a latent r<str<strong>on</strong>g>is</str<strong>on</strong>g>k of diesel oil<br />

and heavy fuels of marginal quality forming incompatible<br />

blends during fuel change over or<br />

when operating in areas with restricti<strong>on</strong>s <strong>on</strong> sulpher<br />

c<strong>on</strong>tent in fuel oil due to exhaust gas em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong><br />

c<strong>on</strong>trol.<br />

In special circumstances a change�over to diesel<br />

oil may become necessary – and th<str<strong>on</strong>g>is</str<strong>on</strong>g> can be performed<br />

at any time, even when the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> not<br />

running. Such a change�over may become necessary<br />

if, for instance, the vessel <str<strong>on</strong>g>is</str<strong>on</strong>g> expected to be<br />

inactive for a prol<strong>on</strong>ged period with cold engine<br />

e.g. due to:<br />

• docking<br />

• stop for more than five days<br />

• major repairs of the fuel system, etc.<br />

The built�<strong>on</strong> overflow valves, if any, at the supply<br />

pumps are to be adjusted to 5 bar, whereas the<br />

external bypass valve <str<strong>on</strong>g>is</str<strong>on</strong>g> adjusted to 4 bar. The<br />

pipes between the tanks and the supply pumps<br />

shall have minimum 50% larger passage area<br />

than the pipe between the supply pump and the<br />

circulating pump.<br />

If the fuel oil pipe ‘X’ at inlet to engine <str<strong>on</strong>g>is</str<strong>on</strong>g> made as<br />

a straight line immediately at the end of the engine,<br />

it will be necessary to mount an expansi<strong>on</strong><br />

joint. If the c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> made as indicated, with<br />

a bend immediately at the end of the engine, no<br />

expansi<strong>on</strong> joint <str<strong>on</strong>g>is</str<strong>on</strong>g> required.<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 42 28�2.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 7.01<br />

Fuel Oil System<br />

No valve in drain pipe<br />

between engine and tank<br />

32 mm Nominal bore<br />

To HFO settling tank<br />

Fuel oil<br />

drain tank<br />

overflow tank<br />

<strong>Diesel</strong> oil<br />

Heavy fuel oil<br />

Fig. 7.01.01: Fuel oil system<br />

Heated pipe with insulati<strong>on</strong><br />

a) Tracing fuel oil lines: Max. 50°C<br />

b) Tracing drain lines: By jacket cooling water<br />

The letters refer to the l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

a)<br />

AD<br />

BD<br />

b)<br />

To jacket water<br />

cooling pump<br />

F<br />

AF<br />

X<br />

To sludge tank<br />

Arr. of main engine fuel oil system.<br />

(See Fig. 7.03.01)<br />

a)<br />

PI PI TI TI<br />

Heater<br />

Aut. deaerating valve<br />

Venting tank<br />

Top of fuel oil service tank<br />

If the fuel oil pipe to engine <str<strong>on</strong>g>is</str<strong>on</strong>g> made as a straight line<br />

immediately before the engine, it will be necessary to<br />

mount an expansi<strong>on</strong> unit. If the c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> made<br />

as indicated, with a bend immediately before the<br />

engine, no expansi<strong>on</strong> unit <str<strong>on</strong>g>is</str<strong>on</strong>g> required.<br />

TE 8005<br />

#) Approximately the following quantity of fuel oil should be treated in<br />

the centrifuges: 0.23 l/kwh as explained in Secti<strong>on</strong> 7.05. The capacity of<br />

the centrifuges to be according to manufacturer’s recommendati<strong>on</strong>.<br />

* ) D to have min. 50% larger passage area than d.<br />

PT 8002<br />

VT 8004<br />

Full flow filter.<br />

For filter type see engine spec.<br />

Heavy fuel oil<br />

service tank<br />

d* )<br />

Circulating pumps Supply pumps<br />

Page of 3<br />

From centrifuges # )<br />

178 52 19�7.4<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 42 28�2.6<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

D* )<br />

Deck<br />

D* )<br />

<strong>Diesel</strong><br />

oil<br />

service<br />

tank<br />

Overflow valve<br />

Adjusted to 4 bar


<strong>MAN</strong> B&W 7.01<br />

The HCU has a leakage drain from the support<br />

c<strong>on</strong>sole of clean fuel oil through ‘AD’.<br />

The flow rate in litres <str<strong>on</strong>g>is</str<strong>on</strong>g> approximately as l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in<br />

Table 7.0 .0 .<br />

Flow rate,<br />

Engine<br />

litres/cyl. h.<br />

K 08ME-C, K98ME/ME-C, S90ME-C . 5<br />

K90ME/ME-C, S/K80ME-C, S70ME-C/<br />

ME-GI, L70ME-C, S65ME-C/ME-GI 0.75<br />

S/L60ME-C, S60ME-GI, S50ME-C,<br />

S50/40/35ME-B 0.60<br />

Table 7.01.01: Approximate flow in HCU leakage drain.<br />

The main purpose of the drain ‘AF’ <str<strong>on</strong>g>is</str<strong>on</strong>g> to collect<br />

pure fuel oil from the fuel pumps as well as the<br />

unintenti<strong>on</strong>al leakage from the high pressure<br />

pipes. The drain oil <str<strong>on</strong>g>is</str<strong>on</strong>g> lead to a tank and can be<br />

pumped to the Heavy Fuel Oil service tank or to<br />

the settling tank.<br />

The ‘AF’ drain <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with a box for giving<br />

alarm in case of leakage in a high pressure pipes.<br />

Heating of drain pipe<br />

Page 3 of 3<br />

Owing to the relatively high v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity of the heavy<br />

fuel oil, it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended that the drain pipe and<br />

the tank are heated to min. 50 °C, whereas the<br />

HFO pipes as basic are heated by steam through<br />

flanges ‘BX’ and ‘BF’.<br />

The drain pipe between engine and tank can<br />

be heated by the jacket water, as shown in Fig.<br />

7.0 .0 . ‘Fuel pipe heating’ as flange ‘BD’.<br />

The size of the sludge tank <str<strong>on</strong>g>is</str<strong>on</strong>g> determined <strong>on</strong> the<br />

bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of the draining intervals, the classificati<strong>on</strong><br />

society rules, and <strong>on</strong> whether it may be vented<br />

directly to the engine room.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> drained clean oil will, of course, influence the<br />

measured SFOC, but the oil <str<strong>on</strong>g>is</str<strong>on</strong>g> thus not wasted,<br />

and the quantity <str<strong>on</strong>g>is</str<strong>on</strong>g> well within the measuring accuracy<br />

of the flowmeters normally used.<br />

For external pipe c<strong>on</strong>necti<strong>on</strong>s, we prescribe the<br />

following maximum flow velocities:<br />

Marine diesel oil .......................................... .0 m/s<br />

Heavy fuel oil ............................................... 0.6 m/s<br />

The fuel v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity <str<strong>on</strong>g>is</str<strong>on</strong>g> influenced by factors such as<br />

emulsificati<strong>on</strong> of water into the fuel for reducing<br />

the NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong>. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> further described in <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

7.06.<br />

An emulsificati<strong>on</strong> arrangement for the main engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> described in our publicati<strong>on</strong>:<br />

55 0-0063 ‘Operati<strong>on</strong> <strong>on</strong> Heavy Residual Fuels<br />

and Destilates. Guidelines for Fuels<br />

and Lubes’<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at our Internet address:<br />

www.mandiesel.com under ‘Quicklinks’ → ‘Technical<br />

Papers’, from where it can be downloaded.<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 42 28�2.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 7.02<br />

Fuel oils<br />

Marine diesel oil:<br />

Marine diesel oil ISO 82 7, Class DMB<br />

Brit<str<strong>on</strong>g>is</str<strong>on</strong>g>h Standard 6843, Class DMB<br />

Similar oils may also be used<br />

Heavy fuel oil (HFO)<br />

Most commercially <str<strong>on</strong>g>available</str<strong>on</strong>g> HFO with a v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity<br />

below 700 cSt at 50 °C (7,000 sec. Redwood I at<br />

00 °F) can be used.<br />

For guidance <strong>on</strong> purchase, reference <str<strong>on</strong>g>is</str<strong>on</strong>g> made<br />

to ISO 82 7: 996 and ISO 82 7:2005, Brit<str<strong>on</strong>g>is</str<strong>on</strong>g>h<br />

Standard 6843 and to CIMAC recommendati<strong>on</strong>s<br />

regarding requirements for heavy fuel for diesel<br />

engines, fourth editi<strong>on</strong> 2003, in which the maximum<br />

acceptable grades are RMH 700 and RMK<br />

700. The above�menti<strong>on</strong>ed ISO and BS standards<br />

supersede BSMA 00 in which the limit was M9.<br />

The data in the above HFO standards and specificati<strong>on</strong>s<br />

refer to fuel as delivered to the ship, i.e.<br />

before <strong>on</strong>-board cleaning.<br />

In order to ensure effective and sufficient cleaning<br />

of the HFO, i.e. removal of water and solid c<strong>on</strong>taminants,<br />

the fuel oil specific gravity at 5 °C (60<br />

°F) should be below 0.99 , unless modern types<br />

of centrifuges with adequate cleaning abilities are<br />

used.<br />

Higher densities can be allowed if special treatment<br />

systems are installed.<br />

Current analys<str<strong>on</strong>g>is</str<strong>on</strong>g> informati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> not sufficient for<br />

estimating the combusti<strong>on</strong> properties of the oil.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> means that service results depend <strong>on</strong> oil<br />

properties which cannot be known beforehand.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> especially applies to the tendency of the oil<br />

to form deposits in combusti<strong>on</strong> chambers, gas<br />

passages and turbines. It may, therefore, be necessary<br />

to rule out some oils that cause difficulties.<br />

Guiding heavy fuel oil specificati<strong>on</strong><br />

Page of<br />

Based <strong>on</strong> our general service experience we have,<br />

as a supplement to the above menti<strong>on</strong>ed standards,<br />

drawn up the guiding HFO specificati<strong>on</strong><br />

shown below.<br />

Heavy fuel oils limited by th<str<strong>on</strong>g>is</str<strong>on</strong>g> specificati<strong>on</strong> have,<br />

to the extent of the commercial availability, been<br />

used with sat<str<strong>on</strong>g>is</str<strong>on</strong>g>factory results <strong>on</strong> <strong>MAN</strong> B&W<br />

two�stroke low speed diesel engines.<br />

The data refers to the fuel as supplied i.e. before<br />

any <strong>on</strong>-board cleaning.<br />

Guiding specificati<strong>on</strong> (maximum values)<br />

Density at 5 °C kg/m3 Kinematic v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity<br />

< .0 0*<br />

at 00 °C cSt < 55<br />

at 50 °C cSt < 700<br />

Flash point °C > 60<br />

Pour point °C < 30<br />

Carb<strong>on</strong> residue % (m/m) < 22<br />

Ash % (m/m) < 0. 5<br />

Total sediment potential % (m/m) < 0. 0<br />

Water % (v/v) < 0.5<br />

Sulphur % (m/m) < 4.5<br />

Vanadium mg/kg < 600<br />

Aluminum + Silic<strong>on</strong> mg/kg < 80<br />

Equal to ISO 82 7:2005 - RMK 700<br />

/ CIMAC recommendati<strong>on</strong> No. 2 - K700<br />

* Provided automatic clarifiers are installed<br />

m/m = mass v/v = volume<br />

If heavy fuel oils with analys<str<strong>on</strong>g>is</str<strong>on</strong>g> data exceeding the<br />

above figures are to be used, especially with regard<br />

to v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity and specific gravity, the engine<br />

builder should be c<strong>on</strong>tacted for advice regarding<br />

possible fuel oil system changes.<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME-C/ME-GI/ME-B engines 198 38 80-4.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 7.03<br />

Fuel Oil Pipes and Drain Pipes<br />

�<br />

���������������<br />

��������������<br />

�<br />

The letters refer to ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of flanges’<br />

The item No. refer to ‘Guidance values automati<strong>on</strong>’<br />

Fig. 7.03.01: Fuel oil pipes<br />

�������������<br />

������������������������������<br />

�����<br />

�����������<br />

�������������������<br />

�����������������������<br />

�����������<br />

<strong>MAN</strong> B&W K108ME-C, K98ME/ME-C, S90ME-C, K90ME/ME-C, S80ME-C,<br />

K80ME-C, S70ME-C/ME-GI, L70ME-C, S65ME-C/ME-GI,<br />

S60ME-C/ME-GI, L60ME-C, ME Engine Selecti<strong>on</strong> Guide<br />

�������������<br />

��������������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

�������������<br />

�������������������<br />

�����������<br />

Page of<br />

����������� ���������������������<br />

����������������<br />

���������������<br />

�������������<br />

�� ��������������<br />

178 50 29�2.2<br />

198 39 48�9.3


<strong>MAN</strong> B&W 7.04<br />

Fuel Oil Pipe Insulati<strong>on</strong><br />

Insulati<strong>on</strong> of fuel oil pipes and fuel oil drain pipes<br />

should not be carried out until the piping systems<br />

have been subjected to the pressure tests specified<br />

and approved by the respective classificati<strong>on</strong><br />

society and/or authorities, Fig. 7.04.0 .<br />

The directi<strong>on</strong>s menti<strong>on</strong>ed below include insulati<strong>on</strong><br />

of hot pipes, flanges and valves with a surface<br />

temperature of the complete insulati<strong>on</strong> of maximum<br />

55 °C at a room temperature of maximum 38<br />

°C. As for the choice of material and, if required,<br />

approval for the specific purpose, reference <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

made to the respective classificati<strong>on</strong> society.<br />

Fuel oil pipes<br />

The pipes are to be insulated with 20 mm mineral<br />

wool of minimum 50 kg/m 3 and covered with<br />

glass cloth of minimum 400 g/m 2 .<br />

Fuel oil pipes and heating pipes together<br />

Two or more pipes can be insulated with 30 mm<br />

wired mats of mineral wool of minimum 50 kg/m 3<br />

covered with glass cloth of minimum 400 g/m 2 .<br />

������<br />

����<br />

� �<br />

��<br />

��<br />

��<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-C/ME-GI/ME-B engines,<br />

Engine Selecti<strong>on</strong> Guide<br />

�<br />

�<br />

������<br />

�<br />

�<br />

���<br />

�������������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Flanges and valves<br />

Page of 3<br />

The flanges and valves are to be insulated by<br />

means of removable pads. Flange and valve pads<br />

are made of glass cloth, minimum 400 g/m 2 ,<br />

c<strong>on</strong>taining mineral wool stuffed to minimum 50<br />

kg/m 3 .<br />

Thickness of the pads to be:<br />

Fuel oil pipes ................................................20 mm<br />

Fuel oil pipes and heating pipes together ....30 mm<br />

The pads are to be fitted so that they lap over the<br />

pipe insulating material by the pad thickness. At<br />

flanged joints, insulating material <strong>on</strong> pipes should<br />

not be fitted closer than corresp<strong>on</strong>ding to the<br />

minimum bolt length.<br />

Mounting<br />

Mounting of the insulati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> to be carried out in<br />

accordance with the supplier’s instructi<strong>on</strong>s.<br />

Fig. 7.04.01: Details of fuel oil pipes insulati<strong>on</strong>, opti<strong>on</strong>: 4 35 121. Example from 98-50 MC engine<br />

������<br />

����<br />

��������������<br />

������������<br />

���������������<br />

������������<br />

���<br />

��������������<br />

�<br />

�����������<br />

��������<br />

������������������� ��������������<br />

��������<br />

�������������������<br />

���������������<br />

���<br />

���<br />

178 50 65 �0.2<br />

198 40 51�8.3


<strong>MAN</strong> B&W 7.04<br />

Heat Loss in Piping<br />

Pipe diameter mm<br />

Insulati<strong>on</strong> thickness 20<br />

30<br />

Fig. 7.04.02: Heat loss/Pipe cover<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-C/ME-GI/ME-B engines,<br />

Engine Selecti<strong>on</strong> Guide<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

120<br />

160<br />

200<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 3<br />

Temperature difference between pipe and room<br />

°C<br />

Heat loss watt/meter pipe<br />

178 50 60�2.0<br />

198 40 51�8.3


<strong>MAN</strong> B&W 7.04<br />

Fuel Oil Pipe Heat Tracing<br />

The steam tracing of the fuel oil pipes <str<strong>on</strong>g>is</str<strong>on</strong>g> intended<br />

to operate in two situati<strong>on</strong>s:<br />

1. When the circulati<strong>on</strong> pump <str<strong>on</strong>g>is</str<strong>on</strong>g> running, there<br />

will be a temperature loss in the piping, see<br />

Fig. 7.04.02. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> loss <str<strong>on</strong>g>is</str<strong>on</strong>g> very small, therefore<br />

tracing in th<str<strong>on</strong>g>is</str<strong>on</strong>g> situati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly necessary with<br />

very l<strong>on</strong>g fuel supply lines.<br />

��<br />

��<br />

�<br />

�<br />

������<br />

����������<br />

���������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

Fig. 7.04.03: Fuel oil pipe heat tracing<br />

<strong>MAN</strong> B&W K108ME-C6, K98MC/MC�C, K98ME/ME-C, S90MC-C,<br />

S90ME-C, K90MC-C, K90ME/ME-C, S80MC/MC-C, S80ME-C,<br />

K80MC-C, K80ME-C, S70MC, S/L70MC-C, S/L70ME-C, S60MC,<br />

S/L60MC-C, S/L60ME-C, S60ME-B, S50MC, Engine Selecti<strong>on</strong> Guide<br />

��������������<br />

Fuel Oil and Lubricating Oil Pipe Spray Shields<br />

In order to fulfil IMO regulati<strong>on</strong>s, fuel oil and lubricating<br />

oil pipe assemblies are to be enclosed by<br />

spray shields as shown in Fig. 7.04.04a and b.<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����������������<br />

�����������<br />

�������������������������<br />

������������������� ��������������<br />

���������������������������������������������<br />

�����������������������������������������<br />

Fig. 7.04.04a: Spray Shields by anti-splashing tape<br />

�<br />

��<br />

��<br />

��<br />

Page of<br />

2. When the circulati<strong>on</strong> pump <str<strong>on</strong>g>is</str<strong>on</strong>g> stopped with<br />

heavy fuel oil in the piping and the pipes have<br />

cooled down to engine room temperature, as<br />

it <str<strong>on</strong>g>is</str<strong>on</strong>g> not possible to pump the heavy fuel oil.<br />

In th<str<strong>on</strong>g>is</str<strong>on</strong>g> situati<strong>on</strong> the fuel oil must be heated to<br />

pumping temperature of about 50 ºC.<br />

To heat the pipe to pumping level we recommend<br />

to use 100 watt leaking/meter pipe.<br />

�������<br />

�����������������������<br />

����������������������<br />

����������������������<br />

Fig. 7.04.04b: Spray Shields by clamping bands<br />

�������������<br />

������������<br />

178 50 62�5.0<br />

To avoid leaks, the spray shields are to be installed<br />

after pressure testing of the pipe system.<br />

178 52 55�5.2<br />

198 67 68-4.0


<strong>MAN</strong> B&W 7.05<br />

Comp<strong>on</strong>ents for fuel oil system<br />

Fuel oil centrifuges<br />

The manual cleaning type of centrifuges are not to<br />

be recommended, neither for attended machinery<br />

spaces (AMS) nor for unattended machinery spaces<br />

(UMS). Centrifuges must be self�cleaning, either<br />

with total d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge or with partial d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge.<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>tincti<strong>on</strong> must be made between installati<strong>on</strong>s for:<br />

• Specific gravities < 0.99 (corresp<strong>on</strong>ding to ISO<br />

82 7 and Brit<str<strong>on</strong>g>is</str<strong>on</strong>g>h Standard 6843 from RMA to<br />

RMH, and CIMAC from A to H�grades<br />

• Specific gravities > 0.99 and (corresp<strong>on</strong>ding to<br />

CIMAC K�grades).<br />

For the latter specific gravities, the manufacturers<br />

have developed special types of centrifuges, e.g.:<br />

Alfa Laval ........................................................Alcap<br />

Westfalia ....................................................... Unitrol<br />

Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi .............................................. E�Hidens II<br />

The centrifuge should be able to treat approximately<br />

the following quantity of oil:<br />

0.23 litres/kWh = 0.17 litres/BHPh<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> figure includes a margin for:<br />

• Water c<strong>on</strong>tent in fuel oil<br />

• Possible sludge, ash and other impurities in the<br />

fuel oil<br />

• Increased fuel oil c<strong>on</strong>sumpti<strong>on</strong>, in c<strong>on</strong>necti<strong>on</strong><br />

with other c<strong>on</strong>diti<strong>on</strong>s than ISO standard c<strong>on</strong>diti<strong>on</strong><br />

• Purifier service for cleaning and maintenance.<br />

The size of the centrifuge has to be chosen according<br />

to the supplier’s table valid for the selected<br />

v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity of the Heavy Fuel Oil. Normally, two<br />

centrifuges are installed for Heavy Fuel Oil (HFO),<br />

each with adequate capacity to comply with the<br />

above recommendati<strong>on</strong>.<br />

Page of 3<br />

A centrifuge for Marine <strong>Diesel</strong> Oil (MDO) <str<strong>on</strong>g>is</str<strong>on</strong>g> not a<br />

must, but if it <str<strong>on</strong>g>is</str<strong>on</strong>g> decided to install <strong>on</strong>e <strong>on</strong> board,<br />

the capacity should be based <strong>on</strong> the above recommendati<strong>on</strong>,<br />

or it should be a centrifuge of the<br />

same size as that for lubricating oil.<br />

The Nominal MCR <str<strong>on</strong>g>is</str<strong>on</strong>g> used to determine the total<br />

installed capacity. Any derating can be taken<br />

into c<strong>on</strong>siderati<strong>on</strong> in border�line cases where the<br />

centrifuge that <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>e step smaller <str<strong>on</strong>g>is</str<strong>on</strong>g> able to cover<br />

Specified MCR.<br />

Fuel oil supply pump<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the screw or gear wheel type.<br />

Fuel oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity, specified .... up to 700 cSt at 50 °C<br />

Fuel oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity maximum ....................... 000 cSt<br />

Pump head ......................................................4 bar<br />

Fuel oil flow .........................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Delivery pressure ............................................4 bar<br />

Working temperature ................................... 00 °C<br />

Minimum temperature .................................... 50 °C<br />

The capacity stated in ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’ <str<strong>on</strong>g>is</str<strong>on</strong>g> to be fulfilled<br />

with a tolerance of: ÷0% to + 5% and shall also<br />

be able to cover the back�flushing, see ‘Fuel oil filter’.<br />

Fuel oil circulating pump<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the screw or gear wheel type.<br />

Fuel oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity, specified .... up to 700 cSt at 50 °C<br />

Fuel oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity normal ................................20 cSt<br />

Fuel oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity maximum ....................... 000 cSt<br />

Fuel oil flow .........................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Pump head ......................................................6 bar<br />

Delivery pressure .......................................... 0 bar<br />

Working temperature ................................... 50 °C<br />

The capacity stated in ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’ <str<strong>on</strong>g>is</str<strong>on</strong>g> to be fulfilled<br />

with a tolerance of: ÷0% to + 5% and shall also<br />

be able to cover the back�flushing, see ‘Fuel oil filter’.<br />

Pump head <str<strong>on</strong>g>is</str<strong>on</strong>g> based <strong>on</strong> a total pressure drop in<br />

filter and preheater of maximum .5 bar.<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME-B/ME�C/ME�GI engines 198 39 51�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 7.05<br />

Fuel oil heater<br />

�����������<br />

������������<br />

Fig. 7.05.01: Fuel oil heating chart<br />

The heater <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the tube or plate heat exchanger<br />

type.<br />

�<br />

���<br />

���<br />

���<br />

���<br />

���<br />

���<br />

���<br />

���<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��������������������<br />

The required heating temperature for different oil<br />

v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosities will appear from the ‘Fuel oil heating<br />

chart’. The chart <str<strong>on</strong>g>is</str<strong>on</strong>g> based <strong>on</strong> informati<strong>on</strong> from oil<br />

suppliers regarding typical marine fuels with v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity<br />

index 70�80.<br />

Since the v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity after the heater <str<strong>on</strong>g>is</str<strong>on</strong>g> the c<strong>on</strong>trolled<br />

parameter, the heating temperature may vary,<br />

depending <strong>on</strong> the v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity and v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity index of<br />

the fuel.<br />

Recommended v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity meter setting <str<strong>on</strong>g>is</str<strong>on</strong>g> 0� 5 cSt.<br />

�������������������������<br />

���������������������<br />

������������<br />

��<br />

�� �� �� �� �� �� ���������<br />

�� �� ��� ��� ��� ��� ��������<br />

��� ��� ��� ���� ���� ���� �������������<br />

Page 2 of 3<br />

Fuel oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity specified ... up to 700 cSt at 50°C<br />

Fuel oil flow .................................... see capacity of<br />

fuel oil circulating pump<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> ..................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Pressure drop <strong>on</strong> fuel oil side ........maximum bar<br />

Working pressure .......................................... 0 bar<br />

Fuel oil inlet temperature .................approx. 00 °C<br />

Fuel oil outlet temperature ........................... 50 °C<br />

Steam supply, saturated ..........................7 bar abs<br />

To maintain a correct and c<strong>on</strong>stant v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity of<br />

the fuel oil at the inlet to the main engine, the<br />

steam supply shall be automatically c<strong>on</strong>trolled,<br />

usually based <strong>on</strong> a pneumatic or an electrically<br />

c<strong>on</strong>trolled system.<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME-B/ME�C/ME�GI engines 198 39 51�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����<br />

�<br />

��<br />

��<br />

��<br />

��<br />

��<br />

����<br />

���<br />

��<br />

��<br />

��<br />

��<br />

��<br />

���<br />

178 06 28�0.1


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 7.05<br />

Fuel oil filter<br />

The filter can be of the manually cleaned duplex type<br />

or an automatic filter with a manually cleaned bypass<br />

filter.<br />

If a double filter (duplex) <str<strong>on</strong>g>is</str<strong>on</strong>g> installed, it should have<br />

sufficient capacity to allow the specified full amount<br />

of oil to flow through each side of the filter at a given<br />

working temperature with a max. 0.3 bar pressure<br />

drop across the filter (clean filter).<br />

If a filter with backflushing arrangement <str<strong>on</strong>g>is</str<strong>on</strong>g> installed,<br />

the following should be noted. The required oil flow<br />

specified in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’, i.e. the delivery<br />

rate of the fuel oil supply pump and the fuel oil circulating<br />

pump, should be increased by the amount<br />

of oil used for the backflushing, so that the fuel oil<br />

pressure at the inlet to the main engine can be maintained<br />

during cleaning.<br />

In those cases where an automatically cleaned filter<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> installed, it should be noted that in order to<br />

activate the cleaning process, certain makers of filters<br />

require a greater oil pressure at the inlet to the<br />

filter than the pump pressure specified. Therefore,<br />

the pump capacity should be adequate for th<str<strong>on</strong>g>is</str<strong>on</strong>g> purpose,<br />

too.<br />

The fuel oil filter should be based <strong>on</strong> heavy fuel oil<br />

of: 130 cSt at 80 °C = 700 cSt at 50 °C = 7000 sec<br />

Redwood I/100 °F.<br />

Fuel oil flow ........................ see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Working pressure ......................................... 10 bar<br />

Test pressure ...................... according to class rule<br />

Absolute fineness ......................................... 50 µm<br />

Working temperature ................. maximum 150 °C<br />

Oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity at working temperature............ 15 cSt<br />

Pressure drop at clean filter ....... maximum 0.3 bar<br />

Filter to be cleaned at a pressure<br />

drop at ........................................ maximum 0.5 bar<br />

Note:<br />

Absolute fineness corresp<strong>on</strong>ds to a nominal fineness<br />

of approximately 30 µm at a retaining rate of<br />

90%.<br />

The filter housing shall be fitted with a steam jacket<br />

for heat tracing.<br />

Fuel oil venting box<br />

Page 3 of 3<br />

The design <str<strong>on</strong>g>is</str<strong>on</strong>g> shown <strong>on</strong> ‘Fuel oil venting box’, see<br />

Fig. 7.05.02<br />

S65ME-C, S60ME-C, L60ME-C/ME-GI 198 41 21-4.1<br />

H4<br />

H1 H2 H3<br />

200<br />

Top of fuel oil<br />

service tank<br />

H5<br />

60<br />

Vent pipe,<br />

nominal: D3<br />

C<strong>on</strong>e<br />

Inlet pipe,<br />

nominal: D2<br />

Pipe,<br />

nominal: D1<br />

Outlet pipe,<br />

nominal: D2<br />

Flow m3 /h Dimensi<strong>on</strong>s in mm<br />

Q (max.)* D1 D2 D3 H1 H2 H3 H4 H5<br />

5.0 200 65 15 100 600 171.3 1,000 550<br />

8.4 400 80 15 150 1,200 333.5 1,800 1,100<br />

11.5 400 90 15 150 1,200 333.5 1,800 1,100<br />

* The actual maximum flow of the fuel oil circulati<strong>on</strong> pump<br />

Fig. 07.05.02: Fuel oil venting box<br />

Flushing of the fuel oil system<br />

178 38 39-3.2<br />

Before starting the engine for the first time, the system<br />

<strong>on</strong> board has to be flushed in accordance with<br />

<strong>MAN</strong> B&W’s recommendati<strong>on</strong>s ‘Flushing of Fuel Oil<br />

System’ which <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.


<strong>MAN</strong> B&W 7.06<br />

Water In Fuel Emulsificati<strong>on</strong><br />

The emulsificati<strong>on</strong> of water into the fuel oil reduces<br />

the NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> with about % per % water<br />

added to the fuel up to about 20% without modificati<strong>on</strong><br />

of the engine fuel injecti<strong>on</strong> equipment.<br />

A Water In Fuel emulsi<strong>on</strong> (WIF) mixed for th<str<strong>on</strong>g>is</str<strong>on</strong>g> purpose<br />

and based <strong>on</strong> Heavy Fuel Oil (HFO) <str<strong>on</strong>g>is</str<strong>on</strong>g> stable<br />

for a l<strong>on</strong>g time, whereas a WIF based <strong>on</strong> Marine<br />

<strong>Diesel</strong> Oil <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly stable for a short period of time<br />

unless an emulsifying agent <str<strong>on</strong>g>is</str<strong>on</strong>g> applied.<br />

As both the <strong>MAN</strong> B&W two�stroke main engine<br />

and the <strong>MAN</strong> <strong>Diesel</strong> GenSets are designed to run<br />

<strong>on</strong> emulsified HFO, it can be used for a comm<strong>on</strong><br />

system.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> supposed below, that both the main engine<br />

and GenSets are running <strong>on</strong> the same fuel, either<br />

HFO or a homogen<str<strong>on</strong>g>is</str<strong>on</strong>g>ed HFO-based WIF.<br />

Special arrangements are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong> for<br />

a more soph<str<strong>on</strong>g>is</str<strong>on</strong>g>ticated system in which the GenSets<br />

can run with or without a homogen<str<strong>on</strong>g>is</str<strong>on</strong>g>ed HFObased<br />

WIF, if the main engine <str<strong>on</strong>g>is</str<strong>on</strong>g> running <strong>on</strong> that.<br />

Please note that the fuel pump injecti<strong>on</strong> capacity<br />

shall be c<strong>on</strong>firmed for the main engine as well as<br />

the GenSets for the selected percentage of water<br />

in the WIF.<br />

Temperature and pressure<br />

When water <str<strong>on</strong>g>is</str<strong>on</strong>g> added by emulsificati<strong>on</strong>, the fuel<br />

v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity increases. In order to keep the injecti<strong>on</strong><br />

v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity at 0- 5 cSt and still be able to operate<br />

<strong>on</strong> up to 700 cSt fuel oil, the heating temperature<br />

has to be increased to about 70 °C depending <strong>on</strong><br />

the water c<strong>on</strong>tent.<br />

The higher temperature calls for a higher pressure<br />

to prevent cavitati<strong>on</strong> and steam formati<strong>on</strong> in the<br />

system. The inlet pressure <str<strong>on</strong>g>is</str<strong>on</strong>g> thus set to 3 bar.<br />

In order to avoid temperature chock when mixing<br />

water into the fuel in the homogen<str<strong>on</strong>g>is</str<strong>on</strong>g>er, the water<br />

inlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> to be set to 70�90 °C.<br />

Safety system<br />

Page of 2<br />

In case the pressure in the fuel oil line drops, the<br />

water homogen<str<strong>on</strong>g>is</str<strong>on</strong>g>ed into the Water In Fuel emulsi<strong>on</strong><br />

will evaporate, damaging the emulsi<strong>on</strong> and<br />

creating supply problems. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> situati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> avoided<br />

by installing a third, air driven supply pump,<br />

which keeps the pressure as l<strong>on</strong>g as air <str<strong>on</strong>g>is</str<strong>on</strong>g> left in<br />

the tank ‘S’, see Fig. 7.06.0 .<br />

Before the tank ‘S’ <str<strong>on</strong>g>is</str<strong>on</strong>g> empty, an alarm <str<strong>on</strong>g>is</str<strong>on</strong>g> given and<br />

the drain valve <str<strong>on</strong>g>is</str<strong>on</strong>g> opened, which will drain off the<br />

WIF and replace it with HFO or diesel oil from the<br />

service tank.<br />

The drain system <str<strong>on</strong>g>is</str<strong>on</strong>g> kept at atmospheric pressure,<br />

so the water will evaporate when the hot emulsi<strong>on</strong><br />

enters the safety tank. The safety tank shall be<br />

designed accordingly.<br />

Impact <strong>on</strong> the auxiliary systems<br />

Please note that if the engine operates <strong>on</strong> Water<br />

In Fuel emulsi<strong>on</strong> (WIF), in order to reduce the NO x<br />

em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong>, the exhaust gas temperature will decrease<br />

due to the reduced air / exhaust gas ratio<br />

and the increased specific heat of the exhaust gas.<br />

Depending <strong>on</strong> the water c<strong>on</strong>tent, th<str<strong>on</strong>g>is</str<strong>on</strong>g> will have an<br />

impact <strong>on</strong> the calculati<strong>on</strong> and design of the following<br />

items:<br />

• Freshwater generators<br />

• Energy for producti<strong>on</strong> of freshwater<br />

• Jacket water system<br />

• Waste heat recovery system<br />

• Exhaust gas boiler<br />

• Storage tank for freshwater<br />

For further informati<strong>on</strong> about emulsificati<strong>on</strong> of water<br />

into the fuel and use of Water In Fuel emulsi<strong>on</strong><br />

(WIF), please refer to our publicati<strong>on</strong> titled:<br />

Exhaust Gas Em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong> C<strong>on</strong>trol Today and<br />

Tomorrow<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at: www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME-C/ME-GI/ME-B engines 198 38 82�8.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 7.06<br />

������<br />

������������<br />

����<br />

�������<br />

����<br />

– – – – – – – – – <strong>Diesel</strong> oil<br />

����<br />

����������� ����<br />

��������������<br />

�����������<br />

������<br />

������������<br />

Heavy fuel oil<br />

��������������<br />

������������<br />

������<br />

����������<br />

���<br />

��� �����������<br />

���������������<br />

������������<br />

Heated pipe with insulati<strong>on</strong><br />

a) Tracing fuel oil lines: Max. 50 °C<br />

����������<br />

�����������<br />

��<br />

��<br />

��<br />

������<br />

b) Tracing fuel oil drain lines: Max. 90 °C,<br />

�����������<br />

������<br />

min. 50 °C for installati<strong>on</strong>s with jacket cooling water<br />

���������<br />

�����������<br />

�����<br />

�����������<br />

���������������������������<br />

�����������<br />

�������������<br />

�����������<br />

�����������<br />

�����<br />

��<br />

��<br />

��<br />

������<br />

��������������<br />

����������������<br />

������������������<br />

�������������������<br />

������������������<br />

������<br />

����������<br />

�������������<br />

���������<br />

������<br />

������������<br />

���������<br />

Number of auxiliary engines, pumps, coolers, etc.<br />

are subject to alterati<strong>on</strong>s according to the actual<br />

plant specificati<strong>on</strong>.<br />

The letters refer to the l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’.<br />

Page 2 of 2<br />

Fig. 7.06.01: System for emulsificati<strong>on</strong> of water into the fuel comm<strong>on</strong> to the main engine and <strong>MAN</strong> <strong>Diesel</strong> GenSets<br />

198 99 01�8.3<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME-C/ME-GI/ME-B engines 198 38 82�8.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������<br />

��������<br />

�����������<br />

�� �<br />

��<br />

�<br />

��<br />

�� ��<br />

��<br />

��<br />

��<br />

��<br />

������<br />

���������������������<br />

������������<br />

�����������<br />

����<br />

�����<br />

����<br />

��������������<br />

����������������<br />

�����<br />

����<br />

����<br />

��


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Lubricating Oil<br />

8


<strong>MAN</strong> B&W 8.01<br />

Lubricating and Cooling Oil System<br />

���<br />

������������������<br />

��������������������<br />

�� �� �� �� ��<br />

��������<br />

������<br />

��������<br />

�����������<br />

����������������������������<br />

��������������<br />

��������<br />

������<br />

���<br />

Fig. 8.01.01 Lubricating and cooling oil system<br />

The introducti<strong>on</strong> of the ME engines has given r<str<strong>on</strong>g>is</str<strong>on</strong>g>e<br />

to the following modificati<strong>on</strong>s:<br />

����������������<br />

��������<br />

• The camshaft has been omitted<br />

• The mechanical type fuel pumps have been<br />

replaced by the electr<strong>on</strong>ically c<strong>on</strong>trolled fuel<br />

injecti<strong>on</strong> system<br />

• A Hydraulic Power Supply (HPS) unit has been<br />

introduced either mounted <strong>on</strong> the engine and engine<br />

driven (EoD 440 60) or separately mounted<br />

and electrically driven, opti<strong>on</strong> 4 40 660.<br />

As a c<strong>on</strong>sequence, the main pipes for camshaft<br />

lubricati<strong>on</strong> and exhaust valve actuati<strong>on</strong> have been<br />

omitted.<br />

The lubricating oil <str<strong>on</strong>g>is</str<strong>on</strong>g> pumped from a bottom tank,<br />

by means of the main lubricating oil pump (4 40 60 ),<br />

to the lubricating oil cooler (4 40 605), a thermostatic<br />

valve (4 40 6 0) and, through a full�flow filter<br />

(4 40 6 5), to the engine inlet RU, Fig. 8.0 .0 .<br />

�����������������������<br />

����������������<br />

Page of<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 42 30�4.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����<br />

���<br />

���<br />

��<br />

�������������� ������������<br />

��<br />

��<br />

�������������<br />

� �<br />

�<br />

�����������<br />

���������������<br />

��������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

* Venting for <strong>MAN</strong> B&W or Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbochargers <strong>on</strong>ly<br />

��<br />

���<br />

�<br />

198 99 84�4.4<br />

RU lubricates main bearings, thrust bearing, axial<br />

vibrati<strong>on</strong> damper, p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling, crosshead bearings,<br />

crankpin bearings. It also supplies oil to the<br />

Hydraulic Power Supply unit and to moment compensator<br />

and torsi<strong>on</strong>al vibrati<strong>on</strong> damper.<br />

Lubricati<strong>on</strong> of turbochargers<br />

<strong>Turbo</strong>chargers with slide bearings are normally<br />

lubricated from the main engine system. AB <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

outlet from the turbocharger, see Figs. 8.03.0 to<br />

8.03.04, which are shown with sensors for UMS.<br />

Figs. 8.03.0 to 8.03.04 show the lube oil pipe arrangements<br />

for different turbocharger makes.


