16.06.2015 Views

Plasma wall interaction

Plasma wall interaction

Plasma wall interaction

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IPP-Teilinstitut Greifswald, EURATOM Association, Wendelsteinstraße 1, D-17491 Greifswald,<br />

Germany<br />

Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

<strong>Plasma</strong> <strong>wall</strong> <strong>interaction</strong> –<br />

a bridge between several disciplines<br />

Ralf Schneider<br />

Ralf Schneider


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Fusion<br />

good energy<br />

confinement without<br />

too large radiation<br />

losses and helium<br />

ash removal<br />

necessary


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Magnetic confinement<br />

strongly non-linear parallel heat<br />

conduction by Coulomb collisions:<br />

extreme anisotropy:<br />

4<br />

κ<br />

||<br />

∝10<br />

→10<br />

κ<br />

||<br />

∝ T<br />

7<br />

κ<br />

⊥<br />

5<br />

2


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

<strong>Plasma</strong>-<strong>wall</strong> <strong>interaction</strong><br />

challenge: extremely high power loads<br />

requirement: pure plasma core


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Basic question<br />

Can we manage the power load at the<br />

plates?<br />

Development of computational tools to<br />

model this power loading.<br />

Estimate of power load:<br />

Q<br />

⊥<br />

=<br />

2n<br />

X<br />

Pheat<br />

× 2πR<br />

× Δ<br />

E<br />

Q<br />

!<br />

−2<br />

W<br />

≈ 35MWm<br />

7− X


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Multi-scales<br />

sputtered and backscattered species and fluxes<br />

<strong>Plasma</strong>-<strong>wall</strong> <strong>interaction</strong><br />

Molecular<br />

dynamics<br />

Binary collision<br />

approximation<br />

Kinetic<br />

Monte Carlo<br />

Kinetic<br />

model<br />

Fluid<br />

model<br />

impinging particle and energy fluxes


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Hydrocarbon-codeposition<br />

Hydrogen<br />

G F Counsell, <strong>Plasma</strong> Sources Sci. Technol. 11 (2002) A80–A85<br />

• Chemical Erosion of carbon by hydrogen produces hydrocarbon<br />

species (C x H y )<br />

• Dissociation & Recombination's leads to amorphous hydrocarbon<br />

layer formation<br />

• Carbon acts as sponge for hydrogen<br />

• Tritium is retained by co-deposition with carbon, on the plasma<br />

facing sides or on remote areas.


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Radiation instability


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Other options<br />

ITER<br />

ASDEX-Upgrade<br />

• Problems with Carbon have motivated to opt for other materials<br />

• Tungsten<br />

• Beryllium<br />

• W erosion and <strong>interaction</strong> with H and He is still a challenge<br />

• Mixed materials!


