15.06.2015 Views

The Topology of Chaos - Department of Physics - Drexel University

The Topology of Chaos - Department of Physics - Drexel University

The Topology of Chaos - Department of Physics - Drexel University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

<strong>The</strong> <strong>Topology</strong> <strong>of</strong> <strong>Chaos</strong><br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Robert Gilmore<br />

<strong>Physics</strong> <strong>Department</strong><br />

<strong>Drexel</strong> <strong>University</strong><br />

Philadelphia, PA 19104<br />

robert.gilmore@drexel.edu<br />

2011 Brazilian Conference on Dynamics, Control, and Applications<br />

Águas de Lindóia, Sao Paulo, Brazil<br />

August 29 — September 2, 2011<br />

August 16, 2011<br />

Embed-03


Abstract<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Data generated by a low-dimensional dynamical system<br />

operating in a chaotic regime can be analyzed using topological<br />

methods. <strong>The</strong> process is (almost) straightforward. On a scalar<br />

time series, the following steps are taken:<br />

1 Unstable periodic orbits are identified;<br />

2 An embedding is constructed; ⋆ ⋆<br />

3 <strong>The</strong> topological organization <strong>of</strong> these periodic orbits is<br />

determined;<br />

4 Some orbits are used to identify an underlying branched<br />

manifold;<br />

5 <strong>The</strong> branched manifold is used as a tool to predict the<br />

remaining topological invariants.<br />

This algorithm has its own built in rejection criterion.


Abstract - Key Point<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

One s<strong>of</strong>t spot in this analysis program is the embedding step.<br />

Different embeddings can yield different topological results.<br />

This makes the following question exciting:<br />

When you analyze embedded data: How much <strong>of</strong><br />

what you learn is about the embedding and how<br />

much is about the underlying dynamics?<br />

This question has been answered by creating a representation<br />

theory <strong>of</strong> low dimensional strange attractors. It is now possible<br />

to totally disentangle the mechanism generating the underlying<br />

dynamics from topological structure induced by the embedding<br />

step.<br />

Embed-02<br />

Embed-03


Table <strong>of</strong> Contents<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Outline<br />

1 Overview<br />

2 Experimental Challenge<br />

3 Embedding Problems<br />

4 Topological Analysis Program<br />

5 Representation <strong>The</strong>ory <strong>of</strong> Strange Attractors<br />

6 Classification <strong>of</strong> Strange Attractors<br />

7 Basis Sets <strong>of</strong> Orbits<br />

8 Bounding Tori<br />

9 Summary<br />

Embed-01<br />

Embed-02<br />

Embed-03


Experimental Schematic<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Laser Experimental Arrangement<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Real Data<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Experimental Data: LSA<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Lefranc - Cargese<br />

Embed-03


Ask the Masters<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Periodic Orbits are the Key<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Joseph Fourier<br />

Linear Systems<br />

Henri Poincare<br />

Nonlinear Systems


Periodic Orbit Surrogates<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Searching for Periodic Orbits<br />

Θ(i, i + p) = |x(i) − x(i + p)|<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Real Data<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

“Periodic Orbits” in Real Data<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Mechanism<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Stretching & Squeezing in a Torus<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Time Evolution<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Rotating the Poincaré Section<br />

around the axis <strong>of</strong> the torus<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Time Evolution<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Rotating the Poincaré Section<br />

around the axis <strong>of</strong> the torus<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Lefranc - Cargese


Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Creating Something from “Nothing”<br />

scalar time series −→ vector time series<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Embedding is an Art.<br />

Perhaps more like Black Magic.<br />

<strong>The</strong>re are many ways to conjure an embedding.<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Varieties <strong>of</strong> Embeddings<br />

x(i) → (y 1 (i), y 2 (i), y 3 (i), · · · )<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Delay (x(i), x(i − τ 1 ), x(i − τ 2 ), x(i − τ 3 ), · · · )<br />

Delay y j (i) = x(i − [j − 1] τ) τ, N<br />

Differential y 1 = x, y 2 = dx/dt, y 3 = d 2 x/dt 2 , · · ·<br />

Int. − Diff. y 1 = ∫ x<br />

−∞ dx, y 2 = x, y 3 = dx/dt, · · ·<br />

SVD<br />

EoM<br />

Hilbert − Tsf.<br />

“Circular ′′<br />

Knotted<br />

Other<br />

Embed-03


Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Circular and Knotted Embeddings<br />

