15.06.2015 Views

Microsatellite loci for Palaearctic gudgeons - Molecular Ecology ...

Microsatellite loci for Palaearctic gudgeons - Molecular Ecology ...

Microsatellite loci for Palaearctic gudgeons - Molecular Ecology ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Page 1 of 9<br />

<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

<strong>Microsatellite</strong> <strong>loci</strong> <strong>for</strong> <strong>Palaearctic</strong> <strong>gudgeons</strong>: markers <strong>for</strong> identifying intergeneric<br />

hybrids between Romanogobio and Gobio<br />

Jan Mendel,* Ivo Papoušek,* Eva Marešová,* Lukáš Vetešník,* Karel Halačka,* Michał<br />

Nowak,† and Dagmar Čížková*<br />

*Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i, Květná<br />

8, 60365 Brno, Czech Republic<br />

†University of Agriculture in Kraków, Spiczakowa 6, 30-199 Kraków-Mydlniki, Poland<br />

Keywords: Gobioninae, Romanogobio, endangered species, microsatellites<br />

Corresponding author: Jan Mendel, Květná 8, 603 65 Brno, Fax: +420 543 211 346; Email:<br />

jmendel@seznam.cz<br />

Running title: <strong>Microsatellite</strong>s <strong>for</strong> <strong>gudgeons</strong><br />

Abstract<br />

Six polymorphic microsatellite <strong>loci</strong> were isolated from the Danube whitefin gudgeon<br />

Romanogobio vladykovi. The number of alleles per locus varied from three to sixteen and the<br />

expected heterozygosities ranged from 0.404 – 0.897. In order to increase the number of<br />

microsatellite markers, five additional <strong>loci</strong> originally developed <strong>for</strong> Gobio gobio were<br />

successfully cross-amplified. The number of alleles per locus varied from two to fourteen.<br />

Their usefulness was confirmed by successful cross-amplification <strong>for</strong> 12 members of the<br />

gudgeon subfamily Gobioninae. The applicability of these markers was confirmed <strong>for</strong><br />

1


<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

Page 2 of 9<br />

intergeneric identification, discriminating between intergeneric hybrids and <strong>for</strong> population<br />

genetic investigations of endangered species from the genus Romanogobio.<br />

The representatives of the genus Romanogobio belong to the family Cyprinidae. This genus<br />

includes small freshwater fishes, collectively known as <strong>gudgeons</strong>, and contains many taxa that<br />

are endemic to various areas of Europe and Asia, as well as numerous threatened species.<br />

Our main motivation was based on a current study of <strong>gudgeons</strong> in the Eurasian context<br />

(Mendel 2007; Mendel et al. 2008) because the common distribution, the identical or very<br />

similar biological characteristics of these taxa, the considerable visual similarity, as well as<br />

the very frequent occurrence of hybridization events often lead to taxonomic confusion.<br />

Presently, a reliable morphological and molecular key is being intensively sought which<br />

would eliminate erroneous species identifications both in the field and in museum collections.<br />

Along with other factors, the non-existence of microsatellite markers is the reason <strong>for</strong><br />

insufficient knowledge of the status of populations of the disappearing and often threatened<br />

species of <strong>gudgeons</strong> in Europe, which hampers the establishment of suitable conservation<br />

measures. For example, according to the latest Red List of Lampreys and Fishes of the Czech<br />

Republic, the COUNCIL DIRECTIVE 92/43/EEC of 1992, and Order 166/2005 Coll., six<br />

Sites of Community Importance (SCIs) in the hydrographic system of the CR were announced<br />

<strong>for</strong> two <strong>gudgeons</strong> from the “kesslerii group” and “albipinnatus group” which are critically<br />

endangered or vulnerable. The Czech Republic proceeded to conduct their regular monitoring<br />

nevertheless, still without any knowledge of their genetic diversity.<br />

To develop microsatellite primers, we employed a modified enrichment protocol developed<br />

by Estoup & Martin (1996). Genomic (g) DNA was extracted (Genomic DNA Mini kit, KRD)<br />

from an ethanol-preserved fin of a single gudgeon collected in 2003 from the Dyje River<br />

2


Page 3 of 9<br />

<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

(Czech Republic). Total gDNA was digested with an RsaI restriction enzyme (Promega).<br />

