21.06.2015 Views

Modeling nanoparticles in bulk and at surfaces - Lammps - Sandia ...

Modeling nanoparticles in bulk and at surfaces - Lammps - Sandia ...

Modeling nanoparticles in bulk and at surfaces - Lammps - Sandia ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Co<strong>at</strong>ed <strong>nanoparticles</strong> <strong>in</strong><br />

solvents <strong>and</strong> <strong>at</strong> <strong>in</strong>terfaces<br />

J. M<strong>at</strong>thew Lane<br />

S<strong>and</strong>ia N<strong>at</strong>ional Labor<strong>at</strong>ories<br />

Albuquerque, NM<br />

25 February 2010<br />

LAMMPS Workshop<br />

S<strong>and</strong>ia is a multiprogram labor<strong>at</strong>ory oper<strong>at</strong>ed by S<strong>and</strong>ia Corpor<strong>at</strong>ion, a Lockheed Mart<strong>in</strong> Company,<br />

for the United St<strong>at</strong>es Department of Energyʼs N<strong>at</strong>ional Nuclear Security Adm<strong>in</strong>istr<strong>at</strong>ion<br />

under contract DE-AC04-94AL85000.


Courtesy of P. R. Schunk<br />

Problem description


System details<br />

Amorphous silica particles<br />

– 5 nm diameter<br />

– Tre<strong>at</strong>ed as rigid objects<br />

PEO cha<strong>in</strong>s<br />

– ca. 240 per 5 nm particle<br />

– Attached <strong>at</strong> OH sites<br />

W<strong>at</strong>er solvent used with PEO<br />

• Polyethylene oxide PEO(6)<br />

co<strong>at</strong>ed 5nm silica nanoparticle<br />

<strong>in</strong> w<strong>at</strong>er (3 cha<strong>in</strong>s/nm 2 )<br />

MD run details<br />

– T = 300 K<br />

– 10 Å cutoff on pair potentials<br />

– 4x10 5 – 7.2x10 6 <strong>at</strong>oms<br />

– Timestep 1fs – runs of 5-10ns<br />

Lane et al, PRE 79, 050501 (2009)


Interactions between <strong>nanoparticles</strong><br />

• Determ<strong>in</strong>e velocity <strong>in</strong>dependent (solv<strong>at</strong>ion)<br />

<strong>and</strong> velocity dependent (lubric<strong>at</strong>ion) forces<br />

- cha<strong>in</strong> length, nanoparticle size/shape, coverage<br />

• Integr<strong>at</strong>e <strong>in</strong>to coarse-gra<strong>in</strong>ed model


Interactions between <strong>nanoparticles</strong>


PEO-co<strong>at</strong>ed silica NP <strong>in</strong> w<strong>at</strong>er<br />

• PEO(20), 1.0 cha<strong>in</strong>s/nm 2 • PEO(100), 0.5 cha<strong>in</strong>s/nm 2<br />

• Mitra et al, Langmuir 19, 8994 (2003) – exp. - PEO(100), 0.2cha<strong>in</strong>s/nm 2


Construct<strong>in</strong>g model Au-thiol <strong>nanoparticles</strong><br />

Fact sheet:<br />

2, 4, <strong>and</strong> 8 nm diameter core with Au implicit<br />

S-(CH 2 ) 9 -X <strong>and</strong> S-(CH 2 ) 17 -X where X = CH 3 or<br />

COOH<br />

Simple structure of 60, 240 <strong>and</strong> 960 rigid graft<strong>in</strong>g<br />

sites from fullerene structure<br />

Constant coverage density of 21 Å 2 per cha<strong>in</strong><br />

• D. Dunphy, UNM/S<strong>and</strong>ia personal communic<strong>at</strong>ion<br />

Place each <strong>in</strong> decane, w<strong>at</strong>er <strong>and</strong> Brownian<br />

solvents.


2 to 8 nm co<strong>at</strong>ed nanoparticle cores<br />

8 nm diameter 4 nm diameter 2 nm diameter<br />

decane implicit w<strong>at</strong>er decane implicit w<strong>at</strong>er decane implicit w<strong>at</strong>er<br />

C10-<br />

CH 3<br />

C10-<br />

COOH<br />

C18-<br />

CH 3<br />

C18-<br />

COOH


Geometry as a control parameter<br />

l<br />

r<br />

• Particle size, r <br />

• Cha<strong>in</strong> length, l<br />

• Change <strong>in</strong> free volume per cha<strong>in</strong><br />

l


Geometry as a control parameter<br />

l<br />

r<br />

• Particle size, r <br />

• Cha<strong>in</strong> length, l<br />

• Change <strong>in</strong> free volume per cha<strong>in</strong><br />

l


Effect of mixed-cha<strong>in</strong> term<strong>in</strong><strong>at</strong>ion<br />