<strong>MAN</strong> B&W 8.02<br />

Hydraulic Power Supply Unit<br />

Internally <strong>on</strong> the engine RU <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected to the<br />

Hydraulic Power Supply unit (HPS) which supplies<br />

the hydraulic oil to the Hydraulic Cylinder Units<br />

(HCUs). The HPS unit can be either mounted <strong>on</strong>to<br />

the engine and engine driven (EoD 4 40 60) or<br />

delivered separately electrically driven, opti<strong>on</strong> 4<br />

40 660. See figs. 6.0 .02 and 6.0 .03 respectively.<br />

The hydraulic power supply unit shown in Fig.<br />

8.02.0 , c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of:<br />

• an automatic main filter with a redundance filter,<br />

in parallel<br />

• two electrically driven pumps<br />

• three engine driven pumps<br />

• an safety and accumulator block<br />

RW <str<strong>on</strong>g>is</str<strong>on</strong>g> the oil outlet from the automatic backflushing<br />

filter.<br />

At start <strong>on</strong>e of the two electrically driven start�up<br />

pumps <str<strong>on</strong>g>is</str<strong>on</strong>g> activated, and it <str<strong>on</strong>g>is</str<strong>on</strong>g> stopped as so<strong>on</strong> as<br />

the three engine driven pumps have taken over<br />

the hydraulic oil supply.<br />

The hydraulic oil <str<strong>on</strong>g>is</str<strong>on</strong>g> supplied to the Hydraulic Cylinder<br />

Units (HCU) located at each cylinder, where<br />

it <str<strong>on</strong>g>is</str<strong>on</strong>g> diverted to the electr<strong>on</strong>ic Fuel Injecti<strong>on</strong> system,<br />

and to the electr<strong>on</strong>ic exhaust Valve Activati<strong>on</strong><br />

(FIVA) sy�stem, which perform the fuel injecti<strong>on</strong><br />

and opens the exhaust valve. The exhaust<br />

valve <str<strong>on</strong>g>is</str<strong>on</strong>g> closed by the c<strong>on</strong>venti<strong>on</strong>al ‘air spring’.<br />

The electr<strong>on</strong>ic signals to the FIVA valves are given<br />

by the Engine C<strong>on</strong>trol System, see Chapter 6,<br />

Engine C<strong>on</strong>trol System (ECS).<br />

Page of 2<br />

The Hydraulic power supply <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g><br />

in 2 versi<strong>on</strong>s<br />

The standard versi<strong>on</strong>, EoD 4 40 660, <str<strong>on</strong>g>is</str<strong>on</strong>g> the classic<br />

ME power supply where the hydraulic power<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> generated by engine driven pumps and start up<br />

pressure <str<strong>on</strong>g>is</str<strong>on</strong>g> created by electric driven start pumps.<br />

The capacity of the start up pumps <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly sufficient<br />

to make the start up pressure. The engine<br />

can not run with the engine driven pumps out of<br />

operati<strong>on</strong>.<br />

The opti<strong>on</strong>al versi<strong>on</strong>, EoD 4 40 66 <str<strong>on</strong>g>is</str<strong>on</strong>g> similar to<br />

the standard versi<strong>on</strong>, but the electric driven start<br />

up pumps have a capacity sufficient to give Take<br />

Home power at least 5% engine power. The<br />

electric power c<strong>on</strong>sumpti<strong>on</strong> should be taken into<br />

c<strong>on</strong>siderati<strong>on</strong> in the specificati<strong>on</strong> of the auxilliary<br />

machinery capacity.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 42 31-6.1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 8.02<br />

Hydraulic power supply unit, Engine Driven<br />

TI 8113<br />

LS 1234 AH<br />

To hydraulic<br />

cylinder unit<br />

FS 8114 AL Y TI 8113 i AH<br />

Crosshead bearings & p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> Main bearings<br />

TI 8106<br />

TE 8106 I AH Y<br />

TE 8106 Z<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines<br />

Hydraulic oil<br />

Hydraulic Power Supply unit<br />

Safety and accumulator block<br />

System oil outlet<br />

Axial vibrati<strong>on</strong> damper<br />

WI 8812<br />

WT 8812 I AH Y<br />

Electrically driven<br />

pumps<br />

Engine<br />

driven<br />

pumps<br />

Fig. 8.02.01: Engine driven hydraulic power supply unit<br />

Fore<br />

S<br />

Aft<br />

AR<br />

PI 8108<br />

PI 8108 I AL Y<br />

PI 8108 Z<br />

M M<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

The letters refer to ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of flanges’<br />

The pos. numbers refer to ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of instruments’<br />

The piping <str<strong>on</strong>g>is</str<strong>on</strong>g> delivered with and fitted <strong>on</strong>to the engine<br />

Filter unit<br />

Automatic<br />

by-pass<br />

valve<br />

Back-flushing oil<br />

RW<br />

Main filter<br />

TE 8106 I AH<br />

Redundance filter<br />

TI 8112<br />

LS 1236 AH Z<br />

LS 1235 AH<br />

RU Lube oil to turbocharger<br />

Page 2 of 2<br />

178 48 13�4.1<br />

198 42 31-6.1


<strong>MAN</strong> B&W 8.03<br />

Lubricating Oil Pipes for <strong>Turbo</strong>chargers<br />

���������������<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines,<br />

Engine Selecti<strong>on</strong> Guide<br />

��������������<br />

������������<br />

Fig. 8.03.01: <strong>MAN</strong> <strong>Diesel</strong> turbocharger type TCA<br />

From system oil<br />

Fig. 8.03.02: ABB turbocharger type TPL<br />

AB<br />

��<br />

ABB TPL<br />

turbocharger<br />

�����������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���������<br />

�<br />

PI 8 03<br />

PT 8 03 I AL<br />

TI 8 7<br />

TE 8 7 I AH<br />

���������<br />

������������������<br />

Page of 2<br />

178 48 50�4.1<br />

198 96 87�3.2<br />

198 42 32�8.3


<strong>MAN</strong> B&W 8.03<br />

From system oil<br />

Fig. 8.03.03: Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbocharger type MET<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines,<br />

Engine Selecti<strong>on</strong> Guide<br />

AB<br />

MET turbocharger<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

E<br />

TI 8 7<br />

TE 8 7 I AH<br />

PI 8 03<br />

Page 2 of 2<br />

198 96 88�5.2<br />

198 42 32�8.3


<strong>MAN</strong> B&W 8.04<br />

Lubricating Oil Centrifuges and L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Lubricating Oils<br />

Manual cleaning centrifuges can <strong>on</strong>ly be used<br />

for Attended Machinery Spaces (AMS). For Unattended<br />

Machinery Spaces (UMS), automatic centrifuges<br />

with total d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge or partial d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge<br />

are to be used.<br />

The nominal capacity of the centrifuge <str<strong>on</strong>g>is</str<strong>on</strong>g> to be<br />

according to the supplier’s recommendati<strong>on</strong> for<br />

lubricating oil, based <strong>on</strong> the figures:<br />

0.136 litre/kWh<br />

The Nominal MCR <str<strong>on</strong>g>is</str<strong>on</strong>g> used as the total installed<br />

power.<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of lubricating oils<br />

The circulating oil (lubricating and cooling oil)<br />

must be of the rust and oxidati<strong>on</strong> inhibited type of<br />

oil of SAE 30 v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity grade.<br />

In order to keep the crankcase and p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling<br />

spaces clean of deposits, the oil should have adequate<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>persi<strong>on</strong> and detergent properties.<br />

Alkaline circulating oils are generally superior in<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> respect.<br />

The oils l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted below have all given l<strong>on</strong>g-term sat<str<strong>on</strong>g>is</str<strong>on</strong>g>factory<br />

service in <strong>MAN</strong> B&W engine installati<strong>on</strong>s:<br />

Company Circulating oil<br />

SAE 30, BN 5�10<br />

BP Energol OE�HT 30<br />

Castrol CDX 30<br />

Chevr<strong>on</strong> *) Veritas 800 Marine 30<br />

Exx<strong>on</strong>Mobil Mobilgard 300<br />

Shell Melina 30 / S 30<br />

Total Atlanta Marine D 3005<br />

*) Includes Caltex, Chevr<strong>on</strong> and Texaco<br />

Also other brands have been used with sat<str<strong>on</strong>g>is</str<strong>on</strong>g>factory<br />

results.<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME�C/ME�GI/ME-B engines,<br />

Engine Selecti<strong>on</strong> Guide<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

198 38 86�5.6


<strong>MAN</strong> B&W 8.05<br />

Comp<strong>on</strong>ents for Lubricating Oil System<br />

Lubricating oil pump<br />

The lubricating oil pump can be of the d<str<strong>on</strong>g>is</str<strong>on</strong>g>placement<br />

wheel, or the centrifugal type:<br />

Lubricating oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity, specified...75 cSt at 50 °C<br />

Lubricating oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity .......... maximum 400 cSt *<br />

Lubricating oil flow ..............see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Design pump head .......................................4.4 bar<br />

Delivery pressure .........................................4.4 bar<br />

Max. working temperature ............................. 70 °C<br />

* 400 cSt <str<strong>on</strong>g>is</str<strong>on</strong>g> specified, as it <str<strong>on</strong>g>is</str<strong>on</strong>g> normal practice when<br />

starting <strong>on</strong> cold oil, to partly open the bypass<br />

valves of the lubricating oil pumps, so as to reduce<br />

the electric power requirements for the pumps.<br />

The flow capacity must be within a range from<br />

00 to 2% of the capacity stated.<br />

The pump head <str<strong>on</strong>g>is</str<strong>on</strong>g> based <strong>on</strong> a total pressure drop<br />

across cooler and filter of maximum bar.<br />

The bypass valve shown between the main lubricating<br />

oil pumps Fig. 8.0 .0 may be omitted in<br />

cases where the pumps have a built�in bypass or<br />

if centrifugal pumps are used.<br />

If centrifugal pumps are used, it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended<br />

to install a throttle valve at positi<strong>on</strong> ‘005’ to prevent<br />

an excessive oil level in the oil pan if the<br />

centrifugal pump <str<strong>on</strong>g>is</str<strong>on</strong>g> supplying too much oil to the<br />

engine.<br />

During trials, the valve should be adjusted by<br />

means of a device which permits the valve to be<br />

closed <strong>on</strong>ly to the extent that the minimum flow<br />

area through the valve gives the specified lubricating<br />

oil pressure at the inlet to the engine at full<br />

normal load c<strong>on</strong>diti<strong>on</strong>s. It should be possible to<br />

fully open the valve, e.g. when starting the engine<br />

with cold oil.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended to install a 25 mm valve (pos.<br />

006), with a hose c<strong>on</strong>necti<strong>on</strong> after the main lubricating<br />

oil pumps, for checking the cleanliness of<br />

the lubricating oil system during the flushing procedure.<br />

The valve <str<strong>on</strong>g>is</str<strong>on</strong>g> to be located <strong>on</strong> the underside<br />

of a horiz<strong>on</strong>tal pipe just after the d<str<strong>on</strong>g>is</str<strong>on</strong>g>charge<br />

from the lubricating oil pumps.<br />

<strong>MAN</strong> B&W S70MC6, S70MC-C7/8, S70ME-C7/8,<br />

S70ME-GI7/8, S65ME-C8, S65ME-GI8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Lubricating oil cooler<br />

Page of 3<br />

The lubricating oil cooler must be of the shell and<br />

tube type made of seawater res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant material, or<br />

a plate type heat exchanger with plate material<br />

of titanium, unless freshwater <str<strong>on</strong>g>is</str<strong>on</strong>g> used in a central<br />

cooling water system.<br />

Lubricating oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity, specified...75 cSt at 50 °C<br />

Lubricating oil flow ..............see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> ..................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Lubricating oil temperature, outlet cooler ...... 45 °C<br />

Working pressure <strong>on</strong> oil side .......................4.4 bar<br />

Pressure drop <strong>on</strong> oil side ............maximum 0.5 bar<br />

Cooling water flow ..............see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Cooling water temperature at inlet:<br />

seawater ......................................................... 32 °C<br />

freshwater ....................................................... 36 °C<br />

Pressure drop <strong>on</strong> water side .......maximum 0.2 bar<br />

The lubricating oil flow capacity must be within a<br />

range from 00 to 2% of the capacity stated.<br />

The cooling water flow capacity must be within a<br />

range from 00 to 0% of the capacity stated.<br />

To ensure the correct functi<strong>on</strong>ing of the lubricating<br />

oil cooler, we recommend that the seawater<br />

temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> regulated so that it will not be<br />

lower than 0 °C.<br />

The pressure drop may be larger, depending <strong>on</strong><br />

the actual cooler design.<br />

Lubricating oil temperature c<strong>on</strong>trol valve<br />

The temperature c<strong>on</strong>trol system can, by means of<br />

a three�way valve unit, by�pass the cooler totally<br />

or partly.<br />

Lubricating oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity, specified ....75 cSt at 50 °C<br />

Lubricating oil flow ..............see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Temperature range, inlet to engine .........40 � 47 °C<br />

198 42 39�0.3


<strong>MAN</strong> B&W 8.05<br />

Lubricating oil full flow filter<br />

Lubricating oil flow ..............see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Working pressure .........................................4.4 bar<br />

Test pressure .................... according to class rules<br />

Absolute fineness .........................................50 µm*<br />

Working temperature ............. approximately 45 °C<br />

Oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity at working temp. ............. 90 � 00 cSt<br />

Pressure drop with clean filter ....maximum 0.2 bar<br />

Filter to be cleaned<br />

at a pressure drop .......................maximum 0.5 bar<br />

* The absolute fineness corresp<strong>on</strong>ds to a nominal<br />

fineness of approximately 30 µm at a retaining<br />

rate of 90%.<br />

The flow capacity must be within a range from<br />

00 to 2% of the capacity stated.<br />

The full�flow filter should be located as close as<br />

possible to the main engine.<br />

If a double filter (duplex) <str<strong>on</strong>g>is</str<strong>on</strong>g> installed, it should<br />

have sufficient capacity to allow the specified full<br />

amount of oil to flow through each side of the filter<br />

at a given working temperature with a pressure<br />

drop across the filter of maximum 0.2 bar (clean<br />

filter).<br />

<strong>MAN</strong> B&W S70MC6, S70MC-C7/8, S70ME-C7/8,<br />

S70ME-GI7/8, S65ME-C8, S65ME-GI8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 3<br />

If a filter with a back�flushing arrangement <str<strong>on</strong>g>is</str<strong>on</strong>g> installed,<br />

the following should be noted:<br />

• The required oil flow, specified in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of<br />

capacities’, should be increased by the amount<br />

of oil used for the back�flushing, so that the<br />

lubricating oil pressure at the inlet to the main<br />

engine can be maintained during cleaning.<br />

• If an automatically cleaned filter <str<strong>on</strong>g>is</str<strong>on</strong>g> installed, it<br />

should be noted that in order to activate the<br />

cleaning process, certain makes of filter require<br />

a higher oil pressure at the inlet to the filter than<br />

the pump pressure specified. Therefore, the<br />

pump capacity should be adequate for th<str<strong>on</strong>g>is</str<strong>on</strong>g> purpose,<br />

too.<br />

Flushing of lube oil system<br />

Before starting the engine for the first time, the lubricating<br />

oil system <strong>on</strong> board has to be cleaned in<br />

accordance with <strong>MAN</strong> <strong>Diesel</strong>’s recommendati<strong>on</strong>s:<br />

‘Flushing of Main Lubricating Oil System’, which <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

<str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

198 42 39�0.3


<strong>MAN</strong> B&W 8.05<br />

Lubricating oil outlet<br />

A protecting ring positi<strong>on</strong> �4 <str<strong>on</strong>g>is</str<strong>on</strong>g> to be installed if<br />

required, by class rules, and <str<strong>on</strong>g>is</str<strong>on</strong>g> placed loose <strong>on</strong><br />

the tanktop and guided by the hole in the flange.<br />

In the vertical directi<strong>on</strong> it <str<strong>on</strong>g>is</str<strong>on</strong>g> secured by means of<br />

screw positi<strong>on</strong> 4, in order to prevent wear of the<br />

rubber plate.<br />

Fig. 8.05.01: Lubricating oil outlet<br />

<strong>MAN</strong> B&W S70MC6, S70MC-C7/8, S70ME-C7/8,<br />

S70ME-GI7/8, S65ME-C8, S65ME-GI8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 3 of 3<br />

178 07 41�6.0<br />

198 42 39�0.3


<strong>MAN</strong> B&W 8.06<br />

Lubricating Oil Tank<br />

����������������� � ���������������<br />

���������������������������<br />

��<br />

�������������������������������<br />

�����������������������������������<br />

���������������������������<br />

��������������������������<br />

����������������������������<br />

����������������������������<br />

����������������<br />

Fig. 8.06.01a: Lubricating oil tank, with cofferdam<br />

�<br />

�<br />

�<br />

�<br />

���������<br />

�<br />

�<br />

�<br />

���������<br />

� �<br />

� �<br />

� �<br />

� �<br />

������<br />

�<br />

������<br />

�<br />

������<br />

������<br />

��������<br />

������������<br />

Page of 2<br />

���������������������<br />

178 52 41�1.0<br />

<strong>MAN</strong> B&W S65ME�C/ME�GI8 198 49 03�9.0<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

�<br />

��<br />

������������<br />

����<br />

��<br />

�� ��<br />

�� ��� �����<br />

�������������������<br />

�����������������


<strong>MAN</strong> B&W 8.06<br />

Note:<br />

When calculating the tank heights, allowance has<br />

not been made for the possibility that part of the<br />

oil quantity from the system outside the engine<br />

may, when the pumps are stopped, be returned to<br />

the bottom tank. If the system outside the engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> so designed that a part of the oil quantity<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> drained back to the tank when the pumps are<br />

stopped, the height of the bottom tank indicated<br />

<strong>on</strong> the drawing <str<strong>on</strong>g>is</str<strong>on</strong>g> to be increased to th<str<strong>on</strong>g>is</str<strong>on</strong>g> additi<strong>on</strong>al<br />

quantity.<br />

If space <str<strong>on</strong>g>is</str<strong>on</strong>g> limited other proposals are possible.<br />

* Based <strong>on</strong> 50 mm thickness of supporting<br />

chocks<br />

Page 2 of 2<br />

Minimum lubricating oil bottom tank volume (m 3 )<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

5 cyl. 6 cyl. 7 cyl. 8 cyl.<br />

8.5 22.4 26. 30.0<br />

The lubricating oil bottom tank complies with the<br />

rules of the classificati<strong>on</strong> societies by operati<strong>on</strong><br />

under the following c<strong>on</strong>diti<strong>on</strong>s and the angles of<br />

inclinati<strong>on</strong> in degrees are:<br />

Athwartships Fore and aft<br />

Static Dynamic Static Dynamic<br />

Cylinder Drain at<br />

No. cylinder No.<br />

D0 D H0 H H2 H3 W L OL Qm3 5 2�5 225 450 ,035 450 90 300 400 6,750 935 4.0<br />

6 2�5 250 475 , 0 475 95 400 500 7,500 ,0 0 6.8<br />

7 2�5�7 275 550 , 50 550 00 400 500 8,250 ,050 9.2<br />

8 2�5�8 275 550 ,220 550 0 400 500 9,750 , 20 24.2<br />

Fig. 8.06.01b: Lubricating oil tank, with cofferdam<br />

<strong>MAN</strong> B&W S65ME�C/ME�GI8 198 49 03�9.0<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 8.07<br />

Crankcase Venting and Bedplate Drain Pipes<br />

Crankcase venting<br />

The engine crankcase <str<strong>on</strong>g>is</str<strong>on</strong>g> vented through ‘AR’<br />

through a pipe extending directly to the deck. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g><br />

pipe has a drain arrangement that permits oil c<strong>on</strong>densed<br />

in the pipe to be led to a drain tank, see<br />

fig. 8.0 .0 .<br />

Fig. 8.07.01: Crankcase venting<br />

<strong>MAN</strong> B&W S70ME�C, L70ME�C, S65ME�C, S60ME�C, L60ME�C,<br />

S50ME�C/ME�GI, S50ME-B, S40ME-B, S35ME-B<br />

�����������������<br />

��������������������������������<br />

��������������������������<br />

����������<br />

Drains<br />

Drains from the engine bedplate ‘AE’ are fitted <strong>on</strong><br />

both sides of the engine, see fig. 8.08.0 .<br />

From the engine the oil collects in the oil pan from<br />

where it <str<strong>on</strong>g>is</str<strong>on</strong>g> drained off to the bottom tank.<br />

FORE.<br />

Fig. 8.07.02: Bedplate drain pipes<br />

Cyl.<br />

Hydraulic cyl. unit<br />

������������������������������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

����<br />

����������������<br />

�������������������������<br />

���������������������������<br />

�������������<br />

���������������������������<br />

�����������������������������<br />

��������������������<br />

��<br />

Page of<br />

198 97 10�1.2<br />

For external pipe c<strong>on</strong>necti<strong>on</strong>s, we specify a maximum<br />

oil velocity of .8 m/s.<br />

Drain from<br />

exh. side<br />

LS 4 2 AH<br />

Drain turbocharger cleaning<br />

Hydraulic power<br />

supply unit<br />

AE<br />

AE<br />

LS 235 AH<br />

LS 234 AH Z<br />

178 52 20�7.0<br />

198 42 61�5.3


<strong>MAN</strong> B&W 8.08<br />

Hydraulic oil back�flushing<br />

The special sucti<strong>on</strong> arrangement for purifier sucti<strong>on</strong><br />

in c<strong>on</strong>necti<strong>on</strong> with the ME engine (Integrated<br />

system).<br />

The back-flushing oil from the self cleaning 0 µm<br />

hydraulic c<strong>on</strong>trol oil filter unit built <strong>on</strong>to the engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>taminated and it <str<strong>on</strong>g>is</str<strong>on</strong>g> therefore not expedient<br />

to lead it directly into the lubricating oil sump tank.<br />

The amount of back-flushed oil <str<strong>on</strong>g>is</str<strong>on</strong>g> large, and it<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>sidered to be too expensive to d<str<strong>on</strong>g>is</str<strong>on</strong>g>card<br />

it. Therefore, we suggest that the lubricating<br />

oil sump tank <str<strong>on</strong>g>is</str<strong>on</strong>g> modified for the ME engines in<br />

order not to have th<str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>taminated lubricating<br />

hydraulic c<strong>on</strong>trol oil mixed up in the total amount<br />

of lubricating oil. The lubricating oil sump tank <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

designed with a small ‘back-flushing hydraulic<br />

c<strong>on</strong>trol oil drain tank’ to which the back-flushed<br />

hydraulic c<strong>on</strong>trol oil <str<strong>on</strong>g>is</str<strong>on</strong>g> led and from which the lubricating<br />

oil purifier can also suck.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> explained in detail below and the principle<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig. 8.08.0 . Three suggesti<strong>on</strong>s for the<br />

arrangement of the drain tank in the sump tank<br />

are shown in Fig. 8.08.02 illustrates another suggesti<strong>on</strong><br />

for a back-flushing oil drain tank.<br />

The special sucti<strong>on</strong> arrangement for the purifier <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ting of two c<strong>on</strong>nected tanks (lubricating oil<br />

sump tank and back-flushing oil drain tank) and<br />

of th<str<strong>on</strong>g>is</str<strong>on</strong>g> reas<strong>on</strong> the oil level will be the same in both<br />

tanks, as explained in detail below.<br />

The oil level in the two tanks will be equalizing<br />

through the ‘branch pipe to back-flushing oil drain<br />

tank’, see Fig. 8.08.0 . As the pipes have the<br />

same diameters but a different length, the res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> larger in the ‘branch pipe to back-flushing<br />

oil drain tank’, and therefore the purifier will suck<br />

primarily from the sump tank.<br />

The oil level in the sump tank and the back-flushing<br />

oil drain tank will remain to be about equal because<br />

the tanks are interc<strong>on</strong>nected at the top.<br />

When hydraulic c<strong>on</strong>trol oil <str<strong>on</strong>g>is</str<strong>on</strong>g> back-flushed from<br />

the filter, it will give a higher oil level in the backflushing<br />

hydraulic c<strong>on</strong>trol oil drain tank and the<br />

purifier will suck from th<str<strong>on</strong>g>is</str<strong>on</strong>g> tank until the oil level <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

the same in both tanks. After that, the purifier will<br />

suck from the sump tank, as menti<strong>on</strong>ed above.<br />

Fig. 8.08.01: Back�flushing servo oil drain tank<br />

Page of<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> special arrangement for purifier sucti<strong>on</strong> will<br />

ensure that a good cleaning effect <strong>on</strong> the lubricati<strong>on</strong><br />

oil <str<strong>on</strong>g>is</str<strong>on</strong>g> obtained.<br />

If found profitable the back-flushed lubricating oil<br />

from the main lubricating oil filter (normally a 50 or<br />

40 µm filter) can also be returned into the special<br />

back-flushing oil drain tank.<br />

Fig. 8.08.02: Alternative design for the<br />

back�flushing servo oil drain tank<br />

178 52 49�6.1<br />

178 52 51�8.1<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines, ME Engine Selecti<strong>on</strong> Guide 198 48 29�7.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���������<br />

����<br />

����<br />

���<br />

��������<br />

������������<br />

�<br />

�����������<br />

���������������<br />

��<br />

�<br />

��������<br />

������������<br />

�����������<br />

������������<br />

���������<br />

����<br />

����<br />

���<br />

���<br />

�����������<br />

������������<br />

�������<br />

�����<br />

����������<br />

������������<br />

� �<br />

���<br />

�����������������������<br />

����������������������<br />

��������������������<br />

�����<br />

��������������<br />

�������������<br />

������������������<br />

��������������<br />

�������������<br />

�����������������<br />

��������������<br />

�����������������������<br />

��������������������<br />

���������������������<br />

�������<br />

�������������<br />

�������������<br />

������������������<br />

��������������<br />

���������������������������


<strong>MAN</strong> B&W 8.09<br />

Separate System for Hydraulic C<strong>on</strong>trol Unit<br />

As an opti<strong>on</strong>, the engine can be prepared for the<br />

use of a separate hydraulic c<strong>on</strong>trol oil system<br />

Fig. 8.09.0 .<br />

The separate hydraulic c<strong>on</strong>trol oil system can be<br />

built as a unit, or be built streamlined in the engine<br />

room with the various comp<strong>on</strong>ents placed and<br />

fastened to the steel structure of the engine room.<br />

The design and the dimensi<strong>on</strong>ing of the various<br />

comp<strong>on</strong>ents are based <strong>on</strong> the aim of having a reliable<br />

system that <str<strong>on</strong>g>is</str<strong>on</strong>g> able to supply low�pressure oil<br />

to the inlet of the engine�mounted high�pressure<br />

hydraulic c<strong>on</strong>trol oil pumps at a c<strong>on</strong>stant pressure,<br />

both at engine stand�by and at various engine<br />

loads. The quality of the hydraulic c<strong>on</strong>trol oil<br />

must fulfil the same grade as for our standard integrated<br />

lube/cooling/hydraulic�c<strong>on</strong>trol oil system,<br />

i.e. ISO 4406 XX/ 6/ 3 equivalent to NAS 638<br />

Class 7.<br />

The hydraulic c<strong>on</strong>trol oil system compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es:<br />

Hydraulic c<strong>on</strong>trol oil tank<br />

2 Hydraulic c<strong>on</strong>trol oil pumps (<strong>on</strong>e for stand�by)<br />

Pressure c<strong>on</strong>trol valve<br />

Hydraulic c<strong>on</strong>trol oil cooler, water�cooled by the<br />

low temperature cooling water<br />

Three�way valve, temperature c<strong>on</strong>trolled<br />

Hydraulic c<strong>on</strong>trol oil filter, duplex type or automatic<br />

self�cleaning type<br />

Hydraulic c<strong>on</strong>trol oil fine filter with pump<br />

Temperature indicator<br />

Pressure indicator<br />

2 Level alarms<br />

Valves and cocks<br />

Piping.<br />

Hydraulic c<strong>on</strong>trol oil tank<br />

The tank can be made of mild steel plate or be a<br />

part of the ship structure.<br />

The tank <str<strong>on</strong>g>is</str<strong>on</strong>g> to be equipped with flange c<strong>on</strong>necti<strong>on</strong>s<br />

and the items l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted below:<br />

Oil filling pipe<br />

Outlet pipe for pump sucti<strong>on</strong>s<br />

Return pipe from engine<br />

Drain pipe<br />

Vent pipe.<br />

Page of 4<br />

The hydraulic c<strong>on</strong>trol oil tank <str<strong>on</strong>g>is</str<strong>on</strong>g> to be placed at<br />

least m below the hydraulic oil outlet flange, RZ.<br />

Hydraulic c<strong>on</strong>trol oil pump<br />

The pump must be of the d<str<strong>on</strong>g>is</str<strong>on</strong>g>placement type (e.g.<br />

gear wheel or screw wheel pump).<br />

The following data <str<strong>on</strong>g>is</str<strong>on</strong>g> specified in Fig. 8.09.02:<br />

• Pump capacity<br />

• Pump head<br />

• Delivery pressure<br />

• Working temperature<br />

• Oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity range.<br />

Pressure c<strong>on</strong>trol valve<br />

The valve <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the self�operating flow c<strong>on</strong>trolling<br />

type, which bases the flow <strong>on</strong> the pre�defined<br />

pressure set point. The valve must be able to react<br />

quickly from the fully�closed to the fully�open positi<strong>on</strong><br />

(t max = 4 sec), and the capacity must be the<br />

same as for the hydraulic c<strong>on</strong>trol oil low�pressure<br />

pumps. The set point of the valve has to be within<br />

the adjustable range specified <strong>on</strong> a separate<br />

drawing.<br />

The following data <str<strong>on</strong>g>is</str<strong>on</strong>g> specified in Fig. 8.09.02:<br />

• Flow rate<br />

• Adjustable differential pressure range across<br />

the valve<br />

• Oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity range.<br />

Hydraulic c<strong>on</strong>trol oil cooler<br />

The cooler must be of the plate heat exchanger or<br />

shell and tube type.<br />

The following data <str<strong>on</strong>g>is</str<strong>on</strong>g> specified in Fig. 8.09.02:<br />

• Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong><br />

• Oil flow rate<br />

• Oil outlet temperature<br />

• Maximum oil pressure drop across the cooler<br />

• Cooling water flow rate<br />

• Water inlet temperature<br />

• Maximum water pressure drop across the cooler.<br />

Temperature c<strong>on</strong>trolled three�way valve<br />

The valve must act as a c<strong>on</strong>trol valve, with an external<br />

sensor.<br />

The following data <str<strong>on</strong>g>is</str<strong>on</strong>g> specified in Fig. 8.09.02:<br />

• Capacity<br />

• Adjustable temperature range<br />

• Maximum pressure drop across the valve.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 48 52�3.2<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 8.09<br />

Hydraulic c<strong>on</strong>trol oil filter<br />

The filter <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the duplex full flow type with<br />

manual change over and manual cleaning or of<br />

the automatic self cleaning type.<br />

A differential pressure gauge <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted <strong>on</strong>to the<br />

filter<br />

The following data <str<strong>on</strong>g>is</str<strong>on</strong>g> specified in Fig. 8.09.02:<br />

• Filter capacity<br />

• Maximum pressure drop across the filter<br />

• Filter mesh size (absolute)<br />

• Oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity<br />

• Design temperature.<br />

Off-line hydraulic c<strong>on</strong>trol oil fine filter or purifier<br />

Fig. 8.09.0<br />

The off-line fine filter unit or purifier must be able<br />

to treat 5-20% of the total oil volume per hour.<br />

The fine filter <str<strong>on</strong>g>is</str<strong>on</strong>g> an off-line filter and removes metallic<br />

and n<strong>on</strong>-metallic particles larger than 0,8<br />

µm as well as water and oxidati<strong>on</strong>. The filter has a<br />

pertaining pump and <str<strong>on</strong>g>is</str<strong>on</strong>g> to be fitted <strong>on</strong> the top of<br />

the hydraulic c<strong>on</strong>trol oil tank.<br />

A suitable fine filter unit <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

Make: CJC, C.C. Jensen A/S, Svendborg,<br />

Denmark - www.cjc.dk.<br />

For oil volume < 0,000 litres:<br />

HDU 27/-MZ-Z with a pump flow of 5-20% of the<br />

total oil volume per hour.<br />

For oil volume > 0,000 litres:<br />

HDU 27/-GP-DZ with a pump flow of 5-20% of<br />

the total oil volume per hour.<br />

Temperature indicator<br />

The temperature indicator <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the liquid<br />

straight type.<br />

Pressure indicator<br />

The pressure indicator <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the dial type.<br />

Page 2 of 4<br />

Level alarm<br />

The hydraulic c<strong>on</strong>trol oil tank has to have level<br />

alarms for high and low oil level.<br />

Piping<br />

The pipes can be made of mild steel.<br />

The design oil pressure <str<strong>on</strong>g>is</str<strong>on</strong>g> to be 0 bar.<br />

The return pipes are to be placed vertical or laid<br />

with a downwards inclinati<strong>on</strong> of minimum 5°.<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 48 52�3.2<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 8.09<br />

�������������<br />

�����<br />

�������������<br />

������<br />

�������������������<br />

����������<br />

�����<br />

�����������<br />

����������������<br />

�� ���� �<br />

�������� �������<br />

��� ���� ��<br />

�������������<br />

�����������<br />

����<br />

Fig. 8.09.01: Hydraulic c<strong>on</strong>trol oil system, manual filter<br />

����<br />

������<br />

�� ���� � �� ���� �<br />

��������������������������<br />

�������������������������<br />

���������<br />

��������������<br />

��������<br />

�� ���� �����<br />

Page 3 of 4<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI engines 198 48 52�3.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

��<br />

������<br />

178 53 39�5.0


<strong>MAN</strong> B&W 8.09<br />

Hydraulic C<strong>on</strong>trol Oil System, S65ME-C<br />

Page of<br />

Cylinder No.: 5 6 7 8<br />

r/min 95 95 95 95<br />

kW 1 ,350 17,220 20,090 22,960<br />

Hydraulic C<strong>on</strong>trol Oil tank:<br />

Volumen, approx. m³ 3 3.5 .5<br />

Hydraulic C<strong>on</strong>trol Oil Pump:<br />

Pump capacity m³/h 5 55 60 70<br />

Pump head bar<br />

Delivery pressure bar<br />

Design temperature °C 70 70 70 70<br />

Oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity range cSt 15 - 90 15 - 90 15 - 90 15 - 90<br />

Pressure C<strong>on</strong>trol Valve:<br />

Lubricating oil flow m³/h 5 55 60 70<br />

Design pressure bar<br />

Adjustable pressure bar 2 - 2 - 2 - 2 -<br />

Design temperature °C 55 55 55 55<br />

Oil v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity range cSt 15 - 90 15 - 90 15 - 90 15 - 90<br />

Hydraulic C<strong>on</strong>trol Oil Cooler:<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> kW 155 185 215 2 5<br />

Lubricating oil flow m³/h 5 55 60 70<br />

Oil outlet temperature °C 5 5 5 5<br />

Design pressure, oil side bar<br />

Oil pressure drop, max bar 0.5 0.5 0.5 0.5<br />

Cooling water flow m³/h 23 27 31 36<br />

S.W. inlet temperature °C 32 32 32 32<br />

F.W. inlet temperature °C 36 36 36 36<br />

Water press. drop, max. bar 0.2 0.2 0.2 0.2<br />

Temperature C<strong>on</strong>trolled Three-way Valve:<br />

Lubricating oil flow m³/h 5 55 60 70<br />

Design pressure bar<br />

Temperature set point °C 5 5 5 5<br />

Design temperature °C 70 70 70 70<br />

Oil press. drop, max. bar 0.3 0.3 0.3 0.3<br />

Hydraulic C<strong>on</strong>trol Oil Filter:<br />

Lubricating oil flow m³/h 5 55 60 70<br />

Absolute fineness μm 50 50 50 50<br />

Design temperature °C 55 55 55 55<br />

Design pressure bar<br />

Oil press. drop, max. bar 0.3 0.3 0.3 0.3<br />

Fig. 8.09.02: Hydraulic c<strong>on</strong>trol oil system<br />

178 54 42-4.0<br />

<strong>MAN</strong> B&W S65ME-C 198 51 51�8.1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Cylinder Lubricati<strong>on</strong><br />

9


<strong>MAN</strong> B&W 9.01<br />

Cylinder Lubricating Oil System<br />

The cost of the cylinder lubricating oil <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>e of the<br />

largest c<strong>on</strong>tributi<strong>on</strong>s to total operating costs, next<br />

to the fuel oil cost. Another aspect <str<strong>on</strong>g>is</str<strong>on</strong>g> that the lubricati<strong>on</strong><br />

rate has a great influence <strong>on</strong> the cylinder<br />

c<strong>on</strong>diti<strong>on</strong>, and thus <strong>on</strong> the overhauling schedules<br />

and maintenance costs.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> therefore of the utmost importance that the<br />

cylinder lubricating oil system as well as its operati<strong>on</strong><br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> optim<str<strong>on</strong>g>is</str<strong>on</strong>g>ed.<br />

Cylinder Oils<br />

Cylinder oils should, preferably, be of the SAE 50<br />

v<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity grade.<br />

Modern high�rated two�stroke engines have a<br />

relatively great demand for detergency in the cylinder<br />

oil. Therefore cylinder oils should be chosen<br />

according to the below l<str<strong>on</strong>g>is</str<strong>on</strong>g>t.<br />

A BN 70 cylinder oil <str<strong>on</strong>g>is</str<strong>on</strong>g> to be used as the default<br />

choice of oil and it may be used <strong>on</strong> all fuel types.<br />

However, in case of the engine running <strong>on</strong> fuel<br />

with sulphur c<strong>on</strong>tent lower than .5% for more<br />

than to 2 weeks, we recommend to change to a<br />

lower BN cylinder oil such as BN 40-50.<br />

The cylinder oils l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted below have all given l<strong>on</strong>gterm<br />

sat<str<strong>on</strong>g>is</str<strong>on</strong>g>factory service during heavy fuel operati<strong>on</strong><br />

in <strong>MAN</strong> B&W engine installati<strong>on</strong>s:<br />

Company Cylinder oil<br />

SAE 50, BN 60-80<br />

BP Energol CLO 50 M<br />

Energol CL 605<br />

Cylinder oil<br />

SAE 50, BN 40-50<br />

Energol CL 505<br />

Energol CL-DX 405<br />

Castrol Cyltech 70 / 80AW Cyltech 40 SX / 50 S<br />

Chevr<strong>on</strong> *) Taro Special HT 70 Taro Special HT LS 40<br />

Exx<strong>on</strong>Mobil Mobilgard 570 Mobilgard L540<br />

Shell Alexia 50 Alexia LS<br />

Total Talusia Universal<br />

Talusia HR 70<br />

Talusia LS 40<br />

*) Includes Caltex, Chevr<strong>on</strong> and Texaco<br />

Also other brands have been used with sat<str<strong>on</strong>g>is</str<strong>on</strong>g>factory<br />

results.<br />

Cylinder Oil Feed Rate (Dosage)<br />

Page of<br />

The recommendati<strong>on</strong>s are valid for all plants,<br />

whether c<strong>on</strong>trollable pitch or fixed pitch propellers<br />

are used.<br />

In case of average sulphur c<strong>on</strong>tent, the average<br />

cylinder oil feed rate at nominal MCR for <strong>MAN</strong><br />

B&W Alpha Cylinder Lubricator <str<strong>on</strong>g>is</str<strong>on</strong>g> 0.7 g/kWh.<br />

Adjustment of the cylinder oil dosage to the sulphur<br />

c<strong>on</strong>tent in the fuel being burnt <str<strong>on</strong>g>is</str<strong>on</strong>g> further explained<br />

in <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 9.02.<br />

<strong>MAN</strong> B&W ME/ME�C/ME-B engines 198 48 22�4.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 9.02<br />

<strong>MAN</strong> B&W Alpha Cylinder Lubricati<strong>on</strong> System<br />

The <strong>MAN</strong> B&W Alpha cylinder lubricati<strong>on</strong> system,<br />

see Figs. 9.02.02a and 9.02.02b, <str<strong>on</strong>g>is</str<strong>on</strong>g> designed to<br />

supply cylinder oil intermittently, e.g. every four<br />

engine revoluti<strong>on</strong>s with electr<strong>on</strong>ically c<strong>on</strong>trolled<br />

timing and dosage at a defined positi<strong>on</strong>.<br />

The cylinder lubricating oil <str<strong>on</strong>g>is</str<strong>on</strong>g> pumped from the<br />

cylinder oil storage tank to the service tank, the<br />

size of which depends <strong>on</strong> the owner’s and the<br />

yard’s requirements, � it <str<strong>on</strong>g>is</str<strong>on</strong>g> normally dimensi<strong>on</strong>ed<br />

for minimum two days’ cylinder lubricating oil<br />

c<strong>on</strong>sumpti<strong>on</strong>.<br />

Cylinder lubricating oil <str<strong>on</strong>g>is</str<strong>on</strong>g> fed to the Alpha cylinder<br />

lubricati<strong>on</strong> system by gravity from the service<br />

tank.<br />

The storage tank and the service tank may alternatively<br />

be <strong>on</strong>e and the same tank.<br />

The oil fed to the injectors <str<strong>on</strong>g>is</str<strong>on</strong>g> pressur<str<strong>on</strong>g>is</str<strong>on</strong>g>ed by<br />

means of the Alpha Lubricator which <str<strong>on</strong>g>is</str<strong>on</strong>g> placed<br />

<strong>on</strong> the HCU and equipped with small multi�p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

pumps.<br />

The oil pipes fitted <strong>on</strong> the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig.<br />

9.02.04.<br />

The whole system <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled by the Cylinder<br />

C<strong>on</strong>trol Unit (CCU) which c<strong>on</strong>trols the injecti<strong>on</strong><br />

frequency <strong>on</strong> the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of the engine�speed signal<br />

given by the tacho signal and the fuel index.<br />

Prior to start-up, the cylinders can be pre�lubricated<br />

and, during the running�in period, the operator<br />

can choose to increase the lubricating oil feed<br />

rate to a max. setting of 200%.<br />

The <strong>MAN</strong> B&W Alpha Cylinder Lubricator <str<strong>on</strong>g>is</str<strong>on</strong>g> preferably<br />

to be c<strong>on</strong>trolled in accordance with the Alpha<br />

ACC (Adaptive Cylinder oil C<strong>on</strong>trol) feed rate<br />

system.<br />

The yard supply should be according to the items<br />

shown in Fig. 9.02.02a within the broken line. With<br />

regard to the filter and the small box, plese see<br />

Fig. 9.02.05.<br />

Alpha Adaptive Cylinder oil<br />

C<strong>on</strong>trol (Alpha ACC)<br />

Page of 6<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> a well�known fact that the actual need for<br />

cylinder oil quantity varies with the operati<strong>on</strong>al<br />

c<strong>on</strong>diti<strong>on</strong>s such as load and fuel oil quality. C<strong>on</strong>sequently,<br />

in order to perform the optimal lubricati<strong>on</strong><br />

– cost�effectively as well as technically – the<br />

cylinder lubricating oil dosage should follow such<br />

operati<strong>on</strong>al variati<strong>on</strong>s accordingly.<br />

The Alpha lubricating system offers the possibility<br />

of saving a c<strong>on</strong>siderable amount of cylinder lubricating<br />

oil per year and, at the same time, to obtain<br />

a safer and more predictable cylinder c<strong>on</strong>diti<strong>on</strong>.<br />

Working Principle<br />

The basic feed rate c<strong>on</strong>trol should be adjusted in<br />

relati<strong>on</strong> to the actual fuel quality and amount being<br />

burnt at any given time. The sulphur percentage<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> a good indicator in relati<strong>on</strong> to wear, and an<br />

oil dosage proporti<strong>on</strong>al to the sulphur level will<br />

give the best overall cylinder c<strong>on</strong>diti<strong>on</strong>.<br />

The following two criteria determine the c<strong>on</strong>trol:<br />

• The cylinder oil dosage shall be proporti<strong>on</strong>al to<br />

the sulphur percentage in the fuel<br />

• The cylinder oil dosage shall be proporti<strong>on</strong>al to<br />

the engine load (i.e. the amount of fuel entering<br />

the cylinders).<br />

The implementati<strong>on</strong> of the above two criteria will<br />

lead to an optimal cylinder oil dosage, proporti<strong>on</strong>al<br />

to the amount of sulphur entering the cylinders.<br />

Safe and very lubricating�ec<strong>on</strong>omical c<strong>on</strong>trol after<br />

running-in <str<strong>on</strong>g>is</str<strong>on</strong>g> obtained with a basic setting according<br />

to the formula:<br />

Basic lubricating oil setting = 0.26 g/kWh x S%<br />

with a minimum setting of 0.60 g/kWh, i.e. the<br />

setting should be kept c<strong>on</strong>stant from about 2.3%<br />

sulphur and downwards.<br />

<strong>MAN</strong> B&W ME/ME�C/ME-B/ME�GI engines 198 38 89�0.7<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 9.02<br />

Due to the sulphur dependency, the average cylinder<br />

oil dosages rely <strong>on</strong> the sulphur d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributi<strong>on</strong><br />

in worldwide fuel bunkers. Based <strong>on</strong> deliveries all<br />

over the world, the resulting yearly specific cylinder<br />

oil dosage <str<strong>on</strong>g>is</str<strong>on</strong>g> close to 0.7 g/kWh.<br />

�����������������������<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

����<br />

���������<br />

����������������<br />

Fig 9.02.01: Cylinder lubricating oil dosage with Alpha ACC at all loads (BN 70 cylinder oil)<br />

Page 2 of 6<br />

178 59 49�4.0<br />

<strong>MAN</strong> B&W ME/ME�C/ME-B/ME�GI engines 198 38 89�0.7<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 9.02<br />

Cylinder Oil Pipe Heating<br />

In case of low engine room temperature, it can be<br />

difficult to keep the cylinder oil temperature at 45<br />

°C at the <strong>MAN</strong> B&W Alpha Lubricator, mounted <strong>on</strong><br />

the hydraulic cylinder.<br />

Therefore the cylinder oil pipe from the small tank,<br />

see Figs. 9.02.02a and 9.02.02b, in the vessel and<br />

of the main cylinder oil pipe <strong>on</strong> the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> insulated<br />

and electrical heated.<br />

��������������<br />

��������������<br />

������������<br />

��� ����� ���<br />

�������������<br />

���<br />

���<br />

�����<br />

��������������<br />

���������������<br />

���� ����<br />

Fig. 9.02.02a: Cylinder lubricating oil system<br />

��������������<br />

������������<br />

�������������<br />

�����������������<br />

����������������<br />

��������������<br />

���������������<br />

�������������<br />

������������<br />

������<br />

Page 3 of 6<br />

The engine builder <str<strong>on</strong>g>is</str<strong>on</strong>g> to make the insulati<strong>on</strong> and<br />

heating <strong>on</strong> the main cylinder oil pipe <strong>on</strong> the engine.<br />

Moreover, the engine builder <str<strong>on</strong>g>is</str<strong>on</strong>g> to mount the<br />

juncti<strong>on</strong> box and the thermostat <strong>on</strong> the engine.<br />

See Fig. 9.02.03.<br />

The ship yard <str<strong>on</strong>g>is</str<strong>on</strong>g> to make the insulati<strong>on</strong> of the<br />

cylinder oil pipe in the engine room. The heating<br />

cable supplied by the engine builder <str<strong>on</strong>g>is</str<strong>on</strong>g> to be<br />

mounted from the small tank to the junti<strong>on</strong> box <strong>on</strong><br />

the engine. See Figs. 9.02.02a and 9.02.02b.<br />

178 49 83�4.7a<br />

<strong>MAN</strong> B&W ME/ME�C/ME-B/ME�GI engines 198 38 89�0.7<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������������<br />

������������<br />

���������<br />

�������<br />

���������<br />

��������������<br />

�������������������������<br />

�����������������<br />

�����������


<strong>MAN</strong> B&W 9.02<br />

����������� �����������<br />

����������������<br />

��������<br />

�����������<br />

Fig. 9.02.02b: Cylinder lubricating oil system<br />

�������������<br />

�������<br />

������������<br />

�����������<br />

�������������������<br />

Fig. 9.02.03: El.heating cylinder oil pipes<br />

����������<br />

������<br />

����������������<br />

Page of 6<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 55 20-9.0<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�����������<br />

����������<br />

������<br />

��������������� ���������������<br />

����������<br />

��������������<br />

����������<br />

�������������<br />

��������<br />

�������������<br />

�<br />

����������<br />

��������������<br />

���������<br />

������������<br />

���������������������������<br />

Terminal box<br />

������������<br />

�������������<br />

������������ ��<br />

������<br />

���������<br />

����������<br />

������<br />

������<br />

�������������<br />

������������<br />

������<br />

178 49 83�4.6b<br />

178 53 71�6.0


<strong>MAN</strong> B&W 9.02<br />

�����������<br />

��<br />

������� ���������� �����������<br />

����������<br />

�����<br />

���������������������������������������<br />

�<br />

��������������������������������������������������<br />

�� ���� �<br />

�� ���� �<br />

Fig. 9.02.04: Cylinder lubricating oil pipes<br />

��������������<br />

����������������<br />

�� ���� � ��<br />

Page of 6<br />

178 54 68-8.2<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 55 20-9.0<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 9.02<br />

�������������������������<br />

�����������������<br />

������������<br />

�������������<br />

������������<br />

����<br />

�����������<br />

������������<br />

�� ���� ��<br />

���������������������<br />

���������������<br />

��� ���<br />

��<br />

���<br />

���<br />

���<br />

���������<br />

Fig. 9.02.05: Suggesti<strong>on</strong> for small heating box with filter<br />

���<br />

���<br />

���<br />

�����������������������<br />

����������������<br />

������������<br />

�������������<br />

������������<br />

Page 6 of 6<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 55 20-9.0<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

�����<br />

������������<br />

���<br />

���������������������<br />

���<br />

����������������<br />

���������������<br />

����������������<br />

�����������<br />

���������<br />

����������<br />

�������������<br />

�����������<br />

�������������<br />

������������<br />

���<br />

���<br />

���<br />

178 52 75�8.0


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> Rod Stuffing<br />

Box Drain Oil<br />

10


<strong>MAN</strong> B&W 10.01<br />

Stuffing Box Drain Oil System<br />

For engines running <strong>on</strong> heavy fuel, it <str<strong>on</strong>g>is</str<strong>on</strong>g> important<br />

that the oil drained from the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod stuffing<br />

boxes <str<strong>on</strong>g>is</str<strong>on</strong>g> not led directly into the system oil, as<br />

the oil drained from the stuffing box <str<strong>on</strong>g>is</str<strong>on</strong>g> mixed with<br />

sludge from the scavenge air space.<br />

The performance of the p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod stuffing box <strong>on</strong><br />

the engines has proved to be very efficient, primarily<br />

because the hardened p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod allows a<br />

higher scraper ring pressure.<br />

The amount of drain oil from the stuffing boxes <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

about 5 � 0 litres/24 hours per cylinder during<br />

normal service. In the running�in period, it can be<br />

higher.<br />

The relatively small amount of drain oil <str<strong>on</strong>g>is</str<strong>on</strong>g> led to<br />

the general oily waste drain tank or <str<strong>on</strong>g>is</str<strong>on</strong>g> burnt in the<br />

incinerator, Fig. 0.0 .0 .<br />

Oily waste drain tank<br />

Fig. 10.01.01: Stuffing box drain oil system<br />

Page of<br />

32 mm<br />

nom. bore<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 39 74�0.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

AG<br />

Drain<br />

tank<br />

LS AH<br />

198 97 44�8.1


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Central Cooling<br />

Water System<br />

11


<strong>MAN</strong> B&W 11.01<br />

Central Cooling Water System<br />

The water cooling can be arranged in several c<strong>on</strong>figurati<strong>on</strong>s,<br />

the most comm<strong>on</strong> system choice being<br />

a Central cooling water system.<br />

Advantages of the central cooling system:<br />

• Only <strong>on</strong>e heat exchanger cooled by seawater,<br />

and thus, <strong>on</strong>ly <strong>on</strong>e exchanger to be overhauled<br />

• All other heat exchangers are freshwater cooled<br />

and can, therefore, be made of a less expensive<br />

material<br />

• Few n<strong>on</strong>�corrosive pipes to be installed<br />

• Reduced maintenance of coolers and comp<strong>on</strong>ents<br />

• Increased heat util<str<strong>on</strong>g>is</str<strong>on</strong>g>ati<strong>on</strong>.<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>advantages of the central cooling system:<br />