Following the restriction digest, MluI oligo adaptors (RSA21 and phosphorylated RSA25) that<br />

serve as priming sites <strong>for</strong> the PCR were ligated onto the ends of gDNA fragments. Two<br />

biotinylated probes [dinucleotide (TG) 10 and tetranucleotide (ATCT) 5 ] were hybridized to the<br />

ligated DNA<br />

and selected using streptavidin magnetic particles (Promega). PCRs were<br />

per<strong>for</strong>med on the microsatellite-enriched eluate using one of the oligo adaptors (RsaI) as a<br />

primer. The amplification products were purified (QIAquick PCR Purification Kit, QIAGEN)<br />

and ligated into a plasmid vector (pGEM-T Easy Vector system II, Promega), trans<strong>for</strong>med<br />

into JM109 competent cells (Promega), and plated onto Luria-Bertani (LB) agar medium.<br />

Recombinant plasmids were identified by blue-white screening. Positive-trans<strong>for</strong>med cells<br />

were grown on LB agar, transferred onto Hybond-N + membranes (Amersham), screened<br />

using dioxigenin-end-labelled (TC) 10 and (ATCT) 5 probes (DIG Oligonucleotide Tailing Kit,<br />

Roche) and visualised using a DIG Nucleic Acid Detection Kit (Roche). We obtained 185<br />

positive clones from the two libraries and each clone was sequenced by Macrogen (South<br />

Korea). The sequences from 89 clones were of high quality and contained repeat regions. The<br />

primers were developed from flanking sequences using Oligo (Rychlik 2007). Successful<br />

amplifications with polymorphisms were detected with five unlabelled primer pairs based on<br />

PCR tests with 10 - 15 reference specimens. PCR conditions were optimized to produce clear<br />

bands on agarose gels and five <strong>loci</strong>-<strong>for</strong>ward primers were labelled with a fluorescent dye<br />

(Applied Biosystems; Table 1).<br />

PCRs were per<strong>for</strong>med on Mastercycler pro (Eppendorf) in a total volume of 10 µL using PPP<br />

Master Mix (Top-Bio) following the manufacturer’s protocol, 1 pmol of each primer and ~30<br />

ng of genomic DNA. The PCR consisted of an initial denaturation cycle of 95°C <strong>for</strong> 3 min; 35<br />

cycles at 95°C <strong>for</strong> 1 min; 50-60°C <strong>for</strong> 50 s (Table 1), elongation at 72°C <strong>for</strong> 60 s; and final<br />

3


<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

Page 4 of 9<br />

extension at 72°C <strong>for</strong> 10 min. The amplified products were diluted, of which 1 µL was added<br />

to 12 µL of <strong>for</strong>mamide and 500 LIZ Size Standard (Life Technologies) and electrophoresed<br />

by ABI PRISM 310 Genetic Analyzer (Applied Biosystems) using GENESCAN version 3.7.<br />

The conditions and characteristics of the <strong>loci</strong> are given in Table 1. We calculated the number<br />

of alleles per locus, observed and expected heterozygosities, the deviation from Hardy-<br />

Weinberg equilibrium and linkage disequilibrium expectations, and the frequency of null<br />

alleles using GENALEX 6 (Peakall & Smouse 2006), MICRO-CHECKER 2.2.3 (Van<br />

Oosterhout et al. 2004) and online version of GENEPOP 1.2 (Raymond & Rousset 1995).<br />

Our study developed six unique polymorphic dinucleotide microsatellite <strong>loci</strong> isolated from R.<br />

vladykovi (Rvla; Table 1). At the same time, using cross-species amplification we confirmed<br />

the applicability of these markers <strong>for</strong> 7 other species of the genus Romanogobio and 3 species<br />

of the genus Gobio. Two additional species of the genus Gobio (G. carpathicus and G.<br />

volgensis) were included in the analysis in order that the applicability of some <strong>loci</strong> <strong>for</strong> the<br />

easy identification of intergeneric hybrids and <strong>for</strong> the identification of both the genera might<br />

be reliably evaluated (Table 2).<br />

We evaluated the amplification patterns in 12 members of the gudgeon subfamily<br />

Gobioninae, including R. vladykovi (Dyje River, Czech Republic), R. belingi (Sluch River,<br />

Ukraine), R. albipinnatus (Moksha River, Russia), R. parvus (Kuban River, Russia), R.<br />

pentatrichus (Kuban River, Russia), R. uranoscopus (Ulička River, Slovakia), R. kesslerii<br />

(San River, Poland), R. banaticus (Bečva River, Czech Republic), G. gobio (Elbe River,<br />

Czech Republic), G. obtusirostris (Váh River, Slovakia), Gobio sp. 1 (Topľa River, Slovakia),<br />

G. carpathicus (Laborec River, Slovakia), G. volgensis (Bol’shaya Lašva River, Russia).<br />

Prior to this, all species had been both morphologically and molecularly identified (Mendel<br />

