01.07.2015 Views

Impact of RTN on Vmin elevation of 6-T bitcell designs

Impact of RTN on Vmin elevation of 6-T bitcell designs

Impact of RTN on Vmin elevation of 6-T bitcell designs

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> <strong>Vmin</strong> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 6-T <strong>bitcell</strong> <strong>designs</strong><br />

Sudha Thiruvengadam, SengO<strong>on</strong> Toh, Hu<strong>on</strong>g An, Stephen Kos<strong>on</strong>ocky, Keith Kasprak, Jas<strong>on</strong> Mulig<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> (Random Telegraph Noise) <strong>on</strong> 6T SRAM<br />

array <strong>designs</strong> is described. <str<strong>on</strong>g>RTN</str<strong>on</strong>g> is due to the switching noise<br />

caused by the capture and emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charge carriers in the<br />

gate oxide traps. This leads to the modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> threshold<br />

voltage (∆Vth) or drain current (∆Ids) across the device [1].<br />

Since ∆Vth is inversely proporti<strong>on</strong>al to the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the device,<br />

small SRAM devices are seriously impacted by <str<strong>on</strong>g>RTN</str<strong>on</strong>g>. The<br />

2011 editi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the „Internati<strong>on</strong>al Technology roadmap for<br />

Semic<strong>on</strong>ductors‟ describes <str<strong>on</strong>g>RTN</str<strong>on</strong>g> as having a greater reliability<br />

impact <strong>on</strong> smaller devices than BTI [2].<br />

time for which <str<strong>on</strong>g>RTN</str<strong>on</strong>g> has an impact (order <str<strong>on</strong>g>of</str<strong>on</strong>g> ms). As shown in<br />

Fig 2b, the traps stay occupied for > 10 ms.<br />

While <str<strong>on</strong>g>RTN</str<strong>on</strong>g> and BTI are both due to charge trapping, <str<strong>on</strong>g>RTN</str<strong>on</strong>g> is<br />

mainly due to hole trapping and has shorter stress times (< 1<br />

sec) while BTI is due to interface traps and has a l<strong>on</strong>ger stress<br />

time. [3]. Design margin for <str<strong>on</strong>g>RTN</str<strong>on</strong>g> should not be simply added,<br />

because it is already partially accounted for within the design<br />

margin for BTI degradati<strong>on</strong>.<br />

Literature shows that the threshold voltage could be<br />

modulated by as much as 200mv as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> overlapped<br />

<str<strong>on</strong>g>RTN</str<strong>on</strong>g>s as shown in Fig 1. In an SRAM cell, the beta ratio is<br />

critical for stability. Any change in the threshold voltage<br />

affects the beta ratio and hence, the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>bitcell</strong>.<br />

SRAM device widths scale by almost 50% from <strong>on</strong>e process<br />

node to the next, and therefore the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> increases<br />

with scaling. Tega et al. analyzed the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> n-fets<br />

and p-fets and showed that the ∆Vth fluctuati<strong>on</strong> is greater in<br />

p-fets [4]. The authors reas<strong>on</strong> that the scattering coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

p-fets is greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> n-fets by an order. Mobility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

charge carriers is limited by the scattering coefficient.<br />

Furthermore, the cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hole traps is greater than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> traps so that the chances <str<strong>on</strong>g>of</str<strong>on</strong>g> overlapped <str<strong>on</strong>g>RTN</str<strong>on</strong>g>s are<br />

greater in p-fets.<br />

Agostinelli et al. have shown that SRAM <strong>Vmin</strong> (minimum<br />

operating voltage) is n<strong>on</strong>-deterministic as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> [5].<br />

In this paper, we identify the patterns that expose the worstcase<br />

<strong>Vmin</strong> deteriorati<strong>on</strong> due to <str<strong>on</strong>g>RTN</str<strong>on</strong>g>. Since <str<strong>on</strong>g>RTN</str<strong>on</strong>g> is a<br />

stochastic process with large time c<strong>on</strong>stants, a large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

datasets are needed to identify the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> it. We use<br />

measurement data from approximately 40 units to determine<br />

the <strong>Vmin</strong> elevati<strong>on</strong> due to <str<strong>on</strong>g>RTN</str<strong>on</strong>g>.<br />