If there is a “hole in the middle” then parameterize the scalar<br />

observable by an angle θ: x(t) → x(θ)<br />

Introduce Knot coordinates (“harmonic knots”)<br />

K(θ) = (ξ(θ), η(θ), ζ(θ)) = K(θ + 2π)<br />

Repere Mobile: {t(θ), n(θ), b(θ)}<br />

x(t) → x(θ) → K(θ) + y 1 n(θ) + y 2 b(θ)<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Some Knotted Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Simple “Unknot”<br />

Trefoil Knot


More Knotted Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Granny Knot<br />

Square Knot


<strong>Chaos</strong><br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Motion that is<br />

• Deterministic:<br />

• Recurrent<br />

• Non Periodic<br />

<strong>Chaos</strong><br />

dx<br />

dt = f(x)<br />

• Sensitive to Initial Conditions<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Strange Attractor<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Strange Attractor<br />

<strong>The</strong> Ω limit set <strong>of</strong> the flow. <strong>The</strong>re are<br />

unstable periodic orbits “in” the<br />

strange attractor. <strong>The</strong>y are<br />

• “Abundant”<br />

• Outline the Strange Attractor<br />

• Are the Skeleton <strong>of</strong> the Strange<br />

Attractor<br />

Embed-01<br />

Embed-02<br />

Embed-03


Skeletons<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

UPOs Outline Strange Attractors<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

BZ reaction


Skeletons<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

UPOs Outline Strange attractors<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Laser w. Modulated Losses


Organization<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

How Are Orbits Organized<br />

Ask the Master:<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Carl Friedrich Gauss


Dynamics and <strong>Topology</strong><br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Organization <strong>of</strong> UPOs in R 3 :<br />

Gauss Linking Number<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

LN(A, B) = 1 ∮ ∮ (rA − r B )·dr A ×dr B<br />

4π |r A − r B | 3<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

# Interpretations <strong>of</strong> LN ≃ # Mathematicians in World<br />

Embed-01<br />

Embed-02<br />

Embed-03


Linking Numbers<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Linking Number <strong>of</strong> Two UPOs<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Lefranc - Cargese


Evolution in Phase Space<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

One Stretch-&-Squeeze Mechanism<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Motion <strong>of</strong> Blobs in Phase Space<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Another Stretch-&-Squeeze Mechanism<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

“Lorenz Mechanism”<br />

Embed-03


Motion <strong>of</strong> Blobs in Phase Space<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Stretching — Folding<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Collapse Along the Stable Manifold<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Birman - Williams Projection<br />

Identify x and y if<br />

lim |x(t) − y(t)| → 0<br />

t→∞<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Fundamental <strong>The</strong>orem<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Birman - Williams <strong>The</strong>orem<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

If:<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

<strong>The</strong>n:<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Fundamental <strong>The</strong>orem<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Birman - Williams <strong>The</strong>orem<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

If:<br />

Certain Assumptions<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

<strong>The</strong>n:<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Fundamental <strong>The</strong>orem<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Birman - Williams <strong>The</strong>orem<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

If:<br />

Certain Assumptions<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

<strong>The</strong>n:<br />

Specific Conclusions


Birman-Williams <strong>The</strong>orem<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Assumptions, B-W <strong>The</strong>orem<br />

A flow Φ t (x)<br />

• on R n<br />

is dissipative, n = 3, so that<br />

λ 1 > 0, λ 2 = 0, λ 3 < 0.<br />

• Generates a hyperbolic strange<br />

attractor SA<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

IMPORTANT: <strong>The</strong> underlined assumptions can be relaxed.<br />

Embed-02<br />

Embed-03


Birman-Williams <strong>The</strong>orem<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Conclusions, B-W <strong>The</strong>orem<br />

• <strong>The</strong> projection maps the strange attractor SA onto a<br />

2-dimensional branched manifold BM and the flow Φ t (x)<br />

on SA to a semiflow Φ(x) t on BM.<br />

• UPOs <strong>of</strong> Φ t (x) on SA are in 1-1 correspondence with<br />

UPOs <strong>of</strong> Φ(x) t on BM. Moreover, every link <strong>of</strong> UPOs <strong>of</strong><br />

(Φ t (x), SA) is isotopic to the correspond link <strong>of</strong> UPOs <strong>of</strong><br />

(Φ(x) t , BM).<br />

Remark: “One <strong>of</strong> the few theorems useful to experimentalists.”<br />

