05.07.2015 Views

Modulation Techniques for Compressors – Part II

Modulation Techniques for Compressors – Part II

Modulation Techniques for Compressors – Part II

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Modulation</strong> <strong>Techniques</strong> <strong>for</strong> <strong>Compressors</strong> – <strong>Part</strong> <strong>II</strong><br />

Per<strong>for</strong>mance and Efficiency Behavior of<br />

Screw <strong>Compressors</strong> – Comparison between Slider<br />

Unloading System and Frequency Inverter Operation<br />

Hermann Renz – Director Application Engineering<br />

Bitzer Kuehlmaschinenbau GmbH – Sindelfingen, Germany<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 1


<strong>Modulation</strong> <strong>Techniques</strong> <strong>for</strong> <strong>Compressors</strong> – <strong>Part</strong> <strong>II</strong><br />

– Agenda –<br />

Introduction<br />

Compressor Design Features<br />

Comparison of <strong>Modulation</strong> Systems<br />

Slide Valve <strong>for</strong> Infinite or Step Unloading<br />

Variable Speed Drive (VSD) with<br />

Frequency Inverter<br />

Test Conditions<br />

Full and <strong>Part</strong> Load Behaviour with<br />

Slide Valve vs. VSD<br />

Summary<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 2


Compressor Design Features<br />

Twin Screw Type CSH6561-60Y<br />

Semi-Hermetic, Suction Gas Cooled<br />

Displacement 7244 CFH (3500 RPM)<br />

Motor RLA 108 Amps<br />

Double-walled, pressure compensated<br />

rotor housing<br />

Integral Oil Separator and<br />

Oil Management<br />

Slider Unloading System<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 3


Comparison of <strong>Modulation</strong> Systems<br />

– Slide Valve <strong>for</strong> Infinite or Step Unloading –<br />

Suction Gas<br />

CR1<br />

CR2<br />

CR3<br />

CR4<br />

Sliding<br />

ECO-Port<br />

Discharge Gas<br />

Oil Pressure<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 4


Compressor Housing & Position of Slide Valve<br />

Position of<br />

Slide Valve<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 5


Screw Rotors with Slide Valve<br />

Slide Valve<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 6


Comparison of <strong>Modulation</strong> Systems<br />

– VSD with Frequency Inverter –<br />

Components <strong>for</strong> Per<strong>for</strong>mance Tests<br />

Frequency Inverter KIMO Type 75FEP<br />

max. Operating Current 105 Amps<br />

Screw Compressor CSH6561-60Y<br />

Frequency Range 25 .. 80 Hz<br />

L1<br />

L2<br />

L3<br />

Rectifier<br />

Transition<br />

Circuit<br />

Inverter<br />

Motor<br />

3~<br />

Control Circuit<br />

Control Voltage<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 7


Basic Test Conditions<br />

– Slider Unloading System –<br />

Power supply with fixed frequency (60 Hz)<br />

Capacity modulation by axial movement of<br />

unloading slider<br />

Vi-Control at part load conditions<br />

by adaptation of discharge port<br />

Capacity steps during test: 100 – 75 – 50 – 25%<br />

75 – 50 – 25% are nominal values<br />

real capacity steps depend on SST and SDT<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 8


Vi-Control at <strong>Part</strong> Load Conditions<br />

– with Slider Unloading System –<br />

3,5<br />

Compression Ratio Vi [%]<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

Vi Adaptation<br />

with<br />

Slide Valve<br />

1,0<br />

20 40 60 80 100<br />

Cooling Capacity [%]<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 9


Basic Test Conditions<br />

– VSD with Frequency Inverter –<br />

Capacity control by VSD with frequency modulation<br />

Compressor slide valve at 100% position<br />

Ratio Voltage / Frequency U / f constant<br />

torque remains constant with speed change<br />

Capacity steps during test<br />

100% <strong>for</strong> comparison with “direct power supply 60 Hz”<br />

Nominal 75 – 50 – 25% steps<br />

by speed adaptation to reach identical cooling capacities<br />

as with slider control<br />

Trans-synchronous speed range with U / f constant<br />

voltage lift <strong>for</strong> test above power supply (trans<strong>for</strong>mer)<br />

– real systems motor: e.g. 460V at max. frequency<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 10


