04.07.2015 Views

Review 6: organic peroxides in radical synthesis ... - Acros Organics

Review 6: organic peroxides in radical synthesis ... - Acros Organics

Review 6: organic peroxides in radical synthesis ... - Acros Organics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

REVIEW 6<br />

Organic Peroxides <strong>in</strong><br />

Radical Synthesis Reactions<br />

Organic Peroxides<br />

Organic Peroxides<br />

New from <strong>Acros</strong> <strong>Organics</strong><br />

J. Meijer, A.H. Hogt and B. Fischer<br />

Akzo Nobel Polymer Chemicals Laboratory Deventer<br />

Zutphenseweg 10, PO Box 10, 7400 AA Deventer, The Netherlands.


Organic Peroxides <strong>in</strong> Radical Synthesis Reactions<br />

J. Meijer, A.H. Hogt and B. Fischer<br />

Akzo Nobel Polymer Chemicals Laboratory Deventer<br />

Zutphenseweg 10, PO Box 10, 7400 AA Deventer, The Netherlands.<br />

Contents<br />

I. Introduction<br />

II. Reactivity of <strong>organic</strong> <strong>peroxides</strong><br />

III. Oxidation reactions with <strong>organic</strong> <strong>peroxides</strong><br />

IV. Radical reactions with <strong>organic</strong> <strong>peroxides</strong><br />

V. Functionalization reactions with <strong>organic</strong> <strong>peroxides</strong><br />

VI. Conclud<strong>in</strong>g remarks<br />

VII. References<br />

VIII. Table of abbreviations<br />

IX. List<strong>in</strong>g of Organic <strong>peroxides</strong> from <strong>Acros</strong> <strong>Organics</strong><br />

1


I. Introduction<br />

Radicals can be used as synthetic <strong>in</strong>termediates <strong>in</strong> reactions which are often difficult<br />

to accomplish by other means and which can selectively occur under very mild conditions.<br />

The protection of functional groups, often essential for synthetic sequences of ionic reactions,<br />

is mostly not required for <strong>radical</strong> reactions [Curran e.a., 1996].<br />

Organic <strong>peroxides</strong> are a very versatile source of <strong>radical</strong>s that are formed after the<br />

thermally <strong>in</strong>duced homolysis of the peroxide bond. The major <strong>radical</strong>-molecule reactions are<br />

additions and SH 2 –reactions, e.g. H-abstraction, atom transfer, unimolecular reactions, e.g.<br />

decarboxylation, β-scission and rearrangements, e.g. 1,5-H-abstraction [Ingold, 1973]. In<br />

<strong>synthesis</strong> reactions, undesired <strong>radical</strong>-<strong>radical</strong> reactions such as <strong>radical</strong> comb<strong>in</strong>ation and<br />

disproportionation can be avoided by proper choice of the type of peroxide and reaction<br />

conditions. Another major application of <strong>organic</strong> <strong>peroxides</strong> <strong>in</strong> syntheses is oxidation, which is<br />

a non-<strong>radical</strong> reaction [Rao and Mohan, 1999].<br />

II.<br />

Reactivity of <strong>organic</strong> <strong>peroxides</strong><br />

Organic <strong>peroxides</strong> can have a variety of characteristics depend<strong>in</strong>g on their chemical<br />

structure and reactivity. The reactivity of the <strong>peroxides</strong> depends on the peroxide group<br />

configuration and on the type of substituents. Organic <strong>peroxides</strong> can be classified <strong>in</strong>to<br />

different groups depend<strong>in</strong>g on their chemical structures (see Fig. 1).<br />

Type of peroxide<br />

Structure<br />

Hydro<strong>peroxides</strong> R O O H<br />

Ketone <strong>peroxides</strong><br />

Peroxyacids<br />

R1<br />

H O O O O H<br />

O<br />

R O O<br />

R2<br />

H<br />

n=1,2<br />

Dialkyl<strong>peroxides</strong> R O O R<br />

Peroxyesters<br />

Peroxycarbonates<br />

Diacyl<strong>peroxides</strong><br />

Peroxydicarbonates<br />

Peroxyketals<br />

Cyclic ketone <strong>peroxides</strong><br />

O<br />

R1 O O<br />

Figure 1. Types of <strong>peroxides</strong> and general chemical structures.<br />