Embed-01<br />

Embed-02<br />

Embed-03


A Very Common Mechanism<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Attractor<br />

Rössler:<br />

Branched Manifold


A Mechanism with Symmetry<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Attractor<br />

Lorenz:<br />

Branched Manifold


Examples <strong>of</strong> Branched Manifolds<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Inequivalent Branched Manifolds<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Aufbau Princip for Branched Manifolds<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Any branched manifold can be built up from stretching<br />

and squeezing units<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

subject to the conditions:<br />

• Outputs to Inputs<br />

• No Free Ends<br />

Embed-03


Dynamics and <strong>Topology</strong><br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Rossler System<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Dynamics and <strong>Topology</strong><br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Lorenz System<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Dynamics and <strong>Topology</strong><br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Poincaré Smiles at Us in R 3<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

• Determine organization <strong>of</strong> UPOs ⇒<br />

• Determine branched manifold ⇒<br />

• Determine equivalence class <strong>of</strong> SA<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Topological Analysis Program<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Topological Analysis Program<br />

Locate Periodic Orbits<br />

Create an Embedding<br />

Determine Topological Invariants (LN)<br />

Identify a Branched Manifold<br />

Verify the Branched Manifold<br />

—————————————————————————-<br />

Model the Dynamics<br />

Validate the Model


Locate UPOs<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Method <strong>of</strong> Close Returns<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Embeddings<br />

Many Methods: Time Delay, Differential, Hilbert Transforms,<br />

SVD, Mixtures, ...<br />

Tests for Embeddings: Geometric, Dynamic, Topological †<br />

None Good<br />

We Demand a 3 Dimensional Embedding<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Determine Topological Invariants<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Compute Table <strong>of</strong> Expt’l LN<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Determine Topological Invariants<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Compare w. LN From Various BM<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Determine Topological Invariants<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Guess Branched Manifold<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Lefranc - Cargese


Determine Topological Invariants<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Identification & ‘Confirmation’<br />

• BM Identified by LN <strong>of</strong> small number <strong>of</strong> orbits<br />

• Table <strong>of</strong> LN GROSSLY overdetermined<br />

• Predict LN <strong>of</strong> additional orbits<br />

• Rejection criterion (Reject or Fail to Reject)<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Determine Topological Invariants<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

What Do We Learn?<br />

• BM Depends on Embedding<br />

• Some things depend on embedding, some don’t<br />

• Depends on Embedding: Global Torsion, Parity, ..<br />

• Independent <strong>of</strong> Embedding: Mechanism<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Perestroikas <strong>of</strong> Strange Attractors<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Evolution Under Parameter Change<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Lefranc - Cargese


Perestroikas <strong>of</strong> Strange Attractors<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Evolution Under Parameter Change<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Lefranc - Cargese


Perestroikas <strong>of</strong> Strange Attractors<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Evolution Under Parameter Change<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Used and Martin — Zaragosa<br />

Embed-03


Perestroikas <strong>of</strong> Strange Attractors<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Evolution Under Parameter Change<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Used and Martin — Zaragosa


An Unexpected Benefit<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Analysis <strong>of</strong> Nonstationary Data<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Lefranc - Cargese<br />

Embed-03


Our Hope → Now a Result<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Compare with<br />

Original Objectives<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Construct a simple, algorithmic procedure for:<br />

Classifying strange attractors<br />

Extracting classification information<br />

from experimental signals.<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Representations<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Representations<br />

An embedding creates a diffeomorphism between an<br />

(‘invisible’) dynamics in someone’s laboratory and a (‘visible’)<br />

attractor in somebody’s computer.<br />

Embeddings provide a representation <strong>of</strong> an attractor.<br />

Equivalence is by Isotopy.<br />

Irreducible is by Dimension<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Representations<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Representations<br />

We know about representations from studies <strong>of</strong> groups and<br />

algebras.<br />

We use this knowledge as a guiding light.<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Representation Labels<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Inequivalent Irreducible Representations<br />

Irreducible Representations <strong>of</strong> 3-dimensional Genus-one<br />

attractors are distinguished by three topological labels:<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Parity<br />

Global Torsion<br />

Knot Type<br />

P<br />

N<br />

KT<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Γ P,N,KT (SA)<br />

Mechanism (stretch & fold, stretch & roll) is an invariant <strong>of</strong><br />

embedding. It is independent <strong>of</strong> the representation labels.


