04.07.2015 Views

A route to non-local correlations in electronic structure: GW+DMFT

A route to non-local correlations in electronic structure: GW+DMFT

A route to non-local correlations in electronic structure: GW+DMFT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>route</strong> <strong>to</strong> <strong>non</strong>-<strong>local</strong> <strong>correlations</strong> <strong>in</strong> <strong>electronic</strong> <strong>structure</strong>:<br />

<strong>GW+DMFT</strong><br />

Jan M. Tomczak<br />

Vienna University of Technology<br />

jan.<strong>to</strong>mczak@tuwien.ac.at<br />

ERC Workshop “ab <strong>in</strong>itio Dynamical Vertex Approximation”,<br />

Vorders<strong>to</strong>der, Austria<br />

JMT, M. van Schilfgaarde & G. Kotliar, PRL 109, 237010 (2012)<br />

JMT, M. Casula, T. Miyake, F. Aryasetiawan & S. Biermann, EPL 100, 67001 (2012)<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 1 / 28


Local and <strong>non</strong>-<strong>local</strong> <strong>correlations</strong><br />

1 Introduction<br />

Presence of correlation effects: example of iron pnictides<br />

Dynamical mean field theory at a glance<br />

Success and limitations of DMFT based approaches<br />

Alternative: GW<br />

2 Non-<strong>local</strong> <strong>correlations</strong> from the GW po<strong>in</strong>t of view<br />

Iron pnictides and chalcogenides<br />

3 The best of both worlds: <strong>GW+DMFT</strong><br />

Introduction<br />

Application <strong>to</strong> SrVO 3<br />

4 A simplified scheme: QS<strong>GW+DMFT</strong><br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 2 / 28


Pnictides and chalcogenides – the family<br />

[Paglione and Greene (2010)] [Basov and Chubukov (2011)]<br />

open issues<br />

superconductivity (of course...)<br />

orig<strong>in</strong> of long range magnetic order (<strong>local</strong> vs it<strong>in</strong>erant picture)<br />

...<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 3 / 28


Pnictides and chalcogenides – <strong>electronic</strong> <strong>structure</strong><br />

Density functional theory (DFT) <strong>in</strong> <strong>local</strong> density approximation (LDA)<br />

Correct prediction of<br />

Fermi surfaces:<br />

LaFePO [Lebègue (2007)]<br />

LaFeAsO [S<strong>in</strong>gh and Du (2008)]<br />

−→<br />

striped AF sp<strong>in</strong> ground state [Dong et al.(2008)]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 4 / 28


Pnictides and chalcogenides – <strong>electronic</strong> <strong>structure</strong><br />

Density functional theory (DFT) <strong>in</strong> <strong>local</strong> density approximation (LDA)<br />

Correct prediction of<br />

Fermi surfaces:<br />

LaFePO [Lebègue (2007)]<br />

LaFeAsO [S<strong>in</strong>gh and Du (2008)]<br />

−→<br />

striped AF sp<strong>in</strong> ground state [Dong et al.(2008)]<br />

BUT: evidence for presence of correlation effects beyond band theory!<br />

Example: reduction of k<strong>in</strong>etic energy K wrt band-theory [Qazilbash et al.]<br />

band renormalizations/effective masses (pho<strong>to</strong>emission, de-Haas-van-Alphen, optics)<br />

magnitude of ordered moments<br />

size of Fermi surfaces<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 4 / 28


Dynamical mean field theory (DMFT) [Georges & Kotliar, Metzner & Vollhardt]<br />

G imp = − 〈 Tcc †〉 S<br />

G −1 = G loc −1 + Σ imp<br />

U<br />

Σ imp = G −1 − G −1<br />

imp<br />

G loc = ∑ k<br />

[<br />

G −1 − Σ imp<br />

] −1<br />

map solid on<strong>to</strong> effective a<strong>to</strong>m coupled <strong>to</strong> bath and subject <strong>to</strong> <strong>local</strong> <strong>in</strong>teractions<br />

S = − ∫ β<br />

0 dτ ∫ β<br />

0 dτ ′ ∑ σ c† σ(τ)G −1 (τ − τ ′ )c σ (τ ′ ) + U ∫ β<br />

0 dτn ↑n ↓<br />

relate the effective a<strong>to</strong>m <strong>to</strong> solid → self-consistency condition<br />

