06.07.2015 Views

A note on the solutions of a kind of matrix polynomial equation - ijmes

A note on the solutions of a kind of matrix polynomial equation - ijmes

A note on the solutions of a kind of matrix polynomial equation - ijmes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Internati<strong>on</strong>al Journal <strong>of</strong> Ma<strong>the</strong>matical Engineering and Science<br />

ISSN : 2277-6982 Volume 1 Issue 3 (March 2012)<br />

http://www.<strong>ijmes</strong>.com/<br />

https://sites.google.com/site/<strong>ijmes</strong>journal/<br />

A <str<strong>on</strong>g>note</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> soluti<strong>on</strong>s <strong>of</strong> a <strong>kind</strong> <strong>of</strong> <strong>matrix</strong> <strong>polynomial</strong><br />

equati<strong>on</strong><br />

Ber-Lin Yu 1,1 and H<strong>on</strong>g Cheng 2 ,<br />

1<br />

Faculty <strong>of</strong> Ma<strong>the</strong>matics and Physics, Huaiyin Institute <strong>of</strong> Technology, Huai’an,<br />

Jiangsu 223003, P. R. China.<br />

2<br />

Office <strong>of</strong> Teaching Affairs, Huaiyin Institute <strong>of</strong> Technology, Huai’an,<br />

Jiangsu 223003, P. R. China.<br />

berlin.yu@gmail.com, tkggja@126.com<br />

A<br />

2<br />

Abstract. In this <str<strong>on</strong>g>note</str<strong>on</strong>g>, <strong>the</strong> n<strong>on</strong>linear <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong><br />

over complex field C are investigated. All soluti<strong>on</strong>s <strong>of</strong> this <strong>matrix</strong> <strong>polynomial</strong><br />

equati<strong>on</strong> <strong>of</strong> order 2 are presented.<br />

Keywords: diag<strong>on</strong>al <strong>matrix</strong>; similar <strong>matrix</strong>; eigenvalue; Jordan can<strong>on</strong>ical form.<br />

X<br />

1 Introducti<strong>on</strong><br />

The <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong>s with degree n ,<br />

Where<br />

i<br />

A X<br />

n<br />

A<br />

n1<br />

n1X<br />

A1<br />

X A0<br />

<br />

n<br />

,<br />

A is a known complex or real <strong>matrix</strong> <strong>of</strong> order n for<br />

0<br />

i 0,1,<br />

,<br />

n<br />

,<br />

have been widely applied in many fields <strong>of</strong> scientific computati<strong>on</strong> and engineer<br />

science. Although <strong>the</strong>re are many literatures that address <strong>on</strong> <strong>the</strong> symmetric <strong>matrix</strong><br />

<strong>polynomial</strong> equati<strong>on</strong>s; see, for example, [1-4], <strong>the</strong>re is little work <strong>on</strong> <strong>the</strong><br />

n<strong>on</strong>symmetric case. As we know, it is very difficult and challenging to find <strong>the</strong><br />

general soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> above <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong>.<br />

In this short <str<strong>on</strong>g>note</str<strong>on</strong>g>, as a preliminary study, <strong>the</strong> <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong><br />

X<br />

2<br />

A<br />

over complex field C are investigated. All soluti<strong>on</strong>s <strong>of</strong> <strong>the</strong> above <strong>matrix</strong><br />

<strong>polynomial</strong> <strong>matrix</strong> equati<strong>on</strong> are presented.<br />

Note that all definiti<strong>on</strong>s throughout this <str<strong>on</strong>g>note</str<strong>on</strong>g> can be referenced in [5], [6] and<br />

references <strong>the</strong>rein.<br />

1


Internati<strong>on</strong>al Journal <strong>of</strong> Ma<strong>the</strong>matical Engineering and Science<br />

ISSN : 2277-6982 Volume 1 Issue 3 (March 2012)<br />

http://www.<strong>ijmes</strong>.com/<br />

https://sites.google.com/site/<strong>ijmes</strong>journal/<br />

2 Main results<br />

Our main result is about <strong>the</strong> soluti<strong>on</strong>s <strong>of</strong> <strong>the</strong> <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong><br />