2007; Mendel et al. 2008).<br />

4


Page 5 of 9<br />

<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

The microsatellite <strong>loci</strong> in R. vladykovi revealed both moderate (Rvla22114-I, Rvla22114-II,<br />

Rvla22211) and high genetic variation (Rvla21030, Rvla21177, Rvla21144). Genotypes of fin<br />

samples from the natural population (Dyje River) showed polymorphisms with three to<br />

sixteen alleles per locus among 21 - 23 individuals. Most <strong>loci</strong> were at Hardy-Weinberg<br />

equilibrium, except <strong>for</strong> Rvla22211, which showed a significant excess of homozygotes,<br />

possibly caused by the presence of null alleles. Most <strong>loci</strong> were unlinked, except <strong>for</strong><br />

Rvla22114 (based on MICRO-CHECKER results, see Table 1).<br />

In order to supplement the design of microsatellite panel <strong>for</strong> the genus Romanogobio, we<br />

proved the usefulness of additional five <strong>loci</strong> (Gob3, Gob12, Gob15, Gob22, Gob28) from the<br />

microsatellite library of G. gobio (Knapen et al. 2006). The microsatellite <strong>loci</strong> in R. vladykovi<br />

revealed both low (Gob15) and high genetic variation (Gob3, Gob12, Gob22, Gob28), with<br />

two to fourteen alleles per locus among 20 - 27 individuals. Most <strong>loci</strong> were at Hardy-<br />

Weinberg equilibrium, except <strong>for</strong> Gob3, similarly as in Knapen et al. (2006), possibly caused<br />

by the presence of null alleles (Table 1).<br />

Table 2 provides cross-species amplification results <strong>for</strong> 10 - 12 species from both the genera.<br />

From the 11 primer pairs cross-amplified in this study, 6 presented here and 5 from Knapen et<br />

al. 2006, seven resulted in an amplified PCR product <strong>for</strong> all the tested species and three <strong>for</strong><br />

the eight, nine resp. eleven species.<br />

The detected allele length and chosen combination of fluorescent labelling enables the<br />

employment of the entire developed panel of 11 microsatellite <strong>loci</strong> in a multiplex PCR<br />

analysis.<br />

Two <strong>loci</strong>, Rvla22114_II (A) and Rvla22211 (B), proved to be more suitable <strong>for</strong> generic<br />

identification and <strong>for</strong> easier detection of intergeneric hybridization events. Locus A exhibited<br />

the generic alleles within 196 - 202 bp <strong>for</strong> Romanogobio and within 308 - 338 bp <strong>for</strong> Gobio.<br />

5


<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

Page 6 of 9<br />

For Romanogobio, locus B exhibited the generic alleles within 152 and 154 bp, always in the<br />

homozygotic <strong>for</strong>m, while the second allele did not amplify. For the representatives of the<br />

genus Gobio and the intergeneric hybrids, the alleles 146 or 148 bp were always attached,<br />

<strong>for</strong>ming a heterozygotic pattern. This was true <strong>for</strong> all tested species except R. pentatrichus.<br />

Furthermore, <strong>loci</strong> Gob15, Gob22 and Gob28 also appear to be potentially interesting <strong>for</strong><br />

hybrid identification and taxonomical purposes. Further analyses of a greater number of<br />

specimens from the individual species will be required <strong>for</strong> the evaluation of the applicability<br />

of the developed <strong>loci</strong>.<br />

In conclusion, our study suggests that these <strong>loci</strong> may be helpful <strong>for</strong> intergeneric identification,<br />

<strong>for</strong> the discrimination of intergeneric hybrids and <strong>for</strong> population genetic investigations of<br />

disappearing and endangered species of the genus Romanogobio.<br />

Acknowledgements<br />

This study was carried out within the framework of research project 206/09/P608 supported<br />

by the Grant Agency of the Czech Republic. We are thankful to E. D. Vasileva, J. Koščo <strong>for</strong><br />

their help with obtaining the samples.<br />

References<br />

Estoup A, Martin O (1996) Marqueurs microsatellites: isolement a`l’aide de sondes non<br />

radioactives, caracte´risation et mise au point. Personal communication, protocols available in<br />

the web at http://www.agroparistech.fr/svs/genere/microsat/microsat.htm.<br />

Knapen D, Taylor MI, Blust R, Verheyen E (2006) Isolation and charakterization of<br />

polymorphic<br />

microsatellite <strong>loci</strong> in the gudgeon, Gobio gobio (Cyprinidae). <strong>Molecular</strong><br />