• Three sets of cooling water pumps (seawater,<br />

central water and jacket water.<br />

• Higher first cost.<br />

Page of<br />

For informati<strong>on</strong> <strong>on</strong> the alternative Seawater Cooling<br />

System, see Chapter 2.<br />

An arrangement comm<strong>on</strong> for the main engine<br />

and <strong>MAN</strong> <strong>Diesel</strong> auxiliary engines <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong><br />

<strong>request</strong>.<br />

For further informati<strong>on</strong> about comm<strong>on</strong> cooling<br />

water system for main engines and auxiliary engines<br />

please refer to our publicati<strong>on</strong>:<br />

Uni�c<strong>on</strong>cept Auxiliary Systems for Two�stroke Main<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 46 96�5.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 11.02<br />

Central Cooling Water System<br />

��������������������������������������<br />

�������������������������������������<br />

������������������������������������<br />

������������������������<br />

��������<br />

������<br />

��������������������������������������<br />

����������������������������������<br />

���������������������<br />

��������������������<br />

���������<br />

��������<br />

��������<br />

�����<br />

��������<br />

�����<br />

Fig. 11.02.01: Central cooling water system<br />

The central cooling water system <str<strong>on</strong>g>is</str<strong>on</strong>g> character<str<strong>on</strong>g>is</str<strong>on</strong>g>ed<br />

by having <strong>on</strong>ly <strong>on</strong>e heat exchanger cooled by<br />

seawater, and by the other coolers, including the<br />

jacket water cooler, being cooled by central cooling<br />

water.<br />

In order to prevent too high a scavenge air temperature,<br />

the cooling water design temperature<br />

in the central cooling water system <str<strong>on</strong>g>is</str<strong>on</strong>g> normally 36<br />

°C, corresp<strong>on</strong>ding to a maximum seawater temperature<br />

of 32 °C.<br />

Our recommendati<strong>on</strong> of keeping the cooling water<br />

inlet temperature to the main engine scavenge<br />

��<br />

�� �� �� ��<br />

��������<br />

�����<br />

������������������������������������������������������������<br />

��<br />

�������<br />

������<br />

������������<br />

��<br />

��������<br />

���������������<br />

�����������<br />

��������������<br />

���������������������<br />

���������������<br />

Page of<br />

178 52 77�1.1<br />

air cooler as low as possible also applies to the<br />

central cooling system. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> means that the temperature<br />

c<strong>on</strong>trol valve in the central cooling water<br />

circuit <str<strong>on</strong>g>is</str<strong>on</strong>g> to be set to minimum 0 °C, whereby the<br />

temperature follows the outboard seawater temperature<br />

when central cooling water temperature<br />

exceeds 0 °C.<br />

For external pipe c<strong>on</strong>necti<strong>on</strong>s, we prescribe the<br />

following maximum water velocities:<br />

Jacket water ................................................ 3.0 m/s<br />

Central cooling water .................................. 3.0 m/s<br />

Seawater ..................................................... 3.0 m/s<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 40 57�9.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

��<br />

��<br />

���������������������������<br />

��������������������<br />

������������<br />

����������<br />

������������<br />

������<br />

�<br />

�<br />

��<br />

����<br />

������<br />

�������������<br />

����������������


<strong>MAN</strong> B&W 11.03<br />

Comp<strong>on</strong>ents for Central Cooling Water System<br />

Seawater cooling pumps<br />

The pumps are to be of the centrifugal type.<br />

Seawater flow ......................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Pump head ...................................................2.5 bar<br />

Test pressure .................... according to class rules<br />

Working temperature, normal .....................0�32 °C<br />

Working temperature .................... maximum 50 °C<br />

The capacity <str<strong>on</strong>g>is</str<strong>on</strong>g> to be within a tolerance of 0% to<br />

+ 0%.<br />

The differential pressure of the pumps <str<strong>on</strong>g>is</str<strong>on</strong>g> to be determined<br />

<strong>on</strong> the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of the total actual pressure<br />

drop across the cooling water system.<br />

Central cooler<br />

The cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the shell and tube or plate<br />

heat exchanger type, made of seawater res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant<br />

material.<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> ......................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Central cooling water flow ......see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Central cooling water temperature, outlet ......... 36 °C<br />

Pressure drop <strong>on</strong> central cooling side ....max. 0.2 bar<br />

Seawater flow .........................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Seawater temperature, inlet ............................. 32 °C<br />

Pressure drop <strong>on</strong><br />

seawater side ................................ maximum 0.2 bar<br />

The pressure drop may be larger, depending <strong>on</strong><br />

the actual cooler design.<br />

The heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> and the seawater flow figures<br />

are based <strong>on</strong> MCR output at tropical c<strong>on</strong>diti<strong>on</strong>s,<br />

i.e. a seawater temperature of 32 °C and an ambient<br />

air temperature of 45 °C.<br />

Overload running at tropical c<strong>on</strong>diti<strong>on</strong>s will slightly<br />

increase the temperature level in the cooling system,<br />

and will also slightly influence the engine<br />

performance.<br />

Central cooling water pumps<br />

The pumps are to be of the centrifugal type.<br />

Page of 2<br />

Central cooling water flow ....see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Pump head ...................................................2.5 bar<br />

Delivery pressure ...............depends <strong>on</strong> locati<strong>on</strong> of<br />

expansi<strong>on</strong> tank<br />

Test pressure .................... according to class rules<br />

Working temperature ..................................... 80 °C<br />

Design temperature ..................................... 00 °C<br />

The flow capacity <str<strong>on</strong>g>is</str<strong>on</strong>g> to be within a tolerance of 0%<br />

to + 0%.<br />

The l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities covers the main engine <strong>on</strong>ly.<br />

The differential pressure provided by the pumps<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> to be determined <strong>on</strong> the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of the total actual<br />

pressure drop across the cooling water system.<br />

Central cooling water thermostatic valve<br />

The low temperature cooling system <str<strong>on</strong>g>is</str<strong>on</strong>g> to be<br />

equipped with a three�way valve, mounted as a<br />

mixing valve, which by�passes all or part of the<br />

fresh water around the central cooler.<br />

The sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> to be located at the outlet pipe from<br />

the thermostatic valve and <str<strong>on</strong>g>is</str<strong>on</strong>g> set so as to keep a<br />

temperature level of minimum 0 °C.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 39 87�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 11.03<br />

Jacket water system<br />

Due to the central cooler the cooling water inlet<br />

temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> about 4 °C higher for for th<str<strong>on</strong>g>is</str<strong>on</strong>g> system<br />

compared to the seawater cooling system.<br />

The input data are therefore different for the scavenge<br />

air cooler, the lube oil cooler and the jacket<br />

water cooler.<br />

The heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> and the central cooling water<br />

flow figures are based <strong>on</strong> an MCR output at tropical<br />

c<strong>on</strong>diti<strong>on</strong>s, i.e. a maximum seawater temperature<br />

of 32 °C and an ambient air temperature of<br />

45 °C.<br />

Jacket water cooling pump<br />

The pumps are to be of the centrifugal type.<br />

Jacket water flow ................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Pump head ...................................................3.0 bar<br />

Delivery pressure ...............depends <strong>on</strong> locati<strong>on</strong> of<br />

expansi<strong>on</strong> tank<br />

Test pressure .................... according to class rules<br />

Working temperature ..................................... 80 °C<br />

Design temperature ..................................... 00 °C<br />

The flow capacity <str<strong>on</strong>g>is</str<strong>on</strong>g> to be within a tolerance of 0%<br />

to + 0%.<br />

The stated of capacities cover the main engine<br />

<strong>on</strong>ly. The pump head of the pumps <str<strong>on</strong>g>is</str<strong>on</strong>g> to be determined<br />

<strong>on</strong> the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of the total actual pressure<br />

drop across the cooling water system.<br />

Scavenge air cooler<br />

The scavenge air cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> an integrated part of<br />

the main engine.<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> .......................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Central cooling water flow .......see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Central cooling temperature, inlet .................... 36 °C<br />

Pressure drop <strong>on</strong> FW�LT water side .... approx. 0.5 bar<br />

Lubricating oil cooler<br />

See chapter 8 ‘Lubricating Oil’.<br />

Jacket water cooler<br />

Page 2 of 2<br />

The cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the shell and tube or plate<br />

heat exchanger type.<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> ..................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Jacket water flow ................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Jacket water temperature, inlet ..................... 80 °C<br />

Pressure drop <strong>on</strong> jacket water side ...max. 0.2 bar<br />

Central cooling water flow ....see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Central cooling water<br />

temperature, inlet ..............................approx. 42 °C<br />

Pressure drop <strong>on</strong> Central<br />

cooling water side ................................max. 0.2 bar<br />

The other data for the jacket cooling water system<br />

can be found in chapter 2.<br />

For further informati<strong>on</strong> about a comm<strong>on</strong> cooling<br />

water system for main engines and <strong>MAN</strong> <strong>Diesel</strong><br />

auxiliary engines, please refer to our publicati<strong>on</strong>:<br />

Uni�c<strong>on</strong>cept Auxiliary Systems for Two�stroke Main<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 39 87�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Seawater<br />

Cooling System<br />

12


<strong>MAN</strong> B&W 12.01<br />

Seawater Systems<br />

The water cooling can be arranged in several c<strong>on</strong>figurati<strong>on</strong>s,<br />

the most simple system choices being<br />

seawater and central cooling water system:<br />

• A seawater cooling system and a jacket cooling<br />

water system<br />

• The advantages of the seawater cooling system<br />

are mainly related to first cost, viz:<br />

• Only two sets of cooling water pumps (seawater<br />

and jacket water)<br />

• Simple installati<strong>on</strong> with few piping systems.<br />

Whereas the d<str<strong>on</strong>g>is</str<strong>on</strong>g>advantages are:<br />

• Seawater to all coolers and thereby higher<br />

maintenance cost<br />

• Expensive seawater piping of n<strong>on</strong>�corrosive materials<br />

such as galvan<str<strong>on</strong>g>is</str<strong>on</strong>g>ed steel pipes or Cu�Ni<br />

pipes.<br />

Page of<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 38 92�4.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 12.02<br />

Seawater Cooling System<br />

��������<br />

������<br />

��������<br />

�����<br />

��������<br />

�����<br />

��������<br />

�����<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

Fig. 12.02.01: Seawater cooling system<br />

The seawater cooling system <str<strong>on</strong>g>is</str<strong>on</strong>g> used for cooling,<br />

the main engine lubricating oil cooler, the jacket<br />

water cooler and the scavenge air cooler, see Fig.<br />

2.02.0 .<br />

The lubricating oil cooler for a PTO step�up gear<br />

should be c<strong>on</strong>nected in parallel with the other<br />

coolers. The capacity of the seawater pump <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

based <strong>on</strong> the outlet temperature of the seawater<br />

being maximum 50 °C after passing through the<br />

coolers – with an inlet temperature of maximum<br />

32 °C (tropical c<strong>on</strong>diti<strong>on</strong>s), i.e. a maximum temperature<br />

increase of 8 °C.<br />

The valves located in the system fitted to adjust<br />

the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributi<strong>on</strong> of cooling water flow are to be<br />

provided with graduated scales.<br />

������������<br />

�����<br />

�����������<br />

����������<br />

������������<br />

������<br />

��������<br />

����������<br />

Page of<br />

198 98 13�2.5<br />

The inter�related positi<strong>on</strong>ing of the coolers in the<br />

system serves to achieve:<br />

• The lowest possible cooling water inlet temperature<br />

to the lubricating oil cooler in order to<br />

obtain the cheapest cooler. On the other hand,<br />

in order to prevent the lubricating oil from stiffening<br />

in cold services, the inlet cooling water<br />

temperature should not be lower than 0 °C<br />

• The lowest possible cooling water inlet temperature<br />

to the scavenge air cooler, in order to keep<br />

the fuel oil c<strong>on</strong>sumpti<strong>on</strong> as low as possible.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 38 93�6.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />


<strong>MAN</strong> B&W 12.03<br />

Seawater Cooling Pipes<br />

�����������<br />

��������<br />

<strong>MAN</strong> B&W S80MC6, S80MC-C7/8, S80ME�C7/8/9, K80MC-C6,<br />

K80ME�C6/9, S70MC6, S/L70MC-C7/8, S70ME�C/GI7/8,<br />

L70ME�C7/8, S65ME�C/GI8<br />

�<br />

�<br />

��������<br />

�����������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

The item No. refer to ‘Guidance values automati<strong>on</strong>’<br />

Fig. 12.03.02: Seawater cooling pipes for engines with two turbochargers<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���������<br />

����������<br />

�� ��<br />

��������<br />

���������������<br />

Fig. 12.03.01: Seawater cooling pipes for engines with <strong>on</strong>e turbochargers<br />

�<br />

�<br />

����������<br />

�����������������<br />

��������<br />

����������<br />

�������������������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

The item No. refer to ‘Guidance values automati<strong>on</strong>’<br />

��������<br />

�� ��<br />

��������<br />

����������<br />

���������������<br />

�����������������<br />

��������<br />

����������<br />

Page of<br />

178 50 38�7.1<br />

178 50 37�5.1<br />

198 39 77�6.2


<strong>MAN</strong> B&W 12.04<br />

Comp<strong>on</strong>ents for Seawater Cooling System<br />

Seawater cooling pump<br />

The pumps are to be of the centrifugal type.<br />

Seawater flow ......................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Pump head ...................................................2.5 bar<br />

Test pressure ...................... according to class rule<br />

Working temperature .................... maximum 50 °C<br />

The capacity must be fulfilled with a tolerance of<br />

between 0% to + 0% and covers the cooling of<br />

the main engine <strong>on</strong>ly.<br />

Lubricating oil cooler<br />

See chapter 8 ‘Lubricating Oil’.<br />

Jacket water cooler<br />

The cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> to be of the shell and tube or plate<br />

heat exchanger type, made of seawater res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant<br />

material.<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> ..................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Jacket water flow ................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Jacket water temperature, inlet ..................... 80 °C<br />

Pressure drop<br />

<strong>on</strong> jacket water side ....................maximum 0.2 bar<br />

Seawater flow ......................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Seawater temperature, inlet .......................... 38 °C<br />

Pressure drop <strong>on</strong><br />

seawater side ..............................maximum 0.2 bar<br />

The heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> and the seawater flow are<br />

based <strong>on</strong> an MCR output at tropical c<strong>on</strong>diti<strong>on</strong>s,<br />

i.e. seawater temperature of 32 °C and an ambient<br />

air temperature of 45 °C.<br />

Scavenge air cooler<br />

Page of<br />

The scavenge air cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> an integrated part of<br />

the main engine.<br />

Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> ..................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Seawater flow .....................see ’L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Seawater temperature,<br />

for seawater cooling inlet, max. ..................... 32 °C<br />

Pressure drop <strong>on</strong><br />

cooling water side ........... between 0. and 0.5 bar<br />

The heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> and the seawater flow are<br />

based <strong>on</strong> an MCR output at tropical c<strong>on</strong>diti<strong>on</strong>s,<br />

i.e. seawater temperature of 32 °C and an ambient<br />

air temperature of 45 °C.<br />

Seawater thermostatic valve<br />

The temperature c<strong>on</strong>trol valve <str<strong>on</strong>g>is</str<strong>on</strong>g> a three�way valve<br />

which can recirculate all or part of the seawater to<br />

the pump’s sucti<strong>on</strong> side. The sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> to be located<br />

at the seawater inlet to the lubricating oil cooler,<br />

and the temperature level must be a minimum of<br />

+ 0 °C.<br />

Seawater flow ......................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Temperature range,<br />

adjustable within .................................+5 to +32 °C<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 39 81�1.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 12.05<br />

Jacket Cooling Water System<br />

�������������������������<br />

����������������������������<br />

�����������������������������<br />

��������������������������<br />

��������<br />

�������������������<br />

����������<br />

�<br />

��<br />

����� ��<br />

�<br />

����������������������������<br />

��������������������������<br />

�<br />

�� ��<br />

����<br />

������<br />

��������������������<br />

���������<br />

��������<br />

��<br />

�����������<br />

���������<br />

�����������������������������������������������������������<br />

���������������������������������<br />

����������������������������������<br />

���������������<br />

��<br />

������������<br />

�������������������������<br />

����������������������<br />

��<br />

�������������������<br />

����������<br />

���������������<br />

���������������������<br />

�������������������������<br />

Fig. 12.05.01: Jacket cooling water system<br />

��������������<br />

The jacket cooling water system <str<strong>on</strong>g>is</str<strong>on</strong>g> used for cooling<br />

the cylinder liners, cylinder covers and exhaust<br />

valves of the main engine and heating of the<br />

fuel oil drain pipes, see Fig. 2.05.0 .<br />

The jacket water pump) draws water from the<br />

jacket water cooler outlet and delivers it to the<br />

engine.<br />

At the inlet to the jacket water cooler there <str<strong>on</strong>g>is</str<strong>on</strong>g> a<br />

thermostatically c<strong>on</strong>trolled regulating valve, with<br />

a sensor at the engine cooling water outlet, which<br />

keeps the main engine cooling water outlet at a<br />

temperature of 80 °C.<br />

The engine jacket water must be carefully treated,<br />

maintained and m<strong>on</strong>itored so as to avoid corrosi<strong>on</strong>,<br />

corrosi<strong>on</strong> fatigue, cavitati<strong>on</strong> and scale formati<strong>on</strong>.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended to install a preheater<br />

if preheating <str<strong>on</strong>g>is</str<strong>on</strong>g> not <str<strong>on</strong>g>available</str<strong>on</strong>g> from the auxiliary<br />

engines jacket cooling water system.<br />

����������������<br />

�����������������<br />

Page of<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 38 94�8.5<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

����������������<br />

��������������<br />

���������������<br />

�����������������<br />

�����������������<br />

�� ��<br />

�<br />

������������<br />

������<br />

���������������������������������������<br />

����������������<br />

����������<br />

���������<br />

����������������������<br />

���������������������<br />

����������������������<br />

������������������������<br />

�����������������<br />

��������������������������������������������������������������������������������������<br />

178 50 17�2.3<br />

The venting pipe in the expansi<strong>on</strong> tank should end<br />

just below the lowest water level, and the expansi<strong>on</strong><br />

tank must be located at least 5 m above the<br />

engine cooling water outlet pipe.<br />

The freshwater generator, if installed, may be c<strong>on</strong>nected<br />

to the seawater system if the generator<br />

does not have a separate cooling water pump.<br />

The generator must be coupled in and out slowly<br />

over a period of at least 3 minutes.<br />

For external pipe c<strong>on</strong>necti<strong>on</strong>s, we prescribe the<br />

following maximum water velocities:<br />

Jacket water ................................................ 3.0 m/s<br />

Seawater ..................................................... 3.0 m/s


<strong>MAN</strong> B&W 12.06<br />

Jacket Cooling Water Pipes<br />

�������������<br />

��<br />

<strong>MAN</strong> B&W S/L70MC-C7/8, S70ME�C/GI7/8, L70ME�C7/8,<br />

S65ME�C/GI8, S/L60MC-C7/8, S60ME�C/GI7/8, L60ME�C7/8,<br />

S50ME�C7/8<br />

�<br />

���������������<br />

���������������<br />

�<br />

��������<br />

���������������<br />

�������������������<br />

�������� ���������������������<br />

�����������<br />

�������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

The item No. refer to ‘Guidance values automati<strong>on</strong>’<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������<br />

�������������������������������<br />

�<br />

�<br />

�<br />

Page of<br />

�������������������<br />

Fig. 12.06.01: Jacket cooling water pipes for engines with <strong>MAN</strong> <strong>Diesel</strong> turbochargers, type TCA, ABB turbochargers,<br />

type TPL, Mitsub<str<strong>on</strong>g>is</str<strong>on</strong>g>hi turbochargers, type MET<br />

��������<br />

178 50 47�1.1<br />

198 39 84�7.5


<strong>MAN</strong> B&W 12.07<br />

Comp<strong>on</strong>ents for Jacket Cooling Water System<br />

Jacket water cooling pump<br />

The pumps are to be of the centrifugal type.<br />

Jacket water flow ................see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Pump head ...................................................3.0 bar<br />

Delivery pressure ...................depends <strong>on</strong> positi<strong>on</strong><br />

of expansi<strong>on</strong> tank<br />

Test pressure ...................... according to class rule<br />

Working temperature, ............. 80 °C, max. 00 °C<br />

The capacity must be met at a tolerance of 0% to<br />

+ 0%.<br />

The stated capacities cover the main engine <strong>on</strong>ly.<br />

The pump head of the pumps <str<strong>on</strong>g>is</str<strong>on</strong>g> to be determined<br />

based <strong>on</strong> the total actual pressure drop across<br />

the cooling water system.<br />

Freshwater generator<br />

If a generator <str<strong>on</strong>g>is</str<strong>on</strong>g> installed in the ship for producti<strong>on</strong><br />

of freshwater by util<str<strong>on</strong>g>is</str<strong>on</strong>g>ing the heat in the jacket<br />

water cooling system it should be noted that the<br />

actual <str<strong>on</strong>g>available</str<strong>on</strong>g> heat in the jacket water system <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

lower than indicated by the heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> figures<br />

given in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities.‘ <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> because<br />

the latter figures are used for dimensi<strong>on</strong>ing the<br />

jacket water cooler and hence incorporate a safety<br />

margin which can be needed when the engine <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

operating under c<strong>on</strong>diti<strong>on</strong>s such as, e.g. overload.<br />

Normally, th<str<strong>on</strong>g>is</str<strong>on</strong>g> margin <str<strong>on</strong>g>is</str<strong>on</strong>g> 0% at nominal MCR.<br />

The calculati<strong>on</strong> of the heat actually <str<strong>on</strong>g>available</str<strong>on</strong>g> at<br />

specified MCR for a derated diesel engine <str<strong>on</strong>g>is</str<strong>on</strong>g> stated<br />

in chapter 6 ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities‘.<br />

For illustrati<strong>on</strong> of installati<strong>on</strong> of fresh water generator<br />

see Fig. 2.05.0 .<br />

Jacket water thermostatic valve<br />

The temperature c<strong>on</strong>trol system <str<strong>on</strong>g>is</str<strong>on</strong>g> equipped with<br />

a three�way valve mounted as a diverting valve,<br />

which by�pass all or part of the jacket water<br />

around the jacket water cooler.<br />

Page of 2<br />

The sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> to be located at the outlet from the<br />

main engine, and the temperature level must be<br />

adjustable in the range of 70�90 °C.<br />

Jacket water preheater<br />

When a preheater, see Fig. 2.05.0 , <str<strong>on</strong>g>is</str<strong>on</strong>g> installed in<br />

the jacket cooling water system, its water flow, and<br />

thus the preheater pump capacity, should be about<br />

0% of the jacket water main pump capacity.<br />

Based <strong>on</strong> experience, it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended that the<br />

pressure drop across the preheater should be<br />

approx. 0.2 bar. The preheater pump and main<br />

pump should be electrically interlocked to avoid<br />

the r<str<strong>on</strong>g>is</str<strong>on</strong>g>k of simultaneous operati<strong>on</strong>.<br />

The preheater capacity depends <strong>on</strong> the required<br />

preheating time and the required temperature<br />

increase of the engine jacket water. The temperature<br />

and time relati<strong>on</strong>s are shown in Fig. 2.08.0 .<br />

In general, a temperature increase of about 35 °C<br />

(from 5 °C to 50 °C) <str<strong>on</strong>g>is</str<strong>on</strong>g> required, and a preheating<br />

time of 2 hours requires a preheater capacity of<br />

about % of the engine`s nominal MCR power.<br />

Deaerating tank<br />

Design and dimensi<strong>on</strong>s of the deaerating tank<br />

are shown in Fig. 2.07.0 ‘Deaerating tank‘ and<br />

the corresp<strong>on</strong>ding alarm device <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig.<br />

2.07.02 ‘Deaerating tank, alarm device‘.<br />

Expansi<strong>on</strong> tank<br />

The total expansi<strong>on</strong> tank volume has to be approximate<br />

0% of the total jacket cooling water<br />

amount in the system.<br />

Fresh water treatment<br />

The <strong>MAN</strong> <strong>Diesel</strong> recommendati<strong>on</strong>s for treatment<br />

of the jacket water/freshwater are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 40 56�7.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 12.07<br />

Deaerating tank<br />

��<br />

��<br />

Fig. 12.07.01: Deaerating tank, opti<strong>on</strong>: 4 46 640<br />

��������������<br />

������������<br />

�<br />

�� � � ��<br />

Fig. 12.07.02: Deaerating tank, alarm device, opti<strong>on</strong>: 4 46 645<br />

<strong>MAN</strong> B&W S70MC6, S70MC-C7/8, S70ME-C/GI7/8, L70MC-C7/8,<br />

L70ME-C7/8, S65ME-C/GI8, S60MC6, S60MC-C7/8, S60ME-C/GI7/8,<br />

L60MC-C7/8, L60ME-C7/8, S50MC-C8, S50ME-C8, S50ME-B8/9<br />

��<br />

��<br />

�������������������������<br />

����������������������������<br />

�<br />

�<br />

������������������<br />

�<br />

�<br />

�<br />

������������������<br />

���������������������<br />

178 06 27�9.2<br />

���<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Deaerating tank dimensi<strong>on</strong>s<br />

Page of<br />

Tank size 0.05 m 3 0.16 m 3<br />

Max. jacket water capacity 1 0 m 3 /h 300 m 3 /h<br />

Dimensi<strong>on</strong>s in mm<br />

Max. nominal diameter 1 5 00<br />

A 600 800<br />

B 1 5 10<br />

C 5 5<br />

D 150 150<br />

E 300 500<br />

F 910 1,195<br />

G 50 350<br />

øH 300 500<br />

øI 3 0 5 0<br />

øJ ND 50 ND 80<br />

øK ND 3 ND 50<br />

ND: Nominal diameter<br />

Working pressure <str<strong>on</strong>g>is</str<strong>on</strong>g> according to actual piping arrangement.<br />

In order not to impede the rotati<strong>on</strong> of water, the pipe c<strong>on</strong>necti<strong>on</strong><br />

must end flush with the tank, so that no internal edges are<br />

protruding.<br />

������������<br />

������������������<br />

�����������������������������<br />

��������������<br />

��������������������<br />

198 97 09�1.1<br />

198 40 63�8.2


<strong>MAN</strong> B&W 12.08<br />

Temperature at Start of Engine<br />

In order to protect the engine, some minimum<br />

temperature restricti<strong>on</strong>s have to be c<strong>on</strong>sidered<br />

before starting the engine and, in order to avoid<br />

corrosive attacks <strong>on</strong> the cylinder liners during<br />

starting.<br />

Normal start of engine<br />

Normally, a minimum engine jacket water temperature<br />

of 50 °C <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended before the engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> started and run up gradually to 90% of specified<br />

MCR speed.<br />

For running between 90% and 00% of specified<br />

MCR speed, it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended that the load be<br />

increased slowly – i.e. over a period of 30 minutes.<br />

Start of cold engine<br />

In excepti<strong>on</strong>al circumstances where it <str<strong>on</strong>g>is</str<strong>on</strong>g> not possible<br />

to comply with the above-menti<strong>on</strong>ed recommendati<strong>on</strong>,<br />

a minimum of 20 °C can be accepted<br />

before the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> started and run up slowly to<br />

90% of specified MCR speed.<br />

However, before exceeding 90% specified MCR<br />

speed, a minimum engine temperature of 50 °C<br />

should be obtained and, increased slowly – i.e.<br />

over a period of at least 30 minutes.<br />

The time period required for increasing the jacket<br />

water temperature from 20 °C to 50 °C will depend<br />

<strong>on</strong> the amount of water in the jacket cooling<br />

water system, and the engine load.<br />

Note:<br />

The above c<strong>on</strong>siderati<strong>on</strong>s are based <strong>on</strong> the assumpti<strong>on</strong><br />

that the engine has already been well<br />

run�in.<br />

�����������<br />

������������<br />

������������<br />

�����<br />

����� �����<br />

�����<br />

Fig. 12.08.01: Jacket water preheater<br />

Preheating of diesel engine<br />

Preheating during standstill periods<br />

Page of<br />

���������<br />

�����������<br />

������������<br />

���������<br />

178 16 63�1.0<br />

During short stays in port (i.e. less than 4�5 days),<br />

it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended that the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> kept preheated,<br />

the purpose being to prevent temperature<br />

variati<strong>on</strong> in the engine structure and corresp<strong>on</strong>ding<br />

variati<strong>on</strong> in thermal expansi<strong>on</strong>s and possible<br />

leakages.<br />

The jacket cooling water outlet temperature should<br />

be kept as high as possible and should – before<br />

starting�up – be increased to at least 50 °C, either<br />

by means of cooling water from the auxiliary engines,<br />

or by means of a built�in preheater in the<br />

jacket cooling water system, or a combinati<strong>on</strong>.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 39 86�0.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

�<br />

� �� �� �� �� �� �� ��<br />

�����<br />

���������������<br />

�����


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Starting and C<strong>on</strong>trol Air<br />

13


<strong>MAN</strong> B&W 13.01<br />

Starting and C<strong>on</strong>trol Air Systems<br />

����������������<br />

�������������<br />

��������������������������<br />

���������<br />

Fig. 13.01.01: Starting and c<strong>on</strong>trol air system<br />

������������������������<br />

������������<br />

����������<br />

���������<br />

The starting air of 30 bar <str<strong>on</strong>g>is</str<strong>on</strong>g> supplied by the starting<br />

air compressors (4 50 602) to the starting air<br />

receivers (4 50 6 5) and from these to the main<br />

engine inlet ‘A’.<br />

Through a reducing stati<strong>on</strong> (4 50 665), compressed<br />

air at 7 bar <str<strong>on</strong>g>is</str<strong>on</strong>g> supplied to the c<strong>on</strong>trol air<br />

for exhaust valve air springs, through ‘B’.<br />

Through a reducing valve (4 50 675) <str<strong>on</strong>g>is</str<strong>on</strong>g> supplied<br />

compressed air at 0 bar to ‘AP’ for turbocharger<br />

cleaning (soft blast) , and a minor volume used for<br />

the fuel valve testing unit.<br />

Starting air and c<strong>on</strong>trol air for the GenSets can be<br />

supplied from the same starting air receivers, as<br />

for the main engine.<br />

������������������������������<br />

���������<br />

���������<br />

��������������������������<br />

Page of<br />

178 50 50�5.1<br />

Please note that the air c<strong>on</strong>sumpti<strong>on</strong> for c<strong>on</strong>trol<br />

air, safety air, turbocharger cleaning, sealing air<br />

for exhaust valve and for fuel valve testing unit are<br />

momentary requirements of the c<strong>on</strong>sumers.<br />

For informati<strong>on</strong> about a comm<strong>on</strong> starting air system<br />

for main engines and <strong>MAN</strong> <strong>Diesel</strong> auxiliary<br />

engines, please refer to our publicati<strong>on</strong>:<br />

Uni�c<strong>on</strong>cept Auxiliary Systems for Two�stroke Main<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

<strong>MAN</strong> B&W S65ME�C8, S60ME�C7, L60ME�C7/ME�GI7 198 39 97�9.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���<br />

������������������������������<br />

���������<br />

���������<br />

����������������������������������������������������������<br />

���<br />

������<br />

������ ���<br />

�������<br />

��<br />

������<br />

��


<strong>MAN</strong> B&W 13.02<br />

Comp<strong>on</strong>ents for Starting Air System<br />

Starting air compressors<br />

The starting air compressors are to be of the<br />

water�cooled, two�stage type with intercooling.<br />

More than two compressors may be installed to<br />

supply the total capacity stated.<br />

Air intake quantity:<br />

Reversible engine,<br />

for 2 starts ....................... see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

N<strong>on</strong>�reversible engine,<br />

for 6 starts ......................... see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’<br />

Delivery pressure ........................................ 30 bar<br />

Starting air receivers<br />

The volume of the two receivers <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

Reversible engine,<br />

for 2 starts ..................... see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’ *<br />

N<strong>on</strong>�reversible engine,<br />

for 6 starts ....................... see ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities’ *<br />

Working pressure ........................................ 30 bar<br />

Test pressure .................... according to class rule<br />

* The volume stated <str<strong>on</strong>g>is</str<strong>on</strong>g> at 25 °C and ,000 mbar<br />

Reducti<strong>on</strong> stati<strong>on</strong> for c<strong>on</strong>trol and safety air<br />

In normal operating, each of the two lines supplies<br />

<strong>on</strong>e engine inlet. During maintenance, three <str<strong>on</strong>g>is</str<strong>on</strong>g>olating<br />

valves in the reducti<strong>on</strong> stati<strong>on</strong> allow <strong>on</strong>e of the<br />

two lines to be shut down while the other line supplies<br />

both engine inlets, see Fig. 3.0 .0 .<br />

Reducti<strong>on</strong> ......................... from 30� 0 bar to 7 bar<br />

(Tolerance ± 0%)<br />

Flow rate, free air .............. 2, 00 Normal liters/min<br />

equal to 0.035 m 3 /s<br />

Filter, fineness ............................................. 40 µm<br />

Page of<br />

Reducti<strong>on</strong> valve for turbocharger cleaning etc<br />

Reducti<strong>on</strong> ......................... from 30� 0 bar to 7 bar<br />

(Tolerance ± 0%)<br />

Flow rate, free air ............. 2,600 Normal liters/min<br />

equal to 0.043 m 3 /s<br />

The c<strong>on</strong>sumpti<strong>on</strong> of compressed air for c<strong>on</strong>trol air,<br />

exhaust valve air springs and safety air as well as<br />

air for turbocharger cleaning and fuel valve testing<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> covered by the capacities stated for air receivers<br />

and compressors in the l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities.<br />

Starting and c<strong>on</strong>trol air pipes<br />

The piping delivered with and fitted <strong>on</strong>to the main<br />

engine <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in the following figures in Secti<strong>on</strong><br />

3.03:<br />

Fig. 3.03.0 Starting air pipes<br />

Fig. 3.03.02 Air spring pipes, exhaust valves<br />

Turning gear<br />

The turning wheel has cylindrical teeth and <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted<br />

to the thrust shaft. The turning wheel <str<strong>on</strong>g>is</str<strong>on</strong>g> driven<br />

by a pini<strong>on</strong> <strong>on</strong> the terminal shaft of the turning<br />

gear, which <str<strong>on</strong>g>is</str<strong>on</strong>g> mounted <strong>on</strong> the bedplate.<br />

Engagement and d<str<strong>on</strong>g>is</str<strong>on</strong>g>engagement of the turning<br />

gear <str<strong>on</strong>g>is</str<strong>on</strong>g> effected by d<str<strong>on</strong>g>is</str<strong>on</strong>g>placing the pini<strong>on</strong> and terminal<br />

shaft axially. To prevent the main engine<br />

from starting when the turning gear <str<strong>on</strong>g>is</str<strong>on</strong>g> engaged,<br />

the turning gear <str<strong>on</strong>g>is</str<strong>on</strong>g> equipped with a safety arrangement<br />

which interlocks with the starting air system.<br />

The turning gear <str<strong>on</strong>g>is</str<strong>on</strong>g> driven by an electric motor<br />

with a built�in gear and brake. Key specificati<strong>on</strong>s<br />

of the electric motor and brake are stated in Secti<strong>on</strong><br />

3.04.<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI, S50ME-B8/9 198 60 57�8.0<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 13.03<br />

Starting and C<strong>on</strong>trol Air Pipes<br />

��������������<br />

��������������<br />

������������������<br />

������������������<br />

�����������������������<br />

������������������<br />

��������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

The item Nos. refer to ‘Guidance values automati<strong>on</strong>’<br />

The piping <str<strong>on</strong>g>is</str<strong>on</strong>g> delivered with and fitted <strong>on</strong>to the engine<br />

Fig. 13.03.01: Starting air pipes<br />

���������������<br />

The starting air pipes, Fig. 3.03.0 , c<strong>on</strong>tain a<br />

main starting valve (a ball valve with actuator), a<br />

n<strong>on</strong>�return valve, a solenoid valve and a starting<br />

valve. The main starting valve <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>trolled by the<br />

Engine C<strong>on</strong>trol System. Slow turning before start<br />

of engine (4 50 40) <str<strong>on</strong>g>is</str<strong>on</strong>g> included in the basic design.<br />

The Engine C<strong>on</strong>trol System regulates the supply<br />

of c<strong>on</strong>trol air to the starting valves in accordance<br />

with the correct firing sequence and the timing.<br />

Please note that the air c<strong>on</strong>sumpti<strong>on</strong> for c<strong>on</strong>trol<br />

air, turbocharger cleaning and for fuel valve testing<br />

unit are momentary requirements of the c<strong>on</strong>sumers.<br />

The capacities stated for the air receivers<br />

�<br />

��������������<br />

������������<br />

������������<br />

��������<br />

��������������������<br />

��������������������<br />

���������<br />

������������������<br />

������������������<br />

���������������������<br />

������������������<br />

������������������<br />

Page of 2<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 40 00�4.5<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������<br />

��������<br />

198 98 21�5.3<br />

and compressors in the ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities’ cover<br />

all the main engine requirements and starting of<br />

the auxiliary engines.<br />

For informati<strong>on</strong> about a comm<strong>on</strong> starting air<br />

system for main engines and auxiliary engines,<br />

please refer to the Engine Selecti<strong>on</strong> Guide or to<br />

our publicati<strong>on</strong>:<br />

Uni�c<strong>on</strong>cept Auxiliary Systems for Two�stroke Main<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’


<strong>MAN</strong> B&W 13.03<br />

Exhaust Valve Air Spring Pipes<br />

The exhaust valve <str<strong>on</strong>g>is</str<strong>on</strong>g> opened hydraulically by the<br />

Fuel Injecti<strong>on</strong> Valve Actuator (FIVA) system which<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> activated by the Engine C<strong>on</strong>trol System, and<br />

the closing force <str<strong>on</strong>g>is</str<strong>on</strong>g> provided by an ‘air spring’<br />

which leaves the valve spindle free to rotate.<br />

�<br />

������������������������<br />

���������������������<br />

������������������������ ������������������������<br />

���<br />

������<br />

�������������������<br />

The item Nos. refer to ‘Guidance values automati<strong>on</strong>’<br />

The piping <str<strong>on</strong>g>is</str<strong>on</strong>g> delivered with and fitted <strong>on</strong>to the engine<br />

Fig. 13.03.02: Air spring pipes for exhaust valves<br />

������������������� �������������������<br />

Page 2 of 2<br />

The compressed air <str<strong>on</strong>g>is</str<strong>on</strong>g> taken from the c<strong>on</strong>trol air<br />

supply, see Fig. 3.03.02.<br />

121 36 87-1.1.0c<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 40 00�4.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 13.04<br />

Electric Motor for Turning Gear<br />

<strong>MAN</strong> <strong>Diesel</strong> delivers a turning gear with built-in<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>c brake, opti<strong>on</strong> 40 80 0 . Two basic executi<strong>on</strong>s<br />

are <str<strong>on</strong>g>available</str<strong>on</strong>g> for power supply frequencies of 60<br />

and 50 Hz respectively. Nominal power and current<br />

c<strong>on</strong>sumpti<strong>on</strong> of the motors are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted below.<br />

Electric motor and brake, voltage ............3 x 440 V<br />

Electric motor and brake, frequency .............60 Hz<br />

Protecti<strong>on</strong>, electric motor / brake ....... IP 55 / IP 54<br />

Insulati<strong>on</strong> class ..................................................... F<br />

Number of<br />

Electric motor<br />

cylinders Nominal power, kW Normal current, A<br />

5-8 4.8 8.<br />

���<br />

���<br />

���<br />

����<br />

Fig. 13.04.01: Electric motor for turning gear, opti<strong>on</strong>: 40 80 101<br />

<strong>MAN</strong> B&W S70MC6, S70MC-C7/8, S70ME-C7/8,<br />

S70ME-GI7/8, S65ME-C8, S65ME-GI8<br />

�������<br />

�������<br />

���� ����<br />

����<br />

�� �� �� ��<br />

���<br />

���<br />

���<br />

���<br />

��<br />

��<br />

�� ��<br />

���<br />

���<br />

���<br />

���<br />

���<br />

��������<br />

���<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

Turning gear with electric motor of other protecti<strong>on</strong><br />

or insulati<strong>on</strong> classes can be ordered, opti<strong>on</strong><br />

40 80 03. Informati<strong>on</strong> about the alternative executi<strong>on</strong>s<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

Electric motor and brake, voltage ............3 x 380 V<br />

Electric motor and brake, frequency .............50 Hz<br />

Protecti<strong>on</strong>, electric motor / brake ....... IP 55 / IP 54<br />

Insulati<strong>on</strong> class ..................................................... F<br />

����<br />

Number of<br />

Electric motor<br />

cylinders Nominal power, kW Normal current, A<br />

5-8 4.0 8.<br />

���<br />

���<br />

����<br />

����<br />

����<br />

����<br />

����<br />

��<br />

�� �� �� �� �� �� �� ��� ��� ���<br />

����<br />

��<br />

����<br />

����<br />

������ ������<br />

����� ���� ����� ����<br />

����<br />

��������<br />

��������<br />

����<br />

����<br />

��������<br />

��������<br />

����<br />

178 31 30�9.1<br />

198 41 33-4.2


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Scavenge Air<br />

14


<strong>MAN</strong> B&W 14.01<br />

Scavenge Air System<br />

Scavenge air <str<strong>on</strong>g>is</str<strong>on</strong>g> supplied to the engine by <strong>on</strong>e or<br />

more turbochargers, located <strong>on</strong> the exhaust side<br />

of the engine.<br />

The compressor of the turbocharger draws air<br />

from the engine room, through an air filter, and<br />

the compressed air <str<strong>on</strong>g>is</str<strong>on</strong>g> cooled by the scavenge<br />

air cooler, <strong>on</strong>e per turbocharger. The scavenge<br />

air cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with a water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher,<br />

which prevents c<strong>on</strong>densate water from being carried<br />

with the air into the scavenge air receiver and<br />

to the combusti<strong>on</strong> chamber.<br />

�����������<br />

��������<br />

������������<br />

������������<br />

��������<br />

������������<br />

������<br />

����������<br />

�������<br />

Fig. 14.01.01: Scavenge Air System<br />

<strong>MAN</strong> B&W S80MC6, S80MC-C7/8, S80ME�C7/8/9, K80MC-C6,<br />

K80ME�C6, S70MC6, S/L70MC-C7/8, S70ME�C/ME�GI7/8,<br />

L70ME�C7/8, S65ME�C/ME�GI8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

The scavenge air system (see Figs. 4.0 .0 and<br />

4.02.0 ) <str<strong>on</strong>g>is</str<strong>on</strong>g> an integrated part of the main engine.<br />

The engine power figures and the data in the l<str<strong>on</strong>g>is</str<strong>on</strong>g>t<br />

of capacities are based <strong>on</strong> MCR at tropical c<strong>on</strong>diti<strong>on</strong>s,<br />

i.e. a seawater temperature of 32 °C, or<br />

freshwater temperature of 36 °C, and an ambient<br />

air inlet temperature of 45 °C.<br />

�������������<br />

��������������<br />

178 25 18�8.1<br />

198 40 04�1.2


<strong>MAN</strong> B&W 14.02<br />

Auxiliary Blowers<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> provided with two electrically driven<br />

auxiliary blowers. Between the scavenge air cooler<br />

and the scavenge air receiver, n<strong>on</strong>�return valves<br />

are fitted which close automatically when the auxiliary<br />

blowers start supplying the scavenge air.<br />

The auxiliary blowers start operating c<strong>on</strong>secutively<br />

before the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> started and will ensure<br />

complete scavenging of the cylinders in the starting<br />

phase, thus providing the best c<strong>on</strong>diti<strong>on</strong>s for a<br />

safe start.<br />

During operati<strong>on</strong> of the engine, the auxiliary blowers<br />

will start automatically whenever the engine<br />

load <str<strong>on</strong>g>is</str<strong>on</strong>g> reduced to about 30�40%, and will c<strong>on</strong>tinue<br />

operating until the load again exceeds approximately<br />

40�50%.<br />

Emergency running<br />

If <strong>on</strong>e of the auxiliary blowers <str<strong>on</strong>g>is</str<strong>on</strong>g> out of functi<strong>on</strong>,<br />

the other auxiliary blower will functi<strong>on</strong> in the system,<br />

without any manual adjustment of the valves<br />

being necessary.<br />

�����������������������������<br />

�������������������������<br />

Fig. 14.02.01: Scavenge air system<br />

<strong>MAN</strong> B&W S80ME�C7/8/9, S70ME�C/ME�GI7/8,<br />

L70ME�C7/8, S65ME�C/ME�GI8, S60ME�C/ME�GI7/8,<br />

L60ME�C7/8, S50ME�C7/8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

C<strong>on</strong>trol of the auxiliary blowers<br />

Page of<br />

The auxiliary blowers are fitted <strong>on</strong>to the main engine.<br />

The c<strong>on</strong>trol system for the auxiliary blowers<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> integrated in the Engine C<strong>on</strong>trol System.<br />

The starter panels with starters for the auxiliary<br />

blower motors are not included, they can be ordered<br />

as an opti<strong>on</strong>: 4 55 653.<br />

The data for the scavenge air cooler <str<strong>on</strong>g>is</str<strong>on</strong>g> specified in<br />

the descripti<strong>on</strong> of the cooling water system chosen.<br />

For further informati<strong>on</strong>, please refer to our publicati<strong>on</strong><br />

titled:<br />

Influence of Ambient Temperature C<strong>on</strong>diti<strong>on</strong>s<br />

The publicati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> at: www.mandiesel.com<br />

under ‘Quicklinks’ → ‘Technical Papers’<br />

178 44 70�5.1<br />

198 40 12�4.6


<strong>MAN</strong> B&W 14.03<br />

Scavenge Air Pipes<br />

The item No. refer to ‘Guidance Values Automati<strong>on</strong>’<br />

Fig. 14.03.01: Scavenge air pipes<br />

The letters refer to ‘L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of flanges’<br />