R1<br />

R<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

R2<br />

O<br />

R<br />

R2<br />

O<br />

R O O O O R<br />

R1<br />

R O O O O R<br />

R1<br />

R2<br />

O<br />

R2<br />

O<br />

n=2,3<br />

2


The thermally <strong>in</strong>duced homolysis of the peroxidic bonds yield oxy-<strong>radical</strong>s. The<br />

decomposition rate of <strong>peroxides</strong> does not only depend on the class of peroxide but on the<br />

type of R-group as well. The reactivity and the sensitivity of the <strong>peroxides</strong> to <strong>radical</strong> attack<br />

(<strong>in</strong>duced decomposition) is strongly related to its structure. Therefore, <strong>organic</strong> <strong>peroxides</strong> are<br />

<strong>radical</strong> <strong>in</strong>itiators with a very broad range of reactivities [Akzo Nobel PC product catalogue].<br />

This is illustrated <strong>in</strong> Figure 2, which shows the half-life time (t_) of a number of <strong>peroxides</strong><br />

aga<strong>in</strong>st temperature.<br />

10<br />

EHP<br />

TBPB<br />

Half life time (h)<br />

1<br />

TBPP<br />

LPO<br />

DTBP<br />

TBHP<br />

BPO<br />

0,1<br />

0 50 100 150 200 250<br />

Temperature (°C)<br />

Figure 2. Half-life times of various <strong>organic</strong> <strong>peroxides</strong> as function of temperature (see: Abbreviations).<br />

The thermal decomposition of <strong>organic</strong> <strong>peroxides</strong> is a first order reaction. Increase <strong>in</strong><br />

temperature of about 10°C results <strong>in</strong> a 2-3-fold <strong>in</strong>crease <strong>in</strong> decomposition rate. In the case of<br />

peresters and diacyl<strong>peroxides</strong>, the reactivity of <strong>organic</strong> <strong>peroxides</strong> is affected to a high degree<br />

by the type of substituents on the carbon atom adjacent to the peroxy bond. Increas<strong>in</strong>g alkyl<br />

substitution on a given peroxyester shortens the half-life by a factor of more than 60, on<br />

diacyl<strong>peroxides</strong> by a factor of 9000. This substitution effect is much less prom<strong>in</strong>ent for other<br />

<strong>peroxides</strong> such as peroxy (di) carbonates and dialkyl<strong>peroxides</strong> where substituents are varied<br />

on the ß-position to the peroxy group. An extensive review on peroxy compounds is reported<br />

by Sheppard [Sheppard, 1985].<br />

Decomposition rates of <strong>peroxides</strong> are <strong>in</strong> pr<strong>in</strong>ciple depend<strong>in</strong>g on the solvent used,<br />

ma<strong>in</strong>ly due to differences <strong>in</strong> polarity. For example, the one-hour half-life temperature of di-tertbutyl<br />

peroxide (DTBP) <strong>in</strong>creases about 20 degrees chang<strong>in</strong>g from chlorobenzene to an<br />

aliphatic solvent [Akzo Nobel - <strong>in</strong>ternal <strong>in</strong>formation].<br />

The viscosity of the medium can also have an effect on the rate of peroxide decomposition<br />

[Lazar, 1983; Van Drumpt and Oosterwijk, 1976].<br />

III.<br />

Oxidation reactions with <strong>organic</strong> <strong>peroxides</strong><br />