X<br />

2<br />

A<br />

. (1)<br />

Since <strong>matrix</strong> A is <strong>of</strong> order 2, it follows from [1, Theorem 3.1.11] that A must be<br />

<br />

2 1 <br />

similar to <strong>the</strong> diag<strong>on</strong>al <strong>matrix</strong> X ,<br />

2<br />

<br />

2 1 <br />

or its Jordan can<strong>on</strong>ical form X ,<br />

<br />

and are eigenvalues <strong>of</strong> <strong>matrix</strong> A . It is obvious that <strong>the</strong> <strong>matrix</strong><br />

where <br />

1, 2<br />

equati<strong>on</strong>s (1) and<br />

2<br />

( PXP<br />

1 ) A<br />

(2)<br />

have <strong>the</strong> same soluti<strong>on</strong>s, where P is a n<strong>on</strong>singular complex <strong>matrix</strong>. So it suffices to<br />

c<strong>on</strong>sider <strong>the</strong> following two <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong>s’<br />

and<br />

a<br />

<br />

<br />

<br />

<br />

b<br />

X 2 ,<br />

X<br />

2<br />

a<br />

<br />

<br />

1<br />

<br />

a<br />

respectively, where a and b are complex numbers.<br />

The following two <strong>the</strong>orems are our main results.<br />

Theorem 1. There exists at least a soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong><br />

(3). Fur<strong>the</strong>rmore, if a b 0 , <strong>the</strong>n all <strong>the</strong> n<strong>on</strong>zero soluti<strong>on</strong>s <strong>of</strong> equati<strong>on</strong> (3) have<br />

<strong>the</strong> form<br />

<br />

P <br />

<br />

,<br />

0 1<br />

1<br />

P<br />

0<br />

{ a , b<br />

and if <strong>the</strong>re exists at least n<strong>on</strong>zero entry in }, <strong>the</strong>n all <strong>the</strong> soluti<strong>on</strong>s <strong>of</strong> (3) have<br />

<strong>the</strong> form<br />

1<br />

<br />

<br />

<br />

<br />

2<br />

<br />

(3)<br />

(4)<br />

2


Internati<strong>on</strong>al Journal <strong>of</strong> Ma<strong>the</strong>matical Engineering and Science<br />

ISSN : 2277-6982 Volume 1 Issue 3 (March 2012)<br />

http://www.<strong>ijmes</strong>.com/<br />

https://sites.google.com/site/<strong>ijmes</strong>journal/<br />

2<br />

1<br />

2<br />

where a and <br />

2<br />

b .<br />

Theorem 2. There exists at least a soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong> (4)<br />

for a 0 . However, if a 0 , <strong>the</strong>n all <strong>the</strong> soluti<strong>on</strong>s <strong>of</strong> equati<strong>on</strong> (4) have <strong>the</strong> form<br />

where<br />

2<br />

a .<br />

1 <br />

<br />

2 <br />

<br />

<br />

,<br />

3 Pro<strong>of</strong>s <strong>of</strong> main results<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 1. It is clear that <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong> (3) has at least<br />

<strong>on</strong>e soluti<strong>on</strong>. If a b 0 , <strong>the</strong>n we claim that <strong>the</strong> n<strong>on</strong>zero soluti<strong>on</strong> X <strong>of</strong> equati<strong>on</strong><br />

(3) cannot be diag<strong>on</strong>alizable. In fact, <strong>the</strong> n<strong>on</strong>zero soluti<strong>on</strong> X has an eigenvalue 0<br />

for its determinant is zero. If follows that X is similar to<br />

0<br />

<br />

<br />

1<br />

<br />

0<br />

are <strong>of</strong> <strong>the</strong> form<br />

<br />

<br />

<br />

0<br />

1<br />

<br />

0<br />

. Because<br />

is a soluti<strong>on</strong> <strong>of</strong> equati<strong>on</strong> (3), all soluti<strong>on</strong>s <strong>of</strong> <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong> (3)<br />