Fig. 14.03.02: Scavenge air space, drain pipes<br />

<strong>MAN</strong> B&W K108ME�C, K98ME/ME�C, S90ME�C, K90ME/ME�C,<br />

S80ME�C, K80ME�C, S70ME�C/ME�GI, L70ME�C, S65ME�C/ME�GI,<br />

S60ME�C/ME�GI, L60ME�C<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

178 50 57�8.0<br />

178 50 59�1.0<br />

198 40 13�6.1


<strong>MAN</strong> B&W 14.04<br />

Electric Motor for Auxiliary Blower<br />

The number of auxiliary blowers in a propulsi<strong>on</strong><br />

plant may vary depending <strong>on</strong> the actual amount of<br />

turbochargers as well as space requirements.<br />

Number of Number of auxiliary Required power/blower Installed power/blower<br />

cylinders blowers<br />

kW<br />

kW<br />

5<br />

55 65<br />

6<br />

7<br />

2<br />

66<br />

77<br />

85<br />

85<br />

8 88 90<br />

The installed power of the electric motors are based <strong>on</strong> a voltage supply of 3x440V at 60Hz.<br />

The electric motors are delivered with and fitted <strong>on</strong>to the engine.<br />

Table 14.04.01: Electric motor for auxiliary blower<br />

Page of<br />

For typical engine c<strong>on</strong>figurati<strong>on</strong>s, the required<br />

power of the auxiliary blowers as well as the installed<br />

size of the electric motors are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table<br />

4.04.0 .<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8 198 49 13-5.1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 14.05<br />

Scavenge Air Cooler Cleaning System<br />

The air side of the scavenge air cooler can be<br />

cleaned by injecting a grease d<str<strong>on</strong>g>is</str<strong>on</strong>g>solving media<br />

through ‘AK’ to a spray pipe arrangement fitted to<br />

the air chamber above the air cooler element.<br />

Sludge <str<strong>on</strong>g>is</str<strong>on</strong>g> drained through ‘AL’ to the bilge tank<br />

�����������<br />

Fig. 14.05.01: Air cooler cleaning pipes<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges‘<br />

Fig. 14.05.02: Air cooler cleaning system<br />

��<br />

��<br />

�� ��<br />

Air Cooler Cleaning Unit, opti<strong>on</strong>: 4 55 665<br />

��<br />

��������<br />

����������������������<br />

��������������<br />

����������<br />

��<br />

������������<br />

��<br />

������������<br />

����<br />

����������<br />

����������<br />

������<br />

��������������<br />

��<br />

������������<br />

�������������������<br />

������������������<br />

��<br />

��������<br />

��<br />

��������������������<br />

����������<br />

Page of<br />

and the polluted grease d<str<strong>on</strong>g>is</str<strong>on</strong>g>solvent returns from<br />

‘AM’ through a filter, to the chemical cleaning<br />

tank. The cleaning must be carried out while the<br />

engine <str<strong>on</strong>g>is</str<strong>on</strong>g> at standstill. The piping delivered with<br />

and fitted <strong>on</strong> the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig 4.05.0<br />

‘Air cooler cleaning pipes’.<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges‘<br />

The item no refer to ‘Guidance values automati<strong>on</strong>’<br />

<strong>MAN</strong> B&W S65ME-C8/ME-GI8 198 49 02�7.1<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

��������<br />

����������������������<br />

����������������������<br />

���������������������<br />

��<br />

178 56 35-4.1<br />

No. of cylinders<br />

5-7 8<br />

Chemical tank capacity 0.6 m3 0.9 m3 Circulati<strong>on</strong> pump capacity at 3 bar 2 m3 /h 3 m3 /h<br />

178 56 34-2.1


<strong>MAN</strong> B&W 14.06<br />

Scavenge Air Box Drain System<br />

The scavenge air box <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>tinuously drained<br />

through ‘AV’ to a small pressur<str<strong>on</strong>g>is</str<strong>on</strong>g>ed drain tank,<br />

from where the sludge <str<strong>on</strong>g>is</str<strong>on</strong>g> led to the sludge tank.<br />

Steam can be applied through ‘BV’, if required, to<br />

facilitate the draining. See Fig. 4.06.0 .<br />

The c<strong>on</strong>tinuous drain from the scavenge air box<br />

must not be directly c<strong>on</strong>nected to the sludge tank<br />

owing to the scavenge air pressure. The pressur<str<strong>on</strong>g>is</str<strong>on</strong>g>ed<br />

drain tank must be designed to withstand<br />

full scavenge air pressure and, if steam <str<strong>on</strong>g>is</str<strong>on</strong>g> applied,<br />

to withstand the steam pressure <str<strong>on</strong>g>available</str<strong>on</strong>g>.<br />

Fig. 14.06.01: Scavenge air box drain system<br />

<strong>MAN</strong> B&W <strong>MAN</strong> B&W S70MC6, S70MC-C7/8, S70ME�C/ME-GI7/8,<br />

L70MC-C7/8, L70ME-C7/8, S65ME-C/ME-GI8, S60MC6,<br />

S60MC-C7/8, S60ME-C/ME-GI7/8, S50MC6, S46MC-C7/8,<br />

S40ME-B9, S35ME-B9, S35MC7<br />

���������<br />

��������<br />

�� ��<br />

������������������������������<br />

���������������������������������<br />

���������������������������<br />

�����������<br />

������������<br />

�����������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

��������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Drain from water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher<br />

Page of<br />

The drain line for the air cooler system <str<strong>on</strong>g>is</str<strong>on</strong>g>, during<br />

running, used as a permanent drain from the air<br />

cooler water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher. The water <str<strong>on</strong>g>is</str<strong>on</strong>g> led through<br />

an orifice to prevent major losses of scavenge air.<br />

The system <str<strong>on</strong>g>is</str<strong>on</strong>g> equipped with a drain box with a<br />

level switch, indicating any excessive water level.<br />

The system delivered with and fitted <strong>on</strong> the engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig. 4.03.02 Scavenge air space,<br />

drain pipes.<br />

��������<br />

��������<br />

�����<br />

����<br />

��������������<br />

����������������������������<br />

������������������������<br />

�������������<br />

�������������<br />

��������<br />

��������<br />

����������������<br />

������������������<br />

��������������������<br />

�����������<br />

No. of cylinders<br />

5-6 7-8<br />

Drain tank capacity 0.4 m3 0.7 m3 079 61 03-0.2.0<br />

198 40 32-7.2


<strong>MAN</strong> B&W 14.07<br />

Fire Extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing System for Scavenge Air Space<br />

Fire in the scavenge air space can be extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hed<br />

by steam, th<str<strong>on</strong>g>is</str<strong>on</strong>g> being the basic soluti<strong>on</strong>, or, opti<strong>on</strong>ally,<br />

by water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t or CO 2 .<br />

The external system, pipe and flange c<strong>on</strong>necti<strong>on</strong>s<br />

are shown in Fig. 4.07.0 and the piping fitted<br />

<strong>on</strong>to the engine in Fig. 4.07.02.<br />

In the Extent of Delivery, the fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing<br />

system for scavenge air space <str<strong>on</strong>g>is</str<strong>on</strong>g> selected by the<br />

fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing agent:<br />

• basic soluti<strong>on</strong>: 4 55 40 Steam<br />

• opti<strong>on</strong>: 4 55 42 Water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t<br />

• opti<strong>on</strong>: 4 55 43 CO 2<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

��<br />

��<br />

�����������������������������������<br />

������������������������<br />

�������<br />

���������������<br />

�������������<br />

��������������������������������<br />

�����������������������������������<br />

�������<br />

���������������<br />

�������������<br />

Fig. 14.07.01: Fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing system for scavenge air space<br />

Page of 2<br />

The key specificati<strong>on</strong>s of the fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing<br />

agents are:<br />

Steam fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing for scavenge air space<br />

Steam pressure: 3� 0 bar<br />

Steam quantity, approx.: 3.8 kg/cyl.<br />

Water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing for scavenge air space<br />

Freshwater pressure: min. 3.5 bar<br />

Freshwater quantity, approx.: 3.5 kg/cyl.<br />

CO 2 fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing for scavenge air space<br />

CO 2 test pressure: 50 bar<br />

CO 2 quantity, approx.: 7.5 kg/cyl.<br />

079 61 02�9.0.0a<br />

<strong>MAN</strong> B&W S65ME�C/ME-GI8 198 48 19�0.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�� � �<br />

��<br />

���������� � ��������������<br />

�� � ������������������������<br />

�������<br />

�������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������������������<br />

������������������������������������������������<br />

����������������������<br />

����������������������������������������������<br />

�����������������������������������������������<br />

��������������������������������������������<br />

���������������������<br />

�� � ��������


<strong>MAN</strong> B&W 14.07<br />

������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

<strong>MAN</strong> B&W S70MC6, S70MC-C7/8, S70ME�C/ME-GI7/8,<br />

L70MC�C7/8, L70ME-C7/8<br />

����������������������<br />

Fig. 14.07.02: Fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing pipes in scavenge air space<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��������������������<br />

�� � ���������������������<br />

������������<br />

�����������������<br />

��<br />

��������������������<br />

������������������������������<br />

Page 2 of 2<br />

126 40 81-0.6.0a<br />

198 48 19�0.2


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Exhaust Gas<br />

15


<strong>MAN</strong> B&W 15.01<br />

Exhaust Gas System<br />

The exhaust gas <str<strong>on</strong>g>is</str<strong>on</strong>g> led from the cylinders to the<br />

exhaust gas receiver where the fluctuating pressures<br />

from the cylinders are equal<str<strong>on</strong>g>is</str<strong>on</strong>g>ed and from<br />

where the gas <str<strong>on</strong>g>is</str<strong>on</strong>g> led further <strong>on</strong> to the turbocharger<br />

at a c<strong>on</strong>stant pressure. See fig. 5.0 .0 .<br />

Compensators are fitted between the exhaust<br />

valve housings and the exhaust gas receiver and<br />

between the receiver and the turbocharger. A protective<br />

grating <str<strong>on</strong>g>is</str<strong>on</strong>g> placed between the exhaust gas<br />

receiver and the turbocharger. The turbocharger<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> fitted with a pick�up for m<strong>on</strong>itoring and remote<br />

indicati<strong>on</strong> of the turbocharger speed.<br />

The exhaust gas receiver and the exhaust pipes<br />

are provided with insulati<strong>on</strong>, covered by steel<br />

plating.<br />

�����������<br />

��������<br />

������������<br />

������������<br />

��������<br />

���������<br />

����������<br />

����������<br />

�������<br />

Fig. 15.01.01: Exhaust gas system <strong>on</strong> engine<br />

�������������<br />

��������������<br />

Page of<br />

<strong>Turbo</strong>charger arrangement and cleaning systems<br />

The turbochargers are in the basic design, opti<strong>on</strong>:<br />

4 59 22, located <strong>on</strong> the exhaust side of the engine<br />

but can as an opti<strong>on</strong>: 4 59 24, be located <strong>on</strong><br />

the aft end of the engine.<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> designed for the installati<strong>on</strong> of the<br />

<strong>MAN</strong> <strong>Diesel</strong> turbocharger type TCA, ABB turbocharger<br />

type TPL (4 59 02), or MHI turbocharger<br />

type MET (4 59 03).<br />

All makes of turbochargers are fitted with an arrangement<br />

for water washing of the compressor<br />

side, and soft blast cleaning of the turbine side,<br />

see Figs. 5.02.02, 5.02.03 and 5.02.04. Washing<br />

of the turbine side <str<strong>on</strong>g>is</str<strong>on</strong>g> <strong>on</strong>ly applicable <strong>on</strong> <strong>MAN</strong><br />

<strong>Diesel</strong> and ABB turbochargers.<br />

178 07 27�4.1<br />

<strong>MAN</strong> B&W S65ME�C/ME�GI8 198 48 99�1.2<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 15.02<br />

Exhaust Gas Pipes<br />

��������������������<br />

���������<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8, S60MC6, S60MC-C/ME-C/ME-GI7/8,<br />

L60MC-C/ME-C7/8<br />

�������������������<br />

Fig. 15.02.01a: Exhaust gas pipes, with turbocharger located <strong>on</strong> exhaust side of engine, opti<strong>on</strong> 4 59 122<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������<br />

������������<br />

����������������������� �������������<br />

���������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

The item no. refer to ‘Guidance Values Automati<strong>on</strong>’<br />

���������<br />

�������������������<br />

������������<br />

��������������<br />

���������������������������������<br />

���<br />

��������������������<br />

��<br />

��������� ���������<br />

���������<br />

������������������������<br />

The letters refer to l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of ‘Counterflanges’<br />

The item no. refer to ‘Guidance Values Automati<strong>on</strong>’<br />

The piping <str<strong>on</strong>g>is</str<strong>on</strong>g> delivered with and fitted <strong>on</strong>to the engine<br />

�����������������������<br />

Fig.15.02.01b: Exhaust gas pipes, with turbocharger located <strong>on</strong> aft end of engine, opti<strong>on</strong> 4 59 124<br />

����<br />

���������<br />

Page of 3<br />

������������������������<br />

���������<br />

���������<br />

��� ����������������������������������<br />

� ����������������������������������<br />

���������<br />

121 15 27-9.2.0<br />

���������������������������������<br />

��� ����������������������������������<br />

� ����������������������������������<br />

��<br />

178 38 69�2.2<br />

198 64 02�9.0


<strong>MAN</strong> B&W 15.02<br />

Cleaning Systems<br />

��<br />

���������<br />

���������������������<br />

Fig. 15.02.02: <strong>MAN</strong> <strong>Diesel</strong> TCA turbocharger, water washing of turbine side<br />

�������������������<br />

���������������������������<br />

Page of 3<br />

121 15 21-8.0.0<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME�C/ME�GI/ME-B engines 198 40 71�0.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 15.02<br />

Cleaning Systems<br />

�����������<br />

Fig. 15.02.03: Water washing of turbine and compressor sides for ABB, TPL turbochargers<br />

Fig. 15.02.04: Soft blast cleaning of turbine side<br />

<strong>MAN</strong> B&W S70MC6, S70MC-C/ME�C/ME�GI7/8, L70MC-C/ME�C7/8,<br />

S65ME-C/ME-GI8, S60MC6, S60MC-C/ME�C/ME-GI7/8, L60MC-C/ME�C7/8,<br />

S50MC6, S50MC-C/ME-C7/8, S50ME-B8/9, S46MC-C7/8, S42MC7,<br />

S40ME-B9, S35MC7, L35MC6, S35ME-B9, S26MC6<br />

��<br />

�����<br />

�����������<br />

��<br />

����������<br />

���������������������<br />

����������<br />

���������������������<br />

����������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�������������������������<br />

��������������������<br />

�������������������<br />

Page of<br />

121 36 75-1.0.0<br />

126 40 93-0.2.0<br />

198 40 73�4.5


<strong>MAN</strong> B&W 15.03<br />

Exhaust Gas System for Main Engine<br />

At the specified MCR of the engine, the total<br />

back�pressure in the exhaust gas system after the<br />

turbocharger (as indicated by the static pressure<br />

measured in the piping after the turbocharger)<br />

must not exceed 350 mm WC (0.035 bar).<br />

In order to have a back�pressure margin for the<br />

final system, it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended at the design<br />

stage to initially use a value of about 300 mm WC<br />

(0.030 bar).<br />

The actual back�pressure in the exhaust gas<br />

system at specified MCR depends <strong>on</strong> the gas<br />

velocity, i.e. it <str<strong>on</strong>g>is</str<strong>on</strong>g> proporti<strong>on</strong>al to the square of the<br />

exhaust gas velocity, and hence inversely proporti<strong>on</strong>al<br />

to the pipe diameter to the 4th power. It has<br />

by now become normal practice in order to avoid<br />

too much pressure loss in the pipings to have an<br />

exhaust gas velocity at specified MCR of about<br />

35 m/sec, but not higher than 50 m/sec.<br />

For dimensi<strong>on</strong>ing of the external exhaust pipe<br />

c<strong>on</strong>necti<strong>on</strong>s, see the exhaust pipe diameters for<br />

35 m/sec, 40 m/sec, 45 m/sec and 50 m/sec respectively,<br />

shown in Table 5.07.02.<br />

As l<strong>on</strong>g as the total back�pressure of the exhaust<br />

gas system (incorporating all res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance losses<br />

from pipes and comp<strong>on</strong>ents) complies with the<br />

above�menti<strong>on</strong>ed requirements, the pressure<br />

losses across each comp<strong>on</strong>ent may be chosen independently,<br />

see proposed measuring points (M)<br />

in Fig. 5.05.0 . The general design guidelines for<br />

each comp<strong>on</strong>ent, described below, can be used<br />

for guidance purposes at the initial project stage.<br />

Exhaust gas piping system for main engine<br />

The exhaust gas piping system c<strong>on</strong>veys the gas<br />

from the outlet of the turbocharger(s) to the atmosphere.<br />

The exhaust piping <str<strong>on</strong>g>is</str<strong>on</strong>g> shown schematically in<br />

Fig. 5.04.0 .<br />

Page of<br />

The exhaust system for the main engine compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es:<br />

• Exhaust gas pipes<br />

• Exhaust gas boiler<br />

• Silencer<br />

• Spark arrester (if needed)<br />

• Expansi<strong>on</strong> joints (compensators)<br />

• Pipe bracings.<br />

In c<strong>on</strong>necti<strong>on</strong> with dimensi<strong>on</strong>ing the exhaust gas<br />

piping system, the following parameters must be<br />

observed:<br />

• Exhaust gas flow rate<br />

• Exhaust gas temperature at turbocharger outlet<br />

• Maximum pressure drop through exhaust gas<br />

system<br />

• Maximum no<str<strong>on</strong>g>is</str<strong>on</strong>g>e level at gas outlet to atmosphere<br />

• Maximum force from exhaust piping <strong>on</strong><br />

turbocharger(s)<br />

• Sufficient axial and lateral el<strong>on</strong>gati<strong>on</strong> ability of<br />

expansi<strong>on</strong> joints<br />

• Util<str<strong>on</strong>g>is</str<strong>on</strong>g>ati<strong>on</strong> of the heat energy of the exhaust gas.<br />

Items that are to be calculated or read from tables<br />

are:<br />

• Exhaust gas mass flow rate, temperature and maximum<br />

back pressure at turbocharger gas outlet<br />

• Diameter of exhaust gas pipes<br />

• Util<str<strong>on</strong>g>is</str<strong>on</strong>g>ati<strong>on</strong> of the exhaust gas energy<br />

• Attenuati<strong>on</strong> of no<str<strong>on</strong>g>is</str<strong>on</strong>g>e from the exhaust pipe outlet<br />

• Pressure drop across the exhaust gas system<br />

• Expansi<strong>on</strong> joints.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME�C/ME�GI/ME-B engines 198 40 74�6.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 15.04<br />

Comp<strong>on</strong>ents of the Exhaust Gas System<br />

������������������<br />

�����������������<br />

�������������<br />

�������������<br />

�����������������������<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME�C/ME�GI/ME-B engines<br />

178 42 78�3.2<br />

Fig. 15.04.01a: Exhaust gas system, <strong>on</strong>e turbocharger<br />

Exhaust gas compensator after turbocharger<br />

When dimensi<strong>on</strong>ing the compensator (opti<strong>on</strong>:<br />

4 60 6 0) for the expansi<strong>on</strong> joint <strong>on</strong> the turbocharger<br />

gas outlet transiti<strong>on</strong> piece (opti<strong>on</strong>: 4 60 60 )<br />

the exhaust gas piece and comp<strong>on</strong>ents, are to be<br />

so arranged that the thermal expansi<strong>on</strong>s are absorbed<br />

by expansi<strong>on</strong> joints. The heat expansi<strong>on</strong> of<br />

the pipes and the comp<strong>on</strong>ents <str<strong>on</strong>g>is</str<strong>on</strong>g> to be calculated<br />

based <strong>on</strong> a temperature increase from 20 °C to<br />

250 °C. The max. expected vertical, transversal<br />

and l<strong>on</strong>gitudinal heat expansi<strong>on</strong> of the engine<br />

measured at the top of the exhaust gas transiti<strong>on</strong><br />

piece of the turbocharger outlet are indicated in<br />

Fig. 5.06.0 and Table 5.06.02 as DA, DB and DC.<br />

The movements stated are related to the engine<br />

seating, for DC, however, to the engine centre. The<br />

figures indicate the axial and the lateral movements<br />

related to the orientati<strong>on</strong> of the expansi<strong>on</strong> joints.<br />

The expansi<strong>on</strong> joints are to be chosen with an elasticity<br />

that limits the forces and the moments of the<br />

exhaust gas outlet flange of the turbocharger as<br />

stated for each of the turbocharger makers in Table<br />

5.06.04. The orientati<strong>on</strong> of the maximum perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible<br />

forces and moments <strong>on</strong> the gas outlet flange<br />

of the turbocharger <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig. 5.06.03.<br />

��<br />

������������<br />

��������<br />

��<br />

������������<br />

������<br />

��<br />

����������������<br />

�����������������������<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������������������<br />

�����������������<br />

����������������<br />

�������������<br />

�������������<br />

����������������<br />

�������������<br />

�����������������������<br />

Exhaust gas boiler<br />

������������<br />

��������<br />

������������<br />

������<br />

Page of 2<br />

Engine plants are usually designed for util<str<strong>on</strong>g>is</str<strong>on</strong>g>ati<strong>on</strong> of<br />

the heat energy of the exhaust gas for steam producti<strong>on</strong><br />

or for heating the thermal oil system. The<br />

exhaust gas passes an exhaust gas boiler which <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

usually placed near the engine top or in the funnel.<br />

It should be noted that the exhaust gas temperature<br />

and flow rate are influenced by the ambient<br />

c<strong>on</strong>diti<strong>on</strong>s, for which reas<strong>on</strong> th<str<strong>on</strong>g>is</str<strong>on</strong>g> should be c<strong>on</strong>sidered<br />

when the exhaust gas boiler <str<strong>on</strong>g>is</str<strong>on</strong>g> planned. At<br />

specified MCR, the maximum recommended pressure<br />

loss across the exhaust gas boiler <str<strong>on</strong>g>is</str<strong>on</strong>g> normally<br />

50 mm WC.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> pressure loss depends <strong>on</strong> the pressure losses<br />

in the rest of the system as menti<strong>on</strong>ed above.<br />

Therefore, if an exhaust gas silencer/spark arrester<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> not installed, the acceptable pressure loss<br />

across the boiler may be somewhat higher than the<br />

max. of 50 mm WC, whereas, if an exhaust gas<br />

silencer/spark arrester <str<strong>on</strong>g>is</str<strong>on</strong>g> installed, it may be necessary<br />

to reduce the maximum pressure loss.<br />

The above menti<strong>on</strong>ed pressure loss across the<br />

exhaust gas boiler must include the pressure<br />

losses from the inlet and outlet transiti<strong>on</strong> pieces.<br />

��<br />

��<br />

��<br />

��<br />

������������������������������<br />

���������������<br />

Fig. 15.04.01b: Exhaust gas system, two or more TCs<br />

��<br />

178 33 46�7.4<br />

198 40 75�8.6


<strong>MAN</strong> B&W 15.04<br />

Exhaust gas silencer<br />

The typical octave band sound pressure levels<br />

from the diesel engine’s exhaust gas system – at a<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance of <strong>on</strong>e meter from the top of the exhaust<br />

gas uptake – are shown in Fig.15.04.0 .<br />

The need for an exhaust gas silencer can be decided<br />

based <strong>on</strong> the requirement of a maximum<br />

perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible no<str<strong>on</strong>g>is</str<strong>on</strong>g>e level at a specific positi<strong>on</strong>.<br />

The exhaust gas no<str<strong>on</strong>g>is</str<strong>on</strong>g>e data <str<strong>on</strong>g>is</str<strong>on</strong>g> valid for an exhaust<br />

gas system without boiler and silencer, etc.<br />

The no<str<strong>on</strong>g>is</str<strong>on</strong>g>e level <str<strong>on</strong>g>is</str<strong>on</strong>g> at nominal MCR at a d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance of<br />

<strong>on</strong>e metre from the exhaust gas pipe outlet edge<br />

at an angle of 30° to the gas flow directi<strong>on</strong>.<br />

For each doubling of the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance, the no<str<strong>on</strong>g>is</str<strong>on</strong>g>e level<br />

will be reduced by about 6 dB (far�field law).<br />

When the no<str<strong>on</strong>g>is</str<strong>on</strong>g>e level at the exhaust gas outlet to<br />

the atmosphere needs to be silenced, a silencer<br />

can be placed in the exhaust gas piping system<br />

after the exhaust gas boiler.<br />

The exhaust gas silencer <str<strong>on</strong>g>is</str<strong>on</strong>g> usually of the absorpti<strong>on</strong><br />

type and <str<strong>on</strong>g>is</str<strong>on</strong>g> dimensi<strong>on</strong>ed for a gas velocity of<br />

approximately 35 m/s through the central tube of<br />

the silencer.<br />

An exhaust gas silencer can be designed based<br />

<strong>on</strong> the required damping of no<str<strong>on</strong>g>is</str<strong>on</strong>g>e from the exhaust<br />

gas given <strong>on</strong> the graph.<br />

In the event that an exhaust gas silencer <str<strong>on</strong>g>is</str<strong>on</strong>g> required<br />

– th<str<strong>on</strong>g>is</str<strong>on</strong>g> depends <strong>on</strong> the actual no<str<strong>on</strong>g>is</str<strong>on</strong>g>e level<br />

requirement <strong>on</strong> the bridge wing, which <str<strong>on</strong>g>is</str<strong>on</strong>g> normally<br />

maximum 60�70 dB(A) – a simple flow silencer of<br />

the absorpti<strong>on</strong> type <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended. Depending<br />

<strong>on</strong> the manufacturer, th<str<strong>on</strong>g>is</str<strong>on</strong>g> type of silencer normally<br />

has a pressure loss of around 0 mm WC at<br />

specified MCR.<br />

Spark arrester<br />

Page of<br />

��������<br />

��������<br />

178 52 48-4.1<br />

Fig. 15.04.02: ISO’s NR curves and typical sound pressure<br />

levels from the engine’s exhaust gas system. The<br />

no<str<strong>on</strong>g>is</str<strong>on</strong>g>e levels at nominal MCR and a d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance of 1 metre<br />

from the edge of the exhaust gas pipe opening at an angle<br />

of 30 degrees to the gas flow and valid for an exhaust<br />

gas system – without boiler and silencer, etc. Data for a<br />

specific engine and cylinder no. <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

To prevent sparks from the exhaust gas being<br />

spread over deck houses, a spark arrester can be<br />

fitted as the last comp<strong>on</strong>ent in the exhaust gas<br />

system.<br />

It should be noted that a spark arrester c<strong>on</strong>tributes<br />

with a c<strong>on</strong>siderable pressure drop, which <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

often a d<str<strong>on</strong>g>is</str<strong>on</strong>g>advantage.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended that the combined pressure<br />

loss across the silencer and/or spark arrester<br />

should not be allowed to exceed 100 mm WC at<br />

specified MCR. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> depends, of course, <strong>on</strong> the<br />

pressure loss in the remaining part of the system,<br />

thus if no exhaust gas boiler <str<strong>on</strong>g>is</str<strong>on</strong>g> installed, 00 mm<br />

WC might be allowed.<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8 198 49 12-3.1<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

���<br />

���<br />

���<br />

���<br />

��<br />

��<br />

��<br />

��<br />

�� �<br />

��<br />

��<br />

��<br />

��<br />

���� �� ��� ��� ��� �� �� �� ����<br />

��<br />

��<br />

���������������������������������<br />

���<br />

���<br />

���<br />

���<br />

��<br />

��<br />

�����<br />

������


<strong>MAN</strong> B&W 15.05<br />

Calculati<strong>on</strong> of Exhaust Gas Back�Pressure<br />

The exhaust gas back pressure after the turbo�<br />

charger(s) depends <strong>on</strong> the total pressure drop in<br />

the exhaust gas piping system.<br />

The comp<strong>on</strong>ents, exhaust gas boiler, silencer, and<br />

spark arrester, if fitted, usually c<strong>on</strong>tribute with a<br />

major part of the dynamic pressure drop through<br />

the entire exhaust gas piping system.<br />

The comp<strong>on</strong>ents menti<strong>on</strong>ed are to be specified<br />

so that the sum of the dynamic pressure drop<br />

through the different comp<strong>on</strong>ents should, if possible,<br />

approach 200 mm WC at an exhaust gas<br />

flow volume corresp<strong>on</strong>ding to the specified MCR<br />

at tropical ambient c<strong>on</strong>diti<strong>on</strong>s. Then there will be<br />

a pressure drop of 00 mm WC for d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributi<strong>on</strong><br />

am<strong>on</strong>g the remaining piping system.<br />

Fig. 5.05.0 shows some guidelines regarding<br />

res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance coefficients and back�pressure loss<br />

calculati<strong>on</strong>s which can be used, if the maker’s<br />

data for back�pressure <str<strong>on</strong>g>is</str<strong>on</strong>g> not <str<strong>on</strong>g>available</str<strong>on</strong>g> at an early<br />

stage of the project.<br />

The pressure loss calculati<strong>on</strong>s have to be based<br />

<strong>on</strong> the actual exhaust gas amount and temperature<br />

valid for specified MCR. Some general formulas<br />

and definiti<strong>on</strong>s are given in the following.<br />

Exhaust gas data<br />

M: exhaust gas amount at specified MCR in kg/sec.<br />

T: exhaust gas temperature at specified MCR in °C<br />

Please note that the actual exhaust gas temperature<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> different before and after the boiler. The<br />

exhaust gas data valid after the turbocharger may<br />

be found in Chapter 6.<br />

Mass density of exhaust gas (ρ)<br />

ρ ≅ .293 x 273 ______ x .0 5 in kg/m3<br />

273 + T<br />

The factor .0 5 refers to the average back�pressure<br />

of 50 mm WC (0.0 5 bar) in the exhaust gas<br />

system.<br />

Exhaust gas velocity (v)<br />

Page of 3<br />

In a pipe with diameter D the exhaust gas velocity <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

v = M __<br />

ρ<br />

4<br />

x _____<br />

π x D2 in m/s<br />

Pressure losses in pipes (∆p)<br />

For a pipe element, like a bend etc., with the res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

coefficient ζ, the corresp<strong>on</strong>ding pressure<br />

loss <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

∆p = ζ x ½ ρ v 2 x<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME�C/ME�GI/ME-B engines 198 40 94�9.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

___<br />

9.8<br />

in mm WC<br />

where the expressi<strong>on</strong> after ζ <str<strong>on</strong>g>is</str<strong>on</strong>g> the dynamic pressure<br />

of the flow in the pipe.<br />

The fricti<strong>on</strong> losses in the straight pipes may, as a<br />

guidance, be estimated as :<br />

mm WC per diameter length<br />

whereas the positive influence of the up�draught<br />

in the vertical pipe <str<strong>on</strong>g>is</str<strong>on</strong>g> normally negligible.<br />

Pressure losses across comp<strong>on</strong>ents (∆p)<br />

The pressure loss ∆p across silencer, exhaust<br />

gas boiler, spark arrester, rain water trap, etc., to<br />

be measured/ stated as shown in Fig. 5.05.0 (at<br />

specified MCR) <str<strong>on</strong>g>is</str<strong>on</strong>g> normally given by the relevant<br />

manufacturer.<br />

Total back�pressure (∆p M )<br />

The total back�pressure, measured/stated as the static<br />

pressure in the pipe after the turbocharger, <str<strong>on</strong>g>is</str<strong>on</strong>g> then:<br />

∆p M = Σ ∆p<br />

where ∆p incorporates all pipe elements and<br />

comp<strong>on</strong>ents etc. as described:<br />

∆p M has to be lower than 350 mm WC.<br />

(At design stage it <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended to use max.<br />

300 mm WC in order to have some margin for<br />

fouling).


<strong>MAN</strong> B&W 15.05<br />

Measuring Back Pressure<br />

At any given positi<strong>on</strong> in the exhaust gas system,<br />

the total pressure of the flow can be divided into<br />

dynamic pressure (referring to the gas velocity)<br />

and static pressure (referring to the wall pressure,<br />

where the gas velocity <str<strong>on</strong>g>is</str<strong>on</strong>g> zero).<br />

At a given total pressure of the gas flow, the<br />

combinati<strong>on</strong> of dynamic and static pressure may<br />

change, depending <strong>on</strong> the actual gas velocity. The<br />

measurements, in principle, give an indicati<strong>on</strong> of<br />

the wall pressure, i.e., the static pressure of the<br />

gas flow.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g>, therefore, very important that the back pressure<br />

measuring points are located <strong>on</strong> a straight<br />

part of the exhaust gas pipe, and at some d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

from an ‘obstructi<strong>on</strong>‘, i.e. at a point where<br />

the gas flow, and thereby also the static pressure,<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> stable. Taking measurements, for example, in a<br />

transiti<strong>on</strong> piece, may lead to an unreliable measurement<br />

of the static pressure.<br />

In c<strong>on</strong>siderati<strong>on</strong> of the above, therefore, the total<br />

back pressure of the system has to be measured<br />

after the turbocharger in the circular pipe and not<br />

in the transiti<strong>on</strong> piece. The same c<strong>on</strong>siderati<strong>on</strong>s<br />

apply to the measuring points before and after the<br />

exhaust gas boiler, etc.<br />

Page 2 of 3<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME�C/ME�GI/ME-B engines 198 40 94�9.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 15.05<br />

Pressure losses and coefficients of res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance in exhaust pipes<br />

p tc<br />

a a<br />

p<br />

p 2<br />

p 3<br />

90<br />

20<br />

a b<br />

M: Measuring points<br />

c<br />

M<br />

M<br />

M<br />

Spark<br />

arrester<br />

Silencer<br />

M<br />

M<br />

60<br />

b<br />

Exhaust<br />

gas boiler<br />

T/C<br />

Change�over valves<br />

Change�over valve<br />

of type with c<strong>on</strong>stant<br />

cross <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

ζa = 0.6 to .2<br />

ζb = .0 to .5<br />

ζc = .5 to 2.0<br />

Change�over valve<br />

of type with volume<br />

ζa = ζb = about 2.0<br />

Fig. 15.05.01: Pressure losses and coefficients of res<str<strong>on</strong>g>is</str<strong>on</strong>g>tance in exhaust pipes<br />

M tc<br />

M tc<br />

Page 3 of 3<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME�C/ME�GI/ME-B engines 198 40 94�9.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

D<br />

D<br />

D<br />

D<br />

D<br />

90<br />

60<br />

30<br />

90<br />

45<br />

R<br />

R<br />

R<br />

R = D ζ = 0.28<br />

R = .5D ζ = 0.20<br />

R = 2D ζ = 0. 7<br />

R = D ζ = 0. 6<br />

R = .5D ζ = 0. 2<br />

R = 2D ζ = 0.<br />

ζ = 0.05<br />

R = D ζ = 0.45<br />

R = .5D ζ = 0.35<br />

R = 2D ζ = 0.30<br />

ζ = 0. 4<br />

Outlet from ζ = .00<br />

top of exhaust<br />

gas uptake<br />

Inlet (from<br />

turbocharger) ζ = – .00<br />

178 32 09�1.0 178 06 85�3.0


<strong>MAN</strong> B&W 15.06<br />

Forces and Moments at <strong>Turbo</strong>charger<br />

DA: Max. movement of the turbocharger flange in the vertical directi<strong>on</strong><br />

DB: Max. movement of the turbocharger flange in the transversal directi<strong>on</strong><br />

DC: Max. movement of the turbocharger flange in the l<strong>on</strong>gitudinal directi<strong>on</strong><br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8<br />

��<br />

Fig. 15.06.01: Vectors of thermal expansi<strong>on</strong> at the turbocharger exhaust gas outlet flange<br />

��<br />

No. of cylinders 5-8 5 6 7 8<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

Page of 2<br />

<strong>Turbo</strong>charger DA DB DC DC DC DC<br />

Make Type mm mm mm mm mm mm<br />

<strong>MAN</strong> <strong>Diesel</strong> TCA88 9.7 .4 .5 .7 .9 2.<br />

MHI MET60 7.6 .2 .5 .7 .9 2.<br />

Data for more turbocharger makes and types for the S65ME-C/ME-GI8 engines are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

Table 15.06.02: Max. expected movements of the exhaust gas flange resulting from thermal expansi<strong>on</strong><br />

��<br />

078 87 11-1.0.0b<br />

198 49 11-1.1


<strong>MAN</strong> B&W 15.06<br />

��<br />

��<br />

<strong>MAN</strong> B&W S65ME-C/ME-GI8<br />

����������<br />

�� ��<br />

��<br />

��<br />

��<br />

����������<br />

Fig. 15.06.03: Forces and moments <strong>on</strong> the turbochargers’ exhaust gas outlet flange<br />

Table 5.06.04 indicates the maximum perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible<br />

forces (F , F2 and F3) and moments (M and<br />

M3), <strong>on</strong> the exhaust gas outlet flange of the turbocharger(s).<br />

Reference <str<strong>on</strong>g>is</str<strong>on</strong>g> made to Fig. 5.06.03.<br />

��<br />

��<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

��<br />

��<br />

�������<br />

�� ��<br />

<strong>Turbo</strong>charger M1 M3 F1 F2 F3<br />

Make Type Nm Nm N N N<br />

Page 2 of 2<br />

<strong>MAN</strong> <strong>Diesel</strong> TCA88 4,500 9, 00 2,000 2,000 5,900<br />

MHI MET66 6,800 3,400 9,300 3,200 3,000<br />

Data for more turbocharger makes and types for the S65ME-C/ME-GI8 engines are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

Table 15.06.04: The max. perm<str<strong>on</strong>g>is</str<strong>on</strong>g>sible forces and moments <strong>on</strong> the turbocharger’s gas outlet flanges<br />

��<br />

078 38 48-6.2.0<br />

198 49 11-1.1


<strong>MAN</strong> B&W 15.07<br />

Diameter of Exhaust Gas Pipes<br />

The exhaust gas pipe diameters l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table<br />

5.07.02 are based <strong>on</strong> the exhaust gas flow capacity<br />

according to ISO ambient c<strong>on</strong>diti<strong>on</strong>s and<br />

an exhaust gas temperature of 250 ºC.<br />

<strong>MAN</strong> B&W S65ME-C8, S65ME-GI8<br />

��<br />

���������������<br />

����������������<br />

����������������<br />

����������������<br />

��<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

��<br />

������������������������<br />

Fig. 15.07.01: Exhaust pipe system, with turbocharger located <strong>on</strong> exhaust side of engine<br />

��<br />

Page of<br />

The exhaust gas velocities and mass flow l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted<br />

apply to collector pipe D4. The table also l<str<strong>on</strong>g>is</str<strong>on</strong>g>ts the<br />

diameters of the corresp<strong>on</strong>ding exhaust gas pipes<br />

D0 for various numbers of turbochargers installed.<br />

Gas velocity Exhaust gas pipe diameters<br />

35 m/s 40 m/s 45 m/s 50 m/s D0 D4<br />

Gas mass flow 1 T/C 2 T/C 3 T/C 4 T/C<br />

kg/s kg/s kg/s kg/s [DN] [DN] [DN] [DN] [DN]<br />

26.7 30.5 34.3 38.2 ,200 850 700 600 ,200<br />

3 .4 35.8 40.3 44.8 ,300 900 750 650 ,300<br />

36.4 4 .6 46.8 5 .9 ,400 ,000 800 700 ,400<br />

4 .7 47.7 53.7 59.6 ,500 ,050 850 750 ,500<br />

47.5 54.3 6 . 67.8 ,600 , 50 900 800 ,600<br />

53.6 6 .3 68.9 76.6 ,700 ,200 ,000 850 ,700<br />

60. 68.7 77.3 85.9 ,800 ,300 ,050 900 ,800<br />

Table 15.07.02: Exhaust gas pipe diameters and exhaust gas mass flow at various velocities<br />

178 09 39�5.2<br />

198 49 14-7.2


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Engine C<strong>on</strong>trol System<br />

16


<strong>MAN</strong> B&W 16.01<br />

Engine C<strong>on</strong>trol System ME<br />

The Engine C<strong>on</strong>trol System for the ME engine <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

prepared for c<strong>on</strong>venti<strong>on</strong>al remote c<strong>on</strong>trol, having<br />

an interface to the Bridge C<strong>on</strong>trol system and the<br />

Local Operating Panel (LOP). The LOP replaces<br />

the Engine Side C<strong>on</strong>trol c<strong>on</strong>sole of the MC engines.<br />

A Multi-Purpose C<strong>on</strong>troller (MPC) <str<strong>on</strong>g>is</str<strong>on</strong>g> applied as<br />

c<strong>on</strong>trol unit for specific tasks described below:<br />

ACU, CCU, ECU, and EICU. The c<strong>on</strong>trol units are<br />

all built <strong>on</strong> the same identical piece of hardware<br />

and differ <strong>on</strong>ly in the software installed.<br />

The layout of the Engine C<strong>on</strong>trol System <str<strong>on</strong>g>is</str<strong>on</strong>g> shown<br />

in Fig. 6.0 .0 , the mechanical�hydraulic system<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig. 6.0 .02, and the pneumatic system,<br />

shown in Fig. 6.0 .03.<br />

The present ME system has a high level of redundancy.<br />

It has been a requirement to its design that<br />

no single failure related to the system may cause<br />

the engine to stop. Furthermore, the ME system<br />

has been designed so that a single failure in most<br />

cases will not, or <strong>on</strong>ly slightly, affect the performance<br />

or power availability.<br />

Main Operating Panel (MOP)<br />

In the engine c<strong>on</strong>trol room a MOP screen <str<strong>on</strong>g>is</str<strong>on</strong>g> located,<br />

which <str<strong>on</strong>g>is</str<strong>on</strong>g> a Pers<strong>on</strong>al Computer with a touch<br />

screen as well as a trackball from where the engineer<br />

can carry out engine commands, adjust the<br />

engine parameters, select the running modes, and<br />

observe the status of the c<strong>on</strong>trol system.<br />

A c<strong>on</strong>venti<strong>on</strong>al marine approved PC <str<strong>on</strong>g>is</str<strong>on</strong>g> also located<br />

in the engine c<strong>on</strong>trol room serving as a<br />

back�up unit for the MOP.<br />

Engine C<strong>on</strong>trol Unit (ECU)<br />

For redundancy purposes, the c<strong>on</strong>trol system<br />

compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es two ECUs operating in parallel and<br />

performing the same task, <strong>on</strong>e being a hot<br />

stand�by for the other. If <strong>on</strong>e of the ECUs fail, the<br />

other unit will take over the c<strong>on</strong>trol without any<br />

interrupti<strong>on</strong>.<br />

The ECUs perform such tasks as:<br />

Page of 8<br />

• Speed governor functi<strong>on</strong>s, start/stop sequences,<br />

timing of fuel injecti<strong>on</strong>, timing of exhaust<br />

valve activati<strong>on</strong>, timing of starting valves, etc.<br />

• C<strong>on</strong>tinuous running c<strong>on</strong>trol of auxiliary functi<strong>on</strong>s<br />

handled by the ACUs<br />

• Alternative running modes and programs.<br />

Cylinder C<strong>on</strong>trol Unit (CCU)<br />

The c<strong>on</strong>trol system includes <strong>on</strong>e CCU per cylinder.<br />

The CCU c<strong>on</strong>trols the electr<strong>on</strong>ic exhaust<br />

Valve Activati<strong>on</strong> (FIVA) and the Starting Air Valves<br />

(SAV), in accordance with the commands received<br />

from the ECU.<br />

All the CCUs are identical, and in the event of a<br />

failure of the CCU for <strong>on</strong>e cylinder <strong>on</strong>ly th<str<strong>on</strong>g>is</str<strong>on</strong>g> cylinder<br />

will automatically be put out of operati<strong>on</strong>.<br />

It should be noted that any electr<strong>on</strong>ic part could<br />

be replaced without stopping the engine, which<br />

will revert to normal operati<strong>on</strong> immediately after<br />

the replacement of the defective unit.<br />

Auxiliary C<strong>on</strong>trol Unit (ACU)<br />

The c<strong>on</strong>trol of the auxiliary equipment <strong>on</strong> the engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> normally divided am<strong>on</strong>g three ACUs so<br />

that, in the event of a failure of <strong>on</strong>e unit, there <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

sufficient redundancy to permit c<strong>on</strong>tinuous operati<strong>on</strong><br />

of the engine.<br />

The ACUs perform the c<strong>on</strong>trol of the auxiliary<br />

blowers, the c<strong>on</strong>trol of the electrically and engine<br />

driven hydraulic oil pumps of the Hydraulic Power<br />

Supply (HPS) unit, etc.<br />

Engine Interface C<strong>on</strong>trol Unit (EICU)<br />

The EICUs installed in the engine c<strong>on</strong>trol room<br />

perform such tasks as interface with the surrounding<br />

c<strong>on</strong>trol systems, See Fig. 6.0 .0 . The<br />

two redundant EICU units operate in parallel.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 16.01<br />

Local Operating Panel (LOP)<br />

In normal operating the engine can be c<strong>on</strong>trolled<br />

from either the bridge or from the engine c<strong>on</strong>trol<br />

room.<br />

Alternatively, the LOP can be activated. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> redundant<br />

c<strong>on</strong>trol <str<strong>on</strong>g>is</str<strong>on</strong>g> to be c<strong>on</strong>sidered as a substitute<br />

for the previous Engine Side C<strong>on</strong>trol c<strong>on</strong>sole<br />

mounted directly <strong>on</strong>to the MC engine.<br />

The LOP <str<strong>on</strong>g>is</str<strong>on</strong>g> as standard placed <strong>on</strong> the engine.<br />

From the LOP, the basic functi<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g>,<br />

such as starting, engine speed c<strong>on</strong>trol, stopping,<br />

reversing, and the most important engine data are<br />

d<str<strong>on</strong>g>is</str<strong>on</strong>g>played.<br />

C<strong>on</strong>trol Network<br />

The MOP, the backup MOP and the MPCs are<br />

interc<strong>on</strong>nected by means of the doubled C<strong>on</strong>trol<br />