Peroxyacids are mostly used for the epoxidation of unsaturated compounds. Most<br />

important are the Baeyer-Villiger reaction of carbonyl compounds, oxidation of nitrogen and<br />

sulfur compounds (see Fig. 3) [Rao and Mohan, 1999]. It is generally accepted that such<br />

oxidations are non-<strong>radical</strong> reactions.<br />

3


R 3 N(O)<br />

R 3 N<br />

O<br />

EPOXIDATION<br />

O<br />

R O O H<br />

PEROXY ACID<br />

R 2 S<br />

R 2 S(O) n=1,2<br />

R 1 C(O)R 2<br />

R 1 C(O)OR 2<br />

BAEYER-VILLIGER<br />

Figure 3. Oxidation via peroxy-compounds.<br />

IV.<br />

Radical reactions with <strong>organic</strong> <strong>peroxides</strong><br />

Through homolytic scission <strong>organic</strong> <strong>peroxides</strong> primarily generate oxy-<strong>radical</strong>s: alkoxy-<br />

, acyloxy- and/or oxycarbonyloxy-<strong>radical</strong>s [Kochi, 1973 -a].<br />

Oxy-<strong>radical</strong>s can also be generated from peroxyesters, diacyl<strong>peroxides</strong> and hydro<strong>peroxides</strong><br />

by redox systems [ Kochi, 1973 -b]. (see Fig. 4).<br />

O<br />

*<br />

O<br />

*<br />

DTAP<br />

DCP<br />

O<br />

DTBP<br />

BPO<br />

O *<br />

O *<br />

R 1 OOR 2<br />

O<br />

O<br />

CPDC<br />

BPIC<br />

C 16 H 33 O O * O O *<br />

H<br />

MPDC<br />

TBCPDC<br />

C 14 H 29<br />

O<br />

O<br />

O *<br />

O<br />

O<br />

*<br />

O<br />

Figure 4. Generation of oxy-<strong>radical</strong>s via peroxy-compounds.<br />

4


An important reaction of alkoxy-<strong>radical</strong>s is β-scission, and of acyloxy-<strong>radical</strong>s<br />

decarboxylation, both reactions result<strong>in</strong>g <strong>in</strong> the formation of carbon-<strong>radical</strong>s. In contrast,<br />

alkoxycarbonyloxy-<strong>radical</strong>s do not show decarboxylation [Kochi, 1973-a]. (see Fig. 5).<br />

C 2 H 5<br />

DTAP<br />

DTBP<br />

CH 3 *<br />

*<br />

*<br />

H<br />

TBPIB<br />

TBPP<br />

*<br />

R 1 OOR 2<br />

BPO<br />

TBPEH<br />

* *<br />

LPO<br />

BTMHP<br />

C 11 H 23 *<br />

*<br />

Figure 5. Generation of carbon-<strong>radical</strong>s via peroxy-compounds.<br />

In the presence of a substrate, oxy-<strong>radical</strong>s (R-H) generate substrate-<strong>radical</strong>s which<br />

may undergo comb<strong>in</strong>ation reactions, addition reactions to unsaturated compounds or atomtransfer<br />

reactions. Examples of such reactions <strong>in</strong> practical applications are (see Fig. 6):<br />

comb<strong>in</strong>ation of phenylisopropyl-<strong>radical</strong>s to 2,3-dimethyl-2,3-diphenylbutane, applied as flameretardant<br />

synergist [Regitz and Giese, 1989 -a], addition of methylphosphorous monoisobutyl<br />

ester to v<strong>in</strong>ylacetic acid ethylester, used <strong>in</strong> the <strong>synthesis</strong> of the glufos<strong>in</strong>ate herbicide<br />

[Meiji Seika Kaisha, 1982], and atom transfer of brom<strong>in</strong>e to a substituted tolyl-<strong>radical</strong>, yield<strong>in</strong>g<br />

a flame retardant [Tosoh, 1999]. In addition, oxy-<strong>radical</strong>s can be used for the racemization of<br />

optically active chrysanthemic acid or its ester used for the <strong>synthesis</strong> of pyrethr<strong>in</strong>e<br />