Representation Labels<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Global Torsion & Parity<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Inequivalence in R 3<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Inequivalence in R 3<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Creating Isotopies<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Equivalent Reducible Representations<br />

Topological indices (P,N,KT) are obstructions to isotopy for<br />

embeddings <strong>of</strong> minimum dimension (irreducible<br />

representations).<br />

Are these obstructions removed by injections into higher<br />

dimensions (reducible representations)?<br />

Systematically?<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Equivalences<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Crossing Exchange in R 4<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Parity reversal is also possible in R 4 by isotopy.<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Isotopies<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

2 Twists = 1 Writhe = Identity<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Z −→ Z 2<br />

Global Torsion −→ Binary Op<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Creating Isotopies<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Equivalences by Injection<br />

Obstructions to Isotopy<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

R 3<br />

Global Torsion<br />

Parity<br />

Knot Type<br />

→ R 4<br />

Global Torsion<br />

→ R 5<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

<strong>The</strong>re is one Universal reducible representation in R N , N ≥ 5.<br />

In R N the only topological invariant is mechanism.<br />

Embed-01<br />

Embed-02<br />

Embed-03


Classifications<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Can We Classify<br />

Strange Attractors?<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Chemists have their classification.<br />

Nuclear Physicists have their classification.<br />

Particle Physicists have their classification.<br />

Astronomers have their classification.<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Mendeleev’s Table <strong>of</strong> the Chemical Elements<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Atomic Nuclei<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Table <strong>of</strong> Atomic Nuclei<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Stars<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Hertzsprung-Russell Diagram<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Challenge<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

How Does it Work Out?<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Chemical Elements<br />

Atomic Nuclei<br />

Stars<br />

1 Integer: N P<br />

2 Integers: N P , N N<br />

1 Continuous variable M + exceptions<br />

Exp’tal-04<br />

Exp’tal-05<br />

Strange Attractors ? ? ? ?<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


An Experimental Study<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

What We Did<br />

We analyzed data from a Laser with Saturable Absorber (LSA).<br />

3 Different absorbers were used.<br />

For each absorber data were taken under 6 - 10 operating<br />

conditions.<br />

<strong>The</strong>re was a total <strong>of</strong> 25 different data sets.<br />

We wanted to “prove experimentally” that changing the<br />

absorber/operating condition served merely to push to flow<br />

around on the same branched manifold.<br />

Embed-02<br />

Embed-03


An Experimental Observation<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

What We Found<br />

When certain orbits (UPOs) were present they were invariably<br />

accompanied by a specific set <strong>of</strong> other orbits.<br />

This led us to propose that certain orbits ‘force’ other orbits.<br />

Forcing is topological.<br />

A discrete set <strong>of</strong> “basis orbits” serves to identify the complete<br />

collection <strong>of</strong> UPOs present in an attractor.<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Basis Set <strong>of</strong> Orbits<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Forcing Diagram - Horseshoe<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


An Ongoing Problem<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Status <strong>of</strong> Problem<br />

Horseshoe organization - active<br />

More folding - barely begun<br />

Circle forcing - even less known<br />

Higher genus - new ideas required<br />

Higher dimension - ???<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Perestroikas <strong>of</strong> Branched Manifolds<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Constraints<br />

Branched manifolds largely constrain the ‘perestroikas” that<br />

forcing diagrams can undergo.<br />

Is there some mechanism/structure that constrains the types <strong>of</strong><br />

perestroikas that branched manifolds can undergo?<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Perestroikas <strong>of</strong> Branched Manifolds<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Constraints on Branched Manifolds<br />

“Inflate” a strange attractor<br />

Union <strong>of</strong> ɛ ball around each point<br />

Boundary is surface <strong>of</strong> bounded 3D manifold<br />

Torus that bounds strange attractor<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Torus and Genus<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Torus, Longitudes, Meridians<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Tori are identified by genus g and dressed with a surface flow<br />

induced from that creating the strange attractor.<br />

Embed-02<br />

Embed-03


Flows on Surfaces<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Surface Singularities<br />