Fig 2 Time durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> effects[5]<br />

Fig 3 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> isolated writes (insert nops between write 1<br />

and final write2)<br />

In order to determine the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> writes, we<br />

c<strong>on</strong>sidered two cases – in <strong>on</strong>e case, the cell was kept idle for 1<br />

sec<strong>on</strong>d (determines the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> PU <strong>on</strong>ly) followed<br />

by a single write. In the sec<strong>on</strong>d case, after holding the cell in<br />

idle mode for 1 sec<strong>on</strong>d, writes <str<strong>on</strong>g>of</str<strong>on</strong>g> opposite value were made to<br />

the cell (determines impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> PG and PU). In the<br />

write-after write case, we tried a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different opti<strong>on</strong>s –<br />

write 0, write 1 (and vv), write 0 (x times), and write 1 (x<br />

times) where x varied from 2 to 256.<br />

Let us determine the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> keeping the cell idle (NOPs)<br />

for multiple sec<strong>on</strong>ds. Say, node CL is high and CH is low.<br />

Initial c<strong>on</strong>diti<strong>on</strong>s are such that trap occupancy is forced in<br />

PU1 degrading its Vt and a „0‟ is easily written to the <strong>bitcell</strong>.<br />

We follow this up with subsequent NOPs for <strong>on</strong>e sec<strong>on</strong>d or so.<br />

In this case, the pass-gate is not active. Over the period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1<br />

sec<strong>on</strong>d, trap occupancy has been forced into PU2 since node<br />

CL is low causing its Vt to degrade and allowing a write <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

„1‟ to the <strong>bitcell</strong>. Fig 3 summarizes the different trap states.<br />

Fig 1 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> threshold voltage τ e and τ c (emissi<strong>on</strong> and<br />

capture times) are random and follow exp<strong>on</strong>ential distributi<strong>on</strong>s[4]<br />

In a typical SRAM cell, even when the <strong>bitcell</strong> is not being<br />

accessed, <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> pullup and pulldown devices remain <strong>on</strong>.<br />

Measurement techniques need to simulate the c<strong>on</strong>diti<strong>on</strong> that<br />

<strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> devices has been <strong>on</strong> for a l<strong>on</strong>g time[6]. So, the gate<br />

current is pulsed a sec<strong>on</strong>d before measuring the drain current<br />

<strong>on</strong> the device. This process is repeated fifty times so as to<br />

measure the average drain current and determine the length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fig 4a and 4b outline the patterns that highlight the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g><br />

<strong>on</strong> writes


Next, we determine the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> when we follow the<br />

multiple NOPs with a write-after-write pattern to the <strong>bitcell</strong>.<br />

Initial c<strong>on</strong>diti<strong>on</strong>s are such that node “CH” is high and “CL” is<br />

low. PU2 has trap occupancy forced into it causing the Vt to<br />

be degraded thus allowing a write <str<strong>on</strong>g>of</str<strong>on</strong>g> a “0” (pulling CH low).<br />

When we do multiple write <str<strong>on</strong>g>of</str<strong>on</strong>g> „0s‟ to the <strong>bitcell</strong> PU1 is<br />

c<strong>on</strong>stantly exercised. Trap vacancy in PU1 improves its<br />

threshold voltage so that writing a “0” <strong>on</strong> node CL is much<br />

harder and could even fail. Finally, although the PG<br />

transistors are <strong>on</strong>ly turned <strong>on</strong> for a short durati<strong>on</strong> during<br />