<strong>in</strong>secticides [Sumitomo, 1992].<br />

5


R 1 OOR 2<br />

R 1 O * * OR 2<br />

R-H<br />

ABSTRACTION<br />

R 1 OH + HOR<br />

2x<br />

2<br />

X-Y<br />

R-R R*<br />

R-X + Y *<br />

COMBINATION<br />

ATOM TRANSFER<br />

H<br />

Br<br />

R<br />

H<br />

X<br />

H<br />

[Regitz and Giese, 1989-a]<br />

ADDITION<br />

[Tosoh, 1999]<br />

O<br />

O<br />

P<br />

O<br />

O<br />

[Meiji Saika Kaisha, 1982]<br />

Figure 6. Reactions of oxy-<strong>radical</strong>s with substrates R-H.<br />

Oxy-<strong>radical</strong>s can add to unsaturated compounds. They may also undergo competitive<br />

reactions such as β-scission <strong>in</strong> case of alkoxy-<strong>radical</strong>s, and decarboxylation <strong>in</strong> case of<br />

acyloxy-<strong>radical</strong>s. The formed carbon-<strong>radical</strong>s will <strong>in</strong> most cases also add to the unsaturated<br />

compounds [Kochi, 1973-Oxy-<strong>radical</strong>s; Regitz and Giese, 1989 -b].<br />

6


V. Functionalization reactions with <strong>organic</strong> <strong>peroxides</strong><br />

Some <strong>organic</strong> <strong>peroxides</strong> with particular structures have a specific performance <strong>in</strong><br />

functionalization reactions. Examples are <strong>peroxides</strong> with unsaturated groups, hydroxyl groups<br />

and acid groups and multi-functional <strong>peroxides</strong> with unsaturated and acid groups (see Fig. 7).<br />

Peroxide CAS nr. Structure<br />

tert-butyl-1,1-dimethylpropenyl<br />

peroxide<br />

114041-94-0<br />

O<br />

O<br />

tert-butylperoxy<br />

allylcarbonate<br />

65700-08-5<br />

O<br />

O<br />

O<br />

O<br />

tert-butylperoxy-6-<br />

hydroxyhexanoate<br />

(not yet<br />

assigned) O O<br />

O<br />

O<br />

H<br />

tert-butylperoxy-3-<br />

carboxypropanoate<br />

28884-42-6<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

tert-butylmonoperoxymaleate<br />

1931-62-0<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

Figure 7. Functional <strong>peroxides</strong>.<br />

With particular unsaturated <strong>peroxides</strong>, functional groups can be <strong>in</strong>corporated <strong>in</strong> a<br />

substrate after an <strong>in</strong>duced decomposition reaction and subsequent rearrangement (see Fig.<br />

8). Epoxide groups have been <strong>in</strong>troduced <strong>in</strong> various substrates such as cyclohexane, furan,<br />

methylproprionate, acetonitrile and dichoromethane, by allylic <strong>peroxides</strong>, e.g. t-butyl-1,1-<br />

dimethyl-propenyl peroxide [Montaudon e.a., 1987]. Crown ethers have been functionalized<br />

with cyclic carbonate groups us<strong>in</strong>g t-butylperoxy allylcarbonate [Maillard e.a., 1989].<br />

R-H<br />

+ O<br />

* R * +<br />

O H<br />

R *<br />

O<br />

O<br />

R<br />

O<br />

*<br />

O<br />

R * +<br />

O<br />

R<br />

O<br />

O O O<br />

++<br />

O O<br />

Figure 8. Functionalization via unsaturated peroxy-compounds.<br />

O<br />

*<br />

Tert-butylmonoperoxymaleate and t-butylperoxy-3-carboxypropanoate are capable of<br />

<strong>in</strong>corporat<strong>in</strong>g acid and/or anhydride groups <strong>in</strong> substrates, probably via H-abstraction and an<br />

addition or comb<strong>in</strong>ation reaction [Mann<strong>in</strong>g and Moore, 1997]. Primary hydroxyl functions can<br />

be <strong>in</strong>troduced us<strong>in</strong>g t-butylperoxy-6-hydroxyhexanoate via a decarboxylation and addition<br />

reaction to unsaturated substrates [ Akzo Nobel, 2001].<br />

7


VI.<br />

Conclud<strong>in</strong>g remarks<br />

There are several important parameters for the choice of a peroxide for use <strong>in</strong><br />

chemical syntheses. The physical and chemical stability affects the storage and handl<strong>in</strong>g<br />

properties, the temperature-dependent rate of decomposition determ<strong>in</strong>es the reactivity at the<br />

process conditions. The <strong>radical</strong>s formed after decomposition must be efficient for the desired<br />