Flow field: three eigenvalues: +, 0, –<br />

Vector field “perpendicular” to surface<br />

Eigenvalues on surface at fixed point: +, –<br />

All singularities are regular saddles<br />

∑<br />

s.p. (−1)index = χ(S) = 2 − 2g<br />

# fixed points on surface = index = 2g - 2<br />

Singularities organize the surface flow dressing the torus<br />

Embed-02<br />

Embed-03


Flows in Vector Fields<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Flow Near a Singularity<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Some Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Torus Bounding Lorenz-like Flows<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Canonical Forms<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Twisting the Lorenz Attractor<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Constraints Provided by Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Two possible branched manifolds<br />

in the torus with g=4.<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Labeling Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Labeling Bounding Tori<br />

Poincaré section is disjoint union <strong>of</strong> g-1 disks.<br />

Transition matrix sum <strong>of</strong> two g-1 × g-1 matrices.<br />

Both are g-1 × g-1 permutation matrices.<br />

<strong>The</strong>y identify mappings <strong>of</strong> Poincaré sections to P’sections.<br />

Bounding tori labeled by (permutation) group theory.<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Some Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Bounding Tori <strong>of</strong> Low Genus<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Exponential Growth<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

<strong>The</strong> Growth is Exponential<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Motivation<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Some Genus-9 Bounding Tori<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Aufbau Princip for Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Aufbau Princip for Bounding Tori<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

<strong>The</strong>se units (”pants, trinions”) surround the stretching and<br />

squeezing units <strong>of</strong> branched manifolds.<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Aufbau Princip for Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Any bounding torus can be built up<br />

from equal numbers <strong>of</strong> stretching and<br />

squeezing units<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

• Outputs to Inputs<br />

• No Free Ends<br />

• Colorless<br />

Embed-03


Poincaré Section<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Construction <strong>of</strong> Poincaré Section<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Aufbau Princip for Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Application: Lorenz Dynamics, g=3<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Represerntation <strong>The</strong>ory Redux<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Representation <strong>The</strong>ory for g > 1<br />

Can we extend the representation theory for strange attractors<br />

“with a hole in the middle” (i.e., genus = 1) to higher-genus<br />

attractors?<br />

Yes. <strong>The</strong> results are similar.<br />

Begin as follows:<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Aufbau Princip for Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Application: Lorenz Dynamics, g=3<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Embeddings<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Embeddings<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Preparations for Embedding tori into R<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Equivalent to embedding a specific class <strong>of</strong> directed networks<br />

into R 3<br />

Embed-01<br />

Embed-02<br />

Embed-03


Extrinsic Embedding <strong>of</strong> Bounding Tori<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Extrinsic Embedding <strong>of</strong> Intrinsic Tori<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

A specific simple example.<br />

Partial classification by links <strong>of</strong> homotopy group generators.<br />

Nightmare Numbers are Expected.


Creating Isotopies<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Equivalences by Injection<br />

Obstructions to Isotopy<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Index R 3 R 4 R 5<br />

Global Torsion Z ⊗3(g−1) Z ⊗2(g−1)<br />

2 -<br />

Parity Z 2 - -<br />

Knot Type Gen. KT. - -<br />

In R 5 all representations (embeddings) <strong>of</strong> a genus-g strange<br />

attractor become equivalent under isotopy.<br />

Embed-02<br />

Embed-03


<strong>The</strong> Road Ahead<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Summary<br />

1 Question Answered ⇒<br />

2 Questions Raised<br />

We must be on the right track !<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Our Hope<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Original Objectives Achieved<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

<strong>The</strong>re is now a simple, algorithmic procedure for:<br />

Classifying strange attractors<br />

Extracting classification information<br />

from experimental signals.<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Our Result<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Result<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

<strong>The</strong>re is now a classification theory<br />

for low-dimensional strange attractors.<br />

1 It is topological<br />

2 It has a hierarchy <strong>of</strong> 4 levels<br />

3 Each is discrete<br />

4 <strong>The</strong>re is rigidity and degrees <strong>of</strong> freedom<br />

5 It is applicable to R 3 only — for now<br />

Embed-02<br />

Embed-03


Four Levels <strong>of</strong> Structure<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

<strong>The</strong> Classification <strong>The</strong>ory has<br />

4 Levels <strong>of</strong> Structure<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Four Levels <strong>of</strong> Structure<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

<strong>The</strong> Classification <strong>The</strong>ory has<br />

4 Levels <strong>of</strong> Structure<br />

1 Basis Sets <strong>of</strong> Orbits<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Four Levels <strong>of</strong> Structure<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

<strong>The</strong> Classification <strong>The</strong>ory has<br />

4 Levels <strong>of</strong> Structure<br />

1 Basis Sets <strong>of</strong> Orbits<br />

2 Branched Manifolds<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Four Levels <strong>of</strong> Structure<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