SRAM cell access, sequential pulses <strong>on</strong> PG1 during writeafter-write<br />

access are sufficient to force trap occupancy in<br />

PG1 and degrade Twrite <str<strong>on</strong>g>of</str<strong>on</strong>g> the final operati<strong>on</strong>. Fig 4<br />

describes the isolated write and write-after-write patterns and<br />

the test algorithm used.<br />

Isolated<br />

Write<br />

T hold<br />

T write<br />

Preset A Hold Write A<br />

boundary]. The <strong>Vmin</strong> in the other cases was lower than it was<br />

for the write-after-write. It is comm<strong>on</strong>ly accepted that traps<br />

causing transistor degradati<strong>on</strong> due to <str<strong>on</strong>g>RTN</str<strong>on</strong>g> have a time<br />

c<strong>on</strong>stant within 1 sec while those due to BTI have a much<br />

l<strong>on</strong>ger time c<strong>on</strong>stant. Since all the test patterns we applied are<br />

for 1 sec or less, the effects we are characterizing are solely<br />

due to <str<strong>on</strong>g>RTN</str<strong>on</strong>g>.<br />

Fig 6a and 6b outline the basic patterns to determine the<br />

cause <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>Vmin</strong> failure<br />

Write<br />

After<br />

Write<br />

T hold T relax T write<br />

Preset A Hold Write A Write A<br />

Fig 4c and 4d Patterns used to test impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> writes to the<br />

<strong>bitcell</strong><br />

The <strong>Vmin</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>bitcell</strong> is the minimum operating voltage at<br />

which reads and writes occur. Due to <str<strong>on</strong>g>RTN</str<strong>on</strong>g>, we would observe<br />

elevated <strong>Vmin</strong>s following a write-after-write operati<strong>on</strong>.<br />

Successive WL pulses degrade reads and writes while read<br />

stability (ADM) improves as shown in Fig 5.<br />

Fig 5 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> write after write<br />

In order to test the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> these patterns <strong>on</strong> the <strong>Vmin</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>bitcell</strong>, we selected 40 units from 32nm silic<strong>on</strong> that had <strong>Vmin</strong><br />

failures due to SRAMs. These units had elevated <strong>Vmin</strong> at 0C<br />

versus 95C indicating that writes were the problem (Fig 9).<br />

BIST algorithms were run to identify the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Vmin</strong><br />

failures. A march algorithm c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> march lines, where<br />

each march line is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> read, write, or read/write<br />

combinati<strong>on</strong> called march elements. Each march line is<br />

denoted with a ^ or v to represent the address directi<strong>on</strong>. A<br />

march line is run to completi<strong>on</strong> at each address before moving<br />

to the next address. When all addresses in the specified macro<br />

have been tested, BIST will proceed to the next march line.<br />

The BIST algorithms used to identify the units with write<br />

<strong>Vmin</strong> fails are described in Fig 6.<br />

There are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> patterns in our test suite that<br />

specifically look for issues that cause elevated <strong>Vmin</strong>, say<br />

marginal bits due to elevated c<strong>on</strong>tact resistance, higher IR<br />

drop, etc. For <str<strong>on</strong>g>RTN</str<strong>on</strong>g> we looked at trap characteristics and<br />

applied test vectors within a short period which is within the<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> trap time c<strong>on</strong>stant [1 sec<strong>on</strong>d being the<br />

Fig 7 Addressing mode used for <str<strong>on</strong>g>RTN</str<strong>on</strong>g><br />

Fig 7 shows an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a 4-bit address used in an array<br />

with 4 rows and 4 columns per data bit slice (2 data bits<br />

shown). The effective addressing achieved by fast column and<br />

Fast Row is listed in Table 4.62. In fast column, the rows are<br />

held while traversing the columns. In fast row mode, the<br />

columns are held while traversing the rows. BIST testcases<br />

normally use fast-column addressing but that leads to passgates<br />

being turned <strong>on</strong> for the n<strong>on</strong>-selected columns. In order<br />

to avoid that, fast-row addressing was used which we felt gave<br />

a more accurate picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact due to <str<strong>on</strong>g>RTN</str<strong>on</strong>g>.<br />

