21.06.2015 Views

Simulation of Entangled Polymers with Dissipative ... - Lammps

Simulation of Entangled Polymers with Dissipative ... - Lammps

Simulation of Entangled Polymers with Dissipative ... - Lammps

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Entangled</strong> Polymer Melts <strong>with</strong> <strong>Dissipative</strong> Particle<br />

Dynamics<br />

Timothy Sirk, Yelena Sliozberg, John Brennan,<br />

and Jan Andzelm<br />

Army Research Laboratory<br />

August 11, 2011


Background<br />

Atomistic<br />

K-G<br />

Hard atoms<br />

t d ~N 3.5<br />

t~N 3*(1/2)<br />

x R<br />

R g<br />

Reptation<br />

DPD<br />

Hard beads<br />

Rouse<br />

S<strong>of</strong>t Beads<br />

DN<br />

How to prevent chain crossing, and<br />

still be fast?<br />

…apply force between bonds<br />

2N e<br />

Kremer-Grest<br />

10 5 1/s<br />

250,000 beads<br />

DPD/SRP<br />

10 5 1/s<br />

40,000 beads<br />

Yelena Sliozberg, unpublished


<strong>Dissipative</strong> Particle Dynamics<br />

F<br />

F<br />

F<br />

i<br />

C<br />

ij<br />

D<br />

ij<br />

<br />

ji<br />

<br />

a<br />

<br />

<br />

F<br />

ij<br />

C<br />

ij<br />

<br />

F<br />

D<br />

ij<br />

F<br />

R<br />

ij<br />

F<br />

SRP<br />

ij<br />

1<br />

r<br />

ˆ<br />

r<br />

r<br />

<br />

ij<br />

/rc<br />

r ij<br />

<br />

ij<br />

c<br />

0 rij<br />

rc<br />

<br />

D<br />

r<br />

r<br />

ˆ v rˆ<br />

ij<br />

ij<br />

ij<br />

ij<br />

F<br />

H<br />

ij<br />

F<br />

A<br />

ij<br />

<br />

Total Force<br />

DPD<br />

<br />

R R ij<br />

F ˆ<br />

ij<br />

r<br />

ij<br />

Groot and Warren, J.<br />

Δt<br />

Chem. Phys. 1997<br />

<br />

D<br />

2<br />

<br />

F<br />

F<br />

E<br />

SRP<br />

ij<br />

H<br />

ij<br />

ijk<br />

r<br />

<br />

R<br />

<br />

2k<br />

T<br />

B<br />

<br />

r<br />

E<br />

<br />

aij<br />

<br />

0<br />

K(r<br />

r ) rˆ<br />

2<br />

1<br />

d<br />

/<br />

ˆ<br />

d<br />

d<br />

<br />

ij<br />

d<br />

c<br />

d ij<br />

<br />

ij<br />

c<br />

d<br />

d <br />

0<br />

K cos( )<br />

ij<br />

ij<br />

c<br />

SRP<br />

Segmental Repulsive Potential<br />

Goujon et. al, J. Chem. Phys.<br />

129, 034902 (2008)<br />

Bond & Angle<br />

Current SRP<br />

•minimum distance between two bonds<br />

•distribute force unevenly between atoms<br />

•slow, sometimes overshoots d ij<br />

mSRP (new)<br />

•midpoint distance between bonds<br />

Requires new<br />

•distribute force evenly<br />

parameters for SRP,<br />

•faster, accurate<br />

angle potentials<br />

Goujon [1]<br />

0F<br />

mSRP ½F<br />

F<br />

½ F<br />

d d ij<br />

ij<br />

-¾ F -¼ F -½ F -½ F<br />

58 mult/add, 2 div, 2 if 18 mult/add<br />

DPD + SRP + Bond + Angles<br />

SRP implemented in LAMMPS<br />

•communicate ‘ghost bonds’ <strong>with</strong> forward_pair_comm()<br />

•build a bond neighbor list<br />

•newton<br />

bond <strong>of</strong>f, apply force to local atoms<br />

d kl =P k +t k R k ‐P l ‐t l R l<br />

d(d kl )/d(R k )=d(d kl )/d(R l )=0<br />

d kl =P k ‐P l<br />

1. J. Chem. Phys. 129, 034902, 2008<br />

2. J. Chem. Phys. 114 (15) p6937, 1997


Parameterization: Chain Crossings<br />

d ij<br />

DPD <strong>with</strong> Goujon SRP:<br />

Few chain crossings, large energy contribution<br />

DPD <strong>with</strong>out SRP: Chains cross freely<br />

F<br />

<br />

ij<br />

a ij<br />

d<br />

1<br />

<br />

d<br />

ij<br />

