02.07.2015 Views

Seismic Performance of Reinforced Concrete C-bent Columns

Seismic Performance of Reinforced Concrete C-bent Columns

Seismic Performance of Reinforced Concrete C-bent Columns

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Seismic</strong> <strong>Performance</strong> <strong>of</strong><br />

<strong>Reinforced</strong> <strong>Concrete</strong> C-<strong>bent</strong> C<br />

<strong>Columns</strong><br />

Jun 11, 2005<br />

Department <strong>of</strong> Civil Engineering<br />

Tokyo Institute <strong>of</strong> Technology<br />

Seiji Nagata


C-<strong>bent</strong> <strong>Columns</strong><br />

In urban area, there exist a large number <strong>of</strong> RC columns<br />

with the lateral beam being longer in one side than the other.<br />

Eccentric<br />

Dead Load<br />

Eccentric<br />

Dead Load<br />

Eccentricity<br />

Column<br />

Center<br />

RC Pier<br />

Steel Pier<br />

C-<strong>bent</strong> columns have a poor seismic performance!


Current Researches on C-<strong>bent</strong> C<br />

<strong>Columns</strong><br />

• Cyclic loading and shake table tests in transverse<br />

direction, Kawashima and Unjoh, 1994.<br />

• Cyclic loading tests in longitudinal direction, Tuchiya<br />

and Maekawa et al, 1999.<br />

• Cyclic loading tests in bilateral direction, Kawasima<br />

et al, 2002<br />

Longitudinal<br />

Eccentric<br />

Dead Load<br />

Transverse<br />

Lateral Force<br />

Tension Side<br />

Residual Drift<br />

Compression<br />

Side


Objectives<br />

• To clarify seismic response <strong>of</strong> RC C-<strong>bent</strong> columns<br />

under bilateral excitation, a series <strong>of</strong> hybrid loading<br />

test were conducted.<br />

• To reproduce the experimental response <strong>of</strong> RC C-<strong>bent</strong><br />

columns, a fiber element analysis was conducted


Test Specimens<br />

RC <strong>Columns</strong> were designed based on the current <strong>Seismic</strong><br />

design codes.<br />

e: Eccentricity<br />

D: Width <strong>of</strong> <strong>Columns</strong><br />

e=0<br />

1350 mm<br />

e=0.5D<br />

e=D<br />

• 1350mm<br />

Effective Height<br />

• 400mm x 400mm<br />

Square Section<br />

400 mm<br />

400 mm<br />

Axial Reinforcements 1.27 %<br />

1.35 %<br />

1.9 %<br />

Tie Reinforcements 0.79 %<br />

0.99 %<br />

1.19 %


Hybrid Loading Test on C-<strong>bent</strong> C<br />

<strong>Columns</strong><br />

Input Ground Motion: JMA Kobe Record<br />

Acceleration<br />

(m/s 2 )<br />

10<br />

0<br />

-10<br />

0<br />

Unilateral Excitation<br />

Longitudinal<br />

NS<br />

Time (s) 30 0<br />

Time (s)<br />

Bilateral Excitation<br />

EW<br />

30<br />

EW<br />

Transverse<br />

NS<br />

NS


e=0<br />

Damage after the Unilateral Excitation<br />

Damage <strong>of</strong> columns at the eccentric completion side<br />

e=D<br />

e=0.5D<br />

NS<br />

NS<br />

NS<br />

Separation <strong>of</strong> the<br />

covering concrete<br />

The damage increases as the eccentricity increases.


Displacement (mm)<br />

e= = 0.5D<br />

50<br />

0<br />

NS<br />

<strong>Seismic</strong> Response under<br />

the Unilateral Excitation<br />

Residual<br />

Drift<br />

e= D<br />

NS<br />

-2<br />

-50<br />

0 30<br />

Time (sec)<br />

Drift (%)<br />

The residual drift increases as the eccentricity increases.<br />

2<br />

0<br />

Prescribed<br />

Displacement (mm)<br />

Drift (%)<br />

0 1 2<br />

40<br />

20<br />

0<br />

-20<br />

1.2% Drift<br />

2.6% Drift<br />

-1<br />

-2<br />

-40<br />

0 10 20 30 40<br />

Residual Drift in the eccentric<br />

compression side (mm)<br />

2<br />

1<br />

0<br />

Drift (%)