ITER<br />

• Mission:<br />

‣ “Burning plasma” Q=10<br />

• Reactor level fusion<br />

power<br />

‣ P fusion ~ 400 MW for 500<br />

s<br />

‣ Heating = 40 MW<br />

‣ 20% duty cycle<br />

• Size R~6 m +<br />

Field B~6 T<br />

= 5 Billion dollars<br />

‣ 1000 m 3 plasma<br />

‣ 1000 m 2 plasma-facing<br />

<strong>wall</strong><br />

16


Divertor magnetic topology<br />

is used in ITER (and probably a<br />

reactor)<br />

• ITER Magnetic Field-<br />

Line Geometry in SOL:<br />

‣ B poloidal / B φ ~ 1/10<br />

‣ SOL: L // ~ 100 m<br />

‣ 2 π R ~ 50 m<br />

~ 1m<br />

ITER Divertor Cross-section<br />

17


Constant heat removal at divertor surfaces<br />

is daunting: #1 priority in edge “design”<br />

⎛<br />

q target<br />

= q // ⎜<br />

⎝<br />

B p<br />

B φ<br />

⎞<br />

⎟<br />

⎠<br />

divertor<br />

≅ q //<br />

0.02≈ 40 MW<br />

m 2<br />

Melts 10 cm of tungsten in ~20 seconds !<br />

Field lines<br />

Conforming divertor surface<br />

2 π R<br />

≈ 50 MW<br />

m 2<br />

Distorted surface “proud” to the<br />

field line receives q // ~ 1 GW/m 2<br />

and is immediately<br />

melted/ablated.<br />

Field lines<br />

Distorted divertor surface<br />

20


q<br />

plasma<br />

Heat exhaust, T melt , material stress<br />

and heat conductivity set armour<br />

thickness<br />

d<br />

Coolant<br />

substrate<br />

coolant<br />

• Limits material choices to<br />

refractory metals (W, Mo) or<br />

graphite.<br />

d tile<br />

= κ plate<br />

(T max, surface<br />

− T coolant<br />

)<br />

q target<br />

Tungsten<br />

CFC<br />

carbon<br />

κ (W/m/K) 150 300<br />

T melt (K) 3700 3700<br />

d tile ~ 1 cm ~ 2 cm<br />

21


W & C bonding technology capable<br />

of exhausting ~ 25 MW/m 2<br />

castellations<br />

ITER<br />

prototype<br />

divertor<br />

module<br />

~ 1m<br />

22


<strong>Plasma</strong>-Facing Components for ITER<br />

First <strong>wall</strong> and limiter: beryllium<br />

•Low Z, getters oxygen<br />

•Retains T, but releases T at lower<br />

temperature than carbon<br />

Separatrix hit point: CFC<br />

• withstands a wide range of plasma<br />

parameters<br />

• T retention problem<br />

Divertor dome and baffle: W<br />

The divertor has a modular structure,<br />

replaceable within 4 months<br />

The final selection of 1st divertor<br />

PFC will be made in 2010


Tritium inventory<br />

• Assumption of in-vessel<br />

mobilisable tritium = 1kg<br />

• Extrapolation from exp.<br />

Is highly uncertain<br />

• Use of CFC is limited in<br />

ITER<br />

• small addition of Be<br />

reduces T retention


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

<strong>Plasma</strong> edge physics


Radial transport: turbulence<br />

Better heat insulation by sheared flows (H-mode)


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Molecular physics<br />

Franck-Condon atoms: low plasma temperature -> mostly molecules reflected from<br />

saturated <strong>wall</strong>s


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

MAR


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

MAD and MAI


Spatial variation of the electric potential, ion velocity and the<br />

ion and electron densities across the plasma sheath<br />

Potential; note the<br />

presheath potential<br />

Ion velocity; the ions<br />

are accelerated into<br />

the sheath<br />

Ion and electron<br />

Density; the electrons<br />

are depleted due to<br />

the negative potential


Very strong SEE (ion thruster dielectrics)<br />

<strong>Plasma</strong> density:<br />

electrons<br />

ions<br />

<strong>Plasma</strong> potential<br />

Irregular surface: 0


<strong>Plasma</strong> density:<br />

electrons<br />

ions<br />

<strong>Plasma</strong> potential<br />

Flat surface: 0


Max-Planck Institut für <strong>Plasma</strong>physik, EURATOM Association, 17491 Greifswald, Germany<br />

PIC modeling of arcing: DC discharge<br />

L = 20 μm<br />

U a = +10 kV<br />

Species included: e - , Cu + ,Cu<br />

• electrodes material is Copper.<br />

• constant electron thermo-emission current I eth =<br />

2.35*10 6 A/cm 2 from the cathode is assumed.<br />

• the constant flux of evaporated copper atoms from<br />

the cathode I Cu = 0.01I eth /e is assumed


Max-Planck Institut für <strong>Plasma</strong>physik, EURATOM Association, 17491 Greifswald, Germany<br />

PIC modeling of arcing: DC discharge<br />

Start-up phase of the discharge (the first 0.7 ns )


Max-Planck Institut für <strong>Plasma</strong>physik, EURATOM Association, 17491 Greifswald, Germany<br />

PIC modeling of arcing: DC discharge<br />

Simulated time 18 ns


Max-Planck Institut für <strong>Plasma</strong>physik, EURATOM Association, 17491 Greifswald, Germany<br />

PIC modeling of arcing: DC discharge<br />

Discharge current to anode<br />

• Cu atoms evaporated from cathode<br />

are ionized by the electrons<br />

accelerated in the gap, creating e - ,<br />

Cu + plasma<br />

• flux of the plasma particles to the<br />

electrodes enhances the sputtering,<br />

increasing the concentration of the<br />

Cu atoms in the gap<br />

• plasma space charge start to<br />

influence the external electric field in<br />

the gap when the Debye length<br />

becomes smaller then the electrode<br />

spacing.<br />

• electric field is concentrated in<br />

sheath


Max-Planck Institut für <strong>Plasma</strong>physik, EURATOM Association, 17491 Greifswald, Germany<br />