Co<strong>at</strong><strong>in</strong>g term<strong>in</strong><strong>at</strong>ion is an<br />

important secondary variable<br />

Bundl<strong>in</strong>g:<br />

• Mixed-cha<strong>in</strong>s decreased<br />

uniformity <strong>in</strong> the co<strong>at</strong><strong>in</strong>g<br />

surface<br />

• Mixed cha<strong>in</strong>s tended toward<br />

small tight bundles unless<br />

solv<strong>at</strong>ed


Effect of solvent <strong>and</strong> backbone<br />

decane<br />

implicit<br />

C18-COOH<br />

C18-CH 3<br />

Solvent quality is another<br />

important secondary variable<br />

Homogeneous cha<strong>in</strong>s behaved<br />

largely as expected to solvent<br />

changes based on hydrophilic/<br />

phobic <strong>in</strong>teractions<br />

w<strong>at</strong>er<br />

Mixed-cha<strong>in</strong>s deceased uniformity<br />

<strong>in</strong> the co<strong>at</strong><strong>in</strong>g surface as cha<strong>in</strong>s<br />

tended toward small tight bundles<br />

unless solv<strong>at</strong>ed


Surface <strong>in</strong>itial conditions<br />

• NPs placed <strong>at</strong> liquid/<br />

vapor <strong>in</strong>terface of w<strong>at</strong>er<br />

• All 12 particle type were<br />

began equilibr<strong>at</strong>ed <strong>in</strong><br />

implicit solvent<br />

• Simul<strong>at</strong>ion cont<strong>in</strong>ued until<br />

vertical motion ceased


Co<strong>at</strong>ed particles <strong>at</strong> a w<strong>at</strong>er surface<br />

C10 with CH 3 C10 with COOH C18 with CH 3 C18 with COOH<br />

2 nm<br />

diameter<br />

4 nm<br />

diameter<br />

8 nm<br />

diameter


Future direction: Surface <strong>in</strong>teraction<br />

• How will collections of particles behave <strong>at</strong> the surface?<br />

• Can we preselect drivers of self-assembly by alter<strong>in</strong>g the<br />

particle co<strong>at</strong><strong>in</strong>gs?<br />

COOH term<strong>in</strong>al group<br />

CH 3 term<strong>in</strong>al group


Summary <strong>and</strong> conclusions<br />

• Nanoscale forces between functionalized NPs can be<br />

found from fully-<strong>at</strong>omistic simul<strong>at</strong>ions<br />

– Contact forces between NPs are velocity & separ<strong>at</strong>ion dependent<br />

– Co<strong>at</strong><strong>in</strong>gs remove fe<strong>at</strong>ures of bare NPs – make more like macroscopic<br />

– The important regime for NP <strong>in</strong>teractions <strong>in</strong> solution is F < 1nN<br />

mak<strong>in</strong>g accur<strong>at</strong>e force extraction difficult<br />

– Coarse-gra<strong>in</strong>ed NPs will allow study of longer time <strong>and</strong> length scales<br />

• Co<strong>at</strong><strong>in</strong>g quality can be dram<strong>at</strong>ically affected by geometry<br />

<strong>and</strong> secondarily by co<strong>at</strong><strong>in</strong>g <strong>and</strong> solvent <strong>in</strong>teractions<br />

• “Poor” co<strong>at</strong><strong>in</strong>gs could be exploited <strong>at</strong> <strong>surfaces</strong> <strong>and</strong> <strong>in</strong> the<br />

<strong>bulk</strong> to select structures dur<strong>in</strong>g self-assembly<br />

• Resources now available to make significant <strong>in</strong>roads <strong>in</strong><br />

underst<strong>and</strong><strong>in</strong>g nanoparticle suspensions


Collabor<strong>at</strong>ors<br />

• S<strong>and</strong>ia:<br />

Gary Grest,<br />

Ahmed Ismail,<br />

Michael Ch<strong>and</strong>ross,<br />

Jeremy Lechman,<br />

Steve Plimpton<br />

• S<strong>and</strong>ia/UNM: P. R<strong>and</strong>al Schunk,<br />

Tim Boyle<br />

• Univ of Utah: M<strong>at</strong>t Petersen<br />

• K<strong>in</strong>g’s College: Christian Lorenz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!