18.11.2012 Views

Small-angle X-ray scattering - Hasylab - Desy

Small-angle X-ray scattering - Hasylab - Desy

Small-angle X-ray scattering - Hasylab - Desy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The very basics of<br />

<strong>Small</strong>-<strong>angle</strong> X-<strong>ray</strong><br />

<strong>scattering</strong><br />

Ulla Vainio<br />

11.8.2009<br />

DESY summer school lectures


History<br />

• Beginning of 20 th century x-<strong>ray</strong> diffraction studies of metals show some strange<br />

<strong>scattering</strong> in the middle of the <strong>scattering</strong> pattern. It is later named “small <strong>angle</strong><br />

<strong>scattering</strong>” and becomes a separate field.<br />

• A. Guinier, P. Debye, V. Luzatti, G. Porod and others (1940-1960) develop<br />

interpretation for the basic features in SAXS patterns<br />

• Early 1970s first synchrotron SAXS studies on muscle fibers at DESY, end of 1970s<br />

time resolved studies at DORIS<br />

• Mandelbrot invents the term ‘fractal’ in 1975 and writes a book about it in 1982,<br />

shortly after Bale and Schmidt apply fractal concepts to small <strong>angle</strong> <strong>scattering</strong><br />

(1984) (their paper is cited 498 times 15.7.2009)<br />

• Stuhrmann (1983) builds the first anomalous small-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong> (ASAXS)<br />

beamline in the world at DORIS synchrotron for low x-<strong>ray</strong> energies and studies<br />

biological systems. The idea was copied from anomalous diffraction.<br />

• Haubold et al. (1994) and Simon and Lyon (1994) give examples of ASAXS in book<br />

Resonant anomalous X-<strong>ray</strong> <strong>scattering</strong><br />

• Svergun and his team at DORIS synchrotron develop SAXS software for data<br />

analysis of SAXS from proteins (early 1990s until now). The software becomes<br />

popular also among other SAXS community, because it’s freely available from the<br />

webpage and is very automatized. Glatter develops simultaneously in Austria another<br />

approach to data analysis. In many laboratories people develop their own software.<br />

• SAXS boom: More than 1.2 million articles have been published in this field and 0.8<br />

million of them after year 1999!<br />

Photo source: A. Guinier (1969), Physics today 22, 25.


20<br />

40<br />

60<br />

80<br />

<strong>Small</strong> is big & big is small<br />

Real space<br />

100 0<br />

20 40 60 80 100<br />

(after you take a Fourier transform)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

20<br />

40<br />

60<br />

80<br />

100<br />

Inverse space<br />

20 40 60 80 100<br />

10<br />

8<br />

6<br />

4<br />

2


20<br />

40<br />

60<br />

80<br />

<strong>Small</strong> is big & big is small<br />

Real space<br />

100 0<br />

0 50 100<br />

(after you take a Fourier transform)<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

FFT<br />

-0.3<br />

20<br />

40<br />

0<br />

60<br />

80<br />

Inverse space<br />

0.3<br />

-0.3 0 0.3<br />

Pixel q-pixel (1/pixel)<br />

100<br />

0 50 100<br />

Period d = 10 pixels 1 q-pixel is of length 2π/100 ≈ 0.06 1/pixel<br />

Period d = 2π/q = 2π/(10*0.06) = 10 pixels<br />

x 10 6<br />

8<br />

6<br />

4<br />

2<br />

0


Oriented samples (example)<br />

Organoclay players in polypropylene<br />

Packing material for your food in the grocery store<br />

<strong>Small</strong>-<strong>angle</strong> X-<strong>ray</strong> <strong>scattering</strong><br />