VSD with Frequency Inverter – Power & Torque<br />

with Winding Layout 230V-3-60 Hz<br />

200<br />

Power Supply to Inverter 460V-3-60 Hz<br />

[%]<br />

180<br />

160<br />

140<br />

120<br />

100<br />

Torque<br />

80<br />

60<br />

40<br />

20<br />

Power<br />

Torque w/o<br />

voltage lift<br />

0<br />

0 20 40 60 80 100 120<br />

[Hz]<br />

0<br />

230 [Volt] 460<br />

2<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 11


Power Consumption of CSH Screw<br />

– VSD vs. Direct Power Supply –<br />

Full Load Conditions 60 Hz<br />

105<br />

Relative Power with Inverter [ % ]<br />

104<br />

103<br />

102<br />

R407C<br />

SDT 52°C (125°F)<br />

SDT 40°C (105°F)<br />

SDT 32°C (90°F)<br />

101<br />

-10 -5 0 35°F<br />

5 10<br />

SST [°C]<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 12


Per<strong>for</strong>mance Behaviour of CSH Screw<br />

– Slider Unloading vs. VSD –<br />

110<br />

Fixed Operating Conditions<br />

100<br />

90<br />

80<br />

R407C<br />

Power Input [% ]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Cooling Capacity [%]<br />

proportional<br />

Slider<br />

+2/40°C (35/105°F)<br />

VSD<br />

+2/40°C (35/105°F)<br />

Slider<br />

+2/52°C (35/125°F)<br />

VSD<br />

+2/52°C (35/125°F)<br />

SST / SDT based on<br />

dew points<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 13


Per<strong>for</strong>mance Behaviour of CSH Screw<br />

– Slider Unloading vs. VSD –<br />

110<br />

SST / SDT Varying vs. Load – LWT 6.7°C (44°F) / EDB 35°C (95°F)<br />

100<br />

90<br />

80<br />

R407C<br />

Power Input [%]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Cooling Capacity [%]<br />

proportional -<br />

fixed conditions<br />

Slider -- SST / SDT<br />

varying vs. Load<br />

VSD -- SST / SDT<br />

varying vs. Load<br />

100% Load:<br />

SST 2°C (35°F)<br />

SDT 52°C (125°F)<br />

- based on dew points<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 14


Per<strong>for</strong>mance Behaviour of CSH Screw<br />

– Slider Unloading vs. VSD 80 Hz –<br />

Power Input [%]<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Fixed Speed Compr. with Larger Displacement vs. VSD 80 Hz<br />

R407C<br />

CSH65 VSD<br />

60 Hz<br />

VSD 80 Hz<br />

CSH65 VSD max. 80 Hz<br />

+2/40°C (35/105°F)<br />

CSH75 / 60 Hz<br />

+2/40°C (35/105°F)<br />

CSH65 VSD max. 80 Hz<br />

+2/52°C (35/125°F)<br />

CSH75 / 60 Hz<br />

+2/52°C (35/125°F)<br />

SST / SDT based on<br />

dew points<br />

CSH75<br />

60 Hz<br />

20 40 60 80 100 120 CAP [%] 140<br />

20 40 60 Relative CAP [%] 100<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 15


<strong>Modulation</strong> <strong>Techniques</strong> <strong>for</strong> <strong>Compressors</strong> – <strong>Part</strong> <strong>II</strong><br />

– Summary (1) –<br />

CSH Screw <strong>Compressors</strong> with slider modulation<br />

Allow <strong>for</strong> infinite and step-wise capacity control<br />

Show favourable part load efficiencies<br />

Cost effective modulation technique<br />

VSD from 60 Hz to lower frequencies<br />

Show higher energy demands than slider control<br />

inverter and motor efficiency losses<br />

reduced rotor tip speed – resulting in<br />

increased internal leak losses during compression<br />

Inverter cost much higher than slider arrangement<br />

Conclusion<br />

No convincing solution<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 16


<strong>Modulation</strong> <strong>Techniques</strong> <strong>for</strong> <strong>Compressors</strong> – <strong>Part</strong> <strong>II</strong><br />

– Summary (2) –<br />

VSD <strong>for</strong> trans-synchronous speed ranges<br />

in comparison to a larger displacement fix speed compressor<br />

Pro’s<br />

Wider modulation range than with slider system<br />

Smaller compressor, lower weight, simpler design (no slider)<br />

Lower compressor cost, potential <strong>for</strong> high reliability<br />

Soft starting, low inrush current<br />

No need <strong>for</strong> Power Factor correction<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 17


<strong>Modulation</strong> <strong>Techniques</strong> <strong>for</strong> <strong>Compressors</strong> – <strong>Part</strong> <strong>II</strong><br />

– Summary (3) –<br />

Con’s<br />

Efficiency penalty against compressor with larger displacement<br />

increased tip speed but higher throttling losses<br />

Very high inverter cost<br />

exceeds (in the lower capacity range) compressor<br />

cost savings by far<br />

Bearing life is in direct counter-proportion to speed<br />

Increased sound levels with high speed<br />

Conclusion<br />

Both modulation techniques offer specific benefits – the deciding<br />

factors <strong>for</strong> a final solution are there<strong>for</strong>e dependant on:<br />

the entire system configuration, reliability, energy efficiency,<br />

investment and maintenance cost<br />

Mod<strong>Techniques</strong> <strong>II</strong>_ASHRAE01.2003 – 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!