c<br />

<br />

<br />

<br />

Vary potential<br />

parameters: a ij , d c<br />

Increasing d c<br />

Count bond<br />

crossing<br />

Check<br />

thermodynamics<br />

Choose a ij , d c<br />

Test system: 78 chains <strong>of</strong> N=30, 2*10 6 timesteps


Thermodynamic Properties<br />

Prevent bond crossings and minimize the<br />

effect <strong>of</strong> SRP<br />

Midpoint Distance<br />

Want low P, PE contributions, and few<br />

bond crossings -> choose a=100, r=0.8<br />

DPD <strong>with</strong> Goujon SRP:<br />

Large PE and pressure<br />

Decreasing d cut<br />

• Small pressure increase over DPD<br />

• Thermostat stable at low temp<br />

•Any<br />

γ>4.5<br />

Minimum Distance (Goujon<br />

et. al)<br />

• Larger PE and pressure<br />

• Thermostat struggles <strong>with</strong> low temp<br />

• Restricted to γ~50 for T=1.0<br />

DPD <strong>with</strong>out SRP:<br />

Lower limit<br />

Decreasing d cut


Angle potential and chain<br />

structure<br />

Problem<br />

•Neighboring bonds do not interact<br />

•Favorable for chain to “fold”<br />

•Not good for structure<br />

•Quantify by characteristic ratio, C n<br />

Solution<br />

•Add angular potential to maintain<br />

structure<br />

•Optimize<br />

K using C n<br />

•Too weak = poor structure<br />

•Too much = polymer is stiff<br />

θ<br />

E K[ 1cos(<br />

)]<br />

K=2.0 leads has C n close to fully<br />

flexible (C n =1.0)<br />

Vary parameter: K<br />

Check chain<br />

structure<br />

Choose K<br />

Goujon et al. is less than regular<br />

DPD chain due to “kinks”<br />

R<br />

C n = /nl 2


Diffusion<br />

Equilibration<br />

D vs. 1/L<br />

1. Box Size: depends your needs<br />

1. Structure<br />

2. Stress/Strain<br />

3. Diffusion<br />

2. Time: not straightforward<br />

1. MSD g1 = MSD g3 won’t happen for long chains<br />

2. At least move a radius <strong>of</strong> gyration<br />

3. Better to wait for 0.90*d(g 1 )/dt = d(g 3 )/dt<br />

3. Shortcut: measure characteristic ratio, prebuild the<br />

equilibrium structure<br />

<br />

inner monomers<br />

center <strong>of</strong> mass (COM)<br />

inner monomers wrt COM <strong>of</strong> chain<br />

Analytical Correction<br />

Chain Length and Entanglements<br />

1. Identify entanglements <strong>with</strong> diffusion<br />

• onset <strong>of</strong> entangled behavior<br />

• chain length for one entanglement<br />

2. Check mechanical behavior <strong>of</strong> entangled chains<br />

mSRP<br />

Goujon SRP<br />

Dynamics <strong>of</strong> chains from<br />

DPD+ entanglements<br />

reaches reptation limit !<br />

To calculate chain diffusion (DN):<br />

Equilibrate until monomers move<br />

together <strong>with</strong> chains


Mechanical Behavior<br />

• tensile test – a fundamental mechanical test<br />

• create stress by deforming simulation box<br />

• compute normal stress as the box is deformed<br />

Unentangled chains<br />

• short DPD chains <strong>with</strong> mSRP<br />

• short/long standard DPD<br />

• less relative motion when stress is applied<br />

<strong>Entangled</strong> chains<br />

• long DPD chains <strong>with</strong> mSRP<br />

• entanglements resist relative movement <strong>of</strong> chains<br />

• relax more slowly than short chains<br />

*<br />

Long, DPD+mSRP<br />

Short, DPD+mSRP<br />

Long and short, DPD


Timothy Sirk<br />

Army Research Laboratory<br />

tim.sirk@us.army.mil

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!