Transmission electron microscopy<br />

Ristolainen et al. (2005) J. Polymer Sci. B-Polymer Physics 43, 1892.<br />

Studied volume ratio SAXS:TEM about 1000 000 000:1


20<br />

40<br />

60<br />

80<br />

Real space<br />

100 0<br />

20 40 60 80 100<br />

Experiment<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

20<br />

40<br />

60<br />

80<br />

100<br />

Inverse space<br />

Center is covered by beamstop<br />

⇒Large structures are not seen<br />

because of the beamstop and<br />

because of limited detector resolution.<br />

Largest structure observed<br />

about 100 nm.<br />

q<br />

20 40 60 80 100<br />

10<br />

Largest q restricted<br />

by the detector size<br />

⇒<strong>Small</strong>est structure<br />

about 1 nm<br />

8<br />

6<br />

4<br />

2


Example of a SAXS beamline, B1<br />

SAXS detector<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

0 100 200 300 400<br />

Reference<br />

samples<br />

WAXS<br />

detector<br />

Samples<br />

Monochromatized<br />

X-<strong>ray</strong> beam from a<br />

bending magnet on<br />

DORIS synchrotron


SAXS beamline 7T-MPW SAXS at BESSY<br />

Monochromatized<br />

X-<strong>ray</strong> beam from<br />

a wiggler at<br />

BESSY<br />

synchrotron


0<br />

200<br />

400<br />

600<br />

800<br />

Scattering from a sphere<br />

Real space<br />

1000<br />

200 400 600 800 1000<br />

0<br />

Linear scale<br />

R = 30 pixels<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

Inverse space<br />

200 400 600 800 1000<br />

Logarithmic scale<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2


50<br />

100<br />

150<br />

200<br />

250<br />

300<br />

350<br />

Projected electron density of a sphere in 3D on 2D plane<br />

Real space<br />

400 0<br />

100 200 300 400<br />

50<br />

40<br />

30<br />

20<br />

10<br />

50<br />

100<br />

150<br />

200<br />

250<br />

300<br />

350<br />

400<br />

Inverse space<br />

ϕ<br />

100 200 300 400<br />

20<br />

15<br />

10<br />

5


Intensity (arbitrary units)<br />

10 10<br />

10 5<br />

10 0<br />

Intensity of a sphere<br />

10 -1<br />

q (1/nm)<br />

Sphere (projected)<br />

Circle in 2d<br />

q -4<br />

q -3<br />

Theoretical<br />

10 0<br />

de = 3<br />

de = 2<br />

Many SAXS curves<br />

follow a power law<br />

I(q) ∝ q -α<br />

α is the power law exponent<br />

d e = Euclidian dimension (3 in real life)


Mass fractal<br />

Menger sponge, mass fractal dimension D m = 2.72<br />

(Source: http://commons.wikimedia.org/wiki/File:Menger_sponge_(Level_1-4).jpg)


Surface fractal<br />

Koch snowflake, surface fractal dimension D s = 1.26 (in d e = 2)<br />

(http://commons.wikimedia.org/wiki/File:KochFlake.png)<br />

In nature the fractals are not mathematically self similar.<br />

Avnir et al. (1998) criticize the use of fractal theory to everything in<br />

their paper in Science “Is the geometry of nature fractal?”<br />

In their opinion the power law should extend more than one order of<br />

magnitude, which may correspond just to one step!


Intensity (arbitrary units)<br />

10 12<br />

10 10<br />

10 8<br />

10 6<br />

10 4<br />

10 -1<br />

Fractals, self similar objects<br />

q (1/nm)<br />

Sphere (projected)<br />

Circle in 2d<br />

q -4<br />

q -3<br />

d e = 2!<br />

D m = mass fractal dimension<br />

D s = surface fractal dimension<br />

d e = Euclidian dimension (3 in real life)<br />

10 0<br />

Many SAXS curves follow a power law<br />

I(q) ∝ q -α<br />

Mass fractal:<br />

α = Dm (0 − 3)<br />

Surface fractal:<br />

α = 2d e –D s (6 − D s , when d e = 3)<br />

Shape D m D s<br />

Line 1 0<br />

Platelet 2 1<br />

Sphere 3 2<br />

Porod law<br />

I(q) ∝ q -4


Form factor & structure factor of particles<br />

• Intensity = form factor x structure<br />

factor I(q) = P(q)S(q)<br />

– This equation works if you have<br />

spherical monodisperse particles,<br />

otherwise the factors may be<br />

more mixed<br />

• Structure factor S(q) is related to<br />

the ordering and distance between<br />

particles<br />

• Form factor tells about the shape<br />

and size of the particles<br />

– In a very dilute solution of<br />

particles I(q) = P(q) because S(q)<br />

= 1<br />

P(q)<br />

Form factor<br />

More on form factors of differently shaped particles:<br />

Jan Skov Pedersen: Analysis of small-<strong>angle</strong> <strong>scattering</strong> data from colloids and polymer solutions:<br />