<strong>The</strong> Classification <strong>The</strong>ory has<br />

4 Levels <strong>of</strong> Structure<br />

1 Basis Sets <strong>of</strong> Orbits<br />

2 Branched Manifolds<br />

3 Bounding Tori<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Four Levels <strong>of</strong> Structure<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

<strong>The</strong> Classification <strong>The</strong>ory has<br />

4 Levels <strong>of</strong> Structure<br />

1 Basis Sets <strong>of</strong> Orbits<br />

2 Branched Manifolds<br />

3 Bounding Tori<br />

4 Extrinsic Embeddings<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Four Levels <strong>of</strong> Structure<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03


Topological Components<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Poetic Organization<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

LINKS OF PERIODIC ORBITS<br />

organize<br />

BOUNDING TORI<br />

organize<br />

BRANCHED MANIFOLDS<br />

organize<br />

LINKS OF PERIODIC ORBITS<br />

Embed-03


Answered Questions<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

<strong>The</strong>re is a Representation <strong>The</strong>ory for Strange Attractors<br />

<strong>The</strong>re is a complete set <strong>of</strong> rerpesentation labels for strange<br />

attractors <strong>of</strong> any genus g.<br />

<strong>The</strong> labels are complete and discrete.<br />

Representations can become equivalent when immersed in<br />

higher dimension.<br />

All representations (embeddings) <strong>of</strong> a 3-dimensional strange<br />

attractor become isotopic (equivalent) in R 5 .<br />

<strong>The</strong> Universal Representation <strong>of</strong> an attractor in R 5 identifies<br />

mechanism. No embedding artifacts are left.<br />

<strong>The</strong> topological index in R 5 that identifies mechanism remains<br />

to be discovered.


Answered Questions<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Some Unexpected Results<br />

Perestroikas <strong>of</strong> orbits constrained by branched manifolds<br />

Routes to <strong>Chaos</strong> = Paths through orbit forcing diagram<br />

Perestroikas <strong>of</strong> branched manifolds constrained by<br />

bounding tori<br />

Global Poincaré section = union <strong>of</strong> g − 1 disks<br />

Systematic methods for cover - image relations<br />

Existence <strong>of</strong> topological indices (cover/image)<br />

Universal image dynamical systems<br />

NLD version <strong>of</strong> Cartan’s <strong>The</strong>orem for Lie Groups<br />

Topological Continuation – Group Continuuation<br />

Cauchy-Riemann symmetries<br />

Quantizing <strong>Chaos</strong>


Unanswered Questions<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

We hope to find:<br />

Robust topological invariants for R N , N > 3<br />

A Birman-Williams type theorem for higher dimensions<br />

An algorithm for irreducible embeddings<br />

Embeddings: better methods and tests<br />

Analog <strong>of</strong> χ 2 test for NLD<br />

Better forcing results: Smale horseshoe, D 2 → D 2 ,<br />

n × D 2 → n × D 2 (e.g., Lorenz), D N → D N , N > 2<br />

Representation theory: complete<br />

Singularity <strong>The</strong>ory: Branched manifolds, splitting points<br />

(0 dim.), branch lines (1 dim).<br />

Singularities as obstructions to isotopy


Thanks<br />

<strong>The</strong> <strong>Topology</strong><br />

<strong>of</strong> <strong>Chaos</strong><br />

Robert<br />

Gilmore<br />

Intro.-01<br />

Intro.-02<br />

Intro.-03<br />

Exp’tal-01<br />

Exp’tal-02<br />

Exp’tal-03<br />

Exp’tal-04<br />

To my colleagues and friends:<br />

Jorge Tredicce Elia Eschenazi<br />

Hernan G. Solari Gabriel B. Mindlin<br />

Nick Tufillaro Mario Natiello<br />

Francesco Pap<strong>of</strong>f Ricardo Lopez-Ruiz<br />

Marc Lefranc Christophe Letellier<br />

Tsvetelin D. Tsankov Jacob Katriel<br />

Daniel Cross Tim Jones<br />

Exp’tal-05<br />

Exp’tal-06<br />

Exp’tal-07<br />

Exp’tal-08<br />

Embed-01<br />

Embed-02<br />

Embed-03<br />

Thanks also to:<br />

NSF PHY 8843235<br />

NSF PHY 9987468<br />

NSF PHY 0754081

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!