<strong>matrix</strong> <strong>of</strong> order 2.<br />

For <strong>the</strong> case 0<br />

0 1<br />

1<br />

<br />

P P<br />

, where P is an arbitrary n<strong>on</strong>singular complex<br />

0<br />

a or b 0 , we first claim that <strong>the</strong> soluti<strong>on</strong> X <strong>of</strong> equati<strong>on</strong> (3)<br />

is diag<strong>on</strong>alizable. In fact, if <strong>the</strong> soluti<strong>on</strong> X is not diag<strong>on</strong>alizable, <strong>the</strong>n X must be<br />

1 <br />

similar to <strong>matrix</strong> , where 0 . Then for some n<strong>on</strong>singular <strong>matrix</strong> P ,<br />

<br />

we have<br />

1<br />

1 a<br />

<br />

P P .<br />

b<br />

2 <br />

<br />

<br />

<br />

p1<br />

p2<br />

. For some n<strong>on</strong>singular <strong>matrix</strong><br />

<br />

<br />

P <br />

<br />

2 <br />

p3<br />

p4<br />

<br />

If follows that<br />

1<br />

<br />

<br />

2<br />

is diag<strong>on</strong>alizable; a c<strong>on</strong>tradicti<strong>on</strong>. So X is similar to<br />

, we have<br />

3


Internati<strong>on</strong>al Journal <strong>of</strong> Ma<strong>the</strong>matical Engineering and Science<br />

ISSN : 2277-6982 Volume 1 Issue 3 (March 2012)<br />

http://www.<strong>ijmes</strong>.com/<br />

https://sites.google.com/site/<strong>ijmes</strong>journal/<br />

C<strong>on</strong>sequently,<br />

p<br />

<br />

p<br />

1<br />

3<br />

p2<br />

1<br />

<br />

p<br />

<br />

4 <br />

2<br />

<br />

<br />

1<br />

p<br />

2<br />

1<br />

p<br />

1<br />

3<br />

<br />

<br />

2<br />

<br />

2<br />

p<br />

<br />

p<br />

1<br />

3<br />

p2<br />

<br />

<br />

p4<br />

<br />

2<br />

<br />

2<br />

p2<br />

ap1<br />

<br />

<br />

2<br />

2<br />

p<br />

<br />

4 bp3<br />

1<br />

<br />

a<br />

<br />

<br />

ap2<br />

<br />

<br />

bp4<br />

<br />

.<br />

<br />

<br />

b<br />

It can be verified readily that all soluti<strong>on</strong>s <strong>of</strong> equati<strong>on</strong> (3) are <strong>of</strong> <strong>the</strong> form<br />

where<br />

2<br />

1<br />

2<br />

2<br />

a and b<br />

.<br />

.<br />

1<br />

<br />

<br />

<br />

2<br />

<br />

,<br />

Pro<strong>of</strong> <strong>of</strong> Theorem 2. It suffices to c<strong>on</strong>sider <strong>the</strong> following two cases.<br />

Case 1. a 0 .<br />

In this case, we claim that <strong>the</strong>re exist no soluti<strong>on</strong> in equati<strong>on</strong> (4). By a way <strong>of</strong><br />

c<strong>on</strong>tradicti<strong>on</strong>, let <strong>the</strong> soluti<strong>on</strong> <strong>of</strong> equati<strong>on</strong> (4) be X . Then X 0 and X has 0<br />

as its an eigenvalue.<br />

Subcase 1.1. 0 is an eigenvalue <strong>of</strong> X with algebraical multiplicity 1.<br />

In this case, it follows from [5, Theorem 1.3.9] that X is diag<strong>on</strong>alizable.<br />

0<br />

0 <br />

Without loss <strong>of</strong> generality, let X be similar to . So we get<br />

0<br />

<br />

P<br />

1<br />

0<br />

<br />

0<br />

2<br />

0 0<br />

P <br />

0<br />

for some n<strong>on</strong>singular <strong>matrix</strong> P . It follows that <strong>matrix</strong><br />

1<br />

,<br />

0<br />

0<br />

<br />

0<br />

1<br />

<br />

0<br />

c<strong>on</strong>tradicti<strong>on</strong>.<br />

Subcase 1.2. 0 is an eigenvalue <strong>of</strong> X with algebraical multiplicity 2.<br />