Network, A and B respectively.<br />

The maximum length of C<strong>on</strong>trol Network cabling<br />

between the furthermost units <strong>on</strong> the engine and<br />

in the Engine C<strong>on</strong>trol Room (an EICU or a MOP) <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

60 meter.<br />

Should the layout of the ship make l<strong>on</strong>ger C<strong>on</strong>trol<br />

Network cabling necessary, a C<strong>on</strong>trol Network<br />

Repeater must be inserted to amplify the signals<br />

and divide the cable into segments no l<strong>on</strong>ger than<br />

60 meter. For instance, where the Engine C<strong>on</strong>trol<br />

Room and the engine room are located far apart.<br />

Power Supply<br />

Supply voltage, nominal 24 V DC<br />

Supply voltage, operati<strong>on</strong>al<br />

limits<br />

20 V - 30 V<br />

Supply voltage, max. ripple<br />

voltage<br />

± Vpp or Vrms,<br />

whichever <str<strong>on</strong>g>is</str<strong>on</strong>g> lowest<br />

Page 2 of 8<br />

Hydraulic Power Supply (HPS)<br />

The purpose of the HPS unit <str<strong>on</strong>g>is</str<strong>on</strong>g> to deliver the<br />

necessary high pressure hydraulic oil flow to the<br />

hydraulic cylinder units (HCU) <strong>on</strong> the engine at<br />

the required pressure (approx. 200 bar) during<br />

start�up as well as in normal service.<br />

As hydraulic medium, normal lubricating oil <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

used, and it <str<strong>on</strong>g>is</str<strong>on</strong>g> in the standard executi<strong>on</strong> taken<br />

from the main lubricating oil system of the engine.<br />

The HPS unit can be driven either mechanically<br />

from the engine crankshaft, see Fig. 6.0 .02.<br />

The HPS unit c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts, if mechanically driven, of:<br />

• A crankshaft driven step�up gear<br />

• Three or four engine driven pumps<br />

• Two electrically driven pumps<br />

• An automatic filter with a redundancy filter<br />

• A safety and accumulator unit.<br />

The multiple pump c<strong>on</strong>figurati<strong>on</strong> with standby<br />

pumps ensures redundancy with regard to the<br />

hydraulic power supply. The c<strong>on</strong>trol of the engine<br />

driven pumps and electrical pumps are divided<br />

between the three ACUs.<br />

The high pressure pipes between the HPS unit<br />

and the HCU are of the double walled type, having<br />

a leak detector. Emergency running <str<strong>on</strong>g>is</str<strong>on</strong>g> possible<br />

using the outer pipe as pressure c<strong>on</strong>tainment for<br />

the high pressure oil supply.<br />

The sizes and capacities of the HPS unit depend<br />

<strong>on</strong> the engine type. Further details about the lubricating<br />

oil/hydraulic oil system can be found in<br />

Chapter 8.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 16.01<br />

Engine C<strong>on</strong>trol System Layout<br />

������<br />

���������<br />

����������������������<br />

����������������������<br />

�����<br />

������������������������<br />

�����<br />

������<br />

�<br />

�<br />

���� ��<br />

���� ��<br />

�����<br />

���� ��<br />

������<br />

������<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�����<br />

������ ������<br />

�����<br />

���� �������<br />

������� �����<br />

�������� ��������<br />

���������� ����������<br />

���������<br />

��������<br />

���������<br />

��������<br />

Fig. 16.01.01: Engine C<strong>on</strong>trol System Layout<br />

�� ��� ��<br />

�������������<br />

��<br />

����������<br />

���������<br />

��������<br />

���������<br />

��������<br />

���������������<br />

�����������<br />

���<br />

����������<br />

��������������<br />

��������������������<br />

�����<br />

���<br />

����������<br />

Page 3 of 8<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

� ���� ����<br />

����<br />

�����<br />

����������<br />

�����<br />

� �� ����<br />

���� �������<br />

������� �����<br />

�������� ��������<br />

���������� ����������<br />

���������<br />

��<br />

����������<br />

���<br />

����������<br />

���<br />

����������<br />

�������������<br />

����<br />

�����<br />

����������<br />

���� �����<br />

198 30 23�8.7


<strong>MAN</strong> B&W 16.01<br />

Mechanical�hydraulic System with Hydraulic Power Supply Unit <strong>on</strong> Engine<br />

��������<br />

�������<br />

���������<br />

�<br />

�<br />

��<br />

������������<br />

��<br />

�����������<br />

���<br />

�������������������<br />

���<br />

�����<br />

���������<br />

���������<br />

�����<br />

��������������<br />

���������������<br />

��������������<br />

����������������<br />

���<br />

���������������������������<br />

������<br />

������<br />

�����<br />

��������������<br />

��������<br />

������<br />

���������������<br />

����������<br />

���<br />

���<br />

���<br />

���<br />

���<br />

���������������<br />

�����������������<br />

���<br />

�����������������<br />

���<br />

���<br />

��� ���<br />

���<br />

���<br />

������������ ������������<br />

��� ���������<br />

�������������<br />

���<br />

�������������<br />

�������<br />

�����<br />

������������<br />

��������������<br />

�����������<br />

���<br />

� ���������<br />

���������<br />

�������<br />

���<br />

�����������<br />

�����������<br />

��� �����������<br />

���<br />

���<br />

������������<br />

�������������������������������������<br />

���������<br />

�����������<br />

�����������<br />

���������������<br />

������������<br />

������<br />

�����<br />

�����������������<br />

�������������<br />

�������������������<br />

�����������������<br />

�����������<br />

�������<br />

�����������������<br />

���<br />

����������<br />

����������<br />

���������<br />

������<br />

� �<br />

Fig. 16.01.02: Mechanical�hydraulic System with Hydraulic Power Supply Unit <strong>on</strong> Engine<br />

���<br />

���<br />

���<br />

���<br />

���������<br />

����<br />

���<br />

���<br />

���<br />

��� ��� ��� ���<br />

���<br />

���<br />

���<br />

���<br />

������������<br />

���������������<br />

�<br />

���<br />

���<br />

���������<br />

�������<br />

�����<br />

�����������<br />

���������<br />

�����������<br />

����������<br />

�����������������<br />

��� ���������<br />

�������������<br />

����<br />

����������<br />

����������<br />

���������<br />

������<br />

Page 4 of 8<br />

�����������������<br />

���<br />

178 49 71�4.2<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�<br />

���<br />

���������<br />

���������<br />

���<br />

���<br />

��������������<br />

���<br />

��<br />

��<br />

����������<br />

����������<br />

����������<br />

���<br />

���<br />

���<br />

���<br />

��� ���<br />

����������������


<strong>MAN</strong> B&W 16.01<br />

Mechanical�hydraulic System with Hydraulic Power Supply Unit in Ship<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong><br />

Page of 8<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 16.01<br />

Engine C<strong>on</strong>trol System Interface to Surrounding Systems<br />

To support the navigator, the vessels are<br />

equipped with a ship c<strong>on</strong>trol system, which includes<br />

subsystems to superv<str<strong>on</strong>g>is</str<strong>on</strong>g>e and protect the<br />

main propulsi<strong>on</strong> engine.<br />

Alarm system<br />

The alarm system has no direct effect <strong>on</strong> the ECS.<br />

The alarm alerts the operator of an abnormal c<strong>on</strong>diti<strong>on</strong>.<br />

The alarm system <str<strong>on</strong>g>is</str<strong>on</strong>g> an independent system, in<br />

general covering more than the main engine itself,<br />

and its task <str<strong>on</strong>g>is</str<strong>on</strong>g> to m<strong>on</strong>itor the service c<strong>on</strong>diti<strong>on</strong><br />

and to activate the alarms if a normal service limit<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> exceeded.<br />

The signals from the alarm sensors can be used<br />

for the slow down functi<strong>on</strong> as well as for remote<br />

indicati<strong>on</strong>.<br />

Slow down system<br />

Some of the signals given by the sensors of the<br />

alarm system are used for the ‘Slow down <strong>request</strong>’<br />

signal to the ECS of the main engine.<br />

Safety system<br />

The engine safety system <str<strong>on</strong>g>is</str<strong>on</strong>g> an independent system<br />

with its respective sensors <strong>on</strong> the main engine,<br />

fulfilling the requirements of the respective<br />

classificati<strong>on</strong> society and <strong>MAN</strong> <strong>Diesel</strong>.<br />

If a critical value <str<strong>on</strong>g>is</str<strong>on</strong>g> reached for <strong>on</strong>e of the measuring<br />

points, the input signal from the safety<br />

system must cause either a cancellable or a<br />

n<strong>on</strong>�cancellable shut down signal to the ECS.<br />

Page 6 of 8<br />

Telegraph system<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> system enables the navigator to transfer the<br />

commands of engine speed and directi<strong>on</strong> of rotati<strong>on</strong><br />

from the Bridge, the engine c<strong>on</strong>trol room or<br />

the Local Operating Panel (LOP), and it provides<br />

signals for speed setting and stop to the ECS.<br />

The engine c<strong>on</strong>trol room and the LOP are provided<br />

with combined telegraph and speed setting<br />

units.<br />

Remote C<strong>on</strong>trol system<br />

The remote c<strong>on</strong>trol system normally has two alternative<br />

c<strong>on</strong>trol stati<strong>on</strong>s:<br />

• the bridge c<strong>on</strong>trol<br />

• the engine c<strong>on</strong>trol room c<strong>on</strong>trol<br />

The remote c<strong>on</strong>trol system <str<strong>on</strong>g>is</str<strong>on</strong>g> to be delivered by<br />

an approved supplier.<br />

Power Management System<br />

The system handles the supply of electrical power<br />

<strong>on</strong>board, i. e. the starting and stopping of the<br />

generating sets as well as the activati<strong>on</strong> / deactivati<strong>on</strong><br />

of the main engine Shaft Generator (SG), if<br />

fitted.<br />

The normal functi<strong>on</strong> involves starting, synchr<strong>on</strong><str<strong>on</strong>g>is</str<strong>on</strong>g>ing,<br />

phasing�in, transfer of electrical load and<br />

stopping of the generators based <strong>on</strong> the electrical<br />

load of the grid <strong>on</strong> board.<br />

The activati<strong>on</strong> / deactivati<strong>on</strong> of the SG <str<strong>on</strong>g>is</str<strong>on</strong>g> to be<br />

d<strong>on</strong>e within the engine speed range which fulfils<br />

the specified limits of the electrical frequency.<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 16.01<br />

Auxiliary equipment system<br />

The input signals for ‘Auxiliary system ready’ are<br />

given partly through the Remote C<strong>on</strong>trol system<br />

based <strong>on</strong> the status for:<br />

• fuel oil system<br />

• lube oil system<br />

• cooling water systems<br />

and partly from the ECS itself:<br />

• turning gear d<str<strong>on</strong>g>is</str<strong>on</strong>g>engaged<br />

• main starting valve ‘open’<br />

• c<strong>on</strong>trol air valve for sealing air ‘open’<br />

• c<strong>on</strong>trol air valve for air spring ‘open’<br />

• auxiliary blowers running<br />

• hydraulic power supply ready<br />

M<strong>on</strong>itoring systems<br />

In additi<strong>on</strong> to the PMI off�line system required for<br />

the installati<strong>on</strong> of the ME engine, PMI <strong>on</strong>�line and<br />

CoCoS�EDS can be used to improve the m<strong>on</strong>itoring<br />

of the engine.<br />

A descripti<strong>on</strong> of the systems can be found in<br />

Chapter 8 of the project guide.<br />

Instrumentati<strong>on</strong><br />

Chapter 8 in the Project Guide for the specific<br />

engine type includes l<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of instrumentati<strong>on</strong> for:<br />

• The CoCoS�EDS <strong>on</strong>�line system<br />

• The class requirements and <strong>MAN</strong> <strong>Diesel</strong>’s requirements<br />

for alarms, slow down and shut<br />

down for Unattended Machinery Spaces<br />

Page of 8<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 16.01<br />

Pneumatic Manoeuvring Diagram<br />

�����<br />

��<br />

�������������<br />

��<br />

��������<br />

�����������<br />

�<br />

�<br />

�����<br />

�<br />

�������<br />

�������<br />

�<br />

��������������<br />

�������������� � � �<br />

������������<br />

�����������������<br />

�������<br />

Fig. 16.01.03: Pneumatic Manoeuvring Diagram<br />

��<br />

�������������<br />

��<br />

�������������<br />

��<br />

��������<br />

������<br />

�������������<br />

�� ���������������<br />

��������������<br />

�����<br />

�������������<br />

�� ��<br />

���������������<br />

����<br />

�������������<br />

�����<br />

���������������<br />

��<br />

Page 8 of 8<br />

<strong>MAN</strong> B&W ME/ME�C engines 198 48 47�6.5<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�����<br />

��<br />

��<br />

��<br />

��<br />

���������������<br />

�����������������<br />

��<br />

��<br />

�������������<br />

��<br />

�������������<br />

�����<br />

������������<br />

�����<br />

�����<br />

�������������<br />

��<br />

������������<br />

�����<br />

����<br />

������������<br />

�������������<br />

�<br />

��<br />

�� �������������<br />

�������������<br />

��<br />

178 49 73�8.2


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Vibrati<strong>on</strong> Aspects<br />

17


<strong>MAN</strong> B&W 17.01<br />

Vibrati<strong>on</strong> Aspects<br />

The vibrati<strong>on</strong> character<str<strong>on</strong>g>is</str<strong>on</strong>g>tics of the two�stroke low<br />

speed diesel engines can for practical purposes<br />

be split up into four categories, and if the adequate<br />

countermeasures are c<strong>on</strong>sidered from the early<br />

project stage, the influence of the excitati<strong>on</strong> sources<br />

can be minim<str<strong>on</strong>g>is</str<strong>on</strong>g>ed or fully compensated.<br />

In general, the marine diesel engine may influence<br />

the hull with the following:<br />

• External unbalanced moments<br />

These can be classified as unbalanced st and<br />

2nd order external moments, which need to be<br />

c<strong>on</strong>sidered <strong>on</strong>ly for certain cylinder numbers<br />

• Guide force moments<br />

• Axial vibrati<strong>on</strong>s in the shaft system<br />

• Torsi<strong>on</strong>al vibrati<strong>on</strong>s in the shaft system.<br />

The external unbalanced moments and guide force<br />

moments are illustrated in Fig. 7.0 .0 .<br />

In the following, a brief descripti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> given of their<br />

origin and of the proper countermeasures needed<br />

to render them harmless.<br />

External unbalanced moments<br />

The inertia forces originating from the unbalanced<br />

rotating and reciprocating masses of the engine<br />

create unbalanced external moments although the<br />

external forces are zero.<br />

Of these moments, the st order (<strong>on</strong>e cycle per revoluti<strong>on</strong>)<br />

and the 2nd order (two cycles per revoluti<strong>on</strong>)<br />

need to be c<strong>on</strong>sidered for engines with a low number<br />

of cylinders. On 7�cylinder engines, also the 4th<br />

order external moment may have to be examined.<br />

The inertia forces <strong>on</strong> engines with more than 6 cylinders<br />

tend, more or less, to neutral<str<strong>on</strong>g>is</str<strong>on</strong>g>e themselves.<br />

Countermeasures have to be taken if hull res<strong>on</strong>ance<br />

occurs in the operating speed range, and if the vibrati<strong>on</strong><br />

level leads to higher accelerati<strong>on</strong>s and/or velocities<br />

than the guidance values given by internati<strong>on</strong>al<br />

standards or recommendati<strong>on</strong>s (for instance related<br />

to special agreement between shipowner and shipyard).<br />

The natural frequency of the hull depends<br />

<strong>on</strong> the hull’s rigidity and d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributi<strong>on</strong> of masses,<br />

whereas the vibrati<strong>on</strong> level at res<strong>on</strong>ance depends<br />

mainly <strong>on</strong> the magnitude of the external moment<br />

and the engine’s positi<strong>on</strong> in relati<strong>on</strong> to the vibrati<strong>on</strong><br />

nodes of the ship.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

A – Combusti<strong>on</strong> pressure<br />

B – Guide force<br />

C – Staybolt force<br />

D – Main bearing force<br />

Page of<br />

C C<br />

st order moment vertical cycle/rev.<br />

2nd order moment, vertical 2 cycle/rev.<br />

D<br />

st order moment, horiz<strong>on</strong>tal<br />

cycle/rev.<br />

Guide force moment,<br />

H transverse Z cycles/rev.<br />

Z <str<strong>on</strong>g>is</str<strong>on</strong>g> or 2 times number of cylinder<br />

Guide force moment,<br />

X transverse Z cycles/rev.<br />

Z = , 2... 2<br />

Fig. 17.01.01: External unbalanced moments and guide<br />

force moments<br />

B<br />

A<br />

178 06 82�8.1<br />

198 41 40�5.2


<strong>MAN</strong> B&W 17.02<br />

2nd Order Moments <strong>on</strong> 5 or 6-cylinder Engines<br />

50MC<br />

60MC<br />

70MC<br />

80MC<br />

90MC<br />

<strong>MAN</strong> B&W S70ME�C/ME�GI, L70ME�C, S65ME�C/ME�GI,<br />

S60ME�C/ME�GI, L60ME�C, S50ME�B/ME-C, S40ME-B, S35ME-B<br />

Cycles/min.*)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Natural frequency<br />

cycles/min.<br />

2 node<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

5 node<br />

3 node<br />

4 node<br />

20000 40000 60000<br />

*) Frequency of engine moment<br />

M2V = 2 x engine speed<br />

Fig. 17.02.01: Stat<str<strong>on</strong>g>is</str<strong>on</strong>g>tics of vertical hull vibrati<strong>on</strong>s in tankers and bulk carriers<br />

The 2nd order moment acts <strong>on</strong>ly in the vertical<br />

directi<strong>on</strong>. Precauti<strong>on</strong>s need <strong>on</strong>ly to be c<strong>on</strong>sidered<br />

for 5 and 6-cylinder engines in general.<br />

Res<strong>on</strong>ance with the 2nd order moment may occur<br />

in the event of hull vibrati<strong>on</strong>s with more than<br />

3 nodes. C<strong>on</strong>trary to the calculati<strong>on</strong> of natural<br />

frequency with 2 and 3 nodes, the calculati<strong>on</strong> of<br />

the 4 and 5-node natural frequencies for the hull<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> a rather comprehensive procedure and often<br />

not very accurate, despite advanced calculati<strong>on</strong><br />

methods.<br />

A 2nd order moment compensator compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es two<br />

counter�rotating masses running at twice the engine<br />

speed. 2nd order moment compensators are<br />

not included in the basic extent of delivery.<br />

Several soluti<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> to cope with the<br />

2nd order moment, as shown in Fig. 7.03.02, out<br />

of which the most cost efficient <strong>on</strong>e can be chosen<br />

in the individual case, e.g.:<br />

80000<br />

dwt<br />

Page of 2<br />

178 06 92�4.1<br />

) No compensators, if c<strong>on</strong>sidered unnecessary<br />

<strong>on</strong> the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of natural frequency, nodal point<br />

and size of the 2nd order moment.<br />

2) A compensator mounted <strong>on</strong> the aft end of the<br />

engine, driven by chain, opti<strong>on</strong>: 4 4 3 233<br />

(ME/ME-C/ME-GI except type 50 as well as<br />

type 60 with TC <strong>on</strong> aft end) while not applicable<br />

for ME-B.<br />

3) A compensator mounted <strong>on</strong> the fore end,<br />

driven from the crankshaft through a separate<br />

chain drive, opti<strong>on</strong>: 4 3 243 (ME/ME-C/ME-GI<br />

except type 50) while not applicable for ME-B.<br />

As standard, the compensators reduce the external<br />

2nd order moment to a level as for a 7-cylinder<br />

engine or less.<br />

Briefly speaking, soluti<strong>on</strong> ) <str<strong>on</strong>g>is</str<strong>on</strong>g> applicable if the<br />

node <str<strong>on</strong>g>is</str<strong>on</strong>g> located far from the engine, or the engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> positi<strong>on</strong>ed more or less between nodes. Soluti<strong>on</strong><br />

2) or 3) should be c<strong>on</strong>sidered where <strong>on</strong>e of<br />

the engine ends <str<strong>on</strong>g>is</str<strong>on</strong>g> positi<strong>on</strong>ed in a node or close<br />

to it, since a compensator <str<strong>on</strong>g>is</str<strong>on</strong>g> inefficient in a node<br />

or close to it and therefore superfluous.<br />

198 42 20�8.5


<strong>MAN</strong> B&W 17.02<br />

A dec<str<strong>on</strong>g>is</str<strong>on</strong>g>i<strong>on</strong> regarding the vibrati<strong>on</strong>al aspects and<br />

the possible use of compensators must be taken<br />

at the c<strong>on</strong>tract stage. If no experience <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g><br />

from s<str<strong>on</strong>g>is</str<strong>on</strong>g>ter ships, which would be the best bas<str<strong>on</strong>g>is</str<strong>on</strong>g><br />

for deciding whether compensators are necessary<br />

or not, it <str<strong>on</strong>g>is</str<strong>on</strong>g> adv<str<strong>on</strong>g>is</str<strong>on</strong>g>able to make calculati<strong>on</strong>s to determine<br />

which of the soluti<strong>on</strong>s should be applied.<br />

Experience with our two-stroke slow speed engines<br />

has shown that propulsi<strong>on</strong> plants with small<br />

bore engines (engines smaller than 46 types) are<br />

less sensitive regarding hull vibrati<strong>on</strong>s exited by<br />

2nd order moments than the larger bore engines.<br />

Therefore, these engines do not have engine driven<br />

2nd order moment compensators.<br />

Preparati<strong>on</strong> for compensators<br />

If compensator(s) are initially omitted, the engine<br />

can be delivered prepared for compensators to be<br />

fitted <strong>on</strong> engine fore end later <strong>on</strong>, but the dec<str<strong>on</strong>g>is</str<strong>on</strong>g>i<strong>on</strong><br />

to prepare or not must be taken at the c<strong>on</strong>tract<br />

stage, opti<strong>on</strong>: 4 3 242 (ME/ME-C/ME-GI except<br />

type 50) while not applicable for ME-B. Measurements<br />

taken during the sea trial, or later in service<br />

and with fully loaded ship, will be able to show if<br />

compensator(s) have to be fitted at all.<br />

If no calculati<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> at the c<strong>on</strong>tract<br />

stage, we adv<str<strong>on</strong>g>is</str<strong>on</strong>g>e to make preparati<strong>on</strong>s for the<br />

fitting of a compensator in the steering compartment.<br />

<strong>MAN</strong> B&W S70ME�C/ME�GI, L70ME�C, S65ME�C/ME�GI,<br />

S60ME�C/ME�GI, L60ME�C, S50ME�B/ME-C, S40ME-B, S35ME-B<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

198 42 20�8.5


<strong>MAN</strong> B&W 17.03<br />

Electric Driven Moment Compensator<br />

If it <str<strong>on</strong>g>is</str<strong>on</strong>g> decided not to use chain driven moment<br />

compensators and, furthermore, not to prepare<br />

the main engine for compensators to be fitted<br />

later, another soluti<strong>on</strong> can be used, if annoying<br />

vibrati<strong>on</strong>s should occur: An electrically driven<br />

moment compensator synchr<strong>on</strong><str<strong>on</strong>g>is</str<strong>on</strong>g>ed to the correct<br />

phase relative to the external force or moment<br />

can neutral<str<strong>on</strong>g>is</str<strong>on</strong>g>e the excitati<strong>on</strong>.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> type of compensator needs an extra seating<br />

fitted, preferably, in the steering gear room where<br />

vibratory deflecti<strong>on</strong>s are largest and the effect of<br />

the compensator will therefore be greatest.<br />

The electrically driven compensator will not give<br />

r<str<strong>on</strong>g>is</str<strong>on</strong>g>e to d<str<strong>on</strong>g>is</str<strong>on</strong>g>torting stresses in the hull, but it <str<strong>on</strong>g>is</str<strong>on</strong>g> more<br />

expensive than the engine-mounted compensators.<br />

It does, however, offer several advantages<br />

over the engine mounted soluti<strong>on</strong>s:<br />

• When placed in the steering gear room, the<br />

compensator <str<strong>on</strong>g>is</str<strong>on</strong>g> not as sensitive to the positi<strong>on</strong>ing<br />

of the node as the compensators 2) and 3)<br />

menti<strong>on</strong>ed in Secti<strong>on</strong> 7.02.<br />

178 57 45-6.0<br />

Fig. 17.03.01: <strong>MAN</strong> <strong>Diesel</strong> 1st or 2nd order electrically driven moment compensator, separately mounted,<br />

opti<strong>on</strong>: 4 31 605.<br />

Page of 2<br />

• The dec<str<strong>on</strong>g>is</str<strong>on</strong>g>i<strong>on</strong> whether or not to install compensators<br />

can be taken at a much later stage of a<br />

project, since no special versi<strong>on</strong> of the engine<br />

structure has to be ordered for the installati<strong>on</strong>.<br />

• No preparati<strong>on</strong> for a later installati<strong>on</strong> nor an extra<br />

chain drive for the compensator <strong>on</strong> the fore<br />

end of the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> required. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> saves the<br />

cost of such preparati<strong>on</strong>, often left unused.<br />

• Compensators could be retrofit, even <strong>on</strong> ships<br />

in service, and also be applied to engines with a<br />

higher number of cylinders than <str<strong>on</strong>g>is</str<strong>on</strong>g> normally c<strong>on</strong>sidered<br />

relevant, if found necessary.<br />

• The compensator <strong>on</strong>ly needs to be active at<br />

speeds critical for the hull girder vibrati<strong>on</strong>. Thus,<br />

it may be activated or deactivated at specified<br />

speeds automatically or manually.<br />

• Combinati<strong>on</strong>s with and without moment compensators<br />

are not required in torsi<strong>on</strong>al and axial<br />

vibrati<strong>on</strong> calculati<strong>on</strong>s, since the electrically<br />

driven moment compensator <str<strong>on</strong>g>is</str<strong>on</strong>g> not part of the<br />

mass-elastic system of the crankshaft.<br />

Furthermore, by using the compensator as a vibrati<strong>on</strong><br />

exciter a ship’s vibrati<strong>on</strong> pattern can easily<br />

be identified without having the engine running,<br />

e.g. <strong>on</strong> newbuildings at an advanced stage of<br />

c<strong>on</strong>structi<strong>on</strong>. If it <str<strong>on</strong>g>is</str<strong>on</strong>g> verified that a ship does not<br />

need the compensator, it can be removed and reused<br />

<strong>on</strong> another ship.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> a c<strong>on</strong>diti<strong>on</strong> for the applicati<strong>on</strong> of the rotating<br />

force moment compensator that no annoying l<strong>on</strong>gitudinal<br />

hull girder vibrati<strong>on</strong> modes are excited.<br />

Based <strong>on</strong> our present knowledge, and c<strong>on</strong>firmed<br />

by actual vibrati<strong>on</strong> measurements <strong>on</strong>board a ship,<br />

we do not expect such problems.<br />

<strong>MAN</strong> B&W MC/MC-C/ME/ME-B/ME�C/ME�GI engines 198 42 22�1.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 17.03<br />

������������������<br />

�������������������������<br />

�<br />

������������������<br />

��������������������������<br />

� �<br />

�����������<br />

����������<br />

�<br />

��������������������������������������<br />

������<br />

������<br />

Fig. 17.03.02: Compensati<strong>on</strong> of 2nd order vertical external moments<br />

�������������������<br />

�����������<br />

���������������<br />

Page 2 of 2<br />

178 27 10�4.1<br />

<strong>MAN</strong> B&W MC/MC-C/ME/ME-B/ME�C/ME�GI engines 198 42 22�1.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

���<br />

���<br />

�����<br />

��������<br />

�����������������������<br />

���������������<br />

���<br />

���<br />

����������������������������������<br />

�������������������<br />

� � ��������<br />

���������������<br />

� �<br />

� � ����<br />

���<br />

��������


<strong>MAN</strong> B&W<br />

Power Related Unbalance<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong><br />

<strong>MAN</strong> <strong>Diesel</strong><br />

17.04<br />

Page of<br />

198 48 00�8.0


<strong>MAN</strong> B&W 17.05<br />

Guide Force Moments<br />

��<br />

�<br />

������<br />

Fig. 17.05.01: H�type and X�type guide force moments<br />

The so�called guide force moments are caused<br />

by the transverse reacti<strong>on</strong> forces acting <strong>on</strong> the<br />

crossheads due to the c<strong>on</strong>necting rod/cranskahft<br />

mechan<str<strong>on</strong>g>is</str<strong>on</strong>g>m. These moments may excite engine<br />

vibrati<strong>on</strong>s, moving the engine top athwartships<br />

and causing a rocking (excited by H�moment) or<br />

tw<str<strong>on</strong>g>is</str<strong>on</strong>g>ting (excited by X�moment) movement of the<br />

engine as illustrated in the above figure.<br />

The guide force moments corresp<strong>on</strong>ding to the<br />

MCR rating (L ) are stated in Table 7.07.0 .<br />

Top bracing<br />

The guide force moments are harmless except<br />

when res<strong>on</strong>ance vibrati<strong>on</strong>s occur in the engine/<br />

double bottom system.<br />

As th<str<strong>on</strong>g>is</str<strong>on</strong>g> system <str<strong>on</strong>g>is</str<strong>on</strong>g> very difficult to calculate with the<br />

necessary accuracy <strong>MAN</strong> <strong>Diesel</strong> str<strong>on</strong>gly recommend,<br />

as standard, that top bracing <str<strong>on</strong>g>is</str<strong>on</strong>g> installed<br />

between the engine’s upper platform brackets<br />

and the casing side.<br />

The vibrati<strong>on</strong> level <strong>on</strong> the engine when installed in<br />

the vessel must comply with <strong>MAN</strong> <strong>Diesel</strong> vibrati<strong>on</strong><br />

units as stated in Fig. 7.05.02.<br />

��<br />

�<br />

� �<br />

��<br />

�<br />

�����������������<br />

Page of 3<br />

������������������������������<br />

� �<br />

����������������������<br />

��������������������<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 42 23�3.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

������<br />

��<br />

�<br />

�����<br />

�����<br />

178 06 81�6.3<br />

We recommend using the hydraulic top bracing<br />

which allow adjustment to the loading c<strong>on</strong>diti<strong>on</strong>s<br />

of the ship. Mechanical top bracings with stiff<br />

c<strong>on</strong>necti<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

With both types of top bracing above�menti<strong>on</strong>ed<br />

natural frequency will increase to a level where res<strong>on</strong>ance<br />

will occur above the normal engine speed.<br />

Details of the top bracings are shown in Chapter 05.<br />

Definiti<strong>on</strong> of Guide Force Moments<br />

Over the years it has been d<str<strong>on</strong>g>is</str<strong>on</strong>g>cussed how to define<br />

the guide force moments. Especially now that<br />

complete FEM�models are made to predict hull/<br />

engine interacti<strong>on</strong>, the propeller definiti<strong>on</strong> of these<br />

moments has become increasingly important.<br />

H�type Guide Force Moment (M H )<br />

Each cylinder unit produces a force couple c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ting<br />

of:<br />

. A force at crankshaft level.<br />

2. Another force at crosshead guide level. The<br />

positi<strong>on</strong> of the force changes over <strong>on</strong>e revoluti<strong>on</strong><br />

as the guide shoe reciprocates <strong>on</strong> the<br />

guide.


<strong>MAN</strong> B&W 17.05<br />

���������������������������������������<br />

����� � �����<br />

����� � �����<br />

��������<br />

�������<br />

������<br />

Fig.17.05.02: Vibrati<strong>on</strong> limits<br />

����<br />

����<br />

������������ �� ��� ���� ����������<br />

������� �<br />

Page 2 of 3<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 42 23�3.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�����<br />

���<br />

�������<br />

��<br />

�������<br />

�<br />

������ �<br />

��� � ����� �<br />

���� ����� ���������<br />

������<br />

�������� ����������<br />

�������� ���������������������������������������������������<br />

� ����������������������������������������������������<br />

� ������������������������������������������������<br />

�������� ��������������<br />

����<br />

��� � ����� �<br />

��� �� ���<br />

������������<br />

��� � ����� �<br />

��� �� ���<br />

�������������<br />

��� � ����� �<br />

��� �� ���<br />

078 81 27-6.0


<strong>MAN</strong> B&W 17.05<br />

As the deflecti<strong>on</strong> shape for the H�type <str<strong>on</strong>g>is</str<strong>on</strong>g> equal<br />

for each cylinder the N th order H�type guide force<br />

moment for an N�cylinder engine with regular firing<br />

order <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

N x M H(<strong>on</strong>e cylinder)<br />

For modelling purposes the size of the forces in<br />

the force couple <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

Force = M H /L [kN]<br />

where L <str<strong>on</strong>g>is</str<strong>on</strong>g> the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance between crankshaft level<br />

and the middle positi<strong>on</strong> of the crosshead guide<br />

(i.e. the length of the c<strong>on</strong>necting rod.)<br />

As the interacti<strong>on</strong> between engine and hull <str<strong>on</strong>g>is</str<strong>on</strong>g> at<br />

the engine seating and the top bracing positi<strong>on</strong>s,<br />

th<str<strong>on</strong>g>is</str<strong>on</strong>g> force couple may alternatively be applied in<br />

those positi<strong>on</strong>s with a vertical d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance of (L Z ).<br />

Then the force can be calculated as:<br />

Force Z = M H /L Z [kN]<br />

Any other vertical d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance may be applied, so as<br />

to accomodate the actual hull (FEM) model.<br />

The force couple may be d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributed at any<br />

number of points in the l<strong>on</strong>gitudinal directi<strong>on</strong>. A<br />

reas<strong>on</strong>able way of dividing the couple <str<strong>on</strong>g>is</str<strong>on</strong>g> by the<br />

number of top bracing and then applying the forces<br />

at those points.<br />

Force Z, <strong>on</strong>e point = Force Z, total /N top bracing, total [kN]<br />

X�type Guide Force Moment (M X )<br />

The X�type guide force moment <str<strong>on</strong>g>is</str<strong>on</strong>g> calculated<br />

based <strong>on</strong> the same force couple as described<br />

above. However as the deflecti<strong>on</strong> shape <str<strong>on</strong>g>is</str<strong>on</strong>g> tw<str<strong>on</strong>g>is</str<strong>on</strong>g>ting<br />

the engine each cylinder unit does not c<strong>on</strong>tribute<br />

with an equal amount. The centre units do not<br />

c<strong>on</strong>tribute very much whereas the units at each<br />

end c<strong>on</strong>tributes much.<br />

A so�called ‘Bi�moment’ can be calculated (Fig.<br />

17.05.01):<br />

‘Bi�moment’ = Σ [force�couple(cyl.X) x d<str<strong>on</strong>g>is</str<strong>on</strong>g>tX]<br />

in kNm 2<br />

Page of<br />

The X�type guide force moment <str<strong>on</strong>g>is</str<strong>on</strong>g> then defined<br />

as:<br />

M X = ‘Bi�Moment’/L kNm<br />

For modelling purpose the size of the four (4) forces<br />

can be calculated:<br />

Force = M X /L X [kN]<br />

where:<br />

L X <str<strong>on</strong>g>is</str<strong>on</strong>g> the horiz<strong>on</strong>tal length between ‘force points’<br />

Similar to the situati<strong>on</strong> for the H�type guide force<br />

moment, the forces may be applied in positi<strong>on</strong>s<br />

suitable for the FEM model of the hull. Thus the<br />

forces may be referred to another vertical level L Z<br />

above crankshaft centre line. These forces can be<br />

calculated as follows:<br />

Force = Z, <strong>on</strong>e point M _____ x L x<br />

L x L [kN]<br />

In order to calculate the forces it <str<strong>on</strong>g>is</str<strong>on</strong>g> necessary<br />

to know the lengths of the c<strong>on</strong>necting rods = L,<br />

which are:<br />

Engine Type L in mm<br />

K108ME�C6 ,400<br />

K98ME6/7 ,220<br />

K98ME�C6/7 ,090<br />

S90ME�C7/8 ,270<br />

K90ME9 , 20<br />

K90ME-C9 ,120<br />

K90ME�C6 ,159<br />

S80ME�C9 ,450<br />

S80ME�C7/8 ,280<br />

K80ME�C9 2,975<br />

K80ME�C6 2,920<br />

S70ME-C7/8 2,870<br />

S70ME�GI7/8 2,870<br />

Engine Type L in mm<br />

L70ME�C7/8 2,660<br />

S65ME�C8 2,7 0<br />

S65ME�GI8 2,7 0<br />

S60ME�C7/8 2,460<br />

S60ME�GI7/8 2,460<br />

L60ME�C7/8 2,280<br />

S50ME�C7/8 2,050<br />

S50ME-B9 2,114<br />

S50ME-B8 2,050<br />

S40ME-B9 1,770<br />

S 5ME-B9 1,550<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 45 17�0.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 17.06<br />

Axial Vibrati<strong>on</strong>s<br />

When the crank throw <str<strong>on</strong>g>is</str<strong>on</strong>g> loaded by the gas pressure<br />

through the c<strong>on</strong>necting rod mechan<str<strong>on</strong>g>is</str<strong>on</strong>g>m, the<br />

arms of the crank throw deflect in the axial directi<strong>on</strong><br />

of the crankshaft, exciting axial vibrati<strong>on</strong>s. Through<br />

the thrust bearing, the system <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected to the<br />

ship’s hull.<br />

Generally, <strong>on</strong>ly zero�node axial vibrati<strong>on</strong>s are of<br />

interest. Thus the effect of the additi<strong>on</strong>al bending<br />

stresses in the crankshaft and possible vibrati<strong>on</strong>s<br />

of the ship`s structure due to the reacti<strong>on</strong> force in<br />

the thrust bearing are to be c<strong>on</strong>sidered.<br />

An axial damper <str<strong>on</strong>g>is</str<strong>on</strong>g> fitted as standard <strong>on</strong> all engines,<br />

minim<str<strong>on</strong>g>is</str<strong>on</strong>g>ing the effects of the axial vibrati<strong>on</strong>s (4 3 ).<br />

Torsi<strong>on</strong>al Vibrati<strong>on</strong>s<br />

The reciprocating and rotating masses of the engine<br />

including the crankshaft, the thrust shaft, the<br />

intermediate shaft(s), the propeller shaft and the<br />

propeller are for calculati<strong>on</strong> purposes c<strong>on</strong>sidered<br />

as a system of rotating masses (inertias) interc<strong>on</strong>nected<br />

by torsi<strong>on</strong>al springs. The gas pressure of<br />

the engine acts through the c<strong>on</strong>necting rod mechan<str<strong>on</strong>g>is</str<strong>on</strong>g>m<br />

with a varying torque <strong>on</strong> each crank throw,<br />

exciting torsi<strong>on</strong>al vibrati<strong>on</strong> in the system with different<br />

frequencies.<br />

In general, <strong>on</strong>ly torsi<strong>on</strong>al vibrati<strong>on</strong>s with <strong>on</strong>e and<br />

two nodes need to be c<strong>on</strong>sidered. The main<br />

critical order, causing the largest extra stresses<br />

in the shaft line, <str<strong>on</strong>g>is</str<strong>on</strong>g> normally the vibrati<strong>on</strong> with<br />

order equal to the number of cylinders, i.e., six<br />

cycles per revoluti<strong>on</strong> <strong>on</strong> a six cylinder engine.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> res<strong>on</strong>ance <str<strong>on</strong>g>is</str<strong>on</strong>g> positi<strong>on</strong>ed at the engine speed<br />

corresp<strong>on</strong>ding to the natural torsi<strong>on</strong>al frequency<br />

divided by the number of cylinders.<br />

The torsi<strong>on</strong>al vibrati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s may, for certain<br />

installati<strong>on</strong>s require a torsi<strong>on</strong>al vibrati<strong>on</strong> damper,<br />

opti<strong>on</strong>: 4 3 05.<br />

Based <strong>on</strong> our stat<str<strong>on</strong>g>is</str<strong>on</strong>g>tics, th<str<strong>on</strong>g>is</str<strong>on</strong>g> need may ar<str<strong>on</strong>g>is</str<strong>on</strong>g>e for<br />

the following types of installati<strong>on</strong>:<br />

• Plants with c<strong>on</strong>trollable pitch propeller<br />

• Plants with unusual shafting layout and for special<br />

owner/yard requirements<br />

• Plants with 8�cylinder engines.<br />

<strong>MAN</strong> B&W S90MC-C/ME�C, S80MC-C/ME�C, S70MC/MC-C/ME�C/ME�GI,<br />

L70MC-C/ME�C, S65ME�C/ME�GI, S60MC/MC-C/ME�C/ME�GI, L60MC-C/<br />

ME�C, S50MC/MC�C/ME-B/ME-C, S46MC-C, S42MC, S40ME-B, S35MC/<br />

ME-B, L35MC, S26MC<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 2<br />

The so�called QPT (Quick Passage of a barred<br />

speed range Technique), <str<strong>on</strong>g>is</str<strong>on</strong>g> an alternative to a<br />

torsi<strong>on</strong>al vibrati<strong>on</strong> damper, <strong>on</strong> a plant equipped<br />

with a c<strong>on</strong>trollable pitch propeller. The QPT could<br />

be implemented in the governor in order to limit<br />

the vibratory stresses during the passage of the<br />

barred speed range.<br />

The applicati<strong>on</strong> of the QPT, opti<strong>on</strong>: 4 3 08, has to<br />

be decided by the engine maker and <strong>MAN</strong> <strong>Diesel</strong><br />

based <strong>on</strong> final torsi<strong>on</strong>al vibrati<strong>on</strong> calculati<strong>on</strong>s.<br />

Six�cylinder engines, require special attenti<strong>on</strong>.<br />

On account of the heavy excitati<strong>on</strong>, the natural<br />

frequency of the system with <strong>on</strong>e-node vibrati<strong>on</strong><br />

should be situated away from the normal operating<br />

speed range, to avoid its effect. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> can be<br />

achieved by changing the masses and/or the stiffness<br />

of the system so as to give a much higher, or<br />

much lower, natural frequency, called undercritical<br />

or overcritical running, respectively.<br />

Owing to the very large variety of possible shafting<br />

arrangements that may be used in combinati<strong>on</strong><br />

with a specific engine, <strong>on</strong>ly detailed torsi<strong>on</strong>al<br />

vibrati<strong>on</strong> calculati<strong>on</strong>s of the specific plant can<br />

determine whether or not a torsi<strong>on</strong>al vibrati<strong>on</strong><br />

damper <str<strong>on</strong>g>is</str<strong>on</strong>g> necessary.<br />

Undercritical running<br />

The natural frequency of the <strong>on</strong>e-node vibrati<strong>on</strong><br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> so adjusted that res<strong>on</strong>ance with the main critical<br />

order occurs about 35�45% above the engine<br />

speed at specified MCR.<br />

Such undercritical c<strong>on</strong>diti<strong>on</strong>s can be real<str<strong>on</strong>g>is</str<strong>on</strong>g>ed by<br />

choosing a rigid shaft system, leading to a relatively<br />

high natural frequency.<br />

The character<str<strong>on</strong>g>is</str<strong>on</strong>g>tics of an undercritical system are<br />

normally:<br />

• Relatively short shafting system<br />

• Probably no tuning wheel<br />

• Turning wheel with relatively low inertia<br />

• Large diameters of shafting, enabling the use of<br />

shafting material with a moderate ultimate tensile<br />

strength, but requiring careful shaft alignment,<br />

(due to relatively high bending stiffness)<br />

• Without barred speed range<br />

198 42 25�7.4


<strong>MAN</strong> B&W 17.06<br />

Critical Running<br />

When running undercritical, significant varying<br />

torque at MCR c<strong>on</strong>diti<strong>on</strong>s of about 100�150% of<br />

the mean torque <str<strong>on</strong>g>is</str<strong>on</strong>g> to be expected.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> torque (propeller torsi<strong>on</strong>al amplitude) induces<br />

a significant varying propeller thrust which, under<br />

adverse c<strong>on</strong>diti<strong>on</strong>s, might excite annoying l<strong>on</strong>gitudinal<br />

vibrati<strong>on</strong>s <strong>on</strong> engine/double bottom and/or<br />

deck house.<br />

The yard should be aware of th<str<strong>on</strong>g>is</str<strong>on</strong>g> and ensure that<br />

the complete aft body structure of the ship, including<br />

the double bottom in the engine room, <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

designed to be able to cope with the described<br />

phenomena.<br />

Overcritical running<br />

The natural frequency of the <strong>on</strong>e�node vibrati<strong>on</strong><br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> so adjusted that res<strong>on</strong>ance with the main critical<br />

order occurs about 30�70% below the engine<br />

speed at specified MCR. Such overcritical c<strong>on</strong>diti<strong>on</strong>s<br />

can be real<str<strong>on</strong>g>is</str<strong>on</strong>g>ed by choosing an elastic<br />

shaft system, leading to a relatively low natural<br />

frequency.<br />

The character<str<strong>on</strong>g>is</str<strong>on</strong>g>tics of overcritical c<strong>on</strong>diti<strong>on</strong>s are:<br />

• Tuning wheel may be necessary <strong>on</strong> crankshaft<br />

fore end<br />

• Turning wheel with relatively high inertia<br />

• Shafts with relatively small diameters, requiring<br />

shafting material with a relatively high ultimate<br />

tensile strength<br />

• With barred speed range (EoD 4 07 015) of<br />

about ±10% with respect to the critical engine<br />

speed.<br />

<strong>MAN</strong> B&W MC/MC-C/ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