<strong>radical</strong> reaction. Peroxides may also be selected for specific rearrangements or specific<br />

coupl<strong>in</strong>g reactions, which can <strong>in</strong>troduce functional groups <strong>in</strong>to substrates. Decomposition<br />

products of the <strong>peroxides</strong> have to be taken <strong>in</strong> account dur<strong>in</strong>g the purification process.<br />

Organic <strong>peroxides</strong> are well established synthetic agents <strong>in</strong> the manufacture of many<br />

pharmaceutical <strong>in</strong>termediates, herbicides, <strong>in</strong>secticides and various other f<strong>in</strong>e chemicals.<br />

Organic <strong>peroxides</strong> offer opportunities to reduce the number of reaction steps <strong>in</strong> synthetic<br />

routes apply<strong>in</strong>g classical synthetic procedures. Moreover, <strong>in</strong>troduction of functional groups<br />

can be achieved by us<strong>in</strong>g special <strong>organic</strong> <strong>peroxides</strong>. In many cases these reactions are<br />

unprecedented <strong>in</strong> non-<strong>radical</strong> chemistry.<br />

Organic <strong>peroxides</strong> comb<strong>in</strong>e a number of <strong>in</strong>terest<strong>in</strong>g features for the application <strong>in</strong> <strong>organic</strong><br />

<strong>synthesis</strong>:<br />

! High purity<br />

! Good solubility on most <strong>organic</strong> systems, enabl<strong>in</strong>g homogeneous reaction conditions<br />

! Well def<strong>in</strong>ed and temperature controlled reactivity<br />

! High efficiency<br />

! Favorable cost/performance ratio<br />

8


VII.<br />

References<br />

Curran, D.P., Porter, N.A., Giese, B., Stereochemistry of Radical Reactions, VCH<br />

Verlagsgesellschaft, We<strong>in</strong>heim, Germany (1996), pp. 1-22.<br />

Rao, A.S. and Mohan, H.R., <strong>in</strong>: Burke, S.D. and Danheiser, R.L., Handbook of Reagents for<br />

Organic Synthesis, Oxidiz<strong>in</strong>g and Reduc<strong>in</strong>g Agents, Wiley, Chichester, UK (1999), pp. 84-89.<br />

Ingold, K.U., Rate constants for free <strong>radical</strong>s <strong>in</strong> solution, <strong>in</strong>: Kochi, J.K. (Ed.), Free Radicals,<br />

Vol. I, Wiley, New York (1973), Chapter 11, pp. 37-112.<br />

Akzo Nobel PC Product Catalogue.<br />

Sheppard, Ch. S., <strong>in</strong>: Mark, H.F., Bikales, N.M., Overberger, C.G. and Menges, G. (Eds.),<br />

Encyclopedia of Polymer Science and Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 11, Wiley, New York (1985), p. 1.<br />

Akzo Nobel, <strong>in</strong>ternal <strong>in</strong>formation.<br />

Lazar, M., <strong>in</strong>: Patai, S (Ed.), The Chemistry of Functional Groups, Peroxides, Wiley, New York<br />

(1983), p. 177.<br />

Van Drumpt, J.D. and Oosterwijk, H.H.J., J. Polym. Sci., Polym. Chem. Ed., 14 (1976), 1495.<br />

Kochi, J.K., Oxygen <strong>radical</strong>s, <strong>in</strong>: Kochi, J.K. (Ed.), Free Radicals, Vol. II, Wiley, New York<br />

(1973), Chapter 23, pp. 665-710 (a).<br />

Kochi, J.K, Oxidation-reduction reactions of free <strong>radical</strong>s and metal complexes, <strong>in</strong>: Kochi, J.K.<br />

(Ed.), Free Radicals, Vol. I, Wiley, NY (1973), Chapter 11, pp. 591-684 (b).<br />

Regitz, M. and Giese, B. (Eds.), C-Radikale Band E19a, Methoden der Organischen Chemie<br />