<strong>Ecology</strong> Notes, 6, 387-389.<br />

6


Page 7 of 9<br />

<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

Mendel J (2007) The using of mtDNA <strong>for</strong> characteristics of population structures of species<br />

from the genera Gobio and Romanogobio. Thesis, Brno, 203pp. (in Czech with English<br />

summary)<br />

Mendel J, Lusk S, Vasil'eva ED, Vasil'ev VP, Lusková V, Ekmekci FG, Erk'kan F, Ruchin A,<br />

Koščo J, Vetešník L, Halačka K, Šanda R, Pashkov AN, Reshetnikov SI (2008) <strong>Molecular</strong><br />

phylogeny of the genus Gobio Cuvier, 1816 (Teleostei: Cyprinidae) and its contribution to<br />

taxonomy. <strong>Molecular</strong> Phylogenetics and Evolution, 47, 1061-1075.<br />

Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic<br />

software <strong>for</strong> teaching and research. <strong>Molecular</strong> <strong>Ecology</strong> Notes, 6, 288-295.<br />

Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software <strong>for</strong> exact<br />

tests and ecumenicism. Journal of Heredity, 86, 248-249.<br />

Rychlik W (2007) Oligo 7 primer analysis software. In: Yuryev A(ed). Methods in molecular<br />

biology vol. 402: PCR primer design. Humana Press Inc., Totowa, pp 35–59.<br />

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software<br />

<strong>for</strong> identifying and correcting genotyping errors in microsatellite data. <strong>Molecular</strong> <strong>Ecology</strong><br />

Notes, 4, 535-538.<br />

Data accessibility<br />

Data sequences: Genbank accessions: DQ207799, DQ207801, DQ207802, DQ207804,<br />

DQ207805, JQ993103 - JQ993107.<br />

7


<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

Page 8 of 9<br />

Table 1 Characteristics of six microsatellite <strong>loci</strong> isolated from Romanogobio vladykovi and five <strong>loci</strong> prepared from cross-species<br />

amplification<br />

Locus Repeat motif Primer sequence Size (bp) N N a H O/H E P-value Dye Null freq. T a (°C)<br />

Rvla21144 (AC) 2(ACTC) 3(AC) 8 CGG TTG ATG AGT TCG CTG TAG 269-287 21 8 0.571/0.760 NS VIC 0.107 60<br />

GTC ACA TGA TCC TCG TTT GG<br />

Rvla21177 (TG) 11 CTG ACT ACA CAT GGT TAA CGC 210-258 21 14 0.900/0.897 NS 6-FAM 0.024 54<br />

CGG CTG CTT TAA TGT CCA C<br />

Rvla22114-I (TG) 10 CGG CTT CCC ATA GTA AAC 142-146 23 3 0.364/0.404 NS VIC 0.031 53<br />

GTT AGG CCT GGA GTC AAT G<br />

Rvla22114-II (AC) 13GC(AC) 22 CGG CTT CCC ATA GTA AAC 196-200 21 3 0.762/0.618 NS VIC 0 53<br />

GTT AGG CCT GGA GTC AAT G<br />

Rvla22211 (CA) 14 GCA AAC CGT ATT TTC TAT CCC 152-156 23 3 0/0.541* ‡ NED 0.350 52<br />

GTG AAA TAT GAG GAC GTT CCC<br />

Rvla21030 (CA) 11AA(CT) 18 CTT CTG ATT TAA TGT TAG GGT 82-120 23 16 0.773/0.888 NS 6-FAM 0.083 50<br />

TCC CAA TGA CGT GAT AGA G<br />

Gob3 † (GA) 18 ACT CTG CCC ACA GTC ACT CG 182-212 25 11 0.320/0.847 ‡ NED 0.285 58<br />

TGA AAT GTT TTC CTC AAA AAC G<br />

Gob12 † (CA) 7AA(CA) 19 AAG GAA ATG CAG AAT CAC AAA ATT AC 165-197 20 9 0.650/0.860 NS 6-FAM 0.113 62<br />

GAA CTT GCA AAA TAG CAG GGT G<br />

Gob15 † (CA) 10 TGT CCA CGT TCT GGT CAC AG 135-137 22 2 0.318/0.499 NS 6-FAM 0.121 57<br />

CTT TAA ATG TTA TTT GGT CTT TGC AG<br />

Gob22 † (CA) 9N 18(CA) 10 GAT TGC CAT GGT TAC CGA AT 200-246 27 14 0.704/0.838 NS PET 0.073 58<br />

TCT CCA CCT CGA AAT CAT CC<br />

Gob28 † (GT) 9(GA) 4(GT) 3 CGC ACA AAC AGC TCA GAC TC 216-234 26 10 0.769/0.848 NS VIC 0.042 60<br />

CGGTATGTACAAGCCAGATGAA<br />

N, number of analyzed specimens; Na, number of alleles; H O /H E , average observed/expected heterozygosities; P value <strong>for</strong> Hardy-Weinberg<br />