G imp<br />

!<br />

= G loc<br />

exact <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite dimension (mean-field), <strong>non</strong>-perturbative <strong>in</strong> <strong>in</strong>teraction<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 5 / 28


DFT+DMFT [Katsnelson and Lichtenste<strong>in</strong>, Anisimov et al.]<br />

impurity problem the solid DFT<br />

(orbital subspace)<br />

G imp = − 〈 Tcc †〉 S<br />

G(r, r ′ )<br />

v KS<br />

G −1 = G loc −1 + Σ imp<br />

U<br />

Σ imp = G −1 − G −1<br />

imp<br />

G loc<br />

projection<br />

ρ(r)<br />

embedd<strong>in</strong>g<br />

Σ(r, r ′ )<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 5 / 28


Beyond the density functional picture<br />

Successes of modern many-body theory (iron pnictides)<br />

DFT+DMFT (realistic dynamical mean field theory) [Georges et al., Anisimov, Lichtenste<strong>in</strong>]<br />

correct effective masses [Y<strong>in</strong> et al., Aichhorn et al., Ferber et al....]<br />

magnitudes of ordered moments [Y<strong>in</strong> et al.]<br />

good <strong>structure</strong>s (relaxation) [Aichhorn et al.]<br />

Gutzwiller: good <strong>structure</strong>s [Wang et al., ...]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 6 / 28


Beyond the density functional picture<br />

Successes of modern many-body theory (iron pnictides)<br />

DFT+DMFT (realistic dynamical mean field theory) [Georges et al., Anisimov, Lichtenste<strong>in</strong>]<br />

correct effective masses [Y<strong>in</strong> et al., Aichhorn et al., Ferber et al....]<br />

magnitudes of ordered moments [Y<strong>in</strong> et al.]<br />

good <strong>structure</strong>s (relaxation) [Aichhorn et al.]<br />

Gutzwiller: good <strong>structure</strong>s [Wang et al., ...]<br />

BUT: are the ad hoc assumptions warranted?<br />

1 treatment of band/orbital subspace sufficient?<br />

<strong>in</strong>ter and out of subspace renormalizations?<br />

2 <strong>correlations</strong> <strong>local</strong> ? Σ ≈ Σ DMFT (ω)|RL〉〈RL ′ | ?<br />

<strong>in</strong>teractions <strong>local</strong> ? U<br />

3 start<strong>in</strong>g po<strong>in</strong>t dependence (LDA, GGA, ...)<br />

Also: double count<strong>in</strong>g issue...<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 6 / 28


The GW approximation [Hed<strong>in</strong>]<br />

(start<strong>in</strong>g) Greens function G 0 =<br />

(RPA) screened <strong>in</strong>teraction W = = [ V −1<br />

Coulomb −<br />

] −1<br />

self-energy Σ = G 0 W =<br />

many-body correction<br />

the good...<br />

the bad...<br />

no assumption on <strong>local</strong>ity<br />

dynamical screen<strong>in</strong>g<br />

G −1 = G −1<br />

0 − [ Σ − v xc<br />

]<br />

all electron approach [no (or very large) orbital subspace]<br />

1st order perturbation (<strong>in</strong> W ) only<br />

start<strong>in</strong>g po<strong>in</strong>t dependence (what is G 0 ? LDA, ...) −→ self-consistency?<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 7 / 28


QSGW = quasi-particle self-consistent GW [van Schilfgaarde et al.]<br />

self-energy Σ = G 0 W =<br />

many-body correction<br />

G −1 = G −1<br />

0<br />

− [ Σ − v xc<br />

]<br />

require same poles <strong>in</strong> G 0 and G → quasi-particle self-consistency<br />

QSGW → static <strong>non</strong>-<strong>local</strong> effective vxc<br />

QSGW [van Schilfgaarde et al.]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 8 / 28


QSGW = quasi-particle self-consistent GW [van Schilfgaarde et al.]<br />

self-energy Σ = G 0 W =<br />

many-body correction<br />

G −1 = G −1<br />

0<br />

− [ Σ − v xc<br />

]<br />

require same poles <strong>in</strong> G 0 and G → quasi-particle self-consistency<br />