PIC modeling of arcing: DC discharge<br />

Cu + flux energy composition at the cathode<br />

Cu flux energy composition at the cathode<br />

Maximum energy corresponds to sheath<br />

potential drop<br />

Lower enrery part is populated by<br />

collisions with neutrals<br />

High energy neutrals due to charge<br />

exchange


non-thermal:<br />

splashing<br />

thermal:<br />

no splashing


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

TRIM, TRIDYN: much faster than MD (simplified physics:<br />

binary collision approximation)<br />

- very good match of physical sputtering<br />

- dynamical changes of surface composition


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

2D-TRIDYN


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

2D-TRIDYN


2-point model


low recycling


high recycling


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

TRIM, TRIDYN: much faster than MD (simplified physics:<br />

binary collision approximation)<br />

- very good match of physical sputtering<br />

- dynamical changes of surface composition


Energy threshold<br />

• Because an atom leaving the surface has<br />

to overcome the surface binding energy<br />

E s there is a threshold energy E T for<br />

sputtering. This is given by<br />

• Where<br />

E T<br />

=<br />

E S<br />

γ sp<br />

(1 − γ sp<br />

)<br />

γ = 4m m /( m + m ) 2<br />

sp 1 2 1 2


Sputter yields for Be, C and W<br />

by D and self ions<br />

Note the<br />

increasing<br />

threshold<br />

energy with<br />

target mass.<br />

Using D + ions<br />

yield is ~ same<br />

for Be, C and W<br />

W Eckstein PMI, Garching, Report PP9/8 (1993)


High energy sputtering<br />

• The maximum in the yield and the<br />

decrease at high energies is due to the<br />

collision cascade occurring deeper and<br />

deeper in the solid.<br />

• The surface atoms have less chance of<br />

receiving sufficient energy to be sputtered


Uncertainty in yields<br />

• There is an variation in yields measured<br />

experimentally ~ 2.<br />

• This is not experimental error but genuine<br />

variations which depend on surface<br />

conditions which can affect the binding<br />

energy<br />

• Examples are variation in the structure,<br />

surface roughness or impurity levels


Effect of incident angle<br />

• The sputter yield increases as the angle (θ)<br />

increase from normal (θ =0)<br />

• This is due to the increased probability of the<br />

incident ion being backscattered<br />

• At energies


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Tore Supra deposits<br />

Toroidal pumped limiter<br />

Cross-section of Tore-Supra<br />

Neutraliser<br />

No signs of <strong>wall</strong> saturation (50 % hydrogen is retained)<br />

Where is the hydrogen going ?<br />

Flux ~10 17 -10 18 H m -2 s -1<br />

Temperatures up to 1500 K


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Structure of Tore Supra deposits<br />

TS deposits analyzed: Adsorption isotherm measurements<br />

Electron microscopy<br />

SEM<br />

Parallel network of<br />

slit-shaped pores<br />

Multi-scale porosity<br />

• Micropores<br />

( < 2 nm, ~ 11 %)<br />

• Mesopores<br />

( < 50 nm, ~ 5%)<br />

• Macropores<br />

( > 50 nm, ~ 10%)<br />

TEM<br />

TEM<br />

Parallel to oval axis<br />

Perpendicular to oval axis


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Diffusion in graphite<br />

Real structure of the material<br />

needs to be included<br />

Internal Structure of Graphite<br />

Granule sizes ~ microns<br />

Void sizes ~ 0.1 microns<br />

Crystallite sizes ~ 50-100 Ångstroms<br />

Micro-void sizes ~ 5-10 Ångstroms<br />

Multi-scale problem in space (1cm to<br />

Ångstroms) and time (pico-seconds to<br />

seconds)


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Multi-scale approach<br />

´Intelligent´ coupling necessary<br />

Macroscales<br />

KMC and Monte Carlo<br />

Diffusion (MCD)<br />

Mesoscales<br />

Kinetic Monte Carlo (KMC)<br />

Microscales<br />

Molecular Dynamics (MD)


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Molecular dynamics - HCParcas<br />

- Hydrogen in perfect crystal graphite –<br />

960 atoms<br />

- Brenner potential, Nordlund long range<br />

<strong>interaction</strong><br />

- Berendsen thermostat, 150K to 900K<br />

for 100ps<br />

- Periodic boundary conditions<br />

Developed by Kai Nordlund, Accelarator laboratory, University of Helsinki


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

MD - results<br />

150K<br />

900K


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

MD – results<br />

Non-Arrhenius temperature dependence


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Kinetic Monte Carlo<br />

ω 0 = jump attempt frequency (s -1 )<br />

E m = migration energy (eV)<br />

T = trapped species temperature (K)<br />

Assumptions:<br />

- Poisson process (assigns real time to the jumps)<br />

- jumps are not correlated


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

MD – results (II)<br />

two diffusion channels<br />

no diffusion across graphene layers (150K – 900K)<br />

Lévy flights?