modeling and least-squares fitting. Advances in Colloid and Interface Science 70 (1997) 171-210.<br />

q<br />

P(q)S(q)<br />

S(q)<br />

q<br />

Structure factor<br />

q<br />

Total <strong>scattering</strong>


Far from ideal<br />

Real systems have nasty effects which disturb the perfect SAXS measurement of particles<br />

• “Concentration effect”: The contribution of<br />

the structure factor increases when the particle<br />

concentration increases (order is increased)<br />

•Concentration series is usually needed<br />

and then one can extrapolate to 0concentration<br />

and determine the particle<br />

shape and size<br />

• “Polyelectrolyte effect”: Charged particles<br />

(negative or positive) in solution give always a<br />

structure factor<br />

•Add salt to suppress the interaction<br />

caused by charges (but this can make the<br />

particles willing to aggregate!)<br />

Problem 1: Why measuring very dilute<br />

solutions is not usually possible?<br />

Problem 2: Why you cannot measure forever<br />

long a sample with a synchrotron beam?<br />

Intensity / concentration<br />

Concentration effect<br />

Concentration<br />

increases<br />

Concentration<br />

increases<br />

q<br />

Polyelectrolyte effect


Scattering from particles<br />

Distance distribution function a.k.a. p(r) function<br />

Svergun & Koch, Rep. Prog. Phys. 66 (2003) 1735–1782<br />

Do you find a mistake here?


Scattering from particles<br />

Distance distribution function a.k.a. p(r) function<br />

Svergun & Koch, Rep. Prog. Phys. 66 (2003) 1735–1782


N(R) = number size distribution<br />

R = size of the particle<br />

Polydispersity*<br />

(*) lot’s of different sized particles<br />

Vainio et al. (2006) Latvian journal of physics and technical sciences 4, 14.


How to perform an experiment?


Example: Ontime chemistry at beamline A2<br />

by Vivian Rebbin<br />

• The formation of micelles is observed<br />

with SAXS. With ongoing<br />

condensation of silica, the ordering<br />

process starts.


Courtesy of Vivian Rebbin<br />

On-time chemistry with SAXS<br />

Sample containing the triblock copolymer Pluronic P123 as structuredirecting<br />

agent, 1,4-bis(triethoxysilyl)benzene as silica source, pH = 1,<br />

increasing temperature<br />

Structure: From diffuse <strong>scattering</strong> to 2d hexagonal


Example: Spinodal decomposition<br />

in amorphous metals<br />

3d atom probe of yttrium atoms<br />

N. Mattern et al. Acta Materialia 57 (2009) 903–908


Anomalous small-<strong>angle</strong> X-<strong>ray</strong> <strong>scattering</strong> (ASAXS)<br />

“What is the unit of intensity?!”


Two-phase approximation<br />

• Only mean electron density difference counts<br />

B<br />

A (vacuum)<br />

Absorption<br />

Anomalous<br />

<strong>scattering</strong> factors<br />

Intensity (log scale)<br />

Conclusion: f’’<br />

Pink atoms are distributed<br />

homogeneously into one phase<br />

(in small-<strong>angle</strong> <strong>scattering</strong>)!<br />

f’<br />

Energy<br />

Absorption edge of pink element<br />

I(E1)<br />

I(E2)<br />

I(E1) - I(E2)<br />

Scattering <strong>angle</strong> (log scale)<br />

Intensity ∝ |ρB (E) - ρA |<br />

Real space Fourier space<br />

2<br />

Atomic <strong>scattering</strong> factor<br />

Z + f’(E) + if’’(E)


Three or more phases<br />

• One more phase now ASAXS can help<br />

S bb<br />

S pp<br />

S bp<br />

B<br />

A (vacuum)<br />

Absorption<br />

Anomalous<br />

<strong>scattering</strong> factors<br />

Energy<br />

f’’<br />

f’<br />

Intensity (log scale)<br />

Absorption edge of pink element<br />

I(E1)<br />

I(E2)<br />

I(E1) - I(E2)<br />

Scattering <strong>angle</strong> (log scale)<br />

Intensity(E) = Spp (E) + Sbp (E) + Sbb Real space Fourier space<br />

Partial structure factors<br />

Assumption: Atoms in phase B have constant f (no absorption edge at this energy)!