QSGW → static <strong>non</strong>-<strong>local</strong> effective vxc<br />

QSGW [van Schilfgaarde et al.]<br />

H DFT , v DFT<br />

xc<br />

H QSGW , v QSGW<br />

xc<br />

Σ = GW<br />

[<br />

] }<br />

det H QSGW + RΣ QSGW<br />

H QSGW(ω) − ω = 0 = 0<br />

det [ H QSGW − ω = 0 ] ω = E i<br />

∗ <strong>in</strong> practice: vxc QSGW = 1 ∑ [<br />

2 ijk |Ψ ki〉R<br />

Σ QSGW<br />

ij<br />

−→ no dependence on the start<strong>in</strong>g po<strong>in</strong>t H DFT<br />

Σ −→ v QSGW<br />

xc<br />

]<br />

(k, E ki ) + Σ QSGW<br />

ji<br />

(k, E kj ) 〈Ψ kj |<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 8 / 28<br />


QSGW = quasi-particle self-consistent GW [van Schilfgaarde et al.]<br />

self-energy Σ = G 0 W =<br />

many-body correction<br />

G −1 = G −1<br />

0<br />

− [ Σ − v xc<br />

]<br />

require same poles <strong>in</strong> G 0 and G → quasi-particle self-consistency<br />

QSGW → static <strong>non</strong>-<strong>local</strong> effective vxc<br />

QSGW [van Schilfgaarde et al.]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 8 / 28


Results: Iron selenide FeSe<br />

1 <strong>correlations</strong> beyond the 3d-shell<br />

correction of high energy excitations !: effect of Σ pp, Σ pd , beyond DMFT<br />

band-narrow<strong>in</strong>g of 22% #<br />

not strong enough (pho<strong>to</strong>emission: m ∗ /m LDA ≈ 3.6)<br />

→ need DMFT?<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 9 / 28


Ba(Fe 1−x Co x ) 2 As 2 : pho<strong>to</strong>emission<br />

2 <strong>non</strong>-<strong>local</strong> <strong>correlations</strong>: experimental evidence<br />

“ ”<br />

[Brouet et al., PRL 110, 167002 (2013), also: Dhaka et al.arXiv:1205.6731v1]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 10 / 28


BaFe 2 As 2 : trends with respect <strong>to</strong> DFT<br />

QSGW [JMT et al. (2012)] [Brouet et al., PRL 110, 167002 (2013)]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 11 / 28


BaFe 1.85 Co 0.15 As 2<br />

[ARPES: [Zhang et al.]]<br />

QSGW<br />

sizable shr<strong>in</strong>k<strong>in</strong>g of pockets !<br />

size of Fermi surface <strong>in</strong> good agreement with experiments [pure Ba122, not shown] !<br />

band-width narrow<strong>in</strong>g of 16% (wrt LDA)<br />

BUT: experimental dispersion still lower −→ effective mass <strong>to</strong>o small! #<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 12 / 28


Orig<strong>in</strong> of effective masses<br />

mass enhancement wrt band-theory:<br />

m QSGW<br />

m LDA<br />

=<br />

LDA QSGW<br />

dEki<br />

dEki<br />

dk α<br />

/<br />

dk α<br />

dE QSGW<br />

ki<br />

dk α<br />

= 〈Ψ ki|∂ kα (H QSGW (k) + RΣ QSGW (k, ω = 0))|Ψ ki 〉<br />

[1 − 〈Ψ ki |∂ ω RΣ QSGW |Ψ ki 〉] ω=0<br />

Hence mass renormalization through:<br />

Z ki = [1 − 〈Ψ ki |∂ ω RΣ QSGW |Ψ ki 〉] −1<br />

ω=0<br />

→ dynamics!<br />

momentum dependence of <strong>correlations</strong><br />

change <strong>in</strong> charge density<br />

→ <strong>non</strong>-<strong>local</strong>ity!<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 13 / 28