Fig 8 shows the shmoo (normalized voltage versus frequency)<br />

plots for two <str<strong>on</strong>g>of</str<strong>on</strong>g> the units where we can observe that the <str<strong>on</strong>g>RTN</str<strong>on</strong>g><br />

patterns have elevated <strong>Vmin</strong>. We can also see that the writeafter-write<br />

case has the highest <strong>Vmin</strong>.<br />

1.60<br />

1.56<br />

1.52<br />

1.48<br />

1.44<br />

1.40<br />

1.36<br />

1.32<br />

1.28<br />

1.24<br />

1.20<br />

1.16<br />

1.12<br />

1.08<br />

1.04<br />

1.00<br />

VDD<br />

Isolated<br />

Write -5C<br />

200<br />

800<br />

200<br />

WAW<br />

-5C<br />

800<br />

Writeability<br />

-5C<br />

200<br />

Frequency (MHz)<br />

800<br />

Readability<br />

-5C<br />

200<br />

800


1.60<br />

1.56<br />

1.52<br />

1.48<br />

1.44<br />

1.40<br />

1.36<br />

1.32<br />

1.28<br />

1.24<br />

1.20<br />

1.16<br />

1.12<br />

1.08<br />

1.04<br />

1.00<br />

VDD<br />

Isolated<br />

Write -5C<br />

200<br />

800<br />

200<br />

WAW<br />

-5C<br />

800<br />

Writeability<br />

-5C<br />

Readability<br />

-5C<br />

Frequency (MHz)<br />

Fig 8 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> patterns <strong>on</strong> write <strong>Vmin</strong> (20-60mv elevati<strong>on</strong>) for<br />

2 units out <str<strong>on</strong>g>of</str<strong>on</strong>g> the 40 tested (ISO implies isolated write, waw implies<br />

write-after-write)<br />

The tests were repeated at both -5C and 71C. The write-afterwrite<br />

pattern showed an elevated <strong>Vmin</strong> at both temperatures<br />

as shown in Fig 9.<br />

200<br />

800<br />

200<br />

800<br />

1.750<br />

1.625<br />

1.500<br />

1.375<br />

1.250<br />

1.125<br />

1.000<br />

Fig 10 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> <strong>on</strong> <strong>Vmin</strong> for 40 units (average) at 200Mhz<br />

In summary, we were able to successfully identify the <str<strong>on</strong>g>RTN</str<strong>on</strong>g><br />

testcases that impact the write <strong>Vmin</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>bitcell</strong>s . By applying<br />

these testcases to actual silic<strong>on</strong>, we were also able to show<br />

that <str<strong>on</strong>g>RTN</str<strong>on</strong>g> causes write <strong>Vmin</strong>s to be elevated by 20-60mv for<br />

write-after-write operati<strong>on</strong>s.<br />

REFERENCES<br />

[1] S.O. Toh et al., in IEDM Tech. Dig., pp. 767-770, 2009.<br />

[2] Internati<strong>on</strong>al Technology roadmap for<br />

Semic<strong>on</strong>ductors, 2011 Editi<strong>on</strong><br />

[3] T. Grasser et al, in IEDM Tech. Dig., pp. 729-732, 2009.<br />

[4] N. Tega et al, in IEDM Tech. Dig , pp. 491-494 ,2006<br />

[5] M. Agostinelli et al, in IEDM Tech Dig, pp. 655-658, 2005<br />

[6] S.O.Toh et al.,in Symp. VLSI Tech., pp. 204-205, 2011<br />

ACKNOWLEDGEMENTS<br />

The authors are grateful to Aar<strong>on</strong> Grenat, Andrew Kegel and<br />

other managers for allowing this research to c<strong>on</strong>clude<br />

successfully.<br />

1.750<br />

1.625<br />

1.500<br />

1.375<br />

1.250<br />

1.125<br />

1.000<br />

Fig 9 <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>RTN</str<strong>on</strong>g> tests <strong>on</strong> write <strong>Vmin</strong> at hot and cold for the<br />

above two units<br />

Fig 10 shows the average elevati<strong>on</strong> in <strong>Vmin</strong> due to writeafter-write<br />

<strong>on</strong> the 40 units tested.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!