In this case, <strong>the</strong> soluti<strong>on</strong> X must be similar to <strong>matrix</strong><br />

Clearly, it is a c<strong>on</strong>tradicti<strong>on</strong>.<br />

Case 2. a 0 .<br />

2<br />

X<br />

0<br />

<br />

0<br />

0<br />

0<br />

<br />

0<br />

0<br />

1<br />

<br />

0<br />

.<br />

0<br />

<br />

0<br />

is diag<strong>on</strong>alizable; a<br />

1<br />

<br />

0<br />

. C<strong>on</strong>sequently,<br />

4


Internati<strong>on</strong>al Journal <strong>of</strong> Ma<strong>the</strong>matical Engineering and Science<br />

ISSN : 2277-6982 Volume 1 Issue 3 (March 2012)<br />

http://www.<strong>ijmes</strong>.com/<br />

https://sites.google.com/site/<strong>ijmes</strong>journal/<br />

In this case, <strong>the</strong> soluti<strong>on</strong> X <strong>of</strong> equati<strong>on</strong> (4) is not diag<strong>on</strong>alizable. Without loss<br />

<br />

1 <br />

<strong>of</strong> generality, let <strong>the</strong> Jordan can<strong>on</strong>ical form <strong>of</strong> X be . Then for some<br />

n<strong>on</strong>singular <strong>matrix</strong><br />

C<strong>on</strong>sequently,<br />

p<br />

<br />

p<br />

p<br />

P <br />

<br />

p<br />

1<br />

3<br />

1<br />

3<br />

p2<br />

<br />

p4<br />

<br />

p2<br />

<br />

1 <br />

<br />

p4<br />

0 <br />

, we have<br />

2<br />

p<br />

<br />

p<br />

1<br />

3<br />

p2<br />

<br />

<br />

p4<br />

<br />

1<br />

<br />

0<br />

a<br />

<br />

0<br />

<br />

<br />

1<br />

.<br />

<br />

<br />

a<br />

2<br />

2<br />

p<br />

<br />

1<br />

2p1<br />

p2<br />

ap1<br />

p3<br />

ap2<br />

p4<br />

<br />

<br />

<br />

2<br />

2<br />

<br />

<br />

p3<br />

2p3<br />

p<br />

<br />

.<br />

4 ap3<br />

ap4<br />

<br />

2<br />

By computati<strong>on</strong>, we get p<br />

3<br />

0 , a and 2<br />

p1<br />

p4<br />

1<br />

p1<br />

p1<br />

<br />

1 p1<br />

p1<br />

1<br />

X <br />

0 2p1<br />

0 <br />

<br />

0 2<br />

<br />

p1<br />

<br />

<br />

<br />

<br />

2<br />

0 <br />

<br />

. It follows that<br />

Acknowledgments. This research was supported by Sci. \& Tech. Research Project<br />

<strong>of</strong> Huaiyin Institute <strong>of</strong> Technology (HGB1111).<br />

.<br />

References<br />

1. Henri<strong>on</strong>, D., Sebek, M.: Symmetric Matrix Polynomial Equati<strong>on</strong>: Interpolati<strong>on</strong> Results.<br />

Automatica, 34, 7-34 (1998)<br />

2. Jezek, J.: C<strong>on</strong>jugated and symmetric <strong>polynomial</strong> equati<strong>on</strong>s: parts I. Kybernetika, 19(2), 121-<br />

130 (1983)<br />

3. Jezek, J.: C<strong>on</strong>jugated and symmetric <strong>polynomial</strong> equati<strong>on</strong>s: parts II. Kybernetika, 19(3), 196-<br />

21 1 (1983)<br />

4. Jezek, J.: Symmetric <strong>matrix</strong> <strong>polynomial</strong> equati<strong>on</strong>s. Kybernetika, 22 (1), 19—30 (1986)<br />

5. Horn, R. A. , Johns<strong>on</strong>, C. R.: Matrix Analysis. Cambridge University Press, New York (1995)<br />

6. Golub, G. H., Loan, C. F.: Matrix computati<strong>on</strong>s. Posts \& Telecom Press, Beijing (2009)<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!