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Macroscales<br />

Trapping - detrapping (2.7 eV)<br />

Desorption (1.9 eV)<br />

Surface diffusion (0.9 eV)<br />

KMC with<br />

Jump lengths depend on the process<br />

Monte Carlo Diffusion (MCD)<br />

used to simulate TGD<br />

ζ


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Multi-scale approach<br />

´Intelligent´ coupling necessary<br />

Macroscales<br />

KMC and Monte Carlo<br />

Diffusion (MCD)<br />

Mesoscales<br />

Kinetic Monte Carlo (KMC)<br />

Microscales<br />

Molecular Dynamics (MD)


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Effect of voids<br />

A: 10 % voids B: 20 % voids C: 20 % voids<br />

Larger voids Longer jumps Higher diffusion<br />

Large variation in observed diffusion coefficients (4 orders of<br />

magnitude at 1000 K due to different structures)<br />

Diffusion coefficients without knowledge of<br />

structure are meaningless


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Results at macroscales<br />

adsorptiondesorption<br />

1.9 eV<br />

variation of<br />

3D structure<br />

surface<br />

diffusion<br />

0.9 eV<br />

Different processes dominate at different temperatures<br />

Diffusion in voids dominates<br />

Diffusion coefficients without knowledge of structure are meaningless


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Chemical erosion of graphite<br />

Mechanism of molecule formation:<br />

• CH 3 molecule formation only within the implantation zone<br />

(local chemistry, sticking)<br />

• H 2 molecule formation even beyond the implantation zone<br />

(diffusion through voids)


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Flux dependence of chemical erosion<br />

Experiment: Flux dependence of chemical erosion<br />

J. Roth et. al., Nucl. Fusion 44 (2004) L21 – L25<br />

?<br />

Need for a better understanding of chemical erosion (quantitatively)<br />

• Quantifying co-deposition<br />

• Can we still use carbon as PFM ?


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Flux dependence of chemical erosion<br />

• Release probability determined by geometrical constraints<br />

• Erosion yield from 3D KMC model<br />

Only few surface layers accessible by incoming hydrogen atom<br />

Upper limit of the released carbon flux


Oxygen ionization state distribution in<br />

coronal equilibrium<br />

Calculated charge states in equilibrium conditions as a function<br />

of electron temperature (Carolyn and Piotrowitz 1983)


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Divertor optimization<br />

ASDEX Upgrade<br />

B2-Eirene code package:<br />

coupled multi-species plasma fluid and<br />

kinetic neutral MC code (used for many machines,<br />

including ITER)<br />

reflection of neutrals towards separatrix


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Radiation instability


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

PIC application<br />

Parasitic plasma below divertor roof baffle in ASDEX<br />

Upgrade Div IIb from photoionisation or photoeffect<br />

Typical parameters:<br />

4*10 8 < ne < 7*10 11 cm -3<br />

5 < Te < 15 eV<br />

Scaling: ne ~ Radiation 2.7 *Particle_flux 0.7


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Divertor structures<br />

Divertor<br />

<strong>Plasma</strong>


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

3D transport<br />

ergodic<br />

region<br />

plasma<br />

core<br />

(nonergodic)<br />

ϕ = 0°<br />

island<br />

(nonergodic)<br />

Divertors


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Transport in an ergodic region<br />

Radial direction<br />

Wall<br />

Scrape Off<br />

Layer<br />

Ergodic<br />

region<br />

r<br />

Enhancement of<br />

radial transport<br />

due to<br />

contribution from<br />

parallel transport<br />

χ<br />

r<br />

∝<br />

D<br />

χ<br />

fl ||<br />

<strong>Plasma</strong><br />

core<br />

Parallel direction<br />

Electron<br />

temperature<br />

Rechester Rosenbluth, Physical Review Letters,<br />

1978


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Kolmogorov length<br />

Kolmogorov length L K is a measure of field line ergodicity<br />

δ 0<br />

S<br />

exponential divergence<br />

δ 1<br />

L K<br />

=<br />

S<br />

⎛ δ<br />

log ⎜ 1<br />

⎝ δ<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

Typical value in W7-X : L K = 10 – 30 m


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Local magnetic coordinates<br />