(Houben-Weyl), Thieme Verlag, Stuttgart (1989), pp. 547-548 (a).<br />

Regitz, M. and Giese, B. (Eds.), C-Radikale Band E19a, Methoden der Organischen Chemie<br />

(Houben-Weyl), Thieme Verlag, Stuttgart (1989), pp. 31-40 (b).<br />

Meiji Seka Kaisha, Ltd, European patent EP18415 (1982).<br />

Tosoh Corp., Japanese patent JP 11130708 (1999).<br />

Sumitomo Chemical Company, Ltd, European patent EP282221 (1992).<br />

Montaudon, E., Agorrody, M., Rakotomanana, F., Maillard, B., Intramolecular homolytic<br />

displacements. 15. Free-<strong>radical</strong> reactions to β-ethylenic <strong>peroxides</strong>, Bull. Soc. Chim. Belg. 96<br />

(10), 769-74 (1987).<br />

Maillard, B., Bourgeois, M.J., Montaudon, E., Lalande, R., French patent FR2628107 (1989).<br />

Mann<strong>in</strong>g, S.C. and Moore, R.B., Carboxylation of polypropylene by reactive extrusion with<br />

functionalized <strong>peroxides</strong> for use as a compatibilizer <strong>in</strong> polypropylene/polyamide-6,6 blends,<br />

Journal of V<strong>in</strong>yl & Additive Technology, 3 (2), 184-189 (1997).<br />

Akzo Nobel, patent WO 01/27078 (2001).<br />

9


VIII.<br />

Abbreviations<br />

Code Chemical name* CAS nr.<br />

BPIC Tert-butyl peroxy isopropylcarbonate (Trigonox BPIC) 2372-21-6<br />

BPO Dibenzoyl peroxide (Lucidol, Cadet) 94-36-0<br />

BTMHP Bis(3,5,5-trimethylhexanoyl) peroxide (Trigonox 36) 3851-87-4<br />

CPDC Dicetyl peroxydicarbonate (Perkadox 24) 26322-14-5<br />

DCP Dicumyl peroxide (Perkadox BC) 80-43-3<br />

DTAP Di-tert-amyl peroxide (Trigonox 201) 10508-09-5<br />

DTBP Di-tert-butyl peroxide (Trigonox B) 110-05-4<br />

EHP Bis(2-ethylhexyl) peroxydicarbonate (Trigonox EHP) 16111-62-9<br />

LPO Dilauroyl peroxide (Laurox) 105-74-8<br />

MPDC Dimyristyl peroxydicarbonate (Perkadox 26) 53220-22-7<br />

TBCPDC Bis(4-tert-butylcyclohexyl) peroxydicarbonate (Perkadox 16) 15520-11-3<br />

TBHP Tert-butyl hydroperoxide (Trigonox A) 75-91-2<br />

TBPB Tert-butyl peroxybenzoate (Trigonox C) 614-45-9<br />

TBPEH Tert-butyl peroxy-2-ethylhexanoate (Trigonox 21) 3006-82-4<br />

TBPIB Tert-butyl peroxyisobutanoate (Trigonox 41) 109-13-7<br />

TBPP Tert-butylperoxy pivalate (Trigonox 25) 927-07-1<br />

* Cadet, Laurox, Lucidol, Perkadox, Trigonox are tradenames of Akzo Nobel.<br />

10


IX.<br />

List<strong>in</strong>g of Organic <strong>peroxides</strong> from <strong>Acros</strong> <strong>Organics</strong><br />