Orig<strong>in</strong> of effective masses<br />

QSGW QSGW [AR]PES DMFT<br />

m QSGW 1/Z QSGW @ Γ m ∗ /m LDA 1/Z DMFT [Y<strong>in</strong>, Ferber, Aichhorn]<br />

m LDA xy xz/yz xy xz/yz xy xz/yz<br />

CaFe 2As 2 1.05 2.2 2.1 2.5[1] 2.7 2.0<br />

SrFe 2As 2 1.13 2.3 2.0 3.0[2] 2.7 2.6<br />

BaFe 2As 2 1.16 2.2 2.2 2.7 2.3 [3] 3.0 2.8<br />

LiFeAs 1.15 2.4 2.1 3.0[4] 3.3/2.8 2.8/2.4<br />

FeSe 1.22 2.4 2.2 3.6[5] 3.5/5.0 2.9/4.0<br />

FeTe 1.17 2.6 2.3 6.9[6] 7.2 4.8<br />

trends along series captured<br />

m QSGW<br />

m LDA<br />

< 1/Z QSGW −→ ∂ k Σ de<strong>local</strong>izes (cf. electron gas)<br />

k-dependence <strong>non</strong>-negligible! (not <strong>in</strong>cluded <strong>in</strong> DMFT)<br />

“dynamical” masses 1/Z <strong>to</strong>o small by fac<strong>to</strong>r of 2 or more<br />

[[1] Wang et al., [2] Yi et al., [3] Brouet et al., [4] Borisenko et al., [4] Yamasaki et al., [6] Tamai et al..]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 14 / 28


Motivation<br />

GW: <strong>non</strong>-<strong>local</strong> <strong>correlations</strong> substantial<br />

DMFT: small(er) quasi-particle weights<br />

Q<br />

A<br />

Can we comb<strong>in</strong>e the best of both methods?<br />

<strong>GW+DMFT</strong>!<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 15 / 28


DFT+DMFT<br />

impurity problem the solid DFT<br />

G imp = − 〈 Tcc †〉 S<br />

G(r, r ′ )<br />

v KS<br />

G −1 = G loc −1 + Σ imp<br />

U<br />

Σ imp = G −1 − G −1<br />

imp<br />

G loc<br />

projection<br />

ρ(r)<br />

embedd<strong>in</strong>g<br />

Σ(r, r ′ )<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 16 / 28


“<strong>GW+DMFT</strong>”<br />

impurity problem the solid GW<br />

G imp = − 〈 Tcc †〉 S<br />

G = G 0<br />

P GW = 2GG<br />

G −1 = G loc −1 + Σ imp<br />

U<br />

Σ imp = G −1 − G −1<br />

imp<br />

G loc = ∑ k<br />

[<br />

G<br />

−1<br />

H<br />

− Σ] −1<br />

W = [ V −1 − P ] −1<br />

Σ GW = −GW<br />

Σ = Σ imp + Σ <strong>non</strong>−loc<br />

GW<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 16 / 28


<strong>GW+DMFT</strong> [Biermann, Aryasetiawan and Georges]<br />

impurity problem the solid GW<br />

G imp = − 〈 Tcc †〉 S<br />

W imp = U − UχU<br />

G = [G H − Σ] −1<br />

P GW = 2GG<br />

G −1 = G loc −1 + Σ imp<br />

U −1 = W loc −1 + P imp<br />

Σ imp = G −1 − G −1<br />

imp<br />

P imp = U −1 − W −1<br />

imp<br />

P = P imp + P <strong>non</strong>−loc<br />

GW<br />

G loc = ∑ [<br />

k G<br />

−1<br />

H<br />

− Σ] −1<br />

W loc = ∑ [<br />

k V −1 − P ] −1<br />

W = [ V −1 − P ] −1<br />

Σ GW = −GW<br />

Σ = Σ imp + Σ <strong>non</strong>−loc<br />

GW<br />

extended DMFT: W loc !<br />

= W imp [Si and Smith, Kajueter, Sengupta and Georges, Sun and Kotliar]<br />

derivable from a free energy functional Γ[G, W ], fully ab <strong>in</strong>itio<br />

no start<strong>in</strong>g po<strong>in</strong>t (DFT) dependence, no double count<strong>in</strong>g problem<br />