Torsi<strong>on</strong>al vibrati<strong>on</strong>s in overcritical c<strong>on</strong>diti<strong>on</strong>s may,<br />

in special cases, have to be eliminated by the use<br />

of a torsi<strong>on</strong>al vibrati<strong>on</strong> damper.<br />

Overcritical layout <str<strong>on</strong>g>is</str<strong>on</strong>g> normally applied for engines<br />

with more than four cylinders.<br />

Please note:<br />

We do not include any tuning wheel or torsi<strong>on</strong>al<br />

vibrati<strong>on</strong> damper in the standard scope of supply,<br />

as the proper countermeasure has to be found after<br />

torsi<strong>on</strong>al vibrati<strong>on</strong> calculati<strong>on</strong>s for the specific<br />

plant, and after the dec<str<strong>on</strong>g>is</str<strong>on</strong>g>i<strong>on</strong> has been taken if and<br />

where a barred speed range might be acceptable.<br />

For further informati<strong>on</strong> about vibrati<strong>on</strong> aspects,<br />

please refer to our publicati<strong>on</strong>s:<br />

An Introducti<strong>on</strong> to Vibrati<strong>on</strong> Aspects<br />

Vibrati<strong>on</strong> Character<str<strong>on</strong>g>is</str<strong>on</strong>g>tics of Two-stroke Engines<br />

The publicati<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> at<br />

www.mandiesel.com under<br />

‘Quicklinks’ → ‘Technical Papers’<br />

198 42 26�9.2


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 17.07<br />

External Forces and Moments, S65ME-C/ME-GI, Layout point L 1<br />

No. of cyl. 5 6 7 8<br />

Fig. : 17.07.01<br />

Page 1 of 1<br />

Firing order 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-4-3-6 1-8-3-4-7-2-5-6<br />

External forces in kN<br />

1. Order : Horiz<strong>on</strong>tal. 0 0 0 0<br />

1. Order : Vertical. 0 0 0 0<br />

2. Order : Vertical 0 0 0 0<br />

4. Order : Vertical 0 0 0 0<br />

6. Order : Vertical 0 16 0 0<br />

External moments in kNm<br />

1. Order : Horiz<strong>on</strong>tal. a) 227 0 135 454<br />

1. Order : Vertical. a) 227 0 135 454<br />

2. Order : Vertical 2,699 c) 1,877 c) 545 0<br />

4. Order : Vertical 17 134 380 155<br />

6. Order : Vertical 1 0 1 0<br />

Guide force H-moments in kNm<br />

1 x No. of cyl. 1900 1406 1041 752<br />

2 x No. of cyl. 155 67 - -<br />

3 x No. of cyl. - - - -<br />

Guide force X-moments in kNm<br />

1. Order : 194 0 116 388<br />

2. Order : 531 370 107 0<br />

3. Order : 359 648 709 909<br />

4. Order : 74 569 1,616 657<br />

5. Order : 0 0 152 1,903<br />

6. Order : 42 0 25 0<br />

7. Order : 294 0 0 53<br />

8. Order : 186 129 10 0<br />

9. Order : 9 187 21 19<br />

10. Order : 0 43 121 0<br />

11. Order : 3 0 71 91<br />

12. Order : 22 0 4 18<br />

a) 1st order moments are, as standard, balanced so as to obtain equal values for horiz<strong>on</strong>tal and vertical<br />

moments for all cylinder numbers.<br />

c) 5 and 6-cylinder engines can be fitted with 2nd order moment compensators <strong>on</strong> the aft and fore end,<br />

reducing the 2nd order external moment.<br />

S65ME-C/ME-GI 198 49 04-0.1


<strong>MAN</strong> B&W<br />

M<strong>on</strong>itoring Systems and<br />

Instrumentati<strong>on</strong><br />

<strong>MAN</strong> <strong>Diesel</strong><br />

18


<strong>MAN</strong> B&W 18.01<br />

M<strong>on</strong>itoring Systems and Instrumentati<strong>on</strong><br />

The Engine C<strong>on</strong>trol System (ECS) can be sup‑<br />

ported by the computer<str<strong>on</strong>g>is</str<strong>on</strong>g>ed PMI system and<br />

the CoCoS�EDS <strong>on</strong>�line (Computer C<strong>on</strong>trolled<br />

Surveillance�Engine Diagnostics System), both of<br />

which have been in service since 994.<br />

The m<strong>on</strong>itoring system measures the main para‑<br />

meters of the engine and makes an evaluati<strong>on</strong> of<br />

the general engine c<strong>on</strong>diti<strong>on</strong>, indicating the coun‑<br />

termeasures to be taken. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> ensures that the<br />

engine performance <str<strong>on</strong>g>is</str<strong>on</strong>g> kept within the prescribed<br />

limits throughout the engine’s lifetime.<br />

In its basic design the ME�engine instrumentati<strong>on</strong><br />

c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of:<br />

• Engine C<strong>on</strong>trol System<br />

• Shut�down sensors, opti<strong>on</strong>: 4 75 24<br />

• PMI system type PT/S off�line, opti<strong>on</strong>: 4 75 208<br />

The opti<strong>on</strong>al extras are:<br />

• CoCoS system<br />

type EDS <strong>on</strong>�line, opti<strong>on</strong>: 4 09 660<br />

• PMI system, <strong>on</strong>�line, opti<strong>on</strong>: 4 75 2 5<br />

As most engines are sold for Unattended Machin‑<br />

ery Spaces (UMS), the following opti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> normally<br />

included:<br />

• Sensors for alarm, slow down and remote indi‑<br />

cati<strong>on</strong> according to the classificati<strong>on</strong> society’s<br />

and <strong>MAN</strong> <strong>Diesel</strong>’s requirements for UMS,<br />

opti<strong>on</strong>: 4 75 27, see Secti<strong>on</strong> 8.04.<br />

Sensors for CoCoS can be ordered, if required, as<br />

opti<strong>on</strong>: 4 75 29. They are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Secti<strong>on</strong> 8.03.<br />

All instruments are identified by a combinati<strong>on</strong> of<br />

symbols and a positi<strong>on</strong> number as shown in Sec‑<br />

ti<strong>on</strong> 8.07.<br />

Page of<br />

<strong>MAN</strong> B&W ME/ME-C/ME-GI/ME-B engines 198 45 80�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.02<br />

PMI System, Type PT/S Off�line<br />

On the ME�engines, the mechanical indicator system<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> replaced by a Pressure Analyser System<br />

for measurement of the cylinder combusti<strong>on</strong> pressure.<br />

The PMI pressure analyser systems measures the<br />

engine’s main parameters, such as cylinder pressure,<br />

scavenge air pressure, engine speed etc.<br />

enabling the engineer to run the diesel engine at<br />

its optimum performance.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> system gets its data from a high performance<br />

piezo�electric pressure transducer which <str<strong>on</strong>g>is</str<strong>on</strong>g> to be<br />

��<br />

�����<br />

�������������<br />

�������<br />

�����<br />

��������<br />

���������������<br />

������������ �����������<br />

Fig. 18.02.01: PMI type PT/S off�line, 4 75 208<br />

��<br />

�����������������<br />

��������������������������<br />

Page of 2<br />

mounted <strong>on</strong> the indicator valve. The transducer<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> moved from <strong>on</strong>e cylinder to another in order to<br />

complete measurements <strong>on</strong> all cylinders.<br />

The crankshaft positi<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> determined by means<br />

of the same trigger system as for the engine c<strong>on</strong>trol<br />

system.<br />

The PMI system compensates automatically for<br />

the tw<str<strong>on</strong>g>is</str<strong>on</strong>g>ting experienced by each <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> of the<br />

crankshaft due to the torque generated at different<br />

loads.<br />

������������<br />

����������������<br />

���������������<br />

����<br />

��������������<br />

����������������������������<br />

�������������<br />

��������������<br />

�������������������<br />

178 59 57�7.0<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 81�4.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.02<br />

PMI System, Type On�line<br />

Scavenge Air<br />

Pressure Sensor<br />

CA1<br />

CA4<br />

CA7<br />

SC1<br />

SC2<br />

SC3<br />

CA2<br />

Fig. 18.02.02: PMI type <strong>on</strong>�line, 4 75 215<br />

CA3<br />

Cyl.1 Cyl.2 Cyl.3<br />

CA5 CA6<br />

Cyl.4 Cyl.5 Cyl.6<br />

Cyl.7<br />

PMI<br />

MasterUnit<br />

PMI<br />

Slave Unit<br />

24V DC<br />

Power Supply<br />

Trigger Pulses<br />

from Crank Angle<br />

Pickup, Angle<br />

Encoder, etc.<br />

Page 2 of 2<br />

178 51 47�7.0<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 81�4.4<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

CJB<br />

Calibrati<strong>on</strong> Box<br />

with 8m cable<br />

Calibrati<strong>on</strong><br />

Transducer<br />

PC with PMI On-line System<br />

Software<br />

ENGINE ROOM<br />

ENGINE CONTROL ROOM<br />

Abbreviati<strong>on</strong>s:<br />

CA: Charge Amplifier<br />

SC: Signal C<strong>on</strong>diti<strong>on</strong>er<br />

Cyl: Engine Cylinder Sensor<br />

CJB: Calibrati<strong>on</strong> Juncti<strong>on</strong> Box


<strong>MAN</strong> B&W 18.03<br />

CoCoS Systems<br />

The Computer C<strong>on</strong>trolled Surveillance system <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

the family name of the software applicati<strong>on</strong> products<br />

from the <strong>MAN</strong> <strong>Diesel</strong> group.<br />

In order to obtain an easier, more versatile and<br />

c<strong>on</strong>tinuous diagnostics system, the Engine C<strong>on</strong>trol<br />

System and the PMI System <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended<br />

extended by the CoCoS�EDS products.<br />

CoCoS�EDS<br />

CoCoS�EDS, opti<strong>on</strong>: 4 09 660, ass<str<strong>on</strong>g>is</str<strong>on</strong>g>ts in engine<br />

performance evaluati<strong>on</strong> and provides detailed engine<br />

operati<strong>on</strong> surveillance.<br />

Key features are: <strong>on</strong>line data logging, m<strong>on</strong>itoring,<br />

trending, diagnostics and reporting.<br />

Table 8.03.0 l<str<strong>on</strong>g>is</str<strong>on</strong>g>ts the sensors required to enable<br />

<strong>on</strong>line diagnostics for the CoCoS�EDS, opti<strong>on</strong>:<br />

4 75 29.<br />

Page of 2<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 82�6.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.03<br />

CoCoS�EDS Sensor L<str<strong>on</strong>g>is</str<strong>on</strong>g>t<br />

Page 2 of 2<br />

Sensors required for the CoCoS-EDS <strong>on</strong>line engine performance analys<str<strong>on</strong>g>is</str<strong>on</strong>g>, opti<strong>on</strong>: 4 75 29, see Table<br />

8.03.0 . All pressure gauges are measuring relative pressure, except for ‘PT 8802 Ambient pressure’.<br />

Sensor Parameter name<br />

Table 18.03.01: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of sensors for CoCoS-EDS<br />

No.<br />

sensors<br />

Recommended<br />

range<br />

Resoluti<strong>on</strong><br />

3)<br />

PT 800<br />

Fuel oil system data<br />

Inlet pressure 0 � 0 bar 0. bar<br />

TE 8005 Inlet temperature 0 � 200 °C 0. °C<br />

PT 842<br />

Cooling water system<br />

Pressure air cooler inlet A/C 0 - 4 bar 0. bar<br />

TE 8422 Temperature air cooler inlet 0 � 00 °C 0. °C<br />

TE 8423 Temperature air cooler outlet A/C 0 � 00 °C 0. °C<br />

PDT 8424 dP cooling water across air cooler A/C 0 - 800 mbar 0. mbar<br />

Remark<br />

PT 860<br />

Scavenging air system<br />

Scavenge air receiver pressure Rec. 0 � 4 bar mbar )<br />

TE 8605 Scavenge air cooler air inlet temperature A/C 0 � 200 °C 0. °C<br />

PDT 8606 dP air across scavenge air cooler A/C 0 � 00 mbar 0. mbar<br />

PDT 8607 dP air across T/C air intake filter T/C 0 - 00 mbar 0. mbar<br />

TE 8608 Scavenge air cooler air outlet temperature A/C 0 � 00 °C 0. °C Opti<strong>on</strong>al if <strong>on</strong>e T/C<br />

TE 8609 Scavenge air receiver temperature Rec. 0 � 00 °C 0. °C<br />

TE 86 2 T/C air intake temperature T/C 0 � 00 °C 0. °C<br />

TC 870<br />

Exhaust gas system<br />

Exhaust gas temperature at turbine inlet T/C 0 - 600 °C 0. °C<br />

TC 8702 Exhaust gas temperature after exhaust valve Cyl. 0 - 600 °C 0. °C<br />

PT 8706 Exhaust gas receiver pressure Rec. 0 - 4 bar 0.0 bar<br />

TC 8707 Exhaust gas temperature at turbine outlet T/C 0 - 600 °C 0. °C<br />

PT 8708 Turbine back presssure T/C 0 - 00 mbar 0. mbar<br />

ZT 880<br />

General data<br />

<strong>Turbo</strong>charger speed T/C rpm rpm<br />

PT 8802 Ambient pressure 900 � , 00 mbar mbar Absolute!<br />

ZT 4020 Engine speed rpm 0. rpm )<br />

XC 88 0 Governor index (relative) % 0. % )<br />

– Power take off/in from main engine shaft kW kW With opti<strong>on</strong><br />

(PTO/PTI) installed<br />

XC 40<br />

Pressure measurement<br />

Mean Indicated Pressure, MIP Cyl. bar 0.0 bar 2)<br />

XC 402 Maximum Pressure, Pmax Cyl. bar 0. bar 2)<br />

XC 403 Compressi<strong>on</strong> Pressure, Pcomp Cyl. bar 0. bar 2)<br />

– PMI <strong>on</strong>line engine speed Cyl. rpm 0. rpm 2)<br />

) Signal acquired from Engine C<strong>on</strong>trol System (ECS)<br />

2) In case of <strong>MAN</strong> <strong>Diesel</strong> PMI system: signal from PMI system. Other MIP systems: signal from manual input<br />

3) Resoluti<strong>on</strong> of signals transferred to CoCoS-EDS (from the Alarm M<strong>on</strong>itoring System).<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 82�6.6<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.04<br />

Alarm – Slow Down and Shut Down System<br />

The shut down system must be electrically separated<br />

from other systems by using independent<br />

sensors, or sensors comm<strong>on</strong> for the alarm system<br />

but with galvanically separated electrical circuits,<br />

i.e. <strong>on</strong>e sensor with two sets of electrically independent<br />

terminals. The l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of sensors are shown<br />

in Table 8.04.04.<br />

Attended Machinery Space (AMS)<br />

The basic safety system for a <strong>MAN</strong> <strong>Diesel</strong> engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> designed for Attended Machinery Space and<br />

compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es the temperature sensors and pressure<br />

sensors that are specified in the ‘<strong>MAN</strong> <strong>Diesel</strong>’ column<br />

for shut down in Table 8.04.04.<br />

These sensors are included in the basic scope of<br />

supply (opti<strong>on</strong>: 4 75 24) and are also included for<br />

UMS.<br />

Unattended Machinery Space (UMS)<br />

In the ‘Extent of Delivery’ an aster<str<strong>on</strong>g>is</str<strong>on</strong>g>k (*) marks<br />

items normally required for plants designed for<br />

UMS including the sensors for alarm and slow<br />

down, opti<strong>on</strong>: 4 75 27, but not those for shut<br />

down.<br />

The shut down and slow down panels can be ordered<br />

as opti<strong>on</strong>s: 4 75 6 0, 4 75 6 4 or 4 75 6 5<br />

whereas the alarm panel <str<strong>on</strong>g>is</str<strong>on</strong>g> yard’s supply, as it<br />

normally includes several other alarms than those<br />

for the main engine.<br />

For practical reas<strong>on</strong>s, the sensors for the engine<br />

itself are normally delivered from the engine supplier,<br />

so they can be wired to terminal boxes <strong>on</strong><br />

the engine.<br />

The number and positi<strong>on</strong> of the terminal boxes<br />

depends <strong>on</strong> the degree of d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling specified in<br />

the D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern for the transportati<strong>on</strong> of the<br />

engine based <strong>on</strong> the lifting capacities <str<strong>on</strong>g>available</str<strong>on</strong>g> at<br />

the engine maker and at the yard.<br />

Page of 7<br />

Alarm, slow down and remote indicati<strong>on</strong> sensors<br />

The Internati<strong>on</strong>al Associati<strong>on</strong> of Classificati<strong>on</strong> Societies<br />

(IACS) indicates that a comm<strong>on</strong> sensor can<br />

be used for alarm, slow down and remote indicati<strong>on</strong>.<br />

A general view of the alarm, slow down and shut<br />

down systems <str<strong>on</strong>g>is</str<strong>on</strong>g> shown in Fig. 8.04.0 .<br />

Tables 8.04.02 and 8.04.03 show the requirements<br />

by <strong>MAN</strong> <strong>Diesel</strong> for alarm and slow down<br />

and for UMS by the classificati<strong>on</strong> societies (Class),<br />

as well as IACS’ recommendati<strong>on</strong>s.<br />

The number of sensors to be applied to a specific<br />

plant for UMS <str<strong>on</strong>g>is</str<strong>on</strong>g> the sum of requirements of the<br />

classificati<strong>on</strong> society, the Buyer and <strong>MAN</strong> <strong>Diesel</strong>.<br />

If further analogue sensors are required, they can<br />

be ordered as opti<strong>on</strong>: 4 75 28.<br />

The slow down functi<strong>on</strong>s are designed to safeguard<br />

the engine comp<strong>on</strong>ents against overloading<br />

during normal service c<strong>on</strong>diti<strong>on</strong>s and to keep the<br />

ship manoeuvrable if fault c<strong>on</strong>diti<strong>on</strong>s occur.<br />

The slow down sequence must be adapted to the<br />

actual plant parameters, such as for FPP or CPP,<br />

engine with or without shaft generator, and to the<br />

required operating mode.<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 83�8.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.04<br />

General outline of the electrical system<br />

The figure shows the c<strong>on</strong>cept approved by all<br />

classificati<strong>on</strong> societies.<br />

The shut down panel and slow down panel can be<br />

combined for some makers.<br />

The classificati<strong>on</strong> societies permit having comm<strong>on</strong><br />

sensors for slow down, alarm and remote<br />

indicati<strong>on</strong>.<br />

������<br />

����������<br />

��������������<br />

�����<br />

�����<br />

������<br />

������<br />

��������������<br />

��������������<br />

��������������<br />

Fig. 18.04.01: Panels and sensors for alarm and safety systems<br />

���������<br />

�����<br />

���������<br />

�����<br />

��������������<br />

��������������<br />

�������������<br />

�������������<br />

�������������<br />

�������������<br />

��������������<br />

Page 2 of 7<br />

One comm<strong>on</strong> power supply might be used, instead<br />

of the three indicated, provided that the<br />

systems are equipped with separate fuses.<br />

��������������<br />

���������������<br />

���<br />

���������������<br />

�������<br />

��������<br />

��<br />

��������<br />

��<br />

��������<br />

�����������<br />

���������������<br />

�����������<br />

�����������<br />

����������������<br />

�������������������<br />

�������<br />

��������<br />

��<br />

��������<br />

�����������<br />

����������������<br />

178 30 10�0.5<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 83�8.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.04<br />

Alarms for UMS – Class and <strong>MAN</strong> <strong>Diesel</strong> requirements<br />

ABS<br />

BV<br />

CCS<br />

DNV<br />

GL<br />

KR<br />

LR<br />

NK<br />

RINA<br />

RS<br />

IACS<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Sensor and<br />

functi<strong>on</strong> Point of locati<strong>on</strong><br />

Fuel oil<br />

PT 800 AL Fuel oil, inlet engine<br />

LS 8006 AH Leakage from high pressure pipes<br />

Page 3 of 7<br />

PT 8 03 AL<br />

Lubricating oil<br />

Lubricating oil inlet to turbocharger/turbocharger<br />

TE 8 06 AH Thrust bearing segment<br />

PT 8 08 AL Lubricating oil inlet to main engine<br />

TE 8 2 AH Lubricating oil inlet to main engine<br />

TE 8 3 AH P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling oil outlet/cylinder<br />

FS 8 4 AL P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling oil outlet/cylinder<br />

TE 8 7 AH <strong>Turbo</strong>charger lubricating oil outlet from<br />

turbocharger/turbocharger 2)<br />

TE 8 23 AH Main bearing oil outlet temperature/main bearing<br />

(S40/35ME-B9 <strong>on</strong>ly)<br />

XC 8 26 AH Bearing wear (All types except S40/35ME-B9)<br />

XS 8 27 A Bearing wear detector failure (All types except S50-<br />

35ME-B)<br />

PDS 8 40 AH Lubricating oil differential pressure – cross filter<br />

XS 8 50 AH Water in lubricating oil<br />

XS 8 5 AH Water in lubricating oil – too high<br />

XS 8 52 A Water in lubricating oil sensor not ready<br />

Indicates that the sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> required.<br />

The sensors in the <strong>MAN</strong> <strong>Diesel</strong> column are included for Unattended Machinery Spaces (UMS), opti<strong>on</strong>: 4 75 27,<br />

subject to class requirements and will be finally specified in the Guidance Values Automati<strong>on</strong> for the specific<br />

engine plant.<br />

The sensor identificati<strong>on</strong> codes and functi<strong>on</strong>s are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table 8.07.0 .<br />

The tables are liable to change without notice, and are subject to latest class requirements.<br />

2) For turbochargers with slide bearings<br />

Table 18.04.02a: Alarm functi<strong>on</strong>s for UMS<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 83�8.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.04<br />

Alarms for UMS – Class and <strong>MAN</strong> <strong>Diesel</strong> requirements<br />

ABS<br />

BV<br />

CCS<br />

DNV<br />

GL<br />

KR<br />

LR<br />

NK<br />

RINA<br />

RS<br />

Table 18.04.02b: Alarm functi<strong>on</strong>s for UMS<br />

IACS<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 4 of 7<br />

Sensor and<br />

functi<strong>on</strong> Point of locati<strong>on</strong><br />

Hydraulic Power Supply<br />

XC 23 A Automatic main lube oil filter, failure (Boll & Kirch)<br />

LS 235 AH Leakage oil from hydraulic pipes<br />

LS 236 AH Leakage oil from hydraulic power supply unit<br />

PT 840 AL<br />

Cooling water<br />

Jacket cooling water inlet<br />

PDS/PDT Jacket cooling water across engine; to be calculated<br />

8403 AL in alarm system from sensor no. 8402 and 84 3<br />

TE 8407 AL Jacket cooling water inlet<br />

TE 8408 AH Jacket cooling water outlet, cylinder<br />

PT 84 3 I Jacket cooling water outlet, comm<strong>on</strong> pipe<br />

PT 842 AL Cooling water inlet air cooler<br />

TE 8422 AH Cooling water inlet air cooler/air cooler<br />

PT 850 AL<br />

Compressed air<br />

Starting air inlet to main starting valve<br />

+ PT 8503 AL C<strong>on</strong>trol air inlet and fin<str<strong>on</strong>g>is</str<strong>on</strong>g>hed with engine<br />

PT 8505 AL Air inlet to air cylinder for exhaust valve<br />

PS 8604 AL<br />

Scavenge air<br />

Scavenge air, auxiliary blower, failure (Only ME-B)<br />

÷ TE 8609 AH Scavenge air receiver<br />

TE 86 0 AH Scavenge air box – fire alarm, cylinder/cylinder<br />

LS 86 AH Water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher – water level<br />

Indicates that the sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> required.<br />

The sensors in the <strong>MAN</strong> <strong>Diesel</strong> column are included for Unattended Machinery Spaces (UMS), opti<strong>on</strong>: 4 75 27,<br />

subject to class requirements and will be finally specified in the Guidance Values Automati<strong>on</strong> for the specific<br />

engine plant.<br />

The sensor identificati<strong>on</strong> codes and functi<strong>on</strong>s are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table 8.07.0 .<br />

The tables are liable to change without notice, and are subject to latest class requirements.<br />

Select <strong>on</strong>e of the alternatives<br />

+ Alarm for high pressure, too<br />

÷ Alarm for low pressure, too<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 83�8.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.04<br />

Alarms for UMS – Class and <strong>MAN</strong> <strong>Diesel</strong> requirements<br />

ABS<br />

BV<br />

CCS<br />

DNV<br />

GL<br />

KR<br />

LR<br />

NK<br />

RINA<br />

RS<br />

IACS<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 5 of 7<br />

Sensor and<br />

functi<strong>on</strong> Point of locati<strong>on</strong><br />

Exhaust gas<br />

( ) TC 870 AH Exhaust gas before turbocharger/turbocharger<br />

TC 8702 AH Exhaust gas after exhaust valve, cylinder/cylinder<br />

TC 8707 AH<br />

Exhaust gas outlet turbocharger/turbocharger (Yard’s<br />

supply)<br />

M<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous<br />

ZT 880 AH <strong>Turbo</strong>charger overspeed<br />

WT 8805 AH Vibrati<strong>on</strong> of turbocharger<br />

WT 88 2 AH Axial vibrati<strong>on</strong> m<strong>on</strong>itor 2)<br />

XS 88 3 AH Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t in crankcase/cylinder<br />

XS 88 4 AL Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector failure<br />

XC 88 6 I Shaftline earthing device<br />

XC 220 A<br />

Engine C<strong>on</strong>trol System<br />

Power failure<br />

XC 2202 A ME comm<strong>on</strong> failure<br />

Indicates that the sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> required.<br />

The sensors in the <strong>MAN</strong> <strong>Diesel</strong> column are included for Unattended Machinery Spaces (UMS), opti<strong>on</strong>: 4 75 27,<br />

subject to class requirements and will be finally specified in the Guidance Values Automati<strong>on</strong> for the specific<br />

engine plant.<br />

The sensor identificati<strong>on</strong> codes and functi<strong>on</strong>s are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table 8.07.0 .<br />

The tables are liable to change without notice, and are subject to latest class requirements.<br />

( ) May be combined with TC 8702 AH where turbocharger <str<strong>on</strong>g>is</str<strong>on</strong>g> mounted directly <strong>on</strong> the exhaust manifold.<br />

2) Required for: K-ME-C6/7 and K98ME6/7 engines with and 4 cylinders.<br />

S-ME-C7/8, S-ME-GI7/8, and L-ME-C7/8 engines with 5 and 6 cylinders.<br />

S-ME-B8/9 engines with 5 and 6 cylinders mainly.<br />

(For K90ME9, K/S-ME-C9, and S50ME-B9 data <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>).<br />

Alarm for overheating of main, crank and crosshead bearings, opti<strong>on</strong>: 4 75 34.<br />

Table 18.04.02c: Alarm functi<strong>on</strong>s for UMS<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 83�8.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.04<br />

Slow down for UMS – Class and <strong>MAN</strong> <strong>Diesel</strong> requirements<br />

ABS<br />

BV<br />

CCS<br />

DNV<br />

GL<br />

KR<br />

LR<br />

NK<br />

RINA<br />

RS<br />

IACS<br />

Table 18.04.03: Slow down functi<strong>on</strong>s for UMS<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 6 of 7<br />

Sensor and<br />

functi<strong>on</strong> Point of locati<strong>on</strong><br />

TE 8 06 YH Thrust bearing segment<br />

* PT 8 08 YL Lubricating oil inlet to main engine<br />

TE 8 2 YH Lubricating oil inlet to main engine<br />

TE 8 3 YH P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling oil outlet/cylinder<br />

FS 8 4 YL P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling oil outlet/cylinder<br />

TE 8 23 YH Main bearing oil outlet temperature/main bearing<br />

(S40/35ME-B9 <strong>on</strong>ly)<br />

XC 8 26 YH Bearing wear (All except S40/35ME-B9)<br />

PT 840 YL Jacket cooling water inlet<br />

TE 8408 YH Jacket cooling water outlet, cylinder/cylinder<br />

TE 8609 YH Scavenge air receiver<br />

TE 86 0 YH Scavenge air box fire-alarm, cylinder/cylinder<br />

TC 870 YH Exhaust gas before turbocharger/turbocharger<br />

TC 8702 YH Exhaust gas after exhaust valve, cylinder/cylinder<br />

TC 8702 YH Exhaust gas after exhaust valve, cylinder/cylinder,<br />

deviati<strong>on</strong> from average<br />

WT 88 2 YH Axial vibrati<strong>on</strong> m<strong>on</strong>itor 2)<br />

* XS 88 3 YH Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t in crankcase/cylinder<br />

Indicates that the sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> required.<br />

The sensors in the <strong>MAN</strong> <strong>Diesel</strong> column are included for Unattended Machinery Spaces (UMS), opti<strong>on</strong>: 4 75 27,<br />

subject to class requirements and will be finally specified in the Guidance Values Automati<strong>on</strong> for the specific<br />

engine plant.<br />

The sensor identificati<strong>on</strong> codes and functi<strong>on</strong>s are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table 8.07.0 .<br />

The tables are liable to change without notice, and are subject to latest class requirements.<br />

2) Required for: K-ME-C6/7 and K98ME6/7 engines with and 4 cylinders.<br />

S-ME-C7/8, S-ME-GI7/8, and L-ME-C7/8 engines with 5 and 6 cylinders.<br />

S-ME-B8/9 engines with 5 and 6 cylinders mainly.<br />

(For K90ME9, K/S-ME-C9, and S50ME-B9 data <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>).<br />

Select <strong>on</strong>e of the alternatives * Or shut down<br />

Or alarm for low flow * Or shut down<br />

Or alarm for overheating of main, crank and crosshead bearings, opti<strong>on</strong>: 4 75 34.<br />

See also Table 8.04.04: Shut down functi<strong>on</strong>s for AMS and UMS<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 83�8.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.04<br />

Shut down for AMS and UMS – Class and <strong>MAN</strong> <strong>Diesel</strong> requirements<br />

ABS<br />

BV<br />

CCS<br />

DNV<br />

Page 7 of 7<br />

Indicates that the sensor <str<strong>on</strong>g>is</str<strong>on</strong>g> required.<br />

The sensors in the <strong>MAN</strong> <strong>Diesel</strong> column are included for Unattended Machinery Spaces (UMS), opti<strong>on</strong>: 4 75 27,<br />

subject to class requirements and will be finally specified in the Guidance Values Automati<strong>on</strong> for the specific<br />

engine plant.<br />

The sensor identificati<strong>on</strong> codes and functi<strong>on</strong>s are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table 8.07.0 .<br />

The tables are liable to change without notice, and are subject to latest class requirements.<br />

Or alarm for overheating of main, crank and crosshead bearings, opti<strong>on</strong>: 4 75 34.<br />

See also Table 8.04.03: Slow down functi<strong>on</strong>s for UMS<br />

* Or slow down<br />

GL<br />

KR<br />

LR<br />

NK<br />

RINA<br />

Table 18.04.04: Shut down functi<strong>on</strong>s for AMS and UMS, opti<strong>on</strong>: 4 75 124<br />

RS<br />

IACS<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Sensor and<br />

functi<strong>on</strong> Point of locati<strong>on</strong><br />

* PS/PT 8 09 Z Lubricating oil inlet to main engine and thrust<br />

bearing<br />

* ZT 4020 Z Engine overspeed<br />

TE/TS 8 07 Z Thrust bearing segment<br />

PS/PT 8402 Z Jacket cooling water inlet<br />

* XS 88 3 Z Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t in crankcase/cylinder<br />

Internati<strong>on</strong>al Associati<strong>on</strong> of Classificati<strong>on</strong> Societies<br />

The members of the Internati<strong>on</strong>al Associati<strong>on</strong> of Classificati<strong>on</strong> Societies, IACS, have agreed that the stated sensors are<br />

their comm<strong>on</strong> recommendati<strong>on</strong>, apart from each class’ requirements.<br />

The members of IACS are:<br />

ABS American Bureau of Shipping<br />

BV Bureau Veritas<br />

CCS China Classificati<strong>on</strong> Society<br />

DNV Det Norske Veritas<br />

GL German<str<strong>on</strong>g>is</str<strong>on</strong>g>cher Lloyd<br />

KR Korean Reg<str<strong>on</strong>g>is</str<strong>on</strong>g>ter<br />

LR Lloyd’s Reg<str<strong>on</strong>g>is</str<strong>on</strong>g>ter<br />

NK Nipp<strong>on</strong> Kaiji Kyokai<br />

RINA Reg<str<strong>on</strong>g>is</str<strong>on</strong>g>tro Italiano Navale<br />

RS Russian Maritime Reg<str<strong>on</strong>g>is</str<strong>on</strong>g>ter of Shipping<br />

and the assosiated member <str<strong>on</strong>g>is</str<strong>on</strong>g>:<br />

IRS Indian Reg<str<strong>on</strong>g>is</str<strong>on</strong>g>ter of Shipping<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 83�8.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.05<br />

Local Instruments<br />

Page of 3<br />

The basic local instrumentati<strong>on</strong> <strong>on</strong> the engine, opti<strong>on</strong>s: 4 70 9 compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es thermometers, pressure gauges<br />

and other indicators located <strong>on</strong> the piping or mounted <strong>on</strong> panels <strong>on</strong> the engine. The tables 8.05.0 a, b<br />

and c l<str<strong>on</strong>g>is</str<strong>on</strong>g>t those as well as sensors for slow down, alarm and remote indicati<strong>on</strong>, opti<strong>on</strong>: 4 75 27.<br />

Local instruments Remote sensors Point of locati<strong>on</strong><br />

Thermometer,<br />

stem type<br />

Temperature<br />

element/switch<br />

Hydraulic power supply<br />

TE 270 HPS bearing temperature (Only 98ME/ME-C)<br />

Fuel oil<br />

TI 8005 TE 8005 Fuel oil, inlet engine<br />

Lubricating oil<br />

TI 8 06 TE 8 06 Thrust bearing segment<br />

TE/TS 8 07 Thrust bearing segment<br />

TI 8 2 TE 8 2 Lubricating oil inlet to main engine<br />

TI 8 3 TE 8 3 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling oil outlet/cylinder<br />

TI 8 7 TE 8 7 Lubricating oil outlet from turbocharger/turbocharger<br />

(depends <strong>on</strong> turbocharger design)<br />

TE 8 23 Main bearing oil outlet temperature/main bearing (S40/35ME-B9 <strong>on</strong>ly)<br />

Cylinder lubricating oil<br />

TE 8202 Cylinder lubricating oil inlet<br />

TS 82 3 Cylinder lubricating heating<br />

High temperature cooling water, jacket cooling water<br />

TI 8407 TE 8407 Jacket cooling water inlet<br />

TI 8408 TE 8408 Jacket cooling water outlet, cylinder/cylinder<br />

TI 8409 TE 8409 Jacket cooling water outlet/turbocharger<br />

Low temperature cooling water, seawater or freshwater for central cooling<br />

TI 8422 TE 8422 Cooling water inlet, air cooler<br />

TI 8423 TE 8423 Cooling water outlet, air cooler/air cooler<br />

Scavenge air<br />

TI 8605 TE 8605 Scavenge air before air cooler/air cooler<br />

TI 8608 TE 8608 Scavenge air after air cooler/air cooler<br />

TI 8609 TE 8609 Scavenge air receiver<br />

TE 86 0 Scavenge air box – fire alarm, cylinder/cylinder<br />

Thermometer,<br />

dial type<br />

Thermo couple<br />

TI 870 TC 870<br />

Exhaust gas<br />

Exhaust gas before turbocharger/turbocharger<br />

TI 8702 TC 8702 Exhaust gas after exhaust valve, cylinder/cylinder<br />

TC 8704 Exhaust gas inlet exhaust gas receiver<br />

TI 8707 TC 8707 Exhaust gas outlet turbocharger<br />

Table 18.05.01a: Local thermometers <strong>on</strong> engine, opti<strong>on</strong>s 4 70 119, and remote indicati<strong>on</strong> sensors, opti<strong>on</strong>: 4 75 127<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 45 86�3.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.05<br />

Local instruments Remote sensors Point of locati<strong>on</strong><br />

Pressure gauge<br />

(manometer)<br />

Pressure<br />

transmitter/switch<br />

Fuel oil<br />

PI 800 PT 800 Fuel oil, inlet engine<br />

Lubricating oil<br />

PI 8 03 PT 8 03 Lubricating oil inlet to turbocharger/turbocharger<br />

PI 8 08 PT 8 08 Lubricating oil inlet to main engine<br />

PS/PT 8 09 Lubricating oil inlet to main engine and thrust bearing<br />

PDS 8 40 Lubricating oil differential pressure – cross filter<br />

High temperature jacket cooling water, jacket cooling water<br />

PI 840 PT 840 Jacket cooling water inlet<br />

PS/PT 8402 Jacket cooling water inlet (Only German<str<strong>on</strong>g>is</str<strong>on</strong>g>cher Lloyd)<br />

PDS/PDT 8403 Jacket cooling water across engine<br />

PT 84 3 Jacket cooling water outlet, comm<strong>on</strong> pipe<br />

Page 2 of 3<br />

Low temperature cooling water, seawater or freshwater for central cooling<br />

PI 842 PT 842 Cooling water inlet, air cooler<br />

Compressed air<br />

PI 850 PT 850 Starting air inlet to main starting valve<br />

PI 8503 PT 8503 C<strong>on</strong>trol air inlet<br />

PT 8505 Air inlet to air cylinder for exhaust valve<br />

Scavenge air<br />

PI 860 PT 860 Scavenge air receiver (PI 860 instrument same as PI 8706)<br />

PDI 8606 PDT 8606 Pressure drop of air across cooler/air cooler<br />

PDT 8607 Pressure drop across blower filter of turbocharger (ABB turbochargers <strong>on</strong>ly)<br />

PI 86 3 Pressure compressor spiral housing/turbocharger<br />

PDI 86 4 Pressure drop across compressor spiral housing<br />

Exhaust gas<br />

PI 8706 Exhaust gas receiver/Exhaust gas outlet turbocharger<br />

M<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous functi<strong>on</strong>s<br />

PI 8803 Air inlet for dry cleaning of turbocharger<br />

PI 8804 Water inlet for cleaning of turbocharger<br />

Table 18.05.01b: Local pressure gauges <strong>on</strong> engine, opti<strong>on</strong>s: 4 70 119, and remote indicati<strong>on</strong> sensors, opti<strong>on</strong>: 4 75 127<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 45 86�3.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.05<br />

Local instruments Remote sensors Point of locati<strong>on</strong><br />

Other indicators Other transmitters/<br />

switches<br />

Hydraulic power supply<br />

XC 23 Automatic main lube oil filter, failure (Boll & Kirch)<br />

LS 235 Leakage oil from hydraulic system<br />

LS 236 Leakage oil from hydraulic system<br />

Engine cylinder comp<strong>on</strong>ents<br />

LS 4 2 Leakage from hydraulic cylinder unit<br />

Fuel oil<br />

LS 8006 Leakage from high pressure pipes<br />

Lubricating oil<br />

FS 8 4 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cooling oil outlet/cylinder<br />

XC 8 26 Bearing wear (All types except S40/35ME-B9)<br />

XS 8 27 Bearing wear detector failure (All types except S50-35ME-B)<br />

XS 8 50 Water in lubricating oil<br />

XS 8 5 Water in lubricating oil – too high<br />

XS 8 52 Water in lubricating oil sensor not ready<br />

Cylinder lube oil<br />

LS 8208 Level switch<br />

Scavenge air<br />

LS 86 Water m<str<strong>on</strong>g>is</str<strong>on</strong>g>t catcher – water level<br />

Page 3 of 3<br />

M<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous functi<strong>on</strong>s<br />

ZT 880 I <strong>Turbo</strong>charger speed/turbocharger<br />

WI 88 2 WT 88 2 Axial vibrati<strong>on</strong> m<strong>on</strong>itor (For certain engines <strong>on</strong>ly, see note in Table 8.04.04)<br />

(WI 88 2 instrument <str<strong>on</strong>g>is</str<strong>on</strong>g> part of the transmitter WT 88 2)<br />

XS 88 3 Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t in crankcase/cylinder<br />

XS 88 4 Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector failure<br />

XC 88 6 Shaftline earthing device<br />

Table 18.05.01c: Other indicators <strong>on</strong> engine, opti<strong>on</strong>s: 4 70 119, and remote indicati<strong>on</strong> sensors, opti<strong>on</strong>: 4 75 127<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 45 86�3.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.06<br />

Other Alarm Functi<strong>on</strong>s<br />

Drain Box for Fuel Oil Leakage Alarm<br />

Any leakage from the fuel oil high pressure pipes<br />

of any cylinder <str<strong>on</strong>g>is</str<strong>on</strong>g> drained to a comm<strong>on</strong> drain box<br />

fitted with a level alarm. <str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> included for both<br />

AMS and UMS.<br />

Bearing C<strong>on</strong>diti<strong>on</strong> M<strong>on</strong>itoring<br />

Based <strong>on</strong> our experience we decided in 990<br />

that all plants, whether c<strong>on</strong>structed for Attended<br />

Machinery Space (AMS) or for Unattended Machinery<br />

Space (UMS), must include an oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector<br />

specified by <strong>MAN</strong> <strong>Diesel</strong>. Since then an Oil<br />

M<str<strong>on</strong>g>is</str<strong>on</strong>g>t Detector (OMD) and opti<strong>on</strong>ally some extent<br />

of Bearing Temperature M<strong>on</strong>itoring (BTM) equipment<br />

have made up the warning arrangements for<br />

preventi<strong>on</strong> of crankcase explosi<strong>on</strong>s <strong>on</strong> two-stroke<br />

engines. Both warning systems are approved by<br />

the classificati<strong>on</strong> societies.<br />

In order to achieve a resp<strong>on</strong>se to damage faster<br />

than possible with Oil M<str<strong>on</strong>g>is</str<strong>on</strong>g>t Detecti<strong>on</strong> and Bearing<br />

Temperature M<strong>on</strong>itoring al<strong>on</strong>e we introduce Bearing<br />

Wear M<strong>on</strong>itoring (BWM) systems. By m<strong>on</strong>itoring<br />

the actual bearing wear c<strong>on</strong>tinuously, mechanical<br />

damage to the crank-train bearings (main-,<br />

crank- and crosshead bearings) can be predicted<br />

in time to react and avoid damaging the journal<br />

and bearing housing.<br />

If the oil supply to a main bearing fails, the bearing<br />

temperature will r<str<strong>on</strong>g>is</str<strong>on</strong>g>e and in such a case a Bearing<br />

Temperature M<strong>on</strong>itoring system will trigger<br />

an alarm before wear actually takes place. For<br />

that reas<strong>on</strong> the ultimate protecti<strong>on</strong> against severe<br />

bearing damage and the optimum way of providing<br />

early warning, <str<strong>on</strong>g>is</str<strong>on</strong>g> a combined bearing wear and<br />

temperature m<strong>on</strong>itoring system.<br />

For all types of error situati<strong>on</strong>s detected by the<br />

different bearing c<strong>on</strong>diti<strong>on</strong> m<strong>on</strong>itoring systems<br />

applies that in additi<strong>on</strong> to damaging the comp<strong>on</strong>ents,<br />

in extreme cases, a r<str<strong>on</strong>g>is</str<strong>on</strong>g>k of a crankcase<br />

explosi<strong>on</strong> ex<str<strong>on</strong>g>is</str<strong>on</strong>g>ts.<br />

Oil M<str<strong>on</strong>g>is</str<strong>on</strong>g>t Detector<br />

Page of 5<br />

The oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector system c<strong>on</strong>stantly measures<br />

samples of the atmosphere in the crankcase compartments<br />

and reg<str<strong>on</strong>g>is</str<strong>on</strong>g>ters the results <strong>on</strong> an optical<br />

measuring track, where the opacity (degree<br />

of haziness) <str<strong>on</strong>g>is</str<strong>on</strong>g> compared with the opacity of the<br />

atmospheric air. If an increased difference <str<strong>on</strong>g>is</str<strong>on</strong>g> recorded,<br />

a slow down <str<strong>on</strong>g>is</str<strong>on</strong>g> activated (a shut down in<br />

case of German<str<strong>on</strong>g>is</str<strong>on</strong>g>cher Lloyd).<br />

Furthermore, for shop trials <strong>on</strong>ly <strong>MAN</strong> <strong>Diesel</strong> requires<br />

that the oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector <str<strong>on</strong>g>is</str<strong>on</strong>g> c<strong>on</strong>nected to<br />

the shut down system.<br />

Four alternative oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detectors are <str<strong>on</strong>g>available</str<strong>on</strong>g>:<br />

4 75 6 Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector Graviner MK6.<br />

Make: Kidde Fire Protecti<strong>on</strong><br />

4 75 63 Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector V<str<strong>on</strong>g>is</str<strong>on</strong>g>atr<strong>on</strong> VN 2 5/93.<br />

Make: Schaller Automati<strong>on</strong><br />

4 75 65 Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector QMI.<br />

Make: Quality M<strong>on</strong>itoring Instruments Ltd<br />

4 75 66 Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector MD-SX.<br />

Make: Daihatsu <strong>Diesel</strong> Mfg. Co., Ltd<br />

Diagrams of the two of them are shown for reference<br />

in Figs. 8.06.0 a and 8.06.0 b.<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 87�5.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.06<br />

Fig. 18.06.01a: Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector pipes <strong>on</strong> engine, type Graviner MK6 from Kidde Fire Protecti<strong>on</strong> (4 75 161)<br />

������������<br />

Page 2 of 5<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 45 87�5.5<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

�������<br />

�������������������������������������<br />

�������������������<br />

����������������������<br />

�������������������<br />

������������<br />

�������������<br />

Fig. 18.06.01b: Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector pipes <strong>on</strong> engine, type V<str<strong>on</strong>g>is</str<strong>on</strong>g>atr<strong>on</strong> VN215/93 from Schaller Automati<strong>on</strong> (4 75 163)<br />

178 49 80�9.2<br />

178 49 81�0.2


<strong>MAN</strong> B&W 18.06<br />

Bearing Wear M<strong>on</strong>itoring System<br />

The Bearing Wear M<strong>on</strong>itoring (BWM) system m<strong>on</strong>itors<br />

all three principal crank-train bearings using<br />

two proximity sensors forward/aft per cylinder<br />

unit and placed inside the frame box.<br />

Targeting the guide shoe bottom ends c<strong>on</strong>tinuously,<br />

the sensors measure the d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance to the<br />

crosshead in Bottom Dead Center (BDC). Signals<br />

are computed and digitally presented to computer<br />

hardware, from which a useable and easily interpretable<br />

interface <str<strong>on</strong>g>is</str<strong>on</strong>g> presented to the user.<br />