x 3<br />

forward cut<br />

x 2<br />

x 1<br />

Local system shorter than Kolmogorov<br />

length to handle ergodicity<br />

One coordinate aligned with the magnetic<br />

field to minimize numerical diffusion<br />

central cut<br />

backward cut<br />

g ij<br />

Area is conserved<br />

Use a full metric tensor<br />

⎡g<br />

⎢<br />

= ⎢g<br />

⎢<br />

⎣g<br />

11<br />

21<br />

31<br />

g<br />

g<br />

g<br />

12<br />

22<br />

32<br />

g<br />

g<br />

g<br />

13<br />

23<br />

33<br />

⎤<br />

⎥ ⎥⎥ ⎦


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Computational process<br />

Magnetic field<br />

Fieldline tracing<br />

Triangulation<br />

Mesh<br />

optimization<br />

Metric coefficients<br />

Grid<br />

Neighborhoods<br />

g ij<br />

⎡g<br />

⎢<br />

= ⎢g<br />

⎢<br />

⎣g<br />

11<br />

21<br />

31<br />

g<br />

g<br />

g<br />

12<br />

22<br />

32<br />

g<br />

g<br />

g<br />

13<br />

23<br />

33<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

Transport code<br />

Linearization matrix<br />

Temperature solution


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Effect of higher plasma pressure<br />

vacuum<br />

finite-β<br />

Island structures smeared<br />

out


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Ergodic effects in W7-X<br />

T (eV)<br />

Normalized field line length<br />

Ergodic effects lead to 3D modulation<br />

of long open field lines<br />

Cascading of energy from<br />

ergodic to open field lines


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Power loading on divertor<br />

Heat flux density (MW/m 2 )<br />

Vacuum case<br />

finite-β case<br />

Fieldline length (m)<br />

No power-load problem for W7-X


Components of SOL ion flows<br />

Determine transport of impurities from source to destination<br />

in a tokamak – material migration – T-retention<br />

E r xB, ∇pxB<br />

E θ xB<br />

Pfirsch-<br />

Schlüter<br />

Divertor<br />

sink<br />

Poloidal<br />

Ballooning<br />

B ϕ<br />

Bx∇B<br />

B ϕ<br />

Bx∇B<br />

Parallel<br />

FWD-B ϕ<br />

REV-B ϕ


Parallel ion SOL flow in JET – comparison with EDGE2D<br />

[S.K.Erents et al., PPCF 2000 & 2004]<br />

reciprocating<br />

probe<br />

ballooning<br />

Parallel flow: ballooning + drift<br />

Bt-independent<br />

(Average flow)<br />

Bt-dependent<br />

Measured flows<br />

are consistent with<br />

P-S formula, when<br />

p i , E r … are taken<br />

from experiment


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Turbulence<br />

Study and understanding of turbulence under simplified conditions<br />

as a pre-requisite for understanding turbulence in tokamaks or<br />

stellarators<br />

Far scrape off layer (in fusion devices): blobs<br />

S. I. Krasheninnikov, Phys. Lett. A. (2001)<br />

Blobs also exist in devices with linear magnetic geometry<br />

G. Y. Antar et. al., PRL (2001), G. Y. Antar et. al., POP (2003)<br />

Radial movement of blobs in PISCES experiments was explained by<br />

the concept of ‘neutral wind’<br />

S.I. Krasheninnikov at al., POP (2003)<br />

Net force: F<br />

Ni<br />

= μ n<br />

Ni<br />

( NV) ( K − K )<br />

fast<br />

fast<br />

Net force to <strong>wall</strong> replaces curvature<br />

slow


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

VINETA<br />

VINETA with its four modules:<br />

total length is 4.5 m and the diameter 0.4 m).<br />

n<br />

≤<br />

19<br />

10<br />

m<br />

−3<br />

p Ar<br />

≈ 0. 1Pa<br />

T e<br />

≈ 3eV<br />

B ≤ 0. 1T<br />

T i<br />

≈ 0. 2eV<br />

blobs observed in VINETA experiments<br />

T. Windisch et al. Physica Scripta (2005)


Gyrofluid modeling<br />

Time scan of squared<br />

amplitude of density<br />

Electron density<br />

Time scan of squared<br />

amplitude of potential


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Results<br />

Electron density<br />

Potential<br />

Simulation: drift-wave instability m=6<br />

Experiment: drift-wave instability m=1-8 (C. Schröder at al. )


Max-Planck-Institut für <strong>Plasma</strong>physik, EURATOM Association<br />

Results<br />

Turbulence<br />

Electron density<br />

Potential<br />

Simulation: no radial movement of blobs<br />

Experiment: no radial movement of blobs (T. Windisch at al. 2005)


IFMIF - International Fusion Materials Irradiation Facility<br />

creep testing

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!