<strong>Acros</strong> Cat no<br />

Chemical Name<br />

34988 Dicumyl peroxide, 99%<br />

10515 2,2'-Azobis(isobutyronitrile), 98%<br />

34993 Di-tert-butyl peroxide, 99%<br />

21178 Dibenzoyl peroxide, 75%<br />

34980 1,1-Di(tert-butylperoxy)cyclohexane, 50%<br />

34996 Cumyl hydroperoxide, 80%<br />

34974 Dilauroyl peroxide, 99%<br />

34994 3,6,9-Triethyl-3,6,9-trimethyl-1,4,7-triperoxonane, 41%<br />

34977 1,1--Di-(tert-Butylperoxy)-3,3,5-trimethylcyclohexane, 75%<br />

34983 2,2-Di(tert-butylperoxy)butane, 50<br />

34986 tert-Butyl peroxyacetate, 95%<br />

17014 tert-Butyl peroxybenzoate, 98%<br />

34985 tert-Butylperoxy 2-ethylhexyl carbonate, 95%<br />

34975 2,2'-Azobis(2-methylbutyronitrile), 98%<br />

34981 tert-Butyl peroxy-3,5,5-trimethylcyclohexane, 97%<br />

34984 tert-Butylperoxy isopropyl carbonate, 75%<br />

34989 di(tert-butylperoxyisopropyl)benzene, 96%<br />

34991 tert-Butyl cumyl peroxide, 95%<br />

34990 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane, 92%<br />

18034 tert-Butyl hydroperoxide, 80%<br />

34998 2,3-Dimethyl-2,3-diphenylbutane, 95%<br />

34997 3,4-Dimethyl-3,4-diphenylhexane, 98%<br />

Enter these product codes <strong>in</strong> the quick search box at www.acros.com to f<strong>in</strong>d out more about<br />

available packsizes.<br />

11


More product documentation for your research<br />

Recent product <strong>in</strong>fosheets<br />

N o 44<br />

10-Deacetylbaccat<strong>in</strong> III , a start<strong>in</strong>g material <strong>in</strong> semisynthetic production of Taxol<br />

and analogues.<br />

N o 45<br />

Calix[8]arene a tool for the recognition and purification of fullurenes<br />

N o 46<br />

Am<strong>in</strong>omalonaldehyde, an <strong>in</strong>termediate to build many unusual heterocyclic molecules.<br />

NEW N o 47<br />

Butadiene diepoxide, a versatile mutidiscipl<strong>in</strong>ar reagent<br />

NEW N o 48<br />

TBAF, Tetrabutyl Ammonium Fluoride, a mild fluor<strong>in</strong>ation reagent.<br />

Chemistry review pr<strong>in</strong>ts<br />

N o 1<br />

on Comb<strong>in</strong>atorial Chemistry :<br />

Solid Phase <strong>synthesis</strong> of compound libraries and their application <strong>in</strong> drug discovery by Mark<br />

A. Gallop, Affimax Research Institute,USA<br />

N o 2<br />

on Asymmetric Catalysis :<br />

From homogeneous to heterogeneous catalysis, recent advantages <strong>in</strong> asymmetric <strong>synthesis</strong><br />

with nitrogen conta<strong>in</strong><strong>in</strong>g ligands by F.Fache, P.Gamez, B.Dunjic and M. Lemaire, Institut de<br />

Recherches sur la Catalyse,UCBL-CPE,Villeurbanne, France.<br />

NEW N o 3<br />

on Carbocycles :<br />

1-Hydroxycyclopropanecarboxylic acid a ready available and efficient precursor.<br />

NEW N o 4<br />

Silylated N-Tert-Butyl Aldim<strong>in</strong>es : Versatile Organosilicon Reagents for Polyenals Synthesis.<br />

NEW N o 5<br />

A complete range (C2 to C20) of fully synthetical Sph<strong>in</strong>gos<strong>in</strong>es and Ceramides.<br />

NEW N o 6<br />

Organic Peroxides <strong>in</strong> Radical Synthesis Reactions<br />

Do not forget to subscribe for more <strong>in</strong>terest<strong>in</strong>g news<br />

on novelty developments from <strong>Acros</strong> <strong>Organics</strong>:<br />

Internet http://www.acros.com<br />

e-mail <strong>in</strong>fodesk@acros.com<br />

or fax +32-(0)14.59.34.34<br />

ACROS ORGANICS<br />

Geel West Zone 2<br />

Janssen Pharmaceuticalaan 3a<br />

B-2440 Geel • Belgium<br />

•<br />

Tel.: +32(0)14/57.52.11<br />

Fax: +32(0)14/59.34.34<br />

Internet: http://www.acros.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!