The measuring prec<str<strong>on</strong>g>is</str<strong>on</strong>g>i<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> more than adequate to<br />

obtain an alarm well before steel-to-steel c<strong>on</strong>tact<br />

in the bearings occur. Also the l<strong>on</strong>g-term stability<br />

of the measurements has shown to be excellent.<br />

In fact, BWM <str<strong>on</strong>g>is</str<strong>on</strong>g> expected to provide l<strong>on</strong>g-term<br />

wear data at better prec<str<strong>on</strong>g>is</str<strong>on</strong>g>i<strong>on</strong> and reliability than<br />

the manual vertical clearance measurements normally<br />

performed by the crew during regular service<br />

checks.<br />

For the above reas<strong>on</strong>s, we c<strong>on</strong>sider unscheduled<br />

open-up inspecti<strong>on</strong>s of the crank-train bearings to<br />

be superfluous, given BWM has been installed.<br />

Two BWM ‘high wear’ alarm levels including deviati<strong>on</strong><br />

alarm apply. The first level of the high wear /<br />

deviati<strong>on</strong> alarm <str<strong>on</strong>g>is</str<strong>on</strong>g> indicated in the alarm panel <strong>on</strong>ly<br />

while the sec<strong>on</strong>d level also activates a slow down.<br />

The Extent of Delivery l<str<strong>on</strong>g>is</str<strong>on</strong>g>ts four Bearing Wear<br />

M<strong>on</strong>itoring opti<strong>on</strong>s of which the two systems from<br />

Dr. E. Horn and K<strong>on</strong>gsberg Maritime could also<br />

include Bearing Temperature M<strong>on</strong>itoring:<br />

4 75 142 Bearing Wear M<strong>on</strong>itoring System XTS�W.<br />

Make: AMOT<br />

4 75 14 Bearing Wear M<strong>on</strong>itoring System BDMS.<br />

Make: Dr. E. Horn<br />

4 75 144 Bearing Wear M<strong>on</strong>itoring System PS-10.<br />

Make: K<strong>on</strong>gsberg Maritime<br />

4 75 147 Bearing Wear M<strong>on</strong>itoring System OPENpredictor.<br />

Make: Rovsing Dynamics<br />

ME, ME-C and ME-GI engines are as standard specified<br />

with Bearing Wear M<strong>on</strong>itoring for which any<br />

of the above menti<strong>on</strong>ed opti<strong>on</strong>s could be chosen.<br />

Water In Oil M<strong>on</strong>itoring System<br />

Page of 5<br />

In case the lubricating oil becomes c<strong>on</strong>taminated<br />

with an amount of water exceeding our limit of<br />

0.2% (0.5% for short periods), acute corrosive<br />

wear of the crosshead bearing overlayer may occur.<br />

The higher the water c<strong>on</strong>tent, the faster the<br />

wear rate.<br />

To prevent water from accumulating in the lube<br />

oil and, thereby, causing damage to the bearings,<br />

the oil should be m<strong>on</strong>itored manually or automatically<br />

by means of a Water In Oil (WIO) m<strong>on</strong>itoring<br />

system c<strong>on</strong>nected to the engine alarm and m<strong>on</strong>itoring<br />

system. In case of water c<strong>on</strong>taminati<strong>on</strong><br />

the source should be found and the equipment<br />

inspected and repaired accordingly.<br />

The WIO system should trigger an alarm when<br />

the water c<strong>on</strong>tent exceeds 0. %, and preferably<br />

again when exceeding 0.5% measured as absolute<br />

water c<strong>on</strong>tent.<br />

Some WIO systems measure water activity, ie<br />

the relative availability of water in a substance<br />

expressed in aw <strong>on</strong> a scale from 0 to 1. Here, ‘0’<br />

indicates oil totally free of water and ‘1’ oil fully<br />

saturated by water. The correlati<strong>on</strong> to absolute<br />

water c<strong>on</strong>tent in normal running as well as alarm<br />

c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> as follows:<br />

Engine c<strong>on</strong>diti<strong>on</strong> Abs. water Water<br />

c<strong>on</strong>tent, % activity, wa<br />

Normal running 0 - 0.2 0 - 0.7<br />

Low alarm level 0. 0.8<br />

High alarm level 0.5 1.0<br />

ME, ME-C and ME-GI engines are as standard<br />

specified with Water In Oil m<strong>on</strong>itoring system.<br />

Please note: Corrosi<strong>on</strong> of the overlayer <str<strong>on</strong>g>is</str<strong>on</strong>g> a potential<br />

problem <strong>on</strong>ly for crosshead bearings, because<br />

<strong>on</strong>ly crosshead bearings are designed with an<br />

overlayer. Main and crankpin bearings may also<br />

suffer irreparable damage from water c<strong>on</strong>taminati<strong>on</strong>,<br />

but the damage mechan<str<strong>on</strong>g>is</str<strong>on</strong>g>m would be different<br />

and not as acute.<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 67 26�5.1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.06<br />

Bearing Temperature M<strong>on</strong>itoring System<br />

The Bearing Temperature M<strong>on</strong>itoring (BTM) system<br />

c<strong>on</strong>tinuously m<strong>on</strong>itors the temperature of the<br />

bearing. Some systems measure the temperature<br />

<strong>on</strong> the backside of the bearing shell directly, other<br />

systems detect it by sampling a small part of the<br />

return oil from each bearing in the crankcase.<br />

In case a specified temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> recorded, either<br />

a bearing shell/housing temperature or bearing oil<br />

outlet temperature alarm <str<strong>on</strong>g>is</str<strong>on</strong>g> triggered.<br />

In main bearings, the shell/housing temperature<br />

or the oil outlet temperature <str<strong>on</strong>g>is</str<strong>on</strong>g> m<strong>on</strong>itored depending<br />

<strong>on</strong> how the temperature sensor of the BTM<br />

system, opti<strong>on</strong>: 4 75 1 , <str<strong>on</strong>g>is</str<strong>on</strong>g> installed.<br />

In crankpin and crosshead bearings, the shell/<br />

housing temperature or the oil outlet temperature<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> m<strong>on</strong>itored depending <strong>on</strong> which BTM system <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

installed, opti<strong>on</strong>s: 4 75 1 4 or 4 75 1 5.<br />

For shell/housing temperature in main, crankpin<br />

and crosshead bearings two high temperature<br />

alarm levels apply. The first level alarm <str<strong>on</strong>g>is</str<strong>on</strong>g> indicated<br />

in the alarm panel while the sec<strong>on</strong>d level<br />

activates a slow down.<br />

For oil outlet temperature in main, crankpin and<br />

crosshead bearings two high temperature alarm<br />

levels including deviati<strong>on</strong> alarm apply. The first<br />

level of the high temperature / deviati<strong>on</strong> alarm <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

indicated in the alarm panel while the sec<strong>on</strong>d level<br />

activates a slow down.<br />

In the Extent of Delivery, there are three opti<strong>on</strong>s:<br />

4 75 1 Temperature sensors fitted to main bearings<br />

4 75 1 4 Temperature sensors fitted to main bearings,<br />

crankpin bearings, crosshead bearings<br />

and for moment compensator, if any<br />

4 75 1 5 Temperature sensors fitted to main bearings,<br />

crankpin bearings and crosshead<br />

bearings<br />

Page 4 of 5<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 67 26�5.1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.06<br />

C<strong>on</strong>trol Devices<br />

Sensor Point of locati<strong>on</strong><br />

Manoeuvring system<br />

ZS 1109�A/B C Turning gear – d<str<strong>on</strong>g>is</str<strong>on</strong>g>engaged<br />

ZS 1110�A/B C Turning gear – engaged<br />

ZS 1111�A/B C Main starting valve – blocked<br />

ZS 1112�A/B C Main starting valve – in service<br />

ZV 1114 C Slow turning valve<br />

ZS 1116�A/B C Start air d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributi<strong>on</strong> system – in service<br />

ZS 1117�A/B C Start air d<str<strong>on</strong>g>is</str<strong>on</strong>g>tributi<strong>on</strong> system – blocked<br />

ZV 1120 C Activate pilot press air to starting valves<br />

ZS 1121�A/B C Activate main starting valves - open<br />

E 1180 Electric motor, auxiliary blower<br />

E 1181 Electric motor, turning gear<br />

E 118 C LOP, Local Operator Panel<br />

Hydraulic power supply<br />

PT 1201�1/2/3 C Hydraulic oil pressure, after n<strong>on</strong>-return valve<br />

ZV 1202�A/B C Force-driven pump by-pass<br />

PS/PT 1204�1/2/3 C Lubricating oil pressure after filter, sucti<strong>on</strong> side<br />

Tacho/crankshaft positi<strong>on</strong><br />

ZT 4020 Tacho for safety<br />

Engine cylinder comp<strong>on</strong>ents<br />

XC 4108 C ELVA NC valve<br />

ZT 4111 C Exhaust valve positi<strong>on</strong><br />

ZT 4114 C Fuel plunger, positi<strong>on</strong> 1<br />

Fuel oil<br />

ZV 8020 Z Fuel oil cut-off at engine inlet (shut down), German<str<strong>on</strong>g>is</str<strong>on</strong>g>cher Lloyd <strong>on</strong>ly<br />

Cylinder lubricating oil<br />

ZT 8203 C C<strong>on</strong>firm cylinder lubricator p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> movement, cyl/cyl<br />

ZV 8204 C Activate cylinder lubricator, cyl/cyl<br />

Scavenge air<br />

PS 8603 C Scavenge air receiver, auxiliary blower c<strong>on</strong>trol<br />

Table 18.06.02: C<strong>on</strong>trol devices <strong>on</strong> engine<br />

Page of<br />

The c<strong>on</strong>trol devices mainly include a positi<strong>on</strong> switch (ZS) or a positi<strong>on</strong> transmitter (ZT) and solenoid valves<br />

(ZV) which are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table 18.06.02 below. The sensor identificati<strong>on</strong> codes are l<str<strong>on</strong>g>is</str<strong>on</strong>g>ted in Table 18.07.01.<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 67 28-9 .1<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 18.07<br />

Identificati<strong>on</strong> of Instruments<br />

The instruments and sensors are identified by a<br />

positi<strong>on</strong> number which <str<strong>on</strong>g>is</str<strong>on</strong>g> made up of a combinati<strong>on</strong><br />

of letters and an identificati<strong>on</strong> number:<br />

Measured variables<br />

First letters:<br />

DS Density switch<br />

DT Density transmitter<br />

FT Flow transmitter<br />

FS Flow switch<br />

GT Gauging transmitter (Index, load)<br />

LI Level indicati<strong>on</strong>, local<br />

LS Level switch<br />

LT Level transmitter<br />

PDI Pressure difference indicati<strong>on</strong>, local<br />

PDS Pressure difference switch<br />

PDT Pressure difference transmitter<br />

PI Pressure indicati<strong>on</strong>, local<br />

PS Pressure switch<br />

PT Pressure transmitter<br />

ST Speed transmitter<br />

TC Thermo couple (NiCr�Ni)<br />

TE Temperature element (Pt 00)<br />

TI Temperature indicati<strong>on</strong>, local<br />

TS Temperature switch<br />

VS V<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity switch<br />

VT V<str<strong>on</strong>g>is</str<strong>on</strong>g>cosity transmitter<br />

WI Vibrati<strong>on</strong> indicati<strong>on</strong>, local<br />

WS Vibrati<strong>on</strong> switch<br />

WT Vibrati<strong>on</strong> transmitter<br />

XC Unclassified c<strong>on</strong>trol<br />

XS Unclassified switch<br />

XT Unclassified transmitter<br />

ZS Positi<strong>on</strong> switch<br />

ZT Positi<strong>on</strong> transmitter (proximity switch)<br />

ZV Positi<strong>on</strong> valve (solenoid valve)<br />

Locati<strong>on</strong> of measuring point<br />

Ident. number:<br />

xx Manoeuvring system<br />

2xx Hydraulic power supply system<br />

4xx Combusti<strong>on</strong> pressure superv<str<strong>on</strong>g>is</str<strong>on</strong>g>i<strong>on</strong><br />

20xx ECS to/from safety system<br />

2 xx ECS to/from remote c<strong>on</strong>trol system<br />

22xx ECS to/from alarm system<br />

30xx ECS m<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous input/output<br />

40xx Tacho/crankshaft positi<strong>on</strong> system<br />

4 xx Engine cylinder comp<strong>on</strong>ents<br />

50xx VOC, supply system<br />

5 xx VOC, sealing oil system<br />

52xx VOC, c<strong>on</strong>trol oil system<br />

53xx VOC, other related systems<br />

Table 18.07.01: Identificati<strong>on</strong> of instruments<br />

54xx VOC, engine related comp<strong>on</strong>ents<br />

80xx Fuel oil system<br />

8 xx Lubricating oil system<br />

82xx Cylinder lube oil system<br />

83xx Stuffing box drain system<br />

84xx Cooling water systems<br />

85xx Compressed air systems<br />

86xx Scavenge air system<br />

87xx Exhaust gas system<br />

88xx M<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous functi<strong>on</strong>s<br />

90xx Project specific functi<strong>on</strong>s<br />

xxxx�A Alternative redundant sensors<br />

xxxx� Cylinder/turbocharger numbers<br />

ECS: Engine C<strong>on</strong>trol System<br />

VOC: Volatile Organic Compound<br />

Functi<strong>on</strong>s<br />

Sec<strong>on</strong>dary letters:<br />

A Alarm<br />

AH Alarm, high<br />

AL Alarm, low<br />

C C<strong>on</strong>trol<br />

H High<br />

I Indicati<strong>on</strong><br />

L Low<br />

R Recording<br />

S Switching<br />

X Unclassified functi<strong>on</strong><br />

Y Slow down<br />

Z Shut down<br />

Page of<br />

Repeated signals<br />

Signals which are repeated for example for each cylinder<br />

or turbocharger are provided with a suffix number<br />

indicating the locati<strong>on</strong>, ‘ ’ for cylinder , etc.<br />

If redundant sensors are applied for the same measuring<br />

point, the suffix <str<strong>on</strong>g>is</str<strong>on</strong>g> a letter: A, B, C, etc.<br />

Examples:<br />

TI 8005 indicates a local temperature indicati<strong>on</strong> (thermometer)<br />

in the fuel oil system.<br />

ZS 2�A C and ZS 2�B C indicate that there are<br />

two positi<strong>on</strong> switches in the manoeuvring system, A<br />

and B for c<strong>on</strong>trol of the main starting air valve positi<strong>on</strong>.<br />

PT 850 I AL Y indicates a pressure transmitter located<br />

in the c<strong>on</strong>trol air supply for remote indicati<strong>on</strong>, alarm<br />

for low pressure and slow down for low pressure.<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME�C/ME�GI/ME-B engines 198 45 85�1.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern, Testing,<br />

Spares and Tools<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

19


<strong>MAN</strong> B&W 19.01<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern, Testing, Spares and Tools<br />

Painting of Main Engine<br />

The painting specificati<strong>on</strong>, Secti<strong>on</strong> 19.02, indicates<br />

the minimum requirements regarding the<br />

quality and the dry film thickness of the coats of,<br />

as well as the standard colours applied <strong>on</strong> <strong>MAN</strong><br />

B&W engines built in accordance with the ‘Copenhagen’<br />

standard.<br />

Paints according to builder’s standard may be<br />

used provided they at least fulfil the requirements<br />

stated.<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern<br />

The d<str<strong>on</strong>g>is</str<strong>on</strong>g>patch patterns are divided into two classes,<br />

see Secti<strong>on</strong> 19.03:<br />

A: Short d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance transportati<strong>on</strong> and short term<br />

storage<br />

B: Overseas or l<strong>on</strong>g d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance transportati<strong>on</strong> or<br />

l<strong>on</strong>g term storage.<br />

Short d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance transportati<strong>on</strong> (A) <str<strong>on</strong>g>is</str<strong>on</strong>g> limited by a<br />

durati<strong>on</strong> of a few days from delivery ex works until<br />

installati<strong>on</strong>, or a d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance of approximately 1,000<br />

km and short term storage.<br />

The durati<strong>on</strong> from engine delivery until installati<strong>on</strong><br />

must not exceed 8 weeks.<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling of the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> limited as much as<br />

possible.<br />

Overseas or l<strong>on</strong>g d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance transportati<strong>on</strong> or<br />

l<strong>on</strong>g term storage require a class B d<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern.<br />

The durati<strong>on</strong> from engine delivery until installati<strong>on</strong><br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> assumed to be between 8 weeks and maximum<br />

6 m<strong>on</strong>ths.<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling <str<strong>on</strong>g>is</str<strong>on</strong>g> effected to a certain degree with<br />

the aim of reducing the transportati<strong>on</strong> volume of<br />

the individual units to a suitable extent.<br />

Page 1 of 2<br />

Note:<br />

L<strong>on</strong>g term preservati<strong>on</strong> and seaworthy packing<br />

are always to be used for class B.<br />

Furthermore, the d<str<strong>on</strong>g>is</str<strong>on</strong>g>patch patterns are divided<br />

into several degrees of d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling in which ‘1’<br />

compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es the complete or almost complete engine.<br />

Other degrees of d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling can be agreed<br />

up<strong>on</strong> in each case.<br />

When determining the degree of d<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling,<br />

c<strong>on</strong>siderati<strong>on</strong> should be given to the lifting capacities<br />

and number of crane hooks <str<strong>on</strong>g>available</str<strong>on</strong>g> at<br />

the engine maker and, in particular, at the yard<br />

(purchaser).<br />

The approximate masses of the <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g>s appear<br />

in Secti<strong>on</strong> 19.04. The masses can vary up to 10%<br />

depending <strong>on</strong> the design and opti<strong>on</strong>s chosen.<br />

Lifting tools and lifting instructi<strong>on</strong>s are required for all<br />

levels of d<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern. The lifting tools (4 12 110<br />

or 4 12 111), are to be specified when ordering and it<br />

should be agreed whether the tools are to be returned<br />

to the engine maker (4 12 120) or not (4 12 121).<br />

<strong>MAN</strong> <strong>Diesel</strong>’s recommendati<strong>on</strong>s for preservati<strong>on</strong><br />

of d<str<strong>on</strong>g>is</str<strong>on</strong>g>assembled/ assembled engines are <str<strong>on</strong>g>available</str<strong>on</strong>g><br />

<strong>on</strong> <strong>request</strong>.<br />

Furthermore, it must be c<strong>on</strong>sidered whether a<br />

drying machine, opti<strong>on</strong> 4 12 601, <str<strong>on</strong>g>is</str<strong>on</strong>g> to be installed<br />

during the transportati<strong>on</strong> and/or storage period.<br />

Shop trials/Delivery Test<br />

Before leaving the engine maker’s works, the engine<br />

<str<strong>on</strong>g>is</str<strong>on</strong>g> to be carefully tested <strong>on</strong> diesel oil in the<br />

presence of representatives of the yard, the shipowner<br />

and the classificati<strong>on</strong> society.<br />

The shop trial test <str<strong>on</strong>g>is</str<strong>on</strong>g> to be carried out in accordance<br />

with the requirements of the relevant classificati<strong>on</strong><br />

society, however a minimum as stated in<br />

Secti<strong>on</strong> 19.05.<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 42 27�0.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.01<br />

<strong>MAN</strong> <strong>Diesel</strong>’s recommendati<strong>on</strong>s for shop trial,<br />

quay trial and sea trial are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong>.<br />

An additi<strong>on</strong>al test <str<strong>on</strong>g>is</str<strong>on</strong>g> required for measuring the NO x<br />

em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong>s, for plants with FPP or CPP, EoD 4 06<br />

060a or 4 06 060b respectively.<br />

Spare Parts<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of spares, unrestricted service<br />

The tendency today <str<strong>on</strong>g>is</str<strong>on</strong>g> for the classificati<strong>on</strong> societies<br />

to change their rules such that required spare<br />

parts are changed into recommended spare<br />

parts.<br />

<strong>MAN</strong> <strong>Diesel</strong>, however, has decided to keep a<br />

set of spare parts included in the basic extent<br />

of delivery (4 87 601 and 4 87 602) covering the<br />

requirements and recommendati<strong>on</strong>s of the major<br />

classificati<strong>on</strong> societies, see Secti<strong>on</strong> 19.06.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> amount <str<strong>on</strong>g>is</str<strong>on</strong>g> to be c<strong>on</strong>sidered as minimum<br />

safety stock for emergency situati<strong>on</strong>s.<br />

Additi<strong>on</strong>al spare parts recommended by<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

The above�menti<strong>on</strong>ed set of spare parts can be<br />

extended with the ‘Additi<strong>on</strong>al Spare Parts Recommended<br />

by <strong>MAN</strong> <strong>Diesel</strong>’ (opti<strong>on</strong>: 4 87 603), which<br />

facilitates maintenance because, in that case, all<br />

the comp<strong>on</strong>ents such as gaskets, sealings, etc.<br />

required for an overhaul will be readily <str<strong>on</strong>g>available</str<strong>on</strong>g>,<br />

see Secti<strong>on</strong> 19.07.<br />

Wearing parts<br />

The c<strong>on</strong>sumable spare parts for a certain period<br />

are not included in the above menti<strong>on</strong>ed sets, but<br />

can be ordered for the first 1, 2, up to 10 years’<br />

service of a new engine (opti<strong>on</strong>: 4 87 629), a service<br />

year being assumed to be 6,000 running<br />

hours.<br />

The wearing parts supposed to be required, based<br />

<strong>on</strong> our service experience, are divided into 14<br />

groups, see Table A in Secti<strong>on</strong> 19.08, each group<br />

including the comp<strong>on</strong>ents stated in Tables B.<br />

Page 2 of 2<br />

Large spare parts, dimensi<strong>on</strong>s and masses<br />

The approximate dimensi<strong>on</strong>s and masses of the<br />

larger spare parts are indicated in Secti<strong>on</strong> 19.09.<br />

A complete l<str<strong>on</strong>g>is</str<strong>on</strong>g>t will be delivered by the engine<br />

maker.<br />

Tools<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of standard tools<br />

The engine <str<strong>on</strong>g>is</str<strong>on</strong>g> delivered with the necessary special<br />

tools for overhauling purposes. The extent, dimensi<strong>on</strong>s<br />

and masses of the main tools <str<strong>on</strong>g>is</str<strong>on</strong>g> stated<br />

in Secti<strong>on</strong> 19.10. A complete l<str<strong>on</strong>g>is</str<strong>on</strong>g>t will be delivered<br />

by the engine maker.<br />

Tool Panels<br />

Most of the tools are arranged <strong>on</strong> steel plate panels<br />

(EoD 4 88 660) see Secti<strong>on</strong> 19.11 ‘Tool Panels’.<br />

It <str<strong>on</strong>g>is</str<strong>on</strong>g> recommended to place the panels close to the<br />

locati<strong>on</strong> where the overhaul <str<strong>on</strong>g>is</str<strong>on</strong>g> to be carried out.<br />

<strong>MAN</strong> B&W ME/ME-B/ME�C/ME�GI engines 198 42 27�0.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.02<br />

Specificati<strong>on</strong> for painting of main engine<br />

Comp<strong>on</strong>ents to be painted before<br />

shipment from workshop<br />

Comp<strong>on</strong>ent/surfaces, inside engine,<br />

exposed to oil and air<br />

. Unmachined surfaces all over. However<br />

cast type crankthrows, main bearing cap,<br />

crosshead bearing cap, crankpin bearing<br />

cap, pipes inside crankcase and chainwheel<br />

need not to be painted but the cast surface<br />

must be cleaned of sand and scales and<br />

kept free of rust.<br />

Comp<strong>on</strong>ents, outside engine<br />

2. Engine body, pipes, gallery, brackets etc.<br />

Delivery standard <str<strong>on</strong>g>is</str<strong>on</strong>g> in a primed and finally<br />

painted c<strong>on</strong>diti<strong>on</strong>, unless otherw<str<strong>on</strong>g>is</str<strong>on</strong>g>e stated<br />

in the c<strong>on</strong>tract.<br />

Heat affected comp<strong>on</strong>ents:<br />

3. Supports for exhaust receiver<br />

Scavenge air�pipe outside.<br />

Air cooler housing inside and outside.<br />

Page of<br />

Note: All paints are to be of good quality. Paints according to builder‘s standard may be used provided they at least<br />

fulfil the above requirements.<br />

The data stated are <strong>on</strong>ly to be c<strong>on</strong>sidered as guidelines. Preparati<strong>on</strong>, number of coats, film thickness per coat,<br />

etc. have to be in accordance with the paint manufacturer’s specificati<strong>on</strong>s.<br />

Fig. 19.02.01: Painting of main engine: 4 81 101, 4 81 102 or 4 81 103<br />

Type of paint No. of coats/<br />

Total dry film<br />

thickness<br />

µm<br />

Engine alkyd primer, weather<br />

res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant<br />

Oil and acid res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant alkyd paint.<br />

Temperature res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant to minimum<br />

80 °C.<br />

Engine alkyd primer, weather<br />

res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant.<br />

Final alkyd paint res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant to salt<br />

water and oil, opti<strong>on</strong>: 4 8 03.<br />

Paint, heat res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant to minimum<br />

200 °C.<br />

Comp<strong>on</strong>ents affected by water and<br />

cleaning agents<br />

4. Scavenge air cooler box inside. protecti<strong>on</strong> of the comp<strong>on</strong>ents<br />

exposed to moderately to<br />

severely corrosive envir<strong>on</strong>ment<br />

and abrasi<strong>on</strong>.<br />

5. Gallery plates topside. Engine alkyd primer, weather<br />

res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant.<br />

6. Purchased equipment and instruments<br />

painted in makers colour are acceptable<br />

unless otherw<str<strong>on</strong>g>is</str<strong>on</strong>g>e stated in the c<strong>on</strong>tract.<br />

Tools<br />

Unmachined surfaces all over <strong>on</strong> handtools<br />

and lifting tools.<br />

Purchased equipment painted in makers<br />

colour <str<strong>on</strong>g>is</str<strong>on</strong>g> acceptable, unless otherw<str<strong>on</strong>g>is</str<strong>on</strong>g>e<br />

stated in the c<strong>on</strong>tract/drawing.<br />

2/80 Free<br />

Colour:<br />

RAL 840HR<br />

DIN 6 64<br />

MUNSELL<br />

/30 White:<br />

RAL 90 0<br />

DIN N:0:0.5<br />

MUNSELL N�9.5<br />

2/80 Free<br />

/30 Light green:<br />

RAL 60 9<br />

DIN 23:2:2<br />

MUNSELL 0GY 8/4<br />

2/60 Alu:<br />

RAL 9006<br />

DIN N:0:2<br />

MUNSELL N�7.5<br />

2/75 Free<br />

2/80 Free<br />

Oil res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant paint. 2/60 Orange red:<br />

RAL 2004<br />

DIN:6:7:2<br />

MUNSELL N�7.5r 6/ 2<br />

Tool panels Oil res<str<strong>on</strong>g>is</str<strong>on</strong>g>tant paint. 2/60 Light grey:<br />

RAL 7038<br />

DIN:24: :2<br />

MUNSELL N�7.5<br />

178 30 20�7.4<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 45 16�9.2<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.03<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern<br />

The relevant engine supplier <str<strong>on</strong>g>is</str<strong>on</strong>g> resp<strong>on</strong>sible for the<br />

actual executi<strong>on</strong> and delivery extent. As differences<br />

may appear in the individual suppliers’ extent<br />

and d<str<strong>on</strong>g>is</str<strong>on</strong>g>patch variants.<br />

Class A (opti<strong>on</strong> 4 12 020):<br />

Short d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance transportati<strong>on</strong> limited by durati<strong>on</strong><br />

of transportati<strong>on</strong> time within a few days or a d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance<br />

of approximately 1000 km and short term<br />

storage.<br />

Durati<strong>on</strong> from engine delivery to installati<strong>on</strong> must<br />

not exceed eight weeks.<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling must be limited.<br />

Class B (opti<strong>on</strong> 4 12 030):<br />

Overseas and other l<strong>on</strong>g d<str<strong>on</strong>g>is</str<strong>on</strong>g>tance transportati<strong>on</strong>,<br />

as well as l<strong>on</strong>g-term storage.<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling <str<strong>on</strong>g>is</str<strong>on</strong>g> effected to reduce the transport<br />

volume to a suitable extent.<br />

L<strong>on</strong>g-term preservati<strong>on</strong> and seaworthy packing<br />

must always be used.<br />

Classes A + B compr<str<strong>on</strong>g>is</str<strong>on</strong>g>e the following basic<br />

variants:<br />

A1 + B1 (opti<strong>on</strong> 4 12 021 + 4 12 031)<br />

Engine complete, i.e. not d<str<strong>on</strong>g>is</str<strong>on</strong>g>assembled<br />

A2 + B2 (opti<strong>on</strong> 4 12 022 + 4 12 032)<br />

• Top <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> including cylinder frame complete,<br />

cylinder covers complete, hydraulic cylinder<br />

units, scavenge air receiver including cooler<br />

box and cooler insert, turbocharger(s), p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

rods complete, galleries with pipes, gearbox<br />

for hydraulic pump stati<strong>on</strong>, hydraulic pump stati<strong>on</strong><br />

with filter unit and electr<strong>on</strong>ic engine c<strong>on</strong>trol<br />

comp<strong>on</strong>ents<br />

• Bottom <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> including bedplate complete,<br />

frame box complete, c<strong>on</strong>necting rods, turning<br />

gear, crankshaft complete and galleries<br />

• Remaining parts, stay bolts, auxiliary blowers,<br />

etc.<br />

Fig. 19.03.01: D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, engine with turbocharger <strong>on</strong> exhaust side (4 59 123)<br />

<strong>MAN</strong> B&W ME/ME�C/ME-GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

A1 + B1<br />

Engine complete<br />

A2 + B2<br />

Top <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Bottom <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Page 1 of 3<br />

178 52 01�6.1<br />

198 45 67�2.4


<strong>MAN</strong> B&W 19.03<br />

A3 + B3 (opti<strong>on</strong> 4 12 023 + 4 12 033)<br />

• Top <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> including cylinder frame complete,<br />

cylinder covers complete, hydraulic cylinder<br />

units, scavenge air receiver including cooler<br />

box and cooler insert, turbocharger(s), p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

rods complete, galleries with pipes, gearbox<br />

for hydraulic pump stati<strong>on</strong>, hydraulic pump stati<strong>on</strong><br />

with filter unit and electr<strong>on</strong>ic engine c<strong>on</strong>trol<br />

comp<strong>on</strong>ents<br />

• Frame box <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> including frame box complete,<br />

c<strong>on</strong>necting rods and galleries<br />

• Bottom <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> including bedplate complete,<br />

turning gear and crankshaft complete<br />

• Remaining parts, stay bolts, auxiliary blowers,<br />

etc.<br />

Note<br />

The engine supplier <str<strong>on</strong>g>is</str<strong>on</strong>g> resp<strong>on</strong>sible for the necessary<br />

lifting tools and lifting instructi<strong>on</strong>s for<br />

transportati<strong>on</strong> purposes to the yard. The delivery<br />

extent of lifting tools, ownership and lend/lease<br />

c<strong>on</strong>diti<strong>on</strong>s are to be stated in the c<strong>on</strong>tract. (Opti<strong>on</strong>s:<br />

4 12 120 or 4 12 121)<br />

Furthermore, it must be stated whether a drying<br />

machine <str<strong>on</strong>g>is</str<strong>on</strong>g> to be installed during the transportati<strong>on</strong><br />

and/or storage period. (Opti<strong>on</strong>: 4 12 601)<br />

Fig. 19.03.02: D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, engine with turbocharger <strong>on</strong> exhaust side (4 59 123)<br />

<strong>MAN</strong> B&W ME/ME�C/ME-GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

A3 + B3<br />

Top <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Frame box <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Bottom <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Page 2 of 3<br />

178 52 02�8.1<br />

198 45 67�2.4


<strong>MAN</strong> B&W 19.03<br />

A4 + B4 (opti<strong>on</strong> 4 12 024 + 4 12 034)<br />

• Top <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> including cylinder frame complete,<br />

cylinder covers complete, p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rods complete,<br />

gearbox for hydraulic pump stati<strong>on</strong>, hydraulic<br />

pump stati<strong>on</strong> with filter unit, galleries with pipes<br />

<strong>on</strong> engine c<strong>on</strong>trol side and electr<strong>on</strong>ic engine<br />

c<strong>on</strong>trol computer<br />

• Exhaust receiver with pipes<br />

• Scavenge air receiver with galleries and pipes<br />

• <strong>Turbo</strong>charger<br />

• Frame box <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> including frame box complete,<br />

c<strong>on</strong>necting rods and galleries<br />

• Crankshaft with wheels<br />

• Bedplate with pipes and turning gear<br />

• Remaining parts, stay bolts, auxiliary blowers,<br />

etc.<br />

<strong>MAN</strong> B&W ME/ME�C/ME-GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Top <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Exhaust receiver<br />

Frame box <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Crankshaft <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

Fig. 19.03.03: D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, engine with turbocharger <strong>on</strong> exhaust side (4 59 123)<br />

Scavenge air receiver<br />

Page 3 of 3<br />

<strong>Turbo</strong>charger<br />

Bedplate <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g><br />

178 52 04�1.1<br />

198 45 67�2.4


<strong>MAN</strong> B&W<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern, L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Masses and Dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong><br />

<strong>MAN</strong> <strong>Diesel</strong><br />

19.04<br />

Page of<br />

198 47 63-6.0


<strong>MAN</strong> B&W 19.05<br />

Shop test<br />

Minimum delivery test: 4 14 001<br />

• Starting and manoeuvring test at no load<br />

• Load test<br />

Engine to be started and run up to 50% of<br />

Specified MCR (M) in 1 hour<br />

Followed by:<br />

• 0.50 hour running at 25% of specified MCR<br />

• 0.50 hour running at 50% of specified MCR<br />

• 0.50 hour running at 75% of specified MCR<br />

• 1.00 hour running at 100% of specified MCR<br />

• 0.50 hour running at 110% of specified MCR<br />

Only for German<str<strong>on</strong>g>is</str<strong>on</strong>g>cher Lloyd:<br />

• 0.75 hour running at 110% of specified MCR<br />

Governor tests, etc:<br />

• Governor test<br />

• Minimum speed test<br />

• Overspeed test<br />

• Shut down test<br />

• Starting and reversing test<br />

• Turning gear blocking device test<br />

• Start, stop and reversing from the Local<br />

Opera�ting Panel (LOP)<br />

Before leaving the factory, the engine <str<strong>on</strong>g>is</str<strong>on</strong>g> to be<br />

carefully tested <strong>on</strong> diesel oil in the presence of<br />

representatives of Yard, Shipowner, Classificati<strong>on</strong><br />

Society, and <strong>MAN</strong> <strong>Diesel</strong>.<br />

At each load change, all temperature and pressure<br />

levels etc. should stabil<str<strong>on</strong>g>is</str<strong>on</strong>g>e before taking new<br />

engine load readings.<br />

Fuel oil analys<str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> to be presented.<br />

All tests are to be carried out <strong>on</strong> diesel or gas oil.<br />

Fig. 9.05.01: Shop trial running/delivery test: 4 14 001<br />

EIAPP certificate<br />

Page 1 of 1<br />

An additi<strong>on</strong>al test may be required for obtaining<br />

the ‘Engine Preventi<strong>on</strong>’ Certificate, which states<br />

that the engine complies with IMO NO x em<str<strong>on</strong>g>is</str<strong>on</strong>g>si<strong>on</strong><br />

limitati<strong>on</strong>s 4 06 060.<br />

An additi<strong>on</strong>al test <str<strong>on</strong>g>is</str<strong>on</strong>g> to be performed for: ‘Individual<br />

Engines’ and for ‘Parent Engines’ if the group<br />

certificate <str<strong>on</strong>g>is</str<strong>on</strong>g> not <str<strong>on</strong>g>available</str<strong>on</strong>g> � to be checked at <strong>MAN</strong><br />

<strong>Diesel</strong>.<br />

‘Member Engines’ to ex<str<strong>on</strong>g>is</str<strong>on</strong>g>ting ‘Parent Engines’ do<br />

not need an additi<strong>on</strong>al test.<br />

The tests, if required, are:<br />

E3, marine engine, propeller law for FPP 4 06 060a<br />

or<br />

E2, marine engine, c<strong>on</strong>stant speed for CPP<br />

4 06 060b.<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME-B/ME�C/ME�GI engines 198 46 12�7.4<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.06<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Spare Parts, Unrestricted Service<br />

Spare parts are <strong>request</strong>ed by the following Classes<br />

<strong>on</strong>ly: GL, KR, NK and RS, while just recommended by:<br />

ABS, DNV and LR, but neither <strong>request</strong>ed nor recommended<br />

by: BV, CCS and RINA.<br />

Cylinder cover, plate 901 and others<br />

Cylinder cover with fuel, exhaust and starting<br />

valves, indicator valve and sealing rings (d<str<strong>on</strong>g>is</str<strong>on</strong>g>assembled)<br />

½ set Studs for cylinder cover<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong>, plate 902<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> complete (with cooling pipe), p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod,<br />

p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings and stuffing box, studs and nuts<br />

set P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings for cylinder<br />

Cylinder liner, plate 903<br />

Cylinder liner inclusive of sealing rings and<br />

gaskets.<br />

Cylinder lubricating oil system, plate 903 )<br />

set Spares for lubricating oil system for cyl.<br />

2 Lubricator backup cable<br />

C<strong>on</strong>necting rod, and crosshead bearing, plate 904<br />

Telescopic pipe with bushing for cylinder<br />

Crankpin bearing shells in 2/2 with studs and nuts<br />

Crosshead bearing shell lower part with studs<br />

and nuts<br />

2 Thrust pieces<br />

Thrust block, plate 905<br />

set Thrust pads for ‘ahead’<br />

For NK also <strong>on</strong>e set ‘astern’ if different from<br />

‘ahead’<br />

HPS � Hydraulic Power Supply, plate 906 and 2 )<br />

Proporti<strong>on</strong>al valve for hydraulic pumps<br />

Leak indicator<br />

Safety coupling for hydraulic pump<br />

Accumulator<br />

6 Chain links. Only for ABS, LR and NK<br />

set Flex pipes, <strong>on</strong>e of each size<br />

Electric motor<br />

Engine c<strong>on</strong>trol system, plate 906 2 )<br />

Multi Purpose C<strong>on</strong>troller<br />

Amplifier for Auxiliary C<strong>on</strong>trol Unit<br />

Positi<strong>on</strong> Amplifier<br />

Trigger sensor for tacho system, <strong>on</strong>ly if<br />

trigger ring<br />

Marker sensor for tacho system<br />

Tacho signal amplifier<br />

ID�key<br />

Fig. 19.06.01: L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of spare parts, unrestricted service: 4 87 601<br />

Encoder<br />

Fuse kit<br />

Starting valve, plate 907<br />

Starting valve, complete<br />

Solenoid valve 2 )<br />

Page of<br />

Hydraulic cylinder unit, plate 907 and 2 )<br />

Fuel booster barrel, complete with plunger<br />

FIVA valve complete<br />

Sucti<strong>on</strong> valve complete<br />

set Flex pipes, <strong>on</strong>e of each size<br />

High-pressure pipe kit<br />

Packing kit<br />

Exhaust valve, plate 908<br />

2 Exhaust valves complete. <strong>on</strong>ly for GL<br />

High�pressure pipe from actuator to exhaust valve<br />

Exhaust valve positi<strong>on</strong> sensor<br />

Fuel valve, plate 909<br />

set Fuel valves for all cylinders <strong>on</strong> <strong>on</strong>e engine for BV,<br />

CCS, DNV, GL, KR, NK, RINA, RS and IACS<br />

set Fuel valves for half the number of cylinders <strong>on</strong><br />

the engine for ABS<br />

High�pressure pipe, from fuel oil pressure<br />

booster to fuel valve<br />

<strong>Turbo</strong>charger, plate 910<br />

Set of maker’s standard spare parts<br />

a) Spare rotor for <strong>on</strong>e turbocharger, including<br />

compressor wheel, rotor shaft with turbine<br />

blades and partiti<strong>on</strong> wall, if any<br />

Scavenge air blower, plate 910<br />

set Rotor, rotor shaft, gear wheel or equivalent<br />

working parts<br />

set Bearings for electric motor<br />

set Bearing for blower wheel<br />

Belt, if applied<br />

set Packing for blower wheel<br />

Bedplate, plate 912<br />

Main bearing shell in 2/2 of each size<br />

set Studs and nuts for main bearing<br />

) MD required spare parts.<br />

2 ) All spare parts are <strong>request</strong>ed by all Classes.<br />

a) Only required for RS. To be ordered separately as<br />

opti<strong>on</strong>: 4 87 660 for other classificati<strong>on</strong> societies.<br />

Please note: Plate number refers to Instructi<strong>on</strong> Book,<br />

Vol. III c<strong>on</strong>taining plates with spare parts<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 64 16�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.07<br />

Additi<strong>on</strong>al Spares<br />

For easier maintenance and increased security in operati<strong>on</strong><br />

Bey<strong>on</strong>d class requirements<br />

Cylinder cover, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90101<br />

4 Studs for exhaust valve<br />

4 Nuts for exhaust valve<br />

½ set O�rings for cooling jacket<br />

1 Cooling jacket<br />

½ set Sealing between cyl.cover and liner<br />

4 Spring housings for fuel valv<br />

Hydraulic tool for cylinder cover, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90161<br />

1 set Hydraulic hoses with protecti<strong>on</strong> hose<br />

complete with couplings<br />

8 pcs O�rings with backup rings, upper<br />

8 pcs O�rings with backup rings, lower<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> and p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90201<br />

1 box Locking wire, L=63 m<br />

5 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings of each kind<br />

2 D�rings for p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> skirt<br />

2 D�rings for p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod stuffing box, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90205<br />

15 Self locking nuts<br />

5 O�rings<br />

5 Top scraper rings<br />

15 Pack sealing rings<br />

10 Cover sealing rings<br />

120 Lamellas for scraper rings<br />

30 Springs for top scraper and sealing rings<br />

20 Springs for scraper rings<br />

Cylinder frame, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90301<br />

½ set Studs for cylinder cover for <strong>on</strong>e cyl.<br />

1 Bushing<br />

Cylinder liner and cooling jacket, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90302<br />

1 Cooling jacket of each kind<br />

4 N<strong>on</strong> return valves<br />

1 set O�rings for <strong>on</strong>e cylinder liner<br />

½ set Gaskets for cooling water c<strong>on</strong>necti<strong>on</strong><br />

½ set O�rings for cooling water pipes<br />

1 set Cooling water pipes between liner and cover<br />

for <strong>on</strong>e cylinder<br />

Page 1 of 2<br />

Cylinder Lubricating Oil System, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90306<br />

1 set Spares for <strong>MAN</strong> B&W Alpha lubricating oil<br />

system for 1cyl.<br />

1 Lubricator<br />

2 Feed back sensor, complete<br />

1 Complete sets of O�rings for lubricator<br />

(depending <strong>on</strong> No. of lubricating nozzles per.<br />

cylinder)<br />

C<strong>on</strong>necting rod and crosshead, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90401<br />

1 Telescopic pipe<br />

2 Thrust piece<br />

HPS Hydaulic Power Supply, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 906<br />

1 Delivery pump<br />

1 Start up pump<br />

1 Pressure relief valve<br />

1 Pumps short cutting valve<br />

1 set Check valve Cartridge (3 pcs)<br />

Engine C<strong>on</strong>trol System, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 906<br />

1 set Fuses for MPC, TSA, CNR<br />

1 Segment for triggerring<br />

HCU Hydraulic Cylinder Unit, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 906<br />

1 set Packings<br />

Main starting valve, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90702<br />

1 Repair kit for main actuator<br />

1 Repair kit for main ball valve<br />

1 *) Repair kit for actuator, slow turning<br />

1 *) Repair kit for ball valve, slow turning<br />

*) if fitted<br />

Starting valve, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90704<br />

2 Locking plates<br />

2 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

2 Spring<br />

2 Bushing<br />

1 set O�ring<br />

1 Valve spindle<br />

Note:<br />

Secti<strong>on</strong> numbers refers to Instructi<strong>on</strong> Book, Vol. III c<strong>on</strong>taining plates with spareparts<br />

Fig. 19.07.01a: Additi<strong>on</strong>al spare parts bey<strong>on</strong>d class requirements or recommendati<strong>on</strong>, for easier maintenance and<br />

increased availability, opti<strong>on</strong>: 4 87 603<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME�C/ME�GI engines 198 46 36�7.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.07<br />

Exhaust valve, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90801<br />

1 Exhaust valve spindle<br />

1 Exhaust valve seat<br />

½ set O�ring exhaust valve/cylinder cover<br />

4 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings<br />

½ set Guide rings<br />

½ set Sealing rings<br />

½ set Safety valves<br />

1 set Gaskets and O�rings for safety valve<br />

1 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> complete<br />

1 Damper p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

1 set O�rings and sealings between air p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> and<br />

exhaust valve housing/spindle<br />

1 Liner for spindle guide<br />

1 set Gaskets and O�rings for cool.w.c<strong>on</strong>n.<br />

1 C<strong>on</strong>ical ring in 2/2<br />

1 set O�rings for spindle/air p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

1 set N<strong>on</strong>�return valve<br />

Exhaust valve, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 908<br />

1 Sealing oil unit<br />

Exhaust valve actuator, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90805<br />

1 Hydraulic exhaust valve actuator complete for<br />

1 cylinder<br />

1 Electr<strong>on</strong>ic exhaust valve c<strong>on</strong>trol valve<br />

Cooling water outlet, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90810<br />

2 Ball valve<br />

1 Butterfly valve<br />

1 Compensator<br />

1 set Gaskets for butterfly valve and compensator<br />

Fuel injecti<strong>on</strong> system, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90901<br />