Lignosulfonate, the brown stuff in a tree<br />

Trees<br />

Pulp & paper mills<br />

Paper products,<br />

cellulose<br />

Lignin (in the form of<br />

Kraft lignin or lignosulfonate)


Intensity (relative units)<br />

10 10<br />

10 8<br />

10 6<br />

10 4<br />

Simple model<br />

Fourier transform<br />

10 -2 10 2<br />

10 -1<br />

Lignosulfonate ASAXS<br />

Partial structure factors<br />

q (1/nm)<br />

10 0<br />

Rubidium (Rb) counterions<br />

Rb<br />

Rb-LS<br />

LS<br />

Total<br />

10 1<br />

Intensity (arb. units)<br />

10 2<br />

10 1<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

Comparison to experiment<br />

model<br />

experiment<br />

10 0<br />

q (1/nm)<br />

I(E1)-I(E2) (model)<br />

I(E1) (model)<br />

I(E1)-I(E2) (Rb-LS)<br />

I(E1) (Rb-LS)<br />

10 1


SAXS beamlines at DORIS III<br />

• SAXS at A2, B1<br />

• USAXS at BW4<br />

• ASAXS at B1<br />

• GISAXS at BW4<br />

• Rheology & SAXS BW1


Books about SAXS<br />

(in the order I like them most)<br />

• A Guinier (1956/1994) X-<strong>ray</strong> diffraction. In crystals, imperfect crystals, and<br />

amorphous bodies. Chapter 10 <strong>Small</strong>-<strong>angle</strong> x-<strong>ray</strong> <strong>scattering</strong>.<br />

• Glatter & Kratky (ed.) (1982) <strong>Small</strong> Angle X-<strong>ray</strong> Scattering.<br />

(http://physchem.kfunigraz.ac.at/sm/Software.htm)<br />

• Feigin & Svergun (1987) Structure analysis by small-<strong>angle</strong> X-<strong>ray</strong> and neutron<br />

<strong>scattering</strong>.<br />

(http://www.embl-hamburg.de/ExternalInfo/Research/Sax/reprints/feigin_svergun_1987.pdf)<br />

• Guinier and Fournet (1955) <strong>Small</strong> <strong>angle</strong> <strong>scattering</strong> of X-<strong>ray</strong>s.<br />

ASAXS review<br />

• D. Tatchev (2008) Structure analysis of multiphase systems by anomalous small<strong>angle</strong><br />

X-<strong>ray</strong> <strong>scattering</strong>. Philosophical Magazine 88, 1751 – 1772.


Programs to analyze SAXS data<br />

But be careful: you get always a result. It doesn’t mean it’s right.<br />

Examples of standalone programs that one can get from the web:<br />

• Dimitri Svergun’s ATSAS package at EMBL<br />

http://www.embl-hamburg.de/ExternalInfo/Research/Sax/software.html<br />

• Joachim Kohlbrecher’s SASfit at PSI http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html<br />

• S. Förster’s Scatter at Uni Hamburg<br />

http://www.chemie.uni-hamburg.de/pc/sfoerster/software.html<br />

• Richard Heenan’s FISH at ISIS<br />

http://www.isis.rl.ac.uk/LargeScale/LOQ/FISH/FISH_intro.htm<br />

• G. Fritz’s Singlebody http://physchem.kfunigraz.ac.at/sm/Software.htm<br />

• More programs (standalone and those requiring Matlab or Igor) at<br />

http://www.small-<strong>angle</strong>.ac.uk/small-<strong>angle</strong>/Software.html

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!