13.06.2015 Views

Symmetries and Group Theory in Particle Physics: An Introduction to ...

Symmetries and Group Theory in Particle Physics: An Introduction to ...

Symmetries and Group Theory in Particle Physics: An Introduction to ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

126 8 Unitary symmetries<br />

π a b = ˆζ a b = ξa ξ b − 1 2 δa b ξc ξ c = 1 √<br />

2<br />

(σ i ) a b πi , (8.50)<br />

where <strong>in</strong> the last term we have <strong>in</strong>troduced the isovec<strong>to</strong>r π of components<br />

normalized so that<br />

π i = 1 √<br />

2<br />

Tr(πσ i ) , (8.51)<br />

π a bπ b a = π i π i . (8.52)<br />

In matrix form, tak<strong>in</strong>g <strong>in</strong><strong>to</strong> account the correspondence between the quantum<br />

numbers of π ± , π 0 <strong>and</strong> those of the N N states, one gets<br />

π =<br />

( 1<br />

2 (ξ1 ξ 1 − ξ 2 ξ 2 ) ξ 1 ξ 2<br />

ξ 2 ξ 1<br />

1<br />

2 (ξ2 ξ 2 − ξ 1 ξ 1 )<br />

<strong>and</strong>, by comparison with Eq. (8.51),<br />

)<br />

=<br />

(<br />

√2<br />

1<br />

π 0 π + )<br />

π − − √ 1<br />

2<br />

π 0<br />

, (8.53)<br />

π ± = 1 √<br />

2<br />

(π 1 ∓ iπ 2 ) ,<br />

π 0 = π 3 .<br />

(8.54)<br />

F<strong>in</strong>ally, the πN system can be described on the basis of the decomposition<br />

D (1) ⊗ D ( 1 2) = D ( 1 2) ⊕ D ( 3 2) . (8.55)<br />

<strong>and</strong> the states can be classified <strong>in</strong> a doublet (I = 1 2 , I 3 = ± 1 2<br />

) <strong>and</strong> a quadruplet<br />

(I = 3 2 , I 3 = ± 3 2 , ±1 2 )<br />

I = 1 2<br />

I = 3 2<br />

√<br />

1<br />

⎧<br />

⎪⎨ I 3 = 1 2 3 pπ0 −<br />

√<br />

⎪⎩<br />

I 3 = − 1 2<br />

2 3 pπ− −<br />

⎧<br />

I 3 = 3 2<br />

pπ +<br />

√<br />

2<br />

3 nπ+<br />

√<br />

1<br />

3 nπ0 ,<br />

√ √<br />

⎪⎨ I 3 = 1 2<br />

2 3 pπ0 1<br />

+<br />

3 nπ+<br />

√ √ ,<br />

I 3 = − 1 1<br />

2 3 pπ− 2<br />

+<br />

3 nπ0<br />

⎪⎩<br />

I 3 = − 3 nπ − 2<br />

(8.56)<br />

where use has been made of Eq. (8.33) <strong>and</strong> of the Tables of the Clebsch-Gordan<br />

coefficients of Appendix A.<br />

Follow<strong>in</strong>g similar procedure, one can classify all hadrons <strong>in</strong><strong>to</strong> isosp<strong>in</strong> multiplets<br />

with any flavour quantum numbers. At first sight, all this appears as<br />

a formal game. <strong>Physics</strong> enters when one assumes that strong <strong>in</strong>teractions depend<br />

on the <strong>to</strong>tal isosp<strong>in</strong> I of the system <strong>and</strong> not on the third component I 3 ; <strong>in</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!