1 Fuel oil pressure booster complete, for 1 cyl.<br />

1 Hydraulic cylinder unit<br />

1 set Gaskets and sealings<br />

1 Electr<strong>on</strong>ic fuel injecti<strong>on</strong> cotrol valve<br />

Fuel valve, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90910<br />

1 set Fuel nozzles<br />

1 set O�rings for fuel valve<br />

3 Spindle guides, complete<br />

½ set Springs<br />

½ set D<str<strong>on</strong>g>is</str<strong>on</strong>g>cs, +30 bar<br />

3 Thrust spindles<br />

3 N<strong>on</strong> return valve (if mounted)<br />

Note:<br />

Secti<strong>on</strong> numbers refers to Instructi<strong>on</strong> Book, Vol. III c<strong>on</strong>taining plates with spareparts<br />

Page 2 of 2<br />

Fuel oil high pressure pipes, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90913<br />

1 High pressure pipe, from fuel oil pressure<br />

booster to fuel valve<br />

1 High pressure pipe from actuator to exhaust<br />

valve<br />

1 set O�rings for high pressure pipes<br />

Overflow valve, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 90915<br />

1 Overflow valve, complete<br />

1 O�rings of each kind<br />

<strong>Turbo</strong>charger, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 91000<br />

1 Spare rotor, complete with bearings<br />

1 Spare part set for turbocharger<br />

Scavenge air receiver, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 91001<br />

2 N<strong>on</strong>�return valves complete<br />

1 Compensator<br />

Exhaust pipes and receiver, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 91003<br />

1 Compensator between TC and receiver<br />

2 Compensator between exhaust valve and receiver<br />

1 set Gaskets for each compensator<br />

Air cooler, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 91005<br />

16 Ir<strong>on</strong> blocks (Corrosi<strong>on</strong> blocks)<br />

Safety valve, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 91101<br />

1 set Gasket for safety valve<br />

2 Safety valve, complete<br />

Arrangement of safety cap, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 91104<br />

1 set Bursting d<str<strong>on</strong>g>is</str<strong>on</strong>g>c<br />

Engine Lubricating System, <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> 912<br />

1 set 10 µ filter<br />

Fig. 19.07.01b: Additi<strong>on</strong>al spare parts bey<strong>on</strong>d class requirements or recommendati<strong>on</strong>, for easier maintenance and<br />

increased availability, opti<strong>on</strong>: 4 87 603<br />

<strong>MAN</strong> B&W MC/MC-C, ME/ME�C/ME�GI engines 198 46 36�7.5<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.08<br />

Wearing parts<br />

The wearing parts are divided into 20 groups, each including<br />

the comp<strong>on</strong>ents stated in Table A.<br />

The average expected c<strong>on</strong>sumpti<strong>on</strong> of spare parts <str<strong>on</strong>g>is</str<strong>on</strong>g><br />

stated in Table B for , 2, 3... 0 years’ service of a new<br />

engine, a service year being assumed to be of 6000<br />

hours.<br />

Table A:<br />

Page of 2<br />

Group No. Secti<strong>on</strong> Quantity Descripti<strong>on</strong>s<br />

90 0 ½ set O�rings and gaskets for cylinder<br />

2 ¼ set Spring housing, complete for cylinder<br />

90 03 ¼ set Indicator valves, O�rings and gaskets for cylinder<br />

3 90 6 ½ set O�ring W / Back�up ring for cylinder<br />

4 ½ set Hose with uni<strong>on</strong> for cylinder<br />

5 9020 box Locking wire ,0MM L=63<br />

set P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings for cylinder<br />

set O�rings for cylinder<br />

6 90205 set O�rings for cylinder<br />

set Lamella rings 3/3 for cylinder<br />

½ set Top scraper rings 4/4 for cylinder<br />

½ set Pack Sealing rings 4/4 for cylinder<br />

½ set Cover Sealing rings 4/4 for cylinder<br />

½ set Springs of each kind for cylinder<br />

7 90302 ½ set O�rings / Sealing rings for Cylinder liner<br />

set O�rings, Packings and Gaskets for cooling water c<strong>on</strong>necti<strong>on</strong>s<br />

8 pcs Cylinder liner<br />

pcs P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> cleaning ring (if Mounted)<br />

0 90635�45 set Packings and Gaskets for Engine<br />

2 90702 ½ set Repair Kit for each type of valve for Engine<br />

3 90704 set O�rings, Packings and Gaskets for Engine<br />

4 9080 ¼ set Exhaust valve spindle for Engine<br />

¼ set Exhaust valve W�bottom piece for Engine<br />

5 set P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings for exhaust valve air p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> and oil p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> for Engine<br />

set O�rings for water c<strong>on</strong>necti<strong>on</strong>s for Engine<br />

set Gasket for cooling for water c<strong>on</strong>necti<strong>on</strong>s for Engine<br />

set O�rings for oil c<strong>on</strong>necti<strong>on</strong>s for Engine<br />

pcs Spindle guide<br />

2 pcs Air sealing ring<br />

½ set Guide sealing rings<br />

set O�rings for bottom piece for Engine<br />

7 909 0 ½ set Fuel valve nozzle for cylinder<br />

¼ set Spindle guide complete and n<strong>on</strong>�return valve for cylinder<br />

2 set O�rings for cylinder<br />

8 909 7 ¼ set Plunger and housing for fuel oil booster for Engine<br />

½ set Sucti<strong>on</strong> valve complete for Cylinder<br />

set Sealing rings, O�rings and Gaskets for cylinder<br />

9 9 000 Slide bearing for turbocharger for engine (roller bearings)<br />

Guide bearing for turbocharger for engine (roller bearings)<br />

20 9 000 Slide bearing for turbocharger for engine (slide bearings)<br />

Guide bearing for turbocharger for engine (slide bearings)<br />

Note: Secti<strong>on</strong> numbers refers to Instructi<strong>on</strong> Book, Vol. III c<strong>on</strong>taining plates with spare parts<br />

Fig. 19.08.01: Table A<br />

In order to find the expected c<strong>on</strong>sumpti<strong>on</strong> of spare<br />

parts:<br />

Multiply the quantity stated in Table A with the factor in<br />

Table B for a given number of service hours.<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 46 37�9.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W 19.08<br />

Table B:<br />

Page 2 of 2<br />

Service hours: 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�<br />

6000 12000 18000 24000 3000 36000 42000 48000 54000 60000<br />

Group. Secti<strong>on</strong><br />

No. No. Descripti<strong>on</strong> Factor for number of cylinders<br />

90 0 O�rings and gaskets 2 3 4 5 6 7 8 9 0<br />

2 Spring housing 0 2<br />

90 03 Packing and Gaskets 2 3 4 5 6 7 8 9 0<br />

3 90 6 O�ring W / Back�up ring 2 3 4 5 6 7 8 9 0<br />

4 Hose with uni<strong>on</strong> 0 0 2 2 2<br />

5 9020 Set of p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rings 0 2 3 4 3 4 4 4<br />

6 90205 St. box, lamella / sealing rings 0 2 2 3 3 4 3 4<br />

7 90302 O�rings / Sealing rings Cyl. liner 0 2 2 2 4 2<br />

8 Cylinder liners 0 0 0 0 0 0 0 0 0 0<br />

9 906 0 Bearing Shells and Guide D<str<strong>on</strong>g>is</str<strong>on</strong>g>c 0 0 0 2 2 2<br />

0 90635�45 Packings and Gaskets 2 3 4 5 6 7 8 7 8<br />

2 90702 Repair Kit for each type of valve 0 2 3 4 3 4 3 4<br />

3 90704 O�rings, Packings and Gaskets 2 3 4 5 6 7 8 9 0<br />

4 9080<br />

Exhaust valve spindles /<br />

0 0 2 2 2<br />

bottom pieces<br />

5 Exhaust valve guide bushings 0 2 2 4 2 4 2 4<br />

O�rings for exhaust valve 2 3 4 5 6 7 8 9 0<br />

7 909 0 Fuel valve guides and nozzles 0 2 4 4 5 5 3 3<br />

8 909 7<br />

Plunger and housing for fuel<br />

oil booster<br />

Sucti<strong>on</strong>/puncture valves,<br />

Sealing rings<br />

0 0 0 0 0<br />

and Gaskets 0 2 2 3 3 4 3 3<br />

9 9 000<br />

Set bearings per TC<br />

(roller bearings) *)<br />

0 0 set 2 set 2 set 3 set 3 set 4 set 4 set 5 set<br />

20 9 000<br />

Set bearings per TC<br />

(slide bearings) *)<br />

0 0 0 set set set set 2 set 2 set 2 set<br />

*) Not depending <strong>on</strong> number of cylinders.<br />

Note:<br />

Secti<strong>on</strong> numbers refers to Instructi<strong>on</strong> Book, Vol. III c<strong>on</strong>taining plates with spare parts<br />

Fig. 19.08.02: Table B<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI/ME-B engines 198 46 37�9.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 19.09<br />

Large spare parts, dimensi<strong>on</strong>s and masses<br />

A<br />

1 2 3<br />

4<br />

B<br />

D<br />

C<br />

C<br />

Pos Sec. Descripti<strong>on</strong><br />

Page 1 of 1<br />

Mass Dimensi<strong>on</strong>s (mm)<br />

(kg)<br />

A B C D E<br />

1 Cylinder liner, incl. cooling jacket 3,620 ø1,046 3,429 ø869<br />

2 Exhaust valve 787 1,928 907 701<br />

3 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> complete, with p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod 1,905 ø762 517 ø298 4,317 490<br />

4 Cylinder cover, incl. valves 2,304 ø1,359 658 ø1,019<br />

5 Rotor for turbocharger, TCA88*<br />

5 Rotor for turbocharger, TPL85*<br />

5 Rotor for turbocharger, MET83SE 470 ø924 1,517 ø902<br />

* Data are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong><br />

A<br />

Fig. 19.09.01: Large spare parts, dimensi<strong>on</strong>s and masses are for guidance <strong>on</strong>ly<br />

B<br />

C<br />

S65ME-C/ME-GI 198 49 08-8.0<br />

5<br />

B<br />

A<br />

A<br />

B<br />

A<br />

C<br />

E<br />

C<br />

B<br />

D<br />

178 51 59-7.0


<strong>MAN</strong> B&W <strong>Diesel</strong> A/S 19.10<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Standard Tools for Maintenance<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> <str<strong>on</strong>g>secti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> <strong>request</strong><br />

Page 1 of 1<br />

S65ME-C/ME-GI 198 49 07-6.0


<strong>MAN</strong> B&W 19.11<br />

Tool Panels<br />

Pos.<br />

Main<br />

Secti<strong>on</strong><br />

90 Cylinder cover<br />

Page of<br />

<strong>MAN</strong> B&W ME/ME�C/ME�GI engines 198 42 18�6.2<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

90<br />

907<br />

9<br />

902<br />

903<br />

904 905<br />

5 6<br />

908<br />

909<br />

2 3 4<br />

Proposal for placing of tool panels<br />

Min. 500 mm free space in fr<strong>on</strong>t of panel<br />

900 900 900 900<br />

Standard sizes of tool panels (in mm)<br />

Descripti<strong>on</strong><br />

450<br />

900<br />

350<br />

800<br />

178 51 40�4.0<br />

Mass of<br />

tools in kg<br />

907 Starting air system* 94<br />

9 Safety equipment*<br />

2 902 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong>, p<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod and stuffing box<br />

903 Cylinder liner and cylinder frame** 00<br />

3 908 Exhaust valve and valve gear 6<br />

4 909 Fuel valve and fuel pump 8<br />

5 904 Crosshead and c<strong>on</strong>necting rod 09<br />

6 905 Crankshaft and main bearing 55<br />

* Tools for Main Secti<strong>on</strong> 907 are delivered <strong>on</strong> the same tool panel as Main Secti<strong>on</strong> 90<br />

** Tools for Main Secti<strong>on</strong> 903 are delivered <strong>on</strong> the same tool panel as Main Secti<strong>on</strong> 902<br />

Fig. 19.11.01 Tool Panels. 4 88 660


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Project Suppport and<br />

Documentati<strong>on</strong><br />

20


<strong>MAN</strong> B&W 20.01<br />

Project Support and Documentati<strong>on</strong><br />

The selecti<strong>on</strong> of the ideal propulsi<strong>on</strong> plant for a<br />

specific newbuilding <str<strong>on</strong>g>is</str<strong>on</strong>g> a comprehensive task.<br />

However, as th<str<strong>on</strong>g>is</str<strong>on</strong>g> selecti<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> a key factor for the<br />

profitability of the ship, it <str<strong>on</strong>g>is</str<strong>on</strong>g> of the utmost importance<br />

for the end�user that the right choice <str<strong>on</strong>g>is</str<strong>on</strong>g> made.<br />

<strong>MAN</strong> <strong>Diesel</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> able to provide a wide variety of<br />

support for the shipping and shipbuilding industries<br />

all over the world.<br />

The knowledge accumulated over many decades<br />

by <strong>MAN</strong> <strong>Diesel</strong> covering such fields as the selecti<strong>on</strong><br />

of the best propulsi<strong>on</strong> machinery, optim<str<strong>on</strong>g>is</str<strong>on</strong>g>ati<strong>on</strong><br />

of the engine installati<strong>on</strong>, choice and suitability of<br />

a Power Take Off for a specific project, vibrati<strong>on</strong><br />

aspects, envir<strong>on</strong>mental c<strong>on</strong>trol etc., <str<strong>on</strong>g>is</str<strong>on</strong>g> <str<strong>on</strong>g>available</str<strong>on</strong>g> to<br />

shipowners, shipbuilders and ship designers alike.<br />

Part of th<str<strong>on</strong>g>is</str<strong>on</strong>g> informati<strong>on</strong> can be found in the following<br />

documentati<strong>on</strong>:<br />

• Installati<strong>on</strong> drawings<br />

• CEAS - Engine room dimensi<strong>on</strong>ing<br />

• Project Guides<br />

• Extent of Delivery (EOD)<br />

• Technical papers<br />

The publicati<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> at:<br />

www.mandiesel.com → ‘Marine’ → ‘Low Speed’<br />

Engine Selecti<strong>on</strong> Guides<br />

The ‘Engine Selecti<strong>on</strong> Guides’ are intended as a<br />

tool to provide ass<str<strong>on</strong>g>is</str<strong>on</strong>g>tance at the very initial stage<br />

of the project work. The guides give a general view<br />

of the <strong>MAN</strong> B&W two�stroke Programme for MC as<br />

well as for ME engines and include informati<strong>on</strong> <strong>on</strong><br />

the following subjects:<br />

• Engine data<br />

• Engine layout and load diagrams<br />

specific fuel oil c<strong>on</strong>sumpti<strong>on</strong><br />

• <strong>Turbo</strong>charger choice<br />

• Electricity producti<strong>on</strong>, including power take off<br />

• Installati<strong>on</strong> aspects<br />

• Auxiliary systems<br />

• Vibrati<strong>on</strong> aspects.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

After selecting the engine type <strong>on</strong> the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> of th<str<strong>on</strong>g>is</str<strong>on</strong>g><br />

general informati<strong>on</strong>, and after making sure that the<br />

engine fits into the ship’s design, then a more detailed<br />

project can be carried out based <strong>on</strong> the ‘Project<br />

Guide’ for the specific engine type selected.<br />

Project Guides<br />

For each engine type of MC or ME design a ‘Project<br />

Guide’ has been prepared, describing the general<br />

technical features of that specific engine type, and<br />

also including some opti<strong>on</strong>al features and equipment.<br />

The informati<strong>on</strong> <str<strong>on</strong>g>is</str<strong>on</strong>g> general, and some deviati<strong>on</strong>s<br />

may appear in a final engine documentati<strong>on</strong>, depending<br />

<strong>on</strong> the c<strong>on</strong>tent specified in the c<strong>on</strong>tract<br />

and <strong>on</strong> the individual licensee supplying the engine.<br />

The Project Guides compr<str<strong>on</strong>g>is</str<strong>on</strong>g>e an extensi<strong>on</strong> of the<br />

general informati<strong>on</strong> in the Engine Selecti<strong>on</strong> Guide,<br />

as well as specific informati<strong>on</strong> <strong>on</strong> such subjects as:<br />

• Engine Design<br />

• Engine Layout and Load Diagrams, SFOC<br />

• <strong>Turbo</strong>charger Choice & Exhaust Gas By�pass<br />

• Electricity Producti<strong>on</strong><br />

• Installati<strong>on</strong> Aspects<br />

• L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of Capacities: Pumps, Coolers & Exhaust Gas<br />

• Fuel Oil<br />

• Lubricating Oil<br />

• Cylinder Lubricati<strong>on</strong><br />

• P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> Rod Stuffing Box Drain Oil<br />

• Central Cooling Water System<br />

• Seawater Cooling<br />

• Starting and C<strong>on</strong>trol Air<br />

• Scavenge Air<br />

• Exhaust Gas<br />

• Engine C<strong>on</strong>trol System<br />

• Vibrati<strong>on</strong> Aspects<br />

• M<strong>on</strong>itoring Systems and Instrumentati<strong>on</strong><br />

• D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch Pattern, Testing, Spares and Tools<br />

• Project Support and Documentati<strong>on</strong><br />

198 45 88�7.3


<strong>MAN</strong> B&W 20.02<br />

Computer<str<strong>on</strong>g>is</str<strong>on</strong>g>ed Engine Applicati<strong>on</strong> System<br />

Further custom<str<strong>on</strong>g>is</str<strong>on</strong>g>ed informati<strong>on</strong> can be obtained<br />

from <strong>MAN</strong> <strong>Diesel</strong> as project support and, for th<str<strong>on</strong>g>is</str<strong>on</strong>g><br />

purpose, we have developed a ‘Computer<str<strong>on</strong>g>is</str<strong>on</strong>g>ed Engine<br />

Applicati<strong>on</strong> System’, by means of which specific<br />

calculati<strong>on</strong>s can be made during the project<br />

stage, such as:<br />

• Estimati<strong>on</strong> of ship’s dimensi<strong>on</strong>s<br />

• Propeller calculati<strong>on</strong> and power predicti<strong>on</strong><br />

• Selecti<strong>on</strong> of main engine<br />

• Main engines compar<str<strong>on</strong>g>is</str<strong>on</strong>g><strong>on</strong><br />

• Layout/load diagrams of engine<br />

• Maintenance and spare parts costs of the engine<br />

• Total ec<strong>on</strong>omy – compar<str<strong>on</strong>g>is</str<strong>on</strong>g><strong>on</strong> of engine rooms<br />

• Steam and electrical power – ships’ requirement<br />

• Auxiliary machinery capacities for derated engine<br />

• Fuel and lube oil c<strong>on</strong>sumpti<strong>on</strong> – exhaust gas<br />

data<br />

• Heat d<str<strong>on</strong>g>is</str<strong>on</strong>g>sipati<strong>on</strong> of engine<br />

• Util<str<strong>on</strong>g>is</str<strong>on</strong>g>ati<strong>on</strong> of exhaust gas heat<br />

• Water c<strong>on</strong>densati<strong>on</strong> separati<strong>on</strong> in air coolers<br />

• No<str<strong>on</strong>g>is</str<strong>on</strong>g>e – engine room, exhaust gas, structure<br />

borne<br />

• Preheating of diesel engine<br />

• Util<str<strong>on</strong>g>is</str<strong>on</strong>g>ati<strong>on</strong> of jacket cooling water heat, fresh<br />

water producti<strong>on</strong><br />

• Starting air system<br />

• Exhaust gas back pressure<br />

• Engine room data: pumps, coolers, tanks.<br />

For further informati<strong>on</strong>, please refer to<br />

www.mandiesel.com under ‘Marine’ → ‘Low<br />

speed’ → ‘CEAS Engine Room Dimensi<strong>on</strong>s’.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-BME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of<br />

198 45 90�9.2


<strong>MAN</strong> B&W 20.03<br />

Extent of Delivery<br />

The ‘Extent of Delivery’ (EoD) sheets have been<br />

compiled in order to facilitate communicati<strong>on</strong> between<br />

owner, c<strong>on</strong>sultants, yard and engine maker<br />

during the project stage, regarding the scope of<br />

supply and the alternatives (opti<strong>on</strong>s) <str<strong>on</strong>g>available</str<strong>on</strong>g> for<br />

<strong>MAN</strong> B&W two�stroke engines.<br />

We provide four different EoDs:<br />

EoD 98 � 50 MC Type Engine<br />

EoD 46 � 26 MC Type Engines<br />

EoD 108 � 50 ME Type Engines<br />

EoD 50 � 35 ME-B Type Engines<br />

These publicati<strong>on</strong>s are <str<strong>on</strong>g>available</str<strong>on</strong>g> at:<br />

www.mandiesel.com<br />

under ‘Marine’ → ‘Low speed’ →<br />

‘Project Guides and Extent of Delivery (EOD)’<br />

C<strong>on</strong>tent of Extent of Delivery<br />

The ‘Extent of Delivery’ includes a l<str<strong>on</strong>g>is</str<strong>on</strong>g>t of the basic<br />

items and the opti<strong>on</strong>s of the main engine and auxiliary<br />

equipment and, it <str<strong>on</strong>g>is</str<strong>on</strong>g> divided into the systems<br />

and volumes stated below:<br />

General informati<strong>on</strong><br />

4 00 xxx General informati<strong>on</strong><br />

4 02 xxx Rating<br />

4 03 xxx Directi<strong>on</strong> of rotati<strong>on</strong><br />

4 06 xxx Rules and regulati<strong>on</strong>s<br />

4 07 xxx Calculati<strong>on</strong> of torsi<strong>on</strong>al and axial<br />

vibrati<strong>on</strong>s<br />

4 09 xxx Documentati<strong>on</strong><br />

4 xxx Voltage <strong>on</strong> board for eletrical<br />

c<strong>on</strong>sumers<br />

4 2 xxx D<str<strong>on</strong>g>is</str<strong>on</strong>g>mantling, packing and shipping<br />

of engine<br />

4 4 xxx Testing of diesel engine<br />

4 7 xxx Superv<str<strong>on</strong>g>is</str<strong>on</strong>g>ors and adv<str<strong>on</strong>g>is</str<strong>on</strong>g>ory work<br />

4 20 xxx Propeller<br />

4 2 xxx Propeller hub<br />

4 22 xxx Stern tube<br />

4 23 xxx Propeller shaft<br />

4 24 xxx Intermediate shaft<br />

4 25 xxx Propeller shaftline<br />

4 26 xxx Propeller, m<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page of 2<br />

<strong>Diesel</strong> engine<br />

4 30 xxx <strong>Diesel</strong> engine<br />

4 3 xxx Vibrati<strong>on</strong>s and balancing<br />

4 35 xxx Fuel oil piping<br />

4 40 xxx Lubricating oil and c<strong>on</strong>trol oil piping<br />

4 42 xxx Cylinder lubricating oil piping<br />

4 43 xxx P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod stuffing box drain piping<br />

4 45 xxx Low temperature cooling water piping<br />

4 46 xxx Jacket cooling water piping<br />

4 50 xxx Starting and c<strong>on</strong>trol air piping<br />

4 54 xxx Scavenge air cooler<br />

4 55 xxx Scavenge air piping<br />

4 59 xxx <strong>Turbo</strong>charger<br />

4 60 xxx Exhaust gas piping<br />

4 65 xxx Engine c<strong>on</strong>trol system<br />

4 70 xxx Local instrumentati<strong>on</strong><br />

4 75 xxx M<strong>on</strong>itoring, safety, alarm and<br />

remote indicati<strong>on</strong><br />

4 78 xxx Electrical wiring <strong>on</strong> engine<br />

M<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous<br />

4 80 xxx M<str<strong>on</strong>g>is</str<strong>on</strong>g>cellaneous<br />

4 8 xxx Painting<br />

4 82 xxx Engine seating<br />

4 83 xxx Galleries<br />

4 85 xxx Power Take Off<br />

4 87 xxx Spare parts<br />

4 88 xxx Tools<br />

Remote c<strong>on</strong>trol system<br />

4 95 xxx Bridge c<strong>on</strong>trol system<br />

Descripti<strong>on</strong> of the ‘Extent of Delivery’<br />

The ‘Extent of Delivery’ (EoD) <str<strong>on</strong>g>is</str<strong>on</strong>g> the bas<str<strong>on</strong>g>is</str<strong>on</strong>g> for specifying<br />

the scope of supply for a specific order.<br />

The l<str<strong>on</strong>g>is</str<strong>on</strong>g>t c<strong>on</strong>s<str<strong>on</strong>g>is</str<strong>on</strong>g>ts of ‘Basic’ and ‘Opti<strong>on</strong>al’ items.<br />

The ‘Basic’ items define the simplest engine, designed<br />

for attended machinery space (AMS), without<br />

taking into c<strong>on</strong>siderati<strong>on</strong> any specific require�<br />

ments from the classificati<strong>on</strong> society, the yard or<br />

the owner.<br />

The ‘Opti<strong>on</strong>s’ are extra items that can be alternatives<br />

to the ‘Basic’ or additi<strong>on</strong>al items <str<strong>on</strong>g>available</str<strong>on</strong>g><br />

to fulfil the requirements/functi<strong>on</strong>s for a specific<br />

project.<br />

198 45 91�0.2


<strong>MAN</strong> B&W 20.03<br />

We base our first quotati<strong>on</strong>s <strong>on</strong> a ‘mostly required’<br />

scope of supply, which <str<strong>on</strong>g>is</str<strong>on</strong>g> the so called<br />

‘Copenhagen Standard EoD’, which are marked<br />

with an aster<str<strong>on</strong>g>is</str<strong>on</strong>g>k *.<br />

<str<strong>on</strong>g>Th<str<strong>on</strong>g>is</str<strong>on</strong>g></str<strong>on</strong>g> includes:<br />

• Items for Unattended Machinery Space<br />

• Minimum of alarm sensors recommended by<br />

the classificati<strong>on</strong> societies and <strong>MAN</strong> <strong>Diesel</strong><br />

• Moment compensator for certain numbers of<br />

cylinders<br />

• <strong>MAN</strong> <strong>Diesel</strong> turbochargers<br />

• The basic Engine C<strong>on</strong>trol System<br />

• CoCoS�EDS <strong>on</strong>line<br />

• Spare parts either required or recommended by<br />

the classificati<strong>on</strong> societies and <strong>MAN</strong> <strong>Diesel</strong><br />

• Tools required or recommended by the classificati<strong>on</strong><br />

societies and <strong>MAN</strong> <strong>Diesel</strong>.<br />

The filled�in EoD <str<strong>on</strong>g>is</str<strong>on</strong>g> often used as an integral part<br />

of the final c<strong>on</strong>tract.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 2<br />

198 45 91�0.2


<strong>MAN</strong> B&W 20.04<br />

Installati<strong>on</strong> Documentati<strong>on</strong><br />

When a final c<strong>on</strong>tract <str<strong>on</strong>g>is</str<strong>on</strong>g> signed, a complete set of<br />

documentati<strong>on</strong>, in the following called ‘Installati<strong>on</strong><br />

Documentati<strong>on</strong>’, will be supplied to the buyer by<br />

the engine maker.<br />

The ‘Installati<strong>on</strong> Documentati<strong>on</strong>’ <str<strong>on</strong>g>is</str<strong>on</strong>g> normally divided<br />

into the ‘A’ and ‘B’ volumes menti<strong>on</strong>ed in<br />

the ‘Extent of Delivery’ under items:<br />

4 09 602 Volume ‘A’:<br />

Mainly compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es general guiding system drawings<br />

for the engine room<br />

4 09 603 Volume ‘B’:<br />

Mainly compr<str<strong>on</strong>g>is</str<strong>on</strong>g>es specific drawings for the main<br />

engine itself<br />

Most of the documentati<strong>on</strong> in volume ‘A’ are similar<br />

to those c<strong>on</strong>tained in the respective Project<br />

Guides, but the Installati<strong>on</strong> Documentati<strong>on</strong> will<br />

<strong>on</strong>ly cover the order�relevant designs. These will<br />

be forwarded within 4 weeks from order.<br />

The engine layout drawings in volume ‘B’ will, in<br />

each case, be custom<str<strong>on</strong>g>is</str<strong>on</strong>g>ed according to the buyer’s<br />

requirements and the engine manufacturer’s<br />

producti<strong>on</strong> facilities. The documentati<strong>on</strong> will be<br />

forwarded, as so<strong>on</strong> as it <str<strong>on</strong>g>is</str<strong>on</strong>g> ready, normally within<br />

3�6 m<strong>on</strong>ths from order.<br />

As <strong>MAN</strong> <strong>Diesel</strong> and most of our licensees are using<br />

computer<str<strong>on</strong>g>is</str<strong>on</strong>g>ed drawings UniGraphics, Cadam<br />

and TIFF format, the documentati<strong>on</strong> forwarded<br />

will normally be in size A4 or A3. The maximum<br />

size <str<strong>on</strong>g>available</str<strong>on</strong>g> <str<strong>on</strong>g>is</str<strong>on</strong>g> A .<br />

The drawings of volume ‘A’ are <str<strong>on</strong>g>available</str<strong>on</strong>g> <strong>on</strong> CD<br />

ROM.<br />

The following l<str<strong>on</strong>g>is</str<strong>on</strong>g>t <str<strong>on</strong>g>is</str<strong>on</strong>g> intended to show an example<br />

of such a set of Installati<strong>on</strong> Documentati<strong>on</strong>, but<br />

the extent may vary from order to order.<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Engine�relevant documentati<strong>on</strong><br />

Main Secti<strong>on</strong> 901 Engine data<br />

External forces and moments<br />

Guide force moments<br />

Water and oil in engine<br />

Centre of gravity<br />

Basic symbols for piping<br />

Instrument symbols for piping<br />

Balancing<br />

Main Secti<strong>on</strong> 915 Engine c<strong>on</strong>necti<strong>on</strong>s<br />

Scaled engine outline<br />

Engine outline<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of flanges/counterflanges<br />

Engine pipe c<strong>on</strong>necti<strong>on</strong>s<br />

Gallery outline<br />

Main Secti<strong>on</strong> 921 Engine instrumentati<strong>on</strong><br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of instruments<br />

C<strong>on</strong>necti<strong>on</strong>s for electric comp<strong>on</strong>ents<br />

Guidance values for automati<strong>on</strong><br />

Main Secti<strong>on</strong> 923 Engine C<strong>on</strong>trol System<br />

Engine C<strong>on</strong>trol System, descripti<strong>on</strong><br />

Engine C<strong>on</strong>trol System, diagrams<br />

Pneumatic system<br />

Speed correlati<strong>on</strong> to telegraph<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of comp<strong>on</strong>ents<br />

Sequence diagram<br />

Main Secti<strong>on</strong> 924 Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector<br />

Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector<br />

Main Secti<strong>on</strong> 925 C<strong>on</strong>trol equipment for<br />

auxiliary blower<br />

Electric wiring diagram<br />

Auxiliary blower<br />

Starter for electric motors<br />

Main Secti<strong>on</strong> 932 Shaft line<br />

Crankshaft driving end<br />

Fitted bolts<br />

Main Secti<strong>on</strong> 934 Turning gear<br />

Turning gear arrangement<br />

Turning gear, c<strong>on</strong>trol system<br />

Turning gear, with motor<br />

Main Secti<strong>on</strong> 936 Spare parts<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of spare parts<br />

Page of 4<br />

198 45 92�2.2


<strong>MAN</strong> B&W 20.04<br />

Main Secti<strong>on</strong> 939 Engine paint<br />

Specificati<strong>on</strong> of paint<br />

Main Secti<strong>on</strong> 940 Gaskets, sealings, O�rings<br />

Instructi<strong>on</strong>s<br />

Packings<br />

Gaskets, sealings, O�rings<br />

Main Secti<strong>on</strong> 950 Engine pipe diagrams<br />

Engine pipe diagrams<br />

Bedplate drain pipes<br />

Instrument symbols for piping<br />

Basic symbols for piping<br />

Lube oil, cooling oil and hydraulic oil piping<br />

Cylinder lube oil pipes<br />

Stuffing box drain pipes<br />

Cooling water pipes, air cooler<br />

Jacket water cooling pipes<br />

Fuel oil drain pipes<br />

Fuel oil pipes<br />

C<strong>on</strong>trol air pipes<br />

Starting air pipes<br />

<strong>Turbo</strong>charger cleaning pipe<br />

Scavenge air space, drain pipes<br />

Scavenge air pipes<br />

Air cooler cleaning pipes<br />

Exhaust gas pipes<br />

Steam extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing, in scav.box<br />

Oil m<str<strong>on</strong>g>is</str<strong>on</strong>g>t detector pipes<br />

Pressure gauge pipes<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Page 2 of 4<br />

Engine room�relevant documentati<strong>on</strong><br />

Main Secti<strong>on</strong> 901 Engine data<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities<br />

Basic symbols for piping<br />

Instrument symbols for piping<br />

Main Secti<strong>on</strong> 902 Lube and cooling oil<br />

Lube oil bottom tank<br />

Lubricating oil filter<br />

Crankcase venting<br />

Lubricating and hydraulic oil system<br />

Lube oil outlet<br />

Main Secti<strong>on</strong> 904 Cylinder lubricati<strong>on</strong><br />

Cylinder lube oil system<br />

Main Secti<strong>on</strong> 905 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> rod stuffing box<br />

Stuffing box drain oil cleaning system<br />

Main Secti<strong>on</strong> 906 Seawater cooling<br />

Seawater cooling system<br />

Main Secti<strong>on</strong> 907 Jacket water cooling<br />

Jacket water cooling system<br />

Deaerating tank<br />

Deaerating tank, alarm device<br />

Main Secti<strong>on</strong> 909 Central cooling system<br />

Central cooling water system<br />

Deaerating tank<br />

Deaerating tank, alarm device<br />

Main Secti<strong>on</strong> 910 Fuel oil system<br />

Fuel oil heating chart<br />

Fuel oil system<br />

Fuel oil venting box<br />

Fuel oil filter<br />

Main Secti<strong>on</strong> 911 Compressed air<br />

Starting air system<br />

Main Secti<strong>on</strong> 912 Scavenge air<br />

Scavenge air drain system<br />

Main Secti<strong>on</strong> 913 Air cooler cleaning<br />

Air cooler cleaning system<br />

Main Secti<strong>on</strong> 914 Exhaust gas<br />

Exhaust pipes, bracing<br />

Exhaust pipe system, dimensi<strong>on</strong>s<br />

198 45 92�2.2


<strong>MAN</strong> B&W 20.04<br />

Main Secti<strong>on</strong> 917 Engine room crane<br />

Engine room crane capacity, overhauling space<br />

Main Secti<strong>on</strong> 918 Torsiograph arrangement<br />

Torsiograph arrangement<br />

Main Secti<strong>on</strong> 919 Shaft earthing device<br />

Earthing device<br />

Main Secti<strong>on</strong> 920 Fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing in<br />

scavenge air space<br />

Fire extingu<str<strong>on</strong>g>is</str<strong>on</strong>g>hing in scavenge air space<br />

Main Secti<strong>on</strong> 921 Instrumentati<strong>on</strong><br />

Axial vibrati<strong>on</strong> m<strong>on</strong>itor<br />

Main Secti<strong>on</strong> 926 Engine seating<br />

Profile of engine seating<br />

Epoxy chocks<br />

Alignment screws<br />

Main Secti<strong>on</strong> 927 Holding�down bolts<br />

Holding�down bolt<br />

Round nut<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>tance pipe<br />

Spherical washer<br />

Spherical nut<br />

Assembly of holding�down bolt<br />

Protecting cap<br />

Arrangement of holding�down bolts<br />

Main Secti<strong>on</strong> 928 Supporting chocks<br />

Supporting chocks<br />

Securing of supporting chocks<br />

Main Secti<strong>on</strong> 929 Side chocks<br />

Side chocks<br />

Liner for side chocks, starboard<br />

Liner for side chocks, port side<br />

Main Secti<strong>on</strong> 930 End chocks<br />

Stud for end chock bolt<br />

End chock<br />

Round nut<br />

Spherical washer, c<strong>on</strong>cave<br />

Spherical washer, c<strong>on</strong>vex<br />

Assembly of end chock bolt<br />

Liner for end chock<br />

Protecting cap<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Main Secti<strong>on</strong> 931 Top bracing of engine<br />

Top bracing outline<br />

Top bracing arrangement<br />

Fricti<strong>on</strong>�materials<br />

Top bracing instructi<strong>on</strong>s<br />

Top bracing forces<br />

Top bracing tensi<strong>on</strong> data<br />

Main Secti<strong>on</strong> 932 Shaft line<br />

Static thrust shaft load<br />

Fitted bolt<br />

Main Secti<strong>on</strong> 933 Power Take�Off<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of capacities<br />

PTO/RCF arrangement, if fitted<br />

Page 3 of 4<br />

Main Secti<strong>on</strong> 936 Spare parts dimensi<strong>on</strong>s<br />

C<strong>on</strong>necting rod studs<br />

Cooling jacket<br />

Crankpin bearing shell<br />

Crosshead bearing<br />

Cylinder cover stud<br />

Cylinder cover<br />

Cylinder liner<br />

Exhaust valve<br />

Exhaust valve bottom piece<br />

Exhaust valve spindle<br />

Exhaust valve studs<br />

Fuel valve<br />

Main bearing shell<br />

Main bearing studs<br />

P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> complete<br />

Starting valve<br />

Telescope pipe<br />

Thrust block segment<br />

<strong>Turbo</strong>charger rotor<br />

Main Secti<strong>on</strong> 940 Gaskets, sealings, O�rings<br />

Gaskets, sealings, O�rings<br />

Main Secti<strong>on</strong> 949 Material sheets<br />

<strong>MAN</strong> B&W Standard Sheets Nos:<br />

• S 9R<br />

• S45R<br />

• S25Cr<br />

• S34Cr R<br />

• C4<br />

198 45 92�2.2


<strong>MAN</strong> B&W 20.04<br />

Engine producti<strong>on</strong> and<br />

installati<strong>on</strong>�relevant documentati<strong>on</strong><br />

Main Secti<strong>on</strong> 935 Main engine producti<strong>on</strong><br />

records, engine installati<strong>on</strong> drawings<br />

Installati<strong>on</strong> of engine <strong>on</strong> board<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern , or<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern 2<br />

Check of alignment and bearing clearances<br />

Optical instrument or laser<br />

Reference sag line for piano wire<br />

Alignment of bedplate<br />

Piano wire measurement of bedplate<br />

Check of tw<str<strong>on</strong>g>is</str<strong>on</strong>g>t of bedplate<br />

Crankshaft alignment reading<br />

Bearing clearances<br />

Check of reciprocating parts<br />

Producti<strong>on</strong> schedule<br />

Inspecti<strong>on</strong> after shop trials<br />

D<str<strong>on</strong>g>is</str<strong>on</strong>g>patch pattern, outline<br />

Preservati<strong>on</strong> instructi<strong>on</strong>s<br />

Main Secti<strong>on</strong> 941 Shop trials<br />

Shop trials, delivery test<br />

Shop trial report<br />

Main Secti<strong>on</strong> 942 Quay trial and sea trial<br />

Stuffing box drain cleaning<br />

Fuel oil preheating chart<br />

Flushing of lube oil system<br />

Freshwater system treatment<br />

Freshwater system preheating<br />

Quay trial and sea trial<br />

Adjustment of c<strong>on</strong>trol air system<br />

Adjustment of fuel pump<br />

Heavy fuel operati<strong>on</strong><br />

Guidance values – automati<strong>on</strong><br />

Main Secti<strong>on</strong> 945 Flushing procedures<br />

Lubricating oil system cleaning instructi<strong>on</strong><br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines<br />

Tools<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Main Secti<strong>on</strong> 926 Engine seating<br />

Hydraulic jack for holding down bolts<br />

Hydraulic jack for end chock bolts<br />

Main Secti<strong>on</strong> 937 Engine tools<br />

L<str<strong>on</strong>g>is</str<strong>on</strong>g>t of tools<br />

Outline dimensi<strong>on</strong>s, main tools<br />

Main Secti<strong>on</strong> 938 Tool panel<br />

Tool panels<br />

Auxiliary equipment<br />

980 Fuel oil supply unit, if ordered<br />

990 Exhaust silencer, if ordered<br />

995 Other auxiliary equipment<br />

Page 4 of 4<br />

198 45 92�2.2


<strong>MAN</strong> B&W<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

Appendix<br />

A


<strong>MAN</strong> B&W Appendix A<br />

Symbols for Piping<br />

No. Symbol Symbol designati<strong>on</strong><br />

1 General c<strong>on</strong>venti<strong>on</strong>al symbols<br />

. Pipe<br />

.2 Pipe with indicati<strong>on</strong> of directi<strong>on</strong> of flow<br />

.3 Valves, gate valves, cocks and flaps<br />

.4 Appliances<br />

.5 Indicating and measuring instruments<br />

2 Pipes and pipe joints<br />

2. Crossing pipes, not c<strong>on</strong>nected<br />

2.2 Crossing pipes, c<strong>on</strong>nected<br />

2.3 Tee pipe<br />

2.4 Flexible pipe<br />

2.5 Expansi<strong>on</strong> pipe (corrugated) general<br />

2.6 Joint, screwed<br />

2.7 Joint, flanged<br />

2.8 Joint, sleeve<br />

2.9 Joint, quick�releasing<br />

2. 0 Expansi<strong>on</strong> joint with gland<br />

2. Expansi<strong>on</strong> pipe<br />

2. 2 Cap nut<br />

2. 3 Blank flange<br />

No. Symbol Symbol designati<strong>on</strong><br />

2. 4 Spectacle flange<br />

2. 5 Bulkhead fitting water tight, flange<br />

2. 6 Bulkhead crossing, n<strong>on</strong>�watertight<br />

2. 7 Pipe going upwards<br />

2. 8 Pipe going downwards<br />

2. 9 Orifice<br />

3 Valves, gate valves, cocks and flaps<br />

3. Valve, straight through<br />

3.2 Valves, angle<br />

3.3 Valves, three way<br />

3.4 N<strong>on</strong>�return valve (flap), straight<br />

3.5 N<strong>on</strong>�return valve (flap), angle<br />

Page of 3<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 38 66�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

3.6<br />

3.7<br />

N<strong>on</strong>�return valve (flap), straight, screw<br />

down<br />

N<strong>on</strong>�return valve (flap), angle, screw<br />

down<br />

3.8 Flap, straight through<br />

3.9 Flap, angle<br />

3. 0 Reducti<strong>on</strong> valve<br />

3. Safety valve<br />

3. 2 Angle safety valve<br />

3. 3 Self�closing valve


<strong>MAN</strong> B&W Appendix A<br />

No. Symbol Symbol designati<strong>on</strong><br />

3. 4 Quick�opening valve<br />

3. 5 Quick�closing valve<br />

3. 6 Regulating valve<br />

3. 7 Kingst<strong>on</strong> valve<br />

3. 8 Ballvalve (cock)<br />

3. 9 Butterfly valve<br />

3.20 Gate valve<br />

3.2 Double�seated changeover valve<br />

3.22 Sucti<strong>on</strong> valve chest<br />

3.23<br />

3.24<br />

Sucti<strong>on</strong> valve chest with n<strong>on</strong>�return<br />

valves<br />

Double�seated changeover valve,<br />

straight<br />

3.25 Double�seated changeover valve, angle<br />

3.26 Cock, straight through<br />

3.27 Cock, angle<br />

3.28 Cock, three�way, L�port in plug<br />

3.29 Cock, three�way, T�port in plug<br />

3.30 Cock, four�way, straight through in plug<br />

3.3 Cock with bottom c<strong>on</strong>necti<strong>on</strong><br />

3.32<br />

Cock, straight through, with bottom<br />

c<strong>on</strong>n.<br />

3.33 Cock, angle, with bottom c<strong>on</strong>necti<strong>on</strong><br />

3.34<br />

Cock, three�way, with bottom c<strong>on</strong>necti<strong>on</strong><br />

No. Symbol Symbol designati<strong>on</strong><br />

4 C<strong>on</strong>trol and regulati<strong>on</strong> parts<br />

4. Hand�operated<br />

4.2 Remote c<strong>on</strong>trol<br />

4.3 Spring<br />

4.4 Mass<br />

4.5 Float<br />

4.6 P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong><br />

4.7 Membrane<br />

4.8 Electric motor<br />

4.9 Electro�magnetic<br />

5 Appliances<br />

5. Mudbox<br />

5.2 Filter or strainer<br />

5.3 Magnetic filter<br />

5.4 Separator<br />

5.5 Steam trap<br />

5.6 Centrifugal pump<br />

5.7 Gear or screw pump<br />

5.8 Hand pump (bucket)<br />

5.9 Ejector<br />

Page 2 of 3<br />

5. 0 Various accessories (text to be added)<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 38 66�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong>


<strong>MAN</strong> B&W Appendix A<br />

No. Symbol Symbol designati<strong>on</strong><br />

5. P<str<strong>on</strong>g>is</str<strong>on</strong>g>t<strong>on</strong> pump<br />

6 Fittings<br />

6. Funnel<br />

6.2 Bell�mounted pipe end<br />

6.3 Air pipe<br />

6.4 Air pipe with net<br />

6.5 Air pipe with cover<br />

6.6 Air pipe with cover and net<br />

6.7 Air pipe with pressure vacuum valve<br />

6.8<br />

The symbols used are in accordance with ISO/R 538� 967, except symbol No. 2. 9<br />

Fig. A.01.01: Symbols for piping<br />

Air pipe with pressure vacuum valve with<br />

net<br />

6.9 Deck fittings for sounding or filling pipe<br />

6. 0<br />

Short sounding pipe with selfclosing<br />

cock<br />

6. Stop for sounding rod<br />

No. Symbol Symbol designati<strong>on</strong><br />

Page 3 of 3<br />

178 30 61�4.1<br />

<strong>MAN</strong> B&W MC/MC�C, ME/ME-B/ME�C/ME�GI engines 198 38 66�2.3<br />

<strong>MAN</strong> <strong>Diesel</strong><br />

7<br />

Indicating instruments with ordinary<br />

symbol designati<strong>on</strong>s<br />

7. Sight flow indicator<br />

7.2 Observati<strong>on</strong> glass<br />

7.3 Level indicator<br />

7.4 D<str<strong>on</strong>g>is</str<strong>on</strong>g>tance level indicator<br />

7.5 Counter (indicate functi<strong>on</strong>)<br />

7.6 Recorder

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!