Applications: ad a<strong>to</strong>ms [Hansmann et al.], model calculations [Ayral et al.]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 17 / 28


simplified <strong>GW+DMFT</strong> [used <strong>in</strong>: JMT et al.]<br />

impurity problem the solid GW<br />

G imp = − 〈 Tcc †〉 S<br />

G = G 0<br />

G −1 = G loc −1 + Σ Σ imp = G −1 − G −1<br />

imp<br />

imp<br />

U −1 = W loc −1 P = P GW<br />

+ P imp<br />

P GW = 2GG<br />

P imp = P GW | d<br />

G loc = ∑ [<br />

k G<br />

−1<br />

H<br />

− Σ] −1<br />

W loc = ∑ [<br />

k V −1 − P ] −1<br />

W = [ V −1 − P ] −1<br />

Σ GW = −GW<br />

Σ = Σ imp + Σ <strong>non</strong>−loc<br />

GW<br />

one-shot GW fixes Σ <strong>non</strong>−loc (k, ω)<br />

constra<strong>in</strong>t RPA sets dynamical Hubbard U(ω)<br />

start<strong>in</strong>g po<strong>in</strong>t dependence <strong>in</strong> Σ <strong>non</strong>−loc and U<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 18 / 28


SrVO 3 : pho<strong>to</strong>emission and DFT<br />

LDA [wien2k], pho<strong>to</strong>emission [Sekiyama et al], (<strong>in</strong>verse) pho<strong>to</strong>emission [Morikawa et al.]<br />

DFT vs. Pho<strong>to</strong>emission vs. DFT:<br />

bigger bandwidth (m ∗ /m)<br />

satellite absent: lower Hubbard band (LHB)<br />

separation between O2p-V3d-Sr5d <strong>to</strong>o small<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 19 / 28


SrVO 3 : RPA<br />

low energy mass enhancement:<br />

satellites:<br />

previous static DMFT needed<br />

U ≈ 5.0eV for similar spectral<br />

transfers<br />

here U(ω = 0) = 3.5eV<br />

−→ Hubbard bands at smaller<br />

distance<br />

but frequency dependence −→<br />

(plasmonic) satellites/weight<br />

IΣ(ω) = ∑ kn ψ knIW (ɛ kn − ω)ψ ∗ kn<br />

peak at ω 0 <strong>in</strong> IW<br />

−→ weight at ɛ kn ± ω 0<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 20 / 28


SrVO 3 : GW<br />

GW [FPLMTO/Kotani], pho<strong>to</strong>emission [Sekiyama et al], (<strong>in</strong>verse) pho<strong>to</strong>emission [Morikawa et al.]<br />

GW vs. pho<strong>to</strong>emission<br />

still no lower Hubbard band, but e g states!<br />

O2p and Sr5d almost right<br />

satellites at ±3 eV, plasmon at 16eV<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 21 / 28


SrVO 3 : <strong>GW+DMFT</strong><br />

plasmon peak @ 15eV<br />

GW feature moved from 3 <strong>to</strong> 5eV<br />

LHB at correct position<br />

UHB at 2eV, merged with QP<br />

dispersion<br />

IPES feature at 2.7eV from e g states<br />

congruent with lattice cluster<br />

calculations [Mossanek et al.]<br />

For <strong>GW+DMFT</strong> for SrVO 3 with static U see also [Taran<strong>to</strong> et al.]<br />

For DMFT@LDA + GW for SrVO 3 see [Sakuma et al.]<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 22 / 28


A simplified scheme?<br />

full <strong>GW+DMFT</strong> scheme rather sophisticated...<br />

Q<br />

Short-cut that reta<strong>in</strong>s most appeal<strong>in</strong>g features of <strong>GW+DMFT</strong>?<br />

A<br />

Investigate nature of correlation effects!<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 23 / 28


Locality of quasi-particle dynamics<br />

How frequency dependent are the <strong>non</strong>-<strong>local</strong> <strong>correlations</strong>?<br />

Measure: k–variance of qp-weight Z k L = [ 1 − 〈Ψ RL |∂ ωRΣ QSGW (k, ω)|Ψ RL 〉 ] −1<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 24 / 28


Locality of quasi-particle dynamics<br />

How frequency dependent are the <strong>non</strong>-<strong>local</strong> <strong>correlations</strong>?<br />

Measure: k–variance of qp-weight Z k L = [ 1 − 〈Ψ RL |∂ ωRΣ QSGW (k, ω)|Ψ RL 〉 ] −1<br />