Equilibrium; Dye, 5' fluorescent label; Null freq., frequency of null alleles; Ta, annealing temperature; *all individuals were homozygotes;<br />

‡indicates significant departure from HWE (P < 0.05); †indicates homologous cross-species amplified <strong>loci</strong><br />

8


Page 9 of 9<br />

<strong>Molecular</strong> <strong>Ecology</strong> Resources<br />

Table 2 Characteristics of eleven microsatellite <strong>loci</strong> <strong>for</strong> the fish subfamily Gobioninae<br />

R. belingi R. albipinnatus R. parvus R. uranoscopus R. banaticus R. kesslerii R. pentatrichus<br />

Locus N/N a Size (bp) N/N a Size (bp) N/N a Size (bp) N/N a Size (bp) N/N a Size (bp) N/N a Size (bp) N/N a Size (bp)<br />

Rvla21144 3/3 277-287 4/6 269-289 2/3 271-287 4/3 279-291 3/7 273-289 5/4 273-319 1/1 271<br />

Rvla21177 3/4 228-256 4/5 210-234 2/4 218-308 4/5 210-250 3/7 212-262 5/7 214-240 1/2 216-224<br />

Rvla22114_I 2/1 144 4/3 142-146 2/1 144 4/1 144 3/1 144 5/1 146 1/1 146<br />

Rvla22114_II 3/2 196-200 4/2 196-202 2/1 196 4/1 200 3/3 196-200 4/2 198-202 1/- -<br />

Rvla22211 3/1 154 4/1 154 1/1 154 4/1 154 3/2 152-154 5/1 154 1/2 146-154<br />

Rvla21030 2/4 84-96 4/4 74-92 2/3 74-102 3/5 118-136 1/2 86-94 3/3 88-94 1/1 84<br />

Gob3 4/2 171-193 2/1 172 2/- - 2/3 205-221 2/2 163-165 2/- - 2/4 212-238<br />

Gob12 4/4 173-183 2/2 151-154 2/2 151-154 2/2 151-162 2/2 149-163 2/2 138-150 2/2 150-157<br />

Gob15 4/2 137-139 2/2 138-140 2/3 138-142 2/1 138 2/2 138-150 2/3 171-183 2/2 140-146<br />

Gob22 4/3 210-232 2/3 267-293 2/4 226-286 2/4 224-254 2/2 200-202 2/2 181-183 2/1 178<br />

Gob28 4/4 222-228 2/2 222-234 2/3 214-230 2/2 212-224 2/3 208-240 2/2 236-244 2/2 226-228<br />

N, number of analyzed specimens; N a , number of alleles; NA, locus did not analyze; -, locus did not amplify; *, Knapen et al., 2006.<br />

Table 2 Continued<br />

G. gobio G. obtusirostris Gobio sp. 1 G. carpathicus G. volgensis<br />

Locus N/N a Size (bp) N/N a Size (bp) N/N a Size (bp) N/N a Size (bp) N/N a Size (bp)<br />

Rvla21144 7/8 275-291 2/4 267-283 1/2 269-287 NA NA NA NA<br />

Rvla21177 7/6 214-234 2/3 212-230 1/2 220-254 NA NA NA NA<br />

Rvla22114_I 5/2 144-146 1/1 144 1/- - NA NA NA NA<br />

Rvla22114_II 7/5 308-338 4/5 312-324 1/1 338 3/1 338 2/2 314-324<br />

Rvla22211 8/4 146-154 2/2 146-154 1/2 146-154 2/2 146-154 2/4 146-154<br />

Rvla21030 4/3 96-112 2/- - 1/1 106 NA NA NA NA<br />

Gob3 82/12 163-208* 2/2 181-187 2/2 168-204 NA NA NA NA<br />

Gob12 82/13 188-214* 2/3 178-186 2/2 115-151 NA NA NA NA<br />

Gob15 82/5 139-154* 2/3 144-161 2/3 142-153 NA NA NA NA<br />

Gob22 82/7 179-203* 2/3 185-191 2/3 183-195 NA NA NA NA<br />

Gob28 82/6 190-202* 2/3 209-215 2/2 212-216 NA NA NA NA<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!