Hybrid Loading Test under<br />

the Bilateral Excitation<br />

Residual Drift<br />

After Loading<br />

Before Loading<br />

NS<br />

EW


Effect <strong>of</strong> Bilateral Excitation<br />

Unilateral Excitation<br />

Bilateral Excitation<br />

e=D<br />

NS<br />

Separation <strong>of</strong> the<br />

covering concrete<br />

NS<br />

EW<br />

Bilateral excitation results in more extensive damage


Unilateral<br />

NS<br />

Bilateral<br />

NS<br />

Effect <strong>of</strong> Bilateral Excitation<br />

EW<br />

Dislacement (mm)<br />

Dislacement (mm)<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-2<br />

-40<br />

0 5 10 15 20<br />

Time (sec)<br />

25 30<br />

20<br />

0<br />

0<br />

-20<br />

-40<br />

3.9 % Drift<br />

2.9 % Drift<br />

Unilateral Excitation<br />

-60<br />

-80<br />

0 5 10 15 20 25 30<br />

Time (sec)<br />

e=D<br />

Bilateral Excitation results in larger residual drift.<br />

Effect <strong>of</strong> bilateral excitation is important in evaluation <strong>of</strong> a residual drift<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

Drift (%)<br />

Drift (%)


Fiber Model <strong>of</strong> the RC C-Bent C<br />

<strong>Columns</strong><br />

Torsinal Stiffness<br />

T=GJφ<br />

Plastic<br />

Hinge<br />

Rotational<br />

Spring<br />

Fiber Element<br />

<strong>Concrete</strong><br />

Stress (MPa)<br />

Hoshikuma et al. Model<br />

Covering <strong>Concrete</strong><br />

Core <strong>Concrete</strong><br />

Strain<br />

Sakai Model<br />

T : Torsional Moment<br />

φ : Curvature<br />

G: Shear modulus<br />

J : Torsional moment <strong>of</strong><br />

inertia<br />

Stress<br />

Reinforcements<br />

E s2<br />

E s<br />

Menegotto and Pint Model<br />

Strain


Fiber Element Analysis<br />

e=0<br />

Analysis<br />

Experiment<br />

Displacement (mm)<br />

Longitudinal<br />

70<br />

0<br />

-20<br />

0 10 20<br />

Time (Sec)<br />

Drift (%)<br />

Displacement (mm)<br />

4<br />

2<br />

0<br />

40<br />

0<br />

Transverse<br />

-50<br />

0 10 20<br />

Time (Sec)<br />

2<br />

Drift (%)<br />

0<br />

-2


Fiber Element Analysis<br />

e=0.5D<br />

Analysis<br />

Experiment<br />

Displacement (mm)<br />

Longitudinal<br />

70<br />

0<br />

-30<br />

-2<br />

0 10 20<br />

Time (Sec)<br />

Drift (%)<br />

Displacement (mm)<br />

4<br />

2<br />

0<br />

30<br />

0<br />

Transverse<br />

-4<br />

-60<br />

0 10 20<br />

Time (Sec)<br />

2<br />

0<br />

-2<br />

Drift (%)


Fiber Element Analysis e=D<br />

Analysis<br />

Experiment<br />

Displacement (mm)<br />

60<br />

Longitudinal<br />

0<br />

-40<br />

-2<br />

0 10 20<br />

Time (Sec)<br />

4<br />

2<br />

Drift (%)<br />

0<br />

Displacement (mm)<br />

20<br />

0<br />

Transverse<br />

-4<br />

-70<br />

0 10 20<br />

Time (Sec)<br />

The analysis correlates the accumulation <strong>of</strong> residual drift<br />

in the eccentric compression side.<br />

0<br />

Drift (%)<br />

-2


Conclusions<br />

• Extensive failure occurs at the eccentric compression<br />

side under both the unilateral and the bilateral<br />

excitations. This results in a large residual displacement<br />

in the eccentric compression side.<br />

• The failure and the residual displacement under the<br />

bilateral excitation are more extensive than those under<br />

the unilateral excitation.<br />

• A fiber analysis correlates the accumulation <strong>of</strong> residual<br />

drift in the eccentric compression side. However, the<br />

analysis underestimates the residual drift.


Thank you for your attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!