√ ∑<br />

∆ k Z(ω = 0) =<br />

kL |Z L k − Z L<br />

loc|2<br />

≈ 0.5% ∀ GW calculations here.<br />

QSGW empirically: ∂ k Z k ≈ 0<br />

∆ k Z(ω) ≪ Z/10 for |ω|


Locality of quasi-particle dynamics<br />

How frequency dependent are the <strong>non</strong>-<strong>local</strong> <strong>correlations</strong>?<br />

Measure: k–variance of qp-weight Z k L = [ 1 − 〈Ψ RL |∂ ωRΣ QSGW (k, ω)|Ψ RL 〉 ] −1<br />

√ ∑<br />

∆ k Z(ω = 0) =<br />

kL |Z L k − Z L<br />

loc|2<br />

≈ 0.5% ∀ GW calculations here.<br />

QSGW empirically: ∂ k Z k ≈ 0<br />

∆ k Z(ω) ≪ Z/10 for |ω|


Proposal: QS<strong>GW+DMFT</strong><br />

<strong>GW+DMFT</strong> [Biermann et al.]<br />

Σ(k, ω) = Σ DMFT (ω) + Σ GW<br />

<strong>non</strong>−<strong>local</strong>(k, ω)<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 25 / 28


Proposal: QS<strong>GW+DMFT</strong><br />

<strong>GW+DMFT</strong> [Biermann et al.]<br />

Σ(k, ω) = Σ DMFT (ω) + Σ GW<br />

<strong>non</strong>−<strong>local</strong>(k, ω)<br />

QS<strong>GW+DMFT</strong> [JMT et al.]<br />

empirically <strong>non</strong>-<strong>local</strong> <strong>correlations</strong> static −→ use static QSGW potential v QSGW<br />

xc<br />

Proposal: DMFT on <strong>to</strong>p of H QSGW [v QSGW<br />

xc ]<br />

Σ QSGW +DMFT = Σ DMFT (ω) − [G QSGW W ] loc (ω)<br />

no remnant of DFT<br />

double count<strong>in</strong>g well def<strong>in</strong>ed<br />

(quasiparticle) self-consistency limited <strong>to</strong> GW<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 25 / 28


BaFe 2 As 2 / BaFe 1.85 Co 0.15 As 2<br />

[ARPES: BaFe 1.85 Co 0.15 As 2 [Zhang et al.]]<br />

QSGW<br />

<strong>non</strong>-<strong>local</strong> shift of the pocket !<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 26 / 28


BaFe 2 As 2 / BaFe 1.85 Co 0.15 As 2<br />

[ARPES: BaFe 1.85 Co 0.15 As 2 [Zhang et al.]]<br />

QSGW<br />

<strong>non</strong>-<strong>local</strong> shift of the pocket !<br />

“QS<strong>GW+DMFT</strong>”<br />

(scal<strong>in</strong>g with Z DMFT /Z QSGW = 1.4(1.3) for xy (xz/yz))<br />

correct effective masses, good dispersions !−→ “the best of both worlds”<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 26 / 28


Conclusions<br />

Methodology<br />

<strong>non</strong>-<strong>local</strong> <strong>correlations</strong> can be sizeable<br />

but: <strong>correlations</strong> beyond GW <strong>local</strong> [Ze<strong>in</strong> et al., Khodel et al.] −→ justification for GW<br />

dynamics <strong>in</strong>sufficient <strong>in</strong> GW<br />

but: dynamics is <strong>local</strong> −→ justification for DMFT<br />

Comb<strong>in</strong><strong>in</strong>g both merits: <strong>GW+DMFT</strong><br />

quasiparticle dynamics <strong>local</strong> & <strong>non</strong>-<strong>local</strong>ity static −→ QS<strong>GW+DMFT</strong><br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 27 / 28


Thank you for your attention<br />

JMT, M. van Schilfgaarde & G. Kotliar, PRL 109, 237010 (2012)<br />

JMT, M. Casula, T. Miyake, F. Aryasetiawan & S. Biermann, EPL 100, 67001 (2012)<br />

Jan M. Tomczak (TU Wien) <strong>GW+DMFT</strong> September 5